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Abstract. Estimating the mechanisms that connect explanatory variables with
the explained variable, also known as “mediation analysis,” is central to a vari-
ety of social science fields, especially psychology, and increasingly fields like epi-
demiology. Recent work on the statistical methodology behind mediation analysis
points to limitations in earlier methods. We implement in Stata computational
approaches based on recent developments in the statistical methodology of medi-
ation analysis. In particular, we provide functions for the correct calculation of
causal mediation effects using several different types of parametric models, as well
calculating sensitivity analyses for violations to the key identifying assumption
required for interpreting mediation results causally.
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1 Introduction

The mediation package is designed to estimate the role of causal mechanisms that
transmit the effect of a treatment variable on an outcome. Causal mechanisms are cen-
tral to many studies in the social and life sciences, and the statistical analysis of mecha-
nisms is widespread.! By positing, and empirically testing causal mechanisms, scholars
start to be able to explain why a relationship exists between two variables. The mediate
and medsens commands contained in the mediation package, implement the procedures
described in Imai, Keele, and Tingley (2010a) and Imai, Keele, and Yamamoto (2010c)
for a common set of statistical models.

Earlier approaches to mediation analysis largely relied on some form of structural
equation modeling. Unfortunately, these earlier methods were not derived from a for-
mal framework for causal inference and did not did not permit sensitivity analyses with
respect to key identification assumptions. Furthermore, earlier methods were difficult to
correctly extend to non-linear models such as those with binary outcome variables. The
tools in the mediation package enable users to conduct sensitivity analyses and cover
several common statistical models that handle binary dependent variables. Mediation
and sensitivity analysis are each implemented with a single line of syntax, making the

1. For example, a canonical paper on the topic by Baron and Kenny (1986) has over 24, 849 citations
according to Google Scholar (date accessed, 9/13/2011).
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2 Causal Mediation Analysis

procedure simple for users. In this paper we discuss the foundations of these meth-
ods and how to use the mediation package. A longer, non-technical, introduction is
available elsewhere (Imai et al. 2011)

2 Background

2.1 Notation

The underlying theoretical results that the mediation package is based upon formu-
lates the identification of causal mechanisms in the common framework of potential
outcomes. First consider a sample of units in an experiment that are either in the
treatment 7T; = 1 or control T; = 0 condition. Thus the outcome for observation 7 in
the treatment condition can be denoted as Y;(1), or more generally Y;(T;). In practice
we usually only observe each unit in one condition; thus for the above example Y;(0)
is not observed. This implies that the unit-level treatment effect is unobservable, and
researchers typically focus on estimation of the average treatment effect (ATE) over a
population, E(Y;(1) — ¥;(0)).

Mediation analysis moves beyond calculation of average treatment effects and instead
seeks to quantify the effect of a treatment that operates through a particular mechanism.
Let M;(t) denote the potential value of a mediator of interest for unit ¢ under the
treatment status T; = ¢. Similarly, let Y;(¢,m) denote the potential outcome if the
treatment and mediating variables equal ¢ and m. Here we only observe one of the
potential outcomes, and the observed outcome, Y;, is Y;(T;, M;(T;)), which depends upon
both the treatment status and the level of the mediator under the observed treatment
status.

2.2 Quantities of Interest

They key quantity of interest is the calculation of how much of the treatment variable
is transmitted by the mediating variable. Following Robins and Greenland (1992) and
Pearl (2001) we define indirect effects or causal mediation effects for each unit 7 as,

5(H) = Yilt, My(1)) - Yilt, Mi(0), (1)

for each treatment status ¢ = 0,1. This causal quantity is the change in the outcome
corresponding to a change in the mediator from the value that would be realized un-
der the control condition, i.e., M;(0), to the value that would be observed under the
treatment condition, i.e., M;(1), while holding the treatment status constant at ¢. For
example, if M;(1) = M;(0) then the treatment has no effect on the mediator and the
causal mediation effect would be zero. Importantly, because the treatment is fixed and
only the mediator changes, we isolate the hypothesized mechanism. We can also define
the direct effects of the treatment as

G(t) = Yi(l, My(t)) - Yi(0, M;(2)), (2)
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for each unit ¢+ and each treatment status ¢ = 0,1. This represents all other causal
mechanisms linking the treatment to the outcome.

What should be clear is that while we observe Y;(t, M;(t)) for units with T; =
t, we do not observe the counterfactual outcome Y;(¢, M;(1 — t)) in the typical re-
search design with one observation per unit. This makes identifying causal mecha-
nisms more difficult than identifying treatment effects, and requires an additional as-
sumption known as sequential ignorability, discussed below. In practice, just as with
treatment effects, we are interested in an average of the mediation effect. This is de-
noted the average causal mediation effects (ACME) §(t) and is formally defined as
5(t) = E(Y;(t, M;(1)) — Yi(t, M;(0))). Similarly, the average direct effects (ADE) are

defined as ((t) is E(Y;(1, M;(t)) — Yi(0, M;(t))).

2.3 Identification Assumption

The ACME or ADE is not identified in the standard design, where the treatment is
randomized /ignorable conditional pre-treatment covariates, and the mediator/outcome
variables are measured. This is because a potential outcome required for the calculation
of indirect and direct effects is never observed. An additional assumption is therefore
required, sequential ignorability (SI). The assumption can be written as,

ASSUMPTION 1 (SEQUENTIAL IGNORABILITY (IMAI ET AL. 2010C))

{i(t',m),M;(t)} L T;|X;=u=, (3)
Yi(t',m) 1L M;@t)|T,=tX; ==, (4)

where X; is a vector of the observed pre-treatment confounders, 0 < Pr(T; =t | X; = x)
and 0 < p(M; =m | T; = t,X; = x) fort =0,1, and all x and m in the support of X;
and M;, respectively.

Assumption 1 applies two ignorability assumptions sequentially. In the first step,
given the observed pre-treatment confounders, the treatment assignment is assumed to
be ignorable — statistically independent of potential outcomes and potential mediators.
This assumption is common, and also referred to as no omitted variable bias, exogeneity,
or unconfoundedness. In experiments, the assumption is expected to hold since treat-
ment is randomized. The second step assumes-given the actual treatment status and
pre-treatment confounders-the observed mediator is ignorable. While the second step is
similar to standard exogeneity assumptions, it is interesting to note that randomizing
both the treatment and mediator does not identify the ACME (Imai et al. 2009, 2011).

2.4 Existing Methods and Practices

The standard approach to mediation analysis can be broken out into either 1) a set of
steps whereby the statistical significance of slope estimates in a regression is evaluated
or 2) the multiplication of slope coefficients along the causal path and a test of the
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significance of the product. An extended discussion of these approaches is contained
elsewhere (MacKinnon et al. 1995; Imai et al. 2010a). The key practical limitations
of existing methods are 1) the difficulty in correctly extending to non-linear models
(e.g., probit, etc.) and 2) the inability to conduct sensitivity analyses to the sequential
ignorability assumption.

Regarding the first limitation, existing suggestions to estimate mediation effects with
binary models using non-linear regression models (probit/logit) do not correspond to
causal mediation effects (Imai et al. 2010a). When both the mediator and outcome
variable are continuous and estimated with a linear regression, the mediation effect
under the sequential ignorability assumption is equivalent to estimating two regressions,

Mi = Q2+ BQTZ' + f;Xz + €2, (5)
Y, = asz+ BT+ M, + &5 X, + €, (6)

and taking the product of the coefficient on the treatment variable in the first model with
the coefficient on the mediator model in the second, f27y. Sans explicit recognition of the
role the sequential ignorability assumption plays, this is well known (MacKinnon et al.
2007; Baron and Kenny 1986). When outcome variables are binary and mediators con-
tinuous, the product of coefficients (or some transformation of them) does not corre-
spond to average causal mediation effects (Imai et al. 2010a; Pearl 2011) despite advice
to the contrary (MacKinnon et al. 2007; Kenny 2008). Similarly, the product of slope
coefficients cannot be used when the mediator is binary and a non-linear model is used
(probit/logit) (Li et al. 2007; Imai et al. 2010a). The fact that methods developed for
linear models do not extend to the use of non-linear models in the context of mediation
analysis is broadly accepted (Kohler et al. 2011).2

Regarding the second limitation, the blind application of earlier methods without
respect to the non-randomization of the mediator has led some to advise abandoning
the search for mechanisms (Bullock et al. 2010). Alternatively, we suggest conducting
sensitivity analyses, which we show how to do using our package in section 4 or adopting
different experimental designs (Imai et al. 2009). Sensitivity analysis allows the analyst
to state how an estimated quantity would change for different degrees of violation of the
key identification assumption (Rosenbaum 2002). Because the sequential ignorability
assumption can never be tested directly, sensitivity analysis is a key component of
conducting causal mediation analysis.

3 Causal Mediation Analysis
3.1 The algorithm

The mediation package calculates the average mediation and direct effects by simu-
lating predicted values of the mediator/outcome variable, that we do not observe, and

2. A related procedure is discussed in Buis (2011). The main differences are that their procedure
requires dichotomous outcome variables, represents quantities of interests in terms of log-odds, and
does not provide a method for sensitivity analysis to violations of the key identification assumption
(see below).
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then calculating the appropriate quantities of interest (average causal mediation, direct
and total effects, as well as the proportion of the total effect that is mediated). We
implement the parametric algorithm described in (Imai et al. 2010a).

ALGORITHM 1 (PARAMETRIC INFERENCE)

Step 1: Fit models for the observed outcome and mediator variables
Step 2: Simulate model parameters from their sampling distribution
Step 3: Repeat the following three steps for each draw of model parameters;

1. Simulate the potential values of the mediator
2. Simulate the potential outcomes given the simulated values of the mediator

3. Compute quantities of interest (average causal mediation effect, average direct
effect, average total effect)

Step 4: Compute summary statistics such as point estimates (average) and confidence in-
tervals

The structure of the algorithm is a function of the theoretical results linking the
sequential ignorability assumption and the mediation effect, and the calculation of
uncertainty estimates is based on the quasi-Bayesian Monte Carlo approximation of
King et al. (2000). While this algorithm can be applied to a range of parametric or
semi-parametric statistical model, mediation currently implements the procedure for
the common cases where OLS, probit, or logit models are used. Users wishing more
flexibility, such as the use of quantile regressions, at this point would need to use the R
package with the same name, which implements a non-parametric bootstrap version of
algorithm 1.3 Sampling weights may also be used.

4 Sensitivity Analysis

The preceding section discussed how to analyze data under the sequential ignorability
assumption. We cannot test this assumption with the data and hence a sensitivity
analysis should be conducted. The sensitivity analysis investigates how robust the
results are to the violation of the SI assumption. The exact form of the sensitivity
analysis will depend on the types of parametric models used for the mediator and
outcome models. We briefly describe each of the three cases covered by the mediation
package (continuous mediator and outcome, continuous mediator and binary outcome,
and binary mediator and continuous outcome).*

3. Imai et al. (2010b) illustrate the use of this software.
4. The following assumes a binary (0/1) treatment variable.




6 Causal Mediation Analysis

4.1 Continuous mediator and outcome variables

When linear models are used for the mediator and outcome variables sensitivity analysis
is based the linear structural equation model (LSEM) in equations 5 and 6. Here a
violation of the SI assumption leads to a correlation between €;5 and €;3, which we denote
by p. p is equal to zero under ST . As shown in Imai et al. (2010c) the ACME can be
expressed as a function of p using identifiable parameters. The procedure is essentially
an application of the iterative feasible generalized least square algorithm of the seemingly
unrelated regression (Zellner 1962). Asymptotic variance of the estimated average causal
mediation effects can be expressed with the Delta method and the confidence intervals
can be constructed. Additional mathematical details are provided in Imai et al. (2010c).

4.2 Binary mediator and continuous outcome variables

If the mediator is modeled as a probit regression with an independently and identically
distributed error term with standard normal distribution, and a linear normal regression
with error variance equal to o3 for a continuous outcome variable, then a sensitivity
analysis is available Imai et al. (2010a). Assuming that the two error terms jointly follow
a bivariate normal distribution with mean zero and covariance pos then the correlation
between the two error terms, p, is the sensitivity parameter. Under these assumptions
the causal mediation effects can be written in terms of consistently estimated model
parameters and a fixed value of p. Uncertainty estimates are computed based on the
quasi-Bayesian approach. Mathematical details are provided in Imai et al. (2010a). As
shown below, graphing the ACME as a function of p is straightforward.

4.3 Continuous mediator and binary outcome variables

In situations with a binary outcome and continuous mediator a sensitivity analysis is
also available in the mediation package. Here the outcome model is assumed to be a
probit regression which allows us to assume the error terms are jointly normal with a
possibly non-zero correlation p. The ACME can once again be written as a function
of identifiable parameters and confidence intervals are once again approximate with the
quasi-Bayesian approach discussed previously. Mathematical details are provided in
Imai et al. (2010a).

4.4 Alternative Interpretations Based on R?

Expressing the ACME as a function of p is simple. However, interpretation of the mag-
nitude of this correlation coefficient may be difficult. An alternative approach is to
express the ACME as a function of R%s which will capture how important a confounder
is for explaining the mediator or outcome variable. If there is an omitted confounder, U;,
then the error term will be a function of this confounder, yielding a decomposition of our
error term €;; = A\;U; +e§j for j = 2,3 (i.e., for the mediator model and outcome model).
With this set-up, p can be expressed as a function of the proportions of previously unex-
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plained variances in the mediator and outcome regressions®, or based on the proportions
of original variances that are explained by the unobserved confounder in the mediator
and outcome regressions®. The relationship between the ACME and R? parameters can
then be expressed as the product of the R? parameters for the mediator and outcome
variables. For the case of previously unexplained variances this is p = sgn(A2A3) R}, R}
and for original variances this is sgn(AoAs) Rar Ry /v/(1 — R2,)(1 — RZ). In both cases
p is a function of the product of unexplained variance measures. Below we show how
the medsens function reports the values of R*3;R*} or R%,R? such that the ACME is
0. Because these are products, this critical point can occur across a range of values.”

When the mediator or the outcome variable is binary, we use the pseudo-R? of
McKelvey and Zavoina (1975). For example, in the binary mediator case, we redefine
R2, ={1- Var(eéQ)}/{Var(]\Z*) +1} and R, = Var(]\/ii*)/{\/ar(]\z*) + 1} in the above
formula where Z\Z* represents the predicted value of the latent mediator variable for
the probit regression. Thus, in all cases considered here, we can interpret p using
two alternative coefficients of determination. This value can then be used to compare
across studies or evaluated in reference to subject specific knowledge about the likely

magnitude of effect from the confounding variable.

5 The mediate command

5.1 Syntax

mediate (model depvar varlist ) ( model depvar varlist) [zf] [m] R

mediate (varname) treat(varnamez##) [ vce(vcetype) sims(#) seed(#)

]

5.2 Structure and Options

In the first set of parentheses the user specifies the model for the mediator variable
and in the second set the model for the outcome variable. Available model types are
OLS regression (regress), probit (probit) and logit (logit). If there is to be a restriction
on observations, this will apply to both models and is done with the standard if or in
syntax. mediate(varname) is required and specifies the mediating variable to be used in
the analysis. treat(varname##) is required and specifies the treatment variable used
in the analysis, where the numbers following the treatment name are values to be used
for the control and treatment conditions, respectively. By default these are set to 0 and

5. RN*?W =1-— Var(e},)/Var(e;2) and R*3 =1 — Var(e}3)/Var(e;3)

6. R2, = {Var(e;2) — Var(ey)}/Var(M;) and R2 = {Var(e;3) — Var(el5)}/Var(Y;)

7. sgn(A23) captures whether the coefficient on the omitted variable is similar or different for the me-
diator and outcome equations. Hence linking these R? measures directly back to the ACME (which
can be written as a function of p) requires that researchers specify the direction (positive/negative)
of confounding for both models. wa and R%, are the coefficients of determination for the mediator
and outcome regressions.
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1. In addition there are the following options:

sims(#) specifies the number of simulations to run for the quasi-Bayesian approxi-
mation of parameter uncertainty. The default value is 1000. Higher values will increase
the computational time.

seed(#) sets the random number seed for precise replicability though with sufficient
sims results will be very similar. The default value is the random seed Stata draws when
starting a session.

veetype(veetype) allows users to specify how the standard errors will be calculated.
Clustering is available.

Sampling weights may be used by specifying [pweight=weight] after the models.

5.3 Saved results

r(delta0) r(deltal) - point estimates for average causal mediation effects under the con-
trol and treatment conditions.

r(deltaOhi) r(delta0lo) r(deltalhi) r(deltallo) - confidence intervals for average causal
mediation effects.

r(tau) - point estimate for total effect
r(tauhi), r(taulo) - confidence interval for total effect

r(zeta0) r(zetal) - point estimates for average direct effect under the control and
treatment conditions

r(zetaOhi), r(zetaOlo), r(zetalhi), r(zetallo) - confidence intervals for average direct
effects.

5.4 Example

To illustrate the use of the mediate function we produce 2000 observations of simulated
data. To do this we utilize a system of linear structural equations (LSEMs) given in
Equations 5 and 6, fixing the structural parameters as, as, 82, 83,7, &2, £3. For simplicity
all are set to .25. Below we implement the case for a continuous mediator and outcome
variable using OLS regression for both models, in which case the ACME is equivalent

to Bay.

L ORkskokokokok kokok ok

. *Create simulated data
L kkkRk KRR KKK

. clear all
. set seed 312789
. local n 2000

. set obs "n-”
obs was 0, now 2000
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*Population Values
local alpha_2 .25

. local alpha_3 .25
. local beta_2 .25
. local beta_3 .25
. local gamma .25
local x_beta .25

*Draw realizations of error terms and pre-treatment covariate x assuming no c

> orrelation
. matrix m = (0,0,0)

. matrix sd = (1,1,1)

. drawnorm el e2 x, n("n") means(m) sds(sd)

*Generate realizations of treatment (T), mediator (M), and outcome (Y) variab

> les
. gen T = round(uniform(), 1)

. gen M

. genY

*Conduct mediation analysis

“alpha_2° + “beta_27xT + “x_beta’*x + el

“alpha_3" + “beta_37*T + “gamma *M + “x_beta’*x + e2

. mediate (regress M T x) (regress Y T M x) , treat(T) mediate(M) sims(1000)

Using O and 1 as treatment values

Source SS df MS Number of obs = 2000

F( 2, 1997) = 75.69

Model 157.797161 2 78.8985804 Prob > F = 0.0000

Residual 2081.76275 1997 1.04244504 R-squared = 0.0705

Adj R-squared = 0.0695

Total 2239.55991 1999 1.12034013 Root MSE = 1.021

M Coef. Std. Err. t P>|t| [95% Conf. Intervall

T .2620606 . 0456963 5.73 0.000 .1724431 .3516781

X .2468286 .0231428 10.67 0.000 .201442 .2922152

_cons .2428821 .0320858 7.57 0.000 .179957 .3058072

Source SS df MS Number of obs = 2000

F( 3, 1996) = 125.22

Model 376.062154 3 125.354051 Prob > F = 0.0000

Residual 1998.18054 1996 1.00109245 R-squared = 0.1584

Adj R-squared = 0.1571

Total 2374.24269 1999 1.1877152 Root MSE = 1.0005

Y Coef. Std. Err. t P>t [95% Conf. Intervall

T .2632512 .045148 5.83 0.000 .174709 .3517934

M .2372682 .0219291 10.82 0.000 .1942618 .2802746

X .2604436 .0233161 11.17 0.000 .2147171 .30617

_cons .2291991 .0318908 7.19 0.000 .1666563 .2917419

Effect Mean [95% Conf. Intervall]

ACME1 .0624004 .0410497 .0888912
ACMEO .0624004 .0410497 .0888912
Direct Effect 1 .2638839 .17911 .351345
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Direct Effect O .2638839 .17911 .351345
Total Effect .3262843 .2238124 .4363766

Here Stata reports the results from the two regression models and then the summary
estimates of the mediation, direct, and total effects. Estimates for both 6(1), ACMEI,
and §(0), ACMEO are given.® The average effect of the treatment variable on the
outcome that operates through the mediator is .067. The estimates of the direct effect,
(t), Direct Effect 1 and Direct Effect 0, are equal to .28. Finally, mediate also reports
the average treatment effect, Total Effect. As expected, under the sequential ignorability
assumption the estimate of the ACME is nearly identical to the product of coefficients
method, even though the mediate function uses Algorithm 1. If an analyst had a binary
mediator or outcome variable then instead of using the regress function a probit or logit
model could be used instead. As mentioned above, the product of coefficients in this
case will not correspond to the ACME. In such cases we recommend using a probit
model because this permits sensitivity analyses which we discuss next.

6 The medsens command

6.1 Syntax

medsens ( model depvar varlist) ( model depvar varlist ) [zf} ,

mediate(varname) treat(varname) [ graph sims(#) seed(#) eps(#) }

6.2 Structure and Options

The first part of the medsens function follows the format of the mediate function in
that it gives the required regression models. Similarly, mediate(varname) specifies the
mediating variable to be used in the analysis and treat(varname) specifies the treatment
variable used in the analysis. Values of 0 and 1 are used. In addition there are several
options:

sims(#)- specifies the number of simulations to run. The default value is 100. For
final production runs this should be set higher ( 500) but note this will take longer,
especially for models with a binary mediator.

seed(#)- sets the random number seed for precise replicability though with sufficient
sims results will be very similar. The default value is the random seed Stata draws when
starting a session.

eps(#)- convergence tolerance parameter for the iterative FGLS. Only used when
both the mediator and outcome models are linear. The default value is .01. Typically

8. In the case with all linear models, and no treatment/mediator interaction (an option not currently
supported by the Stata mediate command), these estimates will be identical. With a binary
outcome the estimates can differ due to the non-linear link functions.
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users will not change this, and if so only will decrease it.

graph- if specified, produces a graph of the results with the confidence intervals.
Alternatively users can use saved results to produce a graph of their own.

6.3 Saved results

r(errcr)- the p (the correlation in error terms) at which the ACME= 0

r(r2s_thresh)- proportions of residual variance in the mediator and outcome ex-
plained by the hypothesized unobserved confounder

r(r2t_thresh)- the proportions of total variance in the mediator and outcome ex-
plained by the hypothesized unobserved confounder

6.4 Example

We conduct sensitivity analyses based on the previous empirical example. In each case
the medsens function is used, which automatically detects which type of sensitivity
analysis should be conducted. The value of rho where the ACME is 0, as well as
the sensitivity to both types of R? expressions, is provided. In addition, information
required to graph the ACME as a function p is provided.

. **Run Sensitivity Analysis
. medsens (regress M T x) (regress Y T M x) , treat(T) mediate(M) sims(100)

Source SS df MS Number of obs = 2000
F( 2, 1997) = 75.69

Model 157.797161 2 78.8985804 Prob > F = 0.0000
Residual 2081.76275 1997 1.04244504 R-squared = 0.0705
Adj R-squared = 0.0695

Total 2239.55991 1999 1.12034013 Root MSE = 1.021
M Coef . Std. Err. t P>t [95% Conf. Intervall

T .2620606 .0456963 5.73 0.000 .1724431 .3516781

X .2468286 .0231428 10.67 0.000 .201442 .2922152
_cons .2428821 .0320858 7.57 0.000 .179957 .3058072
Source SS df MS Number of obs = 2000
F( 3, 1996) = 125.22

Model 376.062154 3 125.354051 Prob > F = 0.0000
Residual 1998.18054 1996 1.00109245 R-squared = 0.1584
Adj R-squared = 0.1571

Total 2374.24269 1999 1.1877152 Root MSE = 1.0005
Y Coef. Std. Err. t P>t [95% Conf. Intervall]

M .2372682 .0219291 10.82 0.000 .1942618 .2802746

T .2632512 .045148 5.83 0.000 .174709 .3517934

X .2604436 .0233161 11.17 0.000 .2147171 .30617
_cons .2291991 .0318908 7.19 0.000 .1666563 .2917419
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Sensitivity results

Rho at which ACME = O .2354
R"2_M*R"2_Y* at which ACME = O: .0554
R"2_M~R"2_Y~ at which ACME = O: .0434
95%, Confidence interval
. set scheme sj
. twoway rarea _med_updeltaO _med_lodeltaO _med_rho, bcolor(gsi4) || line _me

> d_delta0 _med_rho , lcolor(black) ytitle("ACME") xtitle("Sensitivity paramete
> r: {&rho}") legend(off) title("ACME({&rhol})")

The results show that for the point estimate of the ACME to be 0 the correlation
between €;5 and €;3 must be approximately .26. Alternatively, the product of R?’s
measures of sensitivity for the mediator and outcome models, for either the residual and
total variance, may be examined. For example, an omitted confounder must explain
35% of remaining variance in the mediator and 19% of the remaining variance in the
outcome, .35 X .19 &~ .068, in order for the ACME to be 0. Similar calculations can be
done for sensitivity with respect to total variation, where the product of R?’s is .05.

ACME(p)
-
0 N
\
A
w S~
< | TT=al
o4  TTe=l
\\\\\
~
N
N
A
A
N
G
|
T T T T T
-1 =3 0 i5) 1

Sensitivity parameter: p

Figure 1: Average causal mediation effect as a function of degree of violation of sequen-
tial ignorability assumption.
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