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Abstract

Causal analysis of continuous-valued vari-
ables typically uses either autoregressive
models or linear Gaussian Bayesian networks
with instantaneous effects. Estimation of
Gaussian Bayesian networks poses serious
identifiability problems, which is why it was
recently proposed to use non-Gaussian mod-
els. Here, we show how to combine the non-
Gaussian instantaneous model with autore-
gressive models. We show that such a non-
Gaussian model is identifiable without prior
knowledge of network structure, and we pro-
pose an estimation method shown to be con-
sistent. This approach also points out how
neglecting instantaneous effects can lead to
completely wrong estimates of the autore-
gressive coefficients.

1. Introduction

Analysis of causal influences or effects has become
an important topic in machine learning (Pearl, 2000;
Spirtes et al., 1993), and has numerous applications
in, for example, neuroinformatics (Roebroeck et al.,
2005; Kim et al., 2007) and bioinformatics (Opgen-
Rhein & Strimmer, 2007). For continuous-valued vari-
ables, such an analysis can basically be performed in
two different ways. First, if the time-resolution of the
measurements is higher than the time-scale of causal
influences, one can estimate a classic autoregressive
model with time-lagged variables and interpret the au-
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toregressive coefficients as causal effects. Second, if the
measurements have a lower time resolution than the
causal influences, or if the data has no temporal struc-
ture at all, one can use a model in which the causal
influences are instantaneous, leading to Bayesian net-
works or structural equation models (Bollen, 1989).

While estimation of autoregressive methods can be
solved by classic regression methods, the case of in-
stantaneous effects is much more difficult. Most meth-
ods suffer from lack of identifiability,1 because covari-
ance information alone is not sufficient to uniquely
characterize the model parameters. Prior knowledge of
the structure (fixing some of the connections to zero) of
the Bayesian network is then necessary for most prac-
tical applications. However, a method was recently
proposed which uses the non-Gaussian structure of the
data to overcome the identifiability problem (Shimizu
et al., 2006): If the disturbance variables (external in-
fluences) are non-Gaussian, no prior knowledge on the
network structure (other than the ubiquitous assump-
tion of a directed acyclic graph (DAG)) is needed to
estimate the model.

Here, we consider the general case where causal influ-
ences can occur either instantaneously or with consid-
erable time lags. Such a model is called the structural
vector autoregressive (SVAR) model in econometric
theory, in which numerous attempts have been made
for its estimation, see e.g. (Swanson & Granger, 1997;
Demiralp & Hoover, 2003; Moneta & Spirtes, 2006).
We propose to use non-Gaussianity to estimate the
model. We show that this variant of the model is iden-

1Identifiability is here used in the classic statistical
sense: a model is identifiable if no two different values of
the parameter vector give the same distribution for the
observed data.
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tifiable without any other restrictions than acyclicity.
To our knowledge, no model proposed for this problem
has been shown to be fully identifiable without prior
knowledge of network structure. We further propose a
computational method for estimating the model based
on the theory of independent component analysis or
ICA (Hyvärinen et al., 2001).

The proposed non-Gaussian model not only allows es-
timation of both instantaneous and lagged effects; it
also shows that taking instantaneous influences into
account can change the values of the time-lagged coef-
ficients quite drastically. Thus, we see that neglecting
instantaneous influences can lead to misleading inter-
pretations of causal effects. The framework further
leads to a generalization of the well-known Granger
causality measure.

The paper is structured as follows. We first define the
model and discuss its relation to other models in Sec-
tion 2. In Section 3 we propose an estimation method,
show its consistency, and discuss an intuitive interpre-
tation of the method. Section 4 contains some theoret-
ical examples and a theorem on how including instan-
taneous effects in the model changes the resulting in-
terpretations. The resulting generalization of Granger
causality is discussed in Section 5. The validity of the
estimation method is demonstrated by simulations on
artificial data in Section 6, and experiments on finan-
cial and neuroscientific data in Section 7. Section 8
concludes the paper.

2. Model Combining Lagged and

Instantaneous Effects

2.1. Definition and Assumptions

Let us denote the observed time series by xi(t), i =
1, . . . , n, t = 1, . . . , T where i is the index of the vari-
ables (time series) and t is the time index. All the vari-
ables are collected into a single vector x(t). Denote by
k the number of time-delays used, i.e. the order of the
autoregressive model. Denote by Bτ the n× n matrix
of the causal effects between the variables xi with time
lag τ, τ = 0 . . . k .

The causal dynamics in our model are a combination
of autoregressive and structural-equation models. The
model is defined as

x(t) =

k
∑

τ=0

Bτx(t − τ) + e(t) (1)

where the ei(t) are random processes modelling the
external influences or “disturbances”. We make the
following assumptions on the external influences ei(t).

First, they are mutually independent, and temporally
uncorrelated, which are typical assumptions in autore-
gressive models. Second, they are assumed to be non-
Gaussian, which is an important assumption which
distinguishes our model from classic models, whether
autoregressive models, structural-equation models, or
Bayesian networks.

Further, we assume that the matrix modelling instan-
taneous effects, B0, corresponds to an acyclic graph,
as is typical in causal analysis, but this may not be
strictly necessary as will be discussed below. The
acyclicity is equivalent to the existence of a permu-
tation matrix P, which corresponds to an ordering of
the variables xi, such that the matrix PB0P

T is lower-
triangular (i.e. entries above the diagonal are zero).
Acyclicity also implies that the entries on the diago-
nal are zero, even before such a permutation.

2.2. Relation to Other Models

This model is a generalization of the linear non-
Gaussian acyclic model (LiNGAM) proposed in
(Shimizu et al., 2006). If the order of the autore-
gressive part is zero, i.e. k = 0, the model is noth-
ing else than the LiNGAM model, modelling instanta-
neous effects only. As shown in (Shimizu et al., 2006),
the assumption of non-Gaussianity of the ei enables
estimation of the model. This is because the non-
Gaussian structure of the data provides information
not contained in the covariance matrix which is the
only source of information in most methods. In this
sense the model is similar to independent component
analysis, which solves the unidentifiability of factor an-
alytic models using the assumption of non-Gaussianity
of the factors (Comon, 1994; Hyvärinen et al., 2001).
In fact, the estimation method in (Shimizu et al., 2006)
uses an ICA algorithm as an essential part.

On the other hand, if the matrix B0 has all zero en-
tries, the model in Equation (1) is a classic vector
autoregressive model in which future observations are
linearly predicted from preceding ones. If we knew in
advance that B0 is zero, the model could thus be es-
timated by classic regression techniques since we do
not have the same variables on the left and right-hand
sides of Equation (1).

We emphasize that our model is different from classic
autoregressive models two important ways: First, the
external influences ei(t) are non-Gaussian. Second, the
lag variable τ takes the value 0 as well, which brings
instantaneous effects into the model in the form of the
matrix B0. A coefficient B0(i, j) models the instanta-
neous effect of xj(t) on xi(t) as in a linear Bayesian
network, or a structural equation model.
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2.3. Causality vs. Prediction

An autoregressive model can serve two different goals:
prediction and analysis of causality. Our goal here is
the latter: We estimate the parameter matrices Bτ in
order to interpret them as causal effects between the
variables. This goal is distinct from simply predicting
future outcomes when passively observing the time se-
ries, as has been extensively discussed in the literature
on causality (Pearl, 2000; Spirtes et al., 1993). Thus,
we emphasize that our model is not intended to reduce
prediction errors if we want to predict xi(t) using (pas-
sively) observed values of the past x(t−1),x(t−2), . . .;
for such prediction, an ordinary autoregressive model
is likely to be just as good.

Our model is intended to be superior in causal mod-
elling. Causality has an obvious intuitive interpreta-
tion, which is typically formalized as the ability to pre-
dict the effect of possible new interventions on the sys-
tem (Pearl, 2000). Thus, our model should be better
in predicting effects of interventions, which is different
from conventional time series prediction.

3. Estimation of the Model

3.1. Combining Least-Squares Estimation and

LiNGAM

We propose the following method for estimating our
model defined in Section 2.1. The method combines
classic least-squares estimation of an autoregressive
(AR) model with LiNGAM estimation:

1. Estimate a classic autoregressive model for the
data

x(t) =

k
∑

τ=1

Mτx(t − τ) + n(t) (2)

using any conventional implementation of a least-
squares method. Note that here τ > 0, so it is re-
ally a classic AR model. Denote the least-squares
estimates of the autoregressive matrices by M̂τ .

2. Compute the residuals, i.e. estimates of innova-
tions n(t)

n̂(t) = x(t) −

k
∑

τ=1

M̂τx(t − τ) (3)

3. Perform the LiNGAM analysis (Shimizu et al.,
2006) on the residuals. This gives the estimate of
the matrix B0 as the solution of the instantaneous
causal model

n̂(t) = B0n̂(t) + ẽ(t) (4)

4. Finally, compute the estimates of the causal effect
matrices Bτ for τ > 0 as

B̂τ = (I − B̂0)M̂τ for τ > 0 (5)

This estimation method is consistent,2 as will be
shown in Section 3.3. First, however, we show the
derivation of Equation (5) and discuss its deep mean-
ing.

3.2. Why Autoregressive Matrices Change due

to Instantaneous Influences

Equation (5) shows a remarkable fact already men-
tioned in the Introduction: Consistent estimates of the
Bτ are not obtained by a simple AR model fit even
for τ > 0. Taking instantaneous effects into account
changes the estimation procedure for all the autore-
gressive matrices, if we want consistent estimators as
we usually do. Of course, this is only the case if there
are instantaneous effects, i.e. B0 6= 0; otherwise, the
estimates are not changed.

Why do we have (5)? This is because from (1) we have

(I − B0)x(t) =
k

∑

τ=1

Bτx(t − τ) + e(t) (6)

and thus

x(t) =

k
∑

τ=1

(I−B0)
−1Bτx(t− τ)+ (I−B0)

−1e(t) (7)

Comparing this with (2), we can equate the autore-
gressive matrices, which gives (I−B0)

−1Bτ = Mτ for
τ ≥ 1, and thus (5) is justified.

While this phenomenon is, in principle, well-known
in econometric literature (Swanson & Granger, 1997;
Demiralp & Hoover, 2003; Moneta & Spirtes, 2006),
Equation (5) is seldom applied because estimation
methods for B0 have not been well developed. To
our knowledge, no estimation method for B0 has been
proposed which is consistent without strong prior as-
sumptions on B0.

3.3. Consistency and Identifiability

The consistency of our method relies on two facts.
First, in the estimation of an AR model as in (2), it
is not necessary that the innovation vector n(t) has
independent or even uncorrelated elements (for fixed

2Consistency means classic statistical consistency, i.e.
the estimator converges in probability to the right param-
eter values when the data follows the model and sample
size grows infinite.
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t); least-squares estimation will still be consistent, as
is well known. Thus, least-squares estimation of (2),
combined with (5), gives consistent estimators of Bτ

for τ ≥ 1, provided we have a consistent estimator
of B0. Second, comparison of (7) with (2) shows
that the residuals n̂(t) are, asymptotically, of the form
(I − B0)

−1e(t). This means

n̂(t) = (I − B0)
−1e(t) ⇔ (I − B0)n̂(t) = e(t)

⇔ n̂(t) = B0n̂(t) + e(t) (8)

which is the LiNGAM model for n̂(t). This shows
that B0 is obtained as the LiNGAM analysis of the
residuals, and the consistency of our estimator of B0

follows from the consistency of LiNGAM estimation
(Shimizu et al., 2006). Thus, our method is consistent
for all the Bτ . This obviously proves, by construction,
the identifiability of the model as well.

We have here assumed that B0 is acyclic, as is typical
in causal analysis. However, this assumption is only
made because we do not know very well how to esti-
mate a linear non-Gaussian Bayesian network in the
cyclic case. Future work may produce methods which
estimate cyclic models, and then we do not need the
assumption of acyclicity in our combined model either.
We could just use such a new method in Step 3 of the
method instead of LiNGAM, and nothing else would
be changed. Recent work in that direction is in (Lac-
erda et al., 2008); see also (Richardson & Spirtes, 1999)
for older methods on Gaussian data.

3.4. Interpretation as ICA of Residuals

Another viewpoint on our model is analysis of the cor-
relations of the innovations after estimating a classic
AR model. Suppose we just estimate an AR model as
in (2), and interpret the coefficients as causal effects.
Such an interpretation more or less presupposes that
the innovations ni are independent of each other, be-
cause otherwise there is some structure in the model
which has not been modelled by the AR model. If the
innovations are not independent, the causal interpre-
tation may not be justified. Thus, it seems necessary
to further analyze the dependencies in the innovations
in cases where they are strongly dependent.

Analysis of the dependency structure in the residu-
als (which are, by definition, estimates of innovations)
is precisely what leads to the present model. As a
first approach, one could consider application of some-
thing like principal component analysis or independent
component analysis on the residuals. The problem
with such an approach is that the interpretation of
the obtained results in the framework of causal anal-
ysis would be quite difficult. Our solution is to fit

a causal model like LiNGAM to the residuals, which
leads to a straightforward causal interpretation of the
analysis of residuals which is logically consistent with
the AR model.

4. Interaction of Instantaneous and

Lagged Effects

Here we present some theoretical examples of how the
instantaneous and lagged effects interact based on the
formula in (5).

An instantaneous effect may seem to be lagged

Consider first the case where the instantaneous and
lagged matrices are as follows:

B0 =

(

0 1
0 0

)

, B1 =

(

0.9 0
0 0.9

)

(9)

That is, there is an instantaneous effect x2 → x1, and
no lagged effects (other than the purely autoregres-
sive xi(t − 1) → xi(t)). Now, if an AR(1) model is
estimated for data coming from this model, without
taking the instantaneous effects into account, we get
the autoregressive matrix

M1 = (I − B0)
−1B1 =

(

0.9 0.9
0 0.9

)

(10)

Thus, the effect x2 → x1 seems to be lagged although
it is, actually, instantaneous.

Spurious effects appear Consider three variables
with the instantaneous effects x1 → x2 and x2 → x3,
and no lagged effects other than xi(t − 1) → xi(t), as
given by

B0 =





0 0 0
1 0 0
0 1 0



 , B1 =





0.9 0 0
0 0.9 0
0 0 0.9



 (11)

If we estimate an AR(1) model for the data coming
from this model, we obtain

M1 = (I − B0)
−1B1 =





0.9 0 0
0.9 0.9 0
0.9 0.9 0.9



 (12)

This means that the estimation of the simple autore-
gressive model leads to the inference of a direct lagged
effect x1 → x3, although no such direct effect exists in
the model generating the data, for any time lag.

Causal ordering is not changed A more reassur-
ing result is the following: if the data follows the same
causal ordering for all time lags, that ordering is not
contradicted by the neglect of instantaneous effect. A
rigorous definition of this property is the following.
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Theorem 1 Assume that there is an ordering
i(j), j = 1 . . . n of the variables such that no effect goes
backward,3 i.e.

Bτ (i(j−δ), i(j)) = 0 for δ > 0, τ ≥ 0, 1 ≤ j ≤ n (13)

Then, the same property applies to the Mτ , τ ≥ 1 as
well. Conversely, if there is an ordering such that (13)
applies to Mτ , τ ≥ 1 and B0, then it applies to Bτ , τ ≥

1 as well.

The proof of the theorem is based on the fact that
when the variables are ordered in this way (as-
suming such an order exists), all the matrices Bτ

are lower-triangular. The same applies to I − B0.
Now, the product of two lower-triangular matrices is
lower-triangular; in particular the Mτ are also lower-
triangular according to (5), which proves the first part
of the theorem. The converse part follows from solv-
ing for Bτ in (5) and the fact that the inverse of a
lower-triangular matrix is lower-triangular.

What this theorem means is that if the variables really
follow a single “causal ordering” for all time lags, that
ordering is preserved even if instantaneous effects are
neglected and a classic AR model is estimated for the
data. Thus, there is some limit to how (5) can change
the causal interpretation of the results.

5. Towards a Generalization of Granger

Causality

The classic interpretation of causality in instantaneous
Bayesian network models would be that xi causes xj

if the (j, i)-th coefficient in B0 is non-zero. In the
time series context, this is related to Granger causal-
ity (Granger, 1969), which formalizes causality as the
ability to reduce prediction error. A simple opera-
tional definition of Granger causality can be based on
the autoregressive coefficients Mτ : If at least one of
the coefficients from xi(t − τ), τ ≥ 1 to xj(t) is (sig-
nificantly) non-zero, then xi Granger-causes xj . This
is because then the variable xi reduces the prediction
error in xj in the mean-square sense if it is included
in the set of predictors, which is the very definition of
Granger causality.

In light of the results in this paper, we propose a
definition which combines the two aspects: A vari-
able xi causes xj if at least one of the coefficients
Bτ (j, i), giving the effect from xi(t − τ) to xj(t), is
(significantly) non-zero for τ ≥ 0. The condition for
τ is different from Granger causality since the value

3In the purely instantaneous case, existence of such an
ordering is equivalent to acyclicity of the effects as noted
in Section 2.1.

τ = 0, corresponding to instantaneous effects, is in-
cluded. Moreover, since estimation of the instanta-
neous effects changes the estimates of the lagged ones,
the lagged effects used in our definition are different
from those usually used with Granger causality.

A more general formulation of this definition, which is
in line with the general formulation of Granger causal-
ity, is that the error in the “prediction” of xj(t) is
reduced when xi(t − 1), xi(t − 2), . . . and xi(t) are in-
cluded in the set of predictors. Here, we use a rather
unconventional definition of the word “prediction” be-
cause we include instantaneous effects.

6. Simulations

To verify the validity of our method, we first performed
experiments with artificial data. In the experiments,
we created data in the following manner using the
LiNGAM code package4:

1. We randomly constructed a strictly lower-
triangular matrix (i.e. zero entries above and on
the diagonal), B0, for the instantaneous causal
model so that the standard deviations of the in-
novations ni owing to parent innovations will be
in the interval [0.5, 1.5]. The number of observed
time-series was n = 10. Both fully connected
(no zeros in the strictly lower triangular part)
and sparse networks (many zeros) were created.
We also randomly selected the standard devia-
tions of the external influences ei from the interval
[0.5, 1.5].

2. Next, we generated data with various lengths of
the time series (300, 500 and 1,000) by indepen-
dently drawing the external influences ei from var-
ious non-Gaussian distributions with zero mean
and unit variance5. The values of the innovations
ni were generated according to the assumed in-
stantaneous recursive process. This is straightfor-
ward because B0 is lower-triangular, so we just
generate the ni in the order n1, n2 . . . as is typical
in acyclic networks, e.g. (Shimizu et al., 2006).

3. We randomly permuted the order of the innova-
tions ni to hide the causal order with which the
data was generated. We also permuted B0 as well

4http://www.cs.helsinki.fi/group/neuroinf/lingam/
5We first generated a gaussian variable z with zero mean

and unit variance and subsequently transformed it to a
non-Gaussian variable by ei = sign(z)|z|q. The nonlinear
exponent q was selected to lie in [0.5, 0.8] or [1.2, 2.0]. The
former gave a sub-gaussian variable, and the latter a super-
gaussian variable. Finally, the transformed variable was
standardized to have zero mean and unit variance.
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Figure 1. Simulations on artificial data. Left column: Scat-
terplots of the estimated elements of B0 versus the gener-
ating values. Center column: Scatterplots of the estimated
elements of B1 versus the generating values. Right column:
Scatterplots of the estimated elements of M1 versus those
of B1.The number of observed signals was 10. Five data
sets were generated for each scatterplot.

as the variances of the external influences ei to
match the new order.

4. We randomly generated a first-order autoregres-
sive matrix M1 so that the spectral norm of the
matrix was less than 0.99 to ensure the stability
of the autoregressive process.

5. The values of the observed signals xi(t) were gen-
erated according to the assumed first-order au-
toregressive process.

6. Finally, we fed the data to our estimation method.
Here we told the method that the generating au-
toregressive order was 1.

Figure 1 gives the scatterplots of the elements of the
estimated parameters versus the generating ones. The
left column is for the scatterplots of the estimated
causal effects in B0 versus the generating values. The
center column is for the scatterplots of the estimated
causal effects in B1 versus the generating values. The
right column is for the scatterplots of the estimated
autoregressive coefficients in M1 versus the generat-
ing values of the causal effects in B1 (here, the esti-
mation was invalid because instantaneous effects were
ignored).

For the scatterplots in the left and center columns,
the estimation worked well when the sample size grew,
as evidenced by the grouping of the data points onto
the main diagonal, although for the small sample size
300 the estimation was often inaccurate. On the other
hand, the scatterplots in the right column confirmed
that the causal effects were not correctly estimated by
the ordinary autoregressive coefficients when instanta-
neous influences existed since the data points were not
very close to the main diagonal.

7. Experiments on Real Data

7.1. Financial Data

As a first illustration of the applicability of the method
on real data, we analyzed a dataset from a time se-
ries repository on the Internet.6 The data consisted
of two observed signals, x1: weekly closing price of
Toyota stock and x2: weekly closing rate of exchange
of Japanese Yen to U.S. Dollar in 2007. The number
of time points was 50. The maximum, minimum and
mean of x1 were 8,230, 5,870 and 7,102 (JPY). Those
of x2 were 123.86, 108.51 and 117.72 (JPY).

We analyzed the data using our method with autore-
gressive order of 1. The estimated first-order autore-
gressive matrix M1 and residual correlation matrix
were as follows:

M1 =

(

0.95 −4.22
0.0008 0.78

)

(14)

corr(n) =

(

1.00 0.66
0.66 1.00

)

The relatively strong correlation between the residu-
als implied that there would be some dependency that
had not been modeled by the AR model. Thus, we fit-
ted the instantaneous causal model to the residuals, as
proposed above. The estimated instantaneous causal
effect matrix B0 and resulting lagged causal effect ma-
trix B1 were as follows:

B0 =

(

0 56.04
0.0027 0

)

(15)

B1 =

(

0.91 −48.01
−0.0018 0.79

)

(16)

The matrix B0 is very close to be upper-triangular,
which implied that the model was really acyclic (be-
cause switching the order of the variables would make
B0 lower-triangular). Further, the instantaneous ef-
fect x2→x1 in B0 was one order of magnitude larger
than the lagged effect in M1 and thus the lagged co-

6Yahoo! Japan Finance: http://quote.yahoo.co.jp/
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efficients in M1 are quite different from those in B1,
due to the formula in (5).

Figure 2 shows a graphical representation of the es-
timated model for financial data. First, it implies
that a higher value of the yen (x2) had a negative
lagged effect (-48.01) on the price of Toyota stock (x1).
This would be reasonable since Toyota sells many cars
abroad, and a higher value of the yen would increase
the cost price and decrease the earning. Interestingly,
it was also implied that a higher value of the yen had
a positive instantaneous effect (56.04) on the price of
Toyota stock. In other words, for weeks where values
of the yen one week before were the (approximately)
same, if the yen got more expensive (due to some rea-
son other than the value of the yen one week before,
perhaps a U.S. recession, for example) then the price
of Toyota stock would get more expensive. It would be
interesting to further study the economic mechanism
with more extensive data.

Figure 2. A graphical representation of the model esti-
mated in Section 7.1. The x1 and x2 denote weekly closing
price of Toyota stock in 2007 and weekly closing rate of
exchange of Japanese Yen to U.S. Dollar in 2007, respec-
tively. The arrow from x1(t−1) to x2(t) was omitted since
the estimated strength was very close to zero (-0.0018).

7.2. Magnetoencephalographic Data

As a second illustration of the applicability of the
method on real data, we applied it on magnetoen-
cephalography (MEG), i.e. measurements of the elec-
tric activity in the brain. The raw data consisted of
the 306 MEG channels measured by the Vectorview
helmet-shaped neuromagnetometer (Neuromag Ltd.,
Helsinki, Finland) in a magnetically shielded room at
the Brain Research Unit, Low Temperature Labora-
tory, Helsinki University of Technology. The sampling
frequency was 600 Hz. The measurements consisted
of 300 seconds of resting state brain activity from the
experiment of (Ramkumar et al., 2007). The subject

was sitting with eyes closed, and did not perform any
specific task nor was there any specific sensory stim-
ulation. The channels were first linearly projected to
the signal space to reduce noise (Uusitalo & Ilmoniemi,
1997). In this illustrative experiment, we only consider
a single (gradiometer) channel in the right occipital
cortex near the midline.

We considered the interaction of about 10 Hz (alpha)
and about 20 Hz (beta) oscillations commonly ob-
served in electromagnetic recordings of spontaneous
brain activity. We first computed the amplitudes of
the oscillations by dividing the data into windows of
length of 0.25 seconds, performing fast Fourier trans-
form inside each of them, and computing the total
Fourier amplitudes (unweighted Euclidean norm of
the Fourier coefficients) in the frequency ranges of
8 . . . 12Hz (alpha range, denoted by x1) and 15 . . . 25Hz
(beta range, denoted by x2). Thus we obtained two
time series of 1,200 points.

We fitted our model, with autoregressive order of 1 to
the data. The obtained matrices are

M1 =

(

0.23381 0.14551
0.10838 0.14314

)

(17)

B0 =

(

0 −0.65768
0.56722 0

)

(18)

B1 =

(

0.30509 0.23965
−0.024244 0.060608

)

(19)

What we see is that the instantaneous model is far
from trivial: the effects in B0 are relatively strong.
This is also reflected in B1 which is now rather differ-
ent from M1. Thus, the interpretation of the autore-
gressive matrices using just the autoregressive model
(i.e. M1) or the combined model (i.e. B1) are quite
different. In the classic autoregressive case (based on
M1), the lagged effect x1 → x2 is relatively strongly
positive whereas in the combined model it is quite
weak. In fact, that effect is now modelled as an in-
stantaneous effect in B0. Even more interesting is that
the instantaneous model has a strong negative effect
x2 → x1 which is not visible at all in the purely au-
toregressive matrix M1. Thus, the results illustrate
how the interpretation of causal effects (and even of
the lagged ones) can change drastically when includ-
ing the instantaneous effects.

Using an autoregressive order of 2 did not change the
results. We also ran the method many times to exclude
the problem of the ICA estimation algorithm (used in
LiNGAM estimation) getting stuck in local minima
(Himberg et al., 2004), and the result was found to be
robust with respect to that manipulation.
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One problem with this experiment is that the causal
model estimated by LiNGAM is far from acyclic.
Here, we can justify the procedure by using the the-
ory of cyclic model estimation proposed by (Lacerda
et al., 2008); the estimation here gives the only“stable”
model according to that theory. Performance of
LiNGAM estimation methods in the case of cyclic
models, and the possible need for new methods for esti-
mating cyclic models are future research topics of great
practical importance. However, as discussed above,
they are separate from the main contribution of our pa-
per in the sense that we can use any such new method
to estimate the instantaneous model in our framework.

8. Conclusion

We showed how non-Gaussianity enables estimation
of a causal discovery model in which the linear effects
can be either instantaneous or time-lagged. Like in
the purely instantaneous case (Shimizu et al., 2006),
non-Gaussianity makes the model identifiable with-
out explicit prior assumptions on existence or non-
existence of given causal effects. The classic assump-
tion of acyclicity is sufficient although probably not
necessary. From the practical viewpoint, an impor-
tant implication is that considering instantaneous ef-
fects changes the coefficient of the time-lagged effects
as well.
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