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Causal network models of SARS-CoV-2
expression and aging to identify candidates
for drug repurposing
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Karren Dai Yang1, G. V. Shivashankar3,4 & Caroline Uhler 1✉

Given the severity of the SARS-CoV-2 pandemic, a major challenge is to rapidly repurpose

existing approved drugs for clinical interventions. While a number of data-driven and

experimental approaches have been suggested in the context of drug repurposing, a platform

that systematically integrates available transcriptomic, proteomic and structural data is

missing. More importantly, given that SARS-CoV-2 pathogenicity is highly age-dependent, it

is critical to integrate aging signatures into drug discovery platforms. We here take advantage

of large-scale transcriptional drug screens combined with RNA-seq data of the lung epi-

thelium with SARS-CoV-2 infection as well as the aging lung. To identify robust druggable

protein targets, we propose a principled causal framework that makes use of multiple data

modalities. Our analysis highlights the importance of serine/threonine and tyrosine kinases

as potential targets that intersect the SARS-CoV-2 and aging pathways. By integrating

transcriptomic, proteomic and structural data that is available for many diseases, our drug

discovery platform is broadly applicable. Rigorous in vitro experiments as well as clinical trials

are needed to validate the identified candidate drugs.
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C
andidates for drug repurposing have mainly been identi-
fied based on an understanding of their pharmacology or
based on retrospective analyses of their clinical effects.

Recently, also more systematic computational methods combined
with large-scale experimental screens have been employed1. The
Connectivity Map (CMap) containing gene-expression profiles
generated by dosing thousands of small molecules, including
many Food and Drug Administration (FDA) approved com-
pounds, in a number of human cell lines has been particularly
valuable in this regard2. Common computational approaches
include signature matching, where the signature of a drug is
determined for example using CMap and compared to the reverse
signature of a disease to identify drugs with high correlation3. In
addition, approaches to identify drug or disease networks based
on known pathways, protein–protein interactions, gene expres-
sion, or genome-wide association studies have also been
employed4–6. To capitalize on the abundance of data, it is critical
to develop computational platforms that can integrate different
data modalities, including gene expression, drug targets, and
signatures, as well as protein–protein interactions. In addition, a
drug represents an intervention in the system and only a causal
framework allows predicting the effect of an intervention. It is,
therefore, critical to capitalize on recent advances in causal
inference7,8 in particular with respect to the use of interventional
data9–12.

Given the current coronavirus disease 2019 (COVID-19) crisis,
there is an urgent need for the development of robust drug
repurposing methods. Coronaviruses belong to the family of
positive-strand RNA-viruses. While most coronaviruses infect the
upper respiratory tract and cause mild illness, they can have
serious effects as exemplified by the severe acute respiratory
syndrome coronavirus (SARS-CoV) epidemic and now the
SARS-CoV-2 pandemic13. Recent studies have shown that cor-
onaviruses use canonical inflammatory pathways (e.g., NF-κB) of
the host cell for their replication, while simultaneously dampen-
ing their outward inflammatory signaling14,15. This delicate
partial up and downregulation of inflammatory pathways by
coronaviruses has represented major challenges for therapeutic
interventions16. While the infection rates for these viruses are
similar among different age groups, the morbidity and fatality
rates are significantly higher in the aging population17,18. The
respiratory system of aging individuals is characterized by
alterations of tissue stiffness19. Notably, recent micropatterning
experiments have shown that cells subjected to substrates of
different stiffness stimulated with the same cytokine (TNF-α)
exhibit different downstream NF-κB signaling20. In a recent
commentary, we outlined that the cross-talk between coronavirus
infection and cellular aging could play a critical role in the
replication of the virus in host cells by differentially intersecting
with NF-κB signaling21. This suggests that efforts for drug
repurposing should analyze SARS-CoV-2 infected host cell
expression programs in conjunction with aging-dependent pro-
grams. While a number of studies are underway that investigate
viral integration/replication and interactions with the host cell6,22,
to our knowledge the interplay of SARS-CoV-2 host response and
aging has not been explored in the context of drug development
and repurposing.

In this paper, we propose a computational platform for drug
repurposing, which integrates transcriptomic, proteomic, and
structural data with a principled causal framework, and we apply
it in the context of SARS-CoV-2 (Fig. 1, Supplementary Fig. 1).
Given the age-dependent pathogenicity of SARS-CoV-2, we first
identify genes that are differentially regulated by SARS-CoV-2
infection and aging based on bulk RNA-seq data from23,24. We
then use an autoencoder, a type of artificial neural network used
to learn data representations in an unsupervised manner25,26,

to embed the CMap data together with the SARS-CoV-2
expression data for signature matching to obtain an ordered list
of FDA-approved drugs. In particular, we show that over-
parameterized autoencoders align drug signatures from different
cell types and thus allow constructing synthetic interventions27,28

by translating the effect of a drug from one cell type to another.
We then construct a combined SARS-CoV-2 and aging inter-
actome using a Steiner tree analysis to connect the differentially
expressed genes within a protein–protein interaction
network29,30. By intersecting the resulting combined SARS-CoV-
2 and aging interactome with the targets of the top-ranked FDA-
approved drugs from the previous analysis, we identify serine/
threonine and tyrosine kinases as potential drug targets for
therapeutic interventions. Causal structure discovery methods
applied to the combined SARS-CoV-2 and aging interactome
show that the identified protein kinase inhibitors such as axitinib,
dasatinib, pazopanib, and sunitinib target proteins that are
upstream from genes that are differentially expressed in SARS-
CoV-2 infection and aging, thereby validating these drugs as
being of particular interest for the repurposing against COVID-
19, postinfection. While we apply our computational platform in
the context of SARS-CoV-2, our algorithms integrate data mod-
alities that are available for many diseases, thereby making them
broadly applicable.

Results
Differential expression analysis identifies genes that intersect
the SARS-CoV-2 host response and aging pathways. Since age is
strongly associated with severe outcomes in patients with
COVID-19, we sought to analyze genes differentially expressed in
normal versus SARS-CoV-2-infected cells as well as genes dif-
ferentially expressed in young versus old individuals. Used as a
model system for lung epithelial cells and the effect of SARS-
CoV-2 infection, we obtained from ref. 23, RNA-seq samples from
normal and SARS-CoV-2-infected A549 lung alveolar cells as well
as A549 cells supplemented with ACE2 (A549-ACE2), a receptor
that has been shown to be critical for SARS-CoV-2 cell entry31.
Fig. 2a shows the expression of A549-ACE2 cells infected with
SARS-CoV-2 in comparison to normal A549-ACE2 cells, with
many genes upregulated as a result of the infection, as expected.
Given the availability of A549 data with/without ACE2 and with/
without SARS-CoV-2 infection, we removed genes from this
initial list of differentially expressed genes that were just ACE2-
specific or just SARS-CoV-2 infection-specific to extract a more
refined expression pattern of ACE2-mediated SARS-CoV-2
infection (“Methods”, Fig. 2b). The rationale was to remove
genes linked to the response of the ACE2 receptor to signals other
than SARS-CoV-2 infection or genes involved in the entry of
SARS-CoV-2 into the cell through means other than the ACE2
receptor, which has been shown to be the critical mode of entry in
humans31. Gene ontology (GO) enrichment analysis revealed
enrichment in a mitotic cell cycle as the top term, further sup-
porting the removal of these genes (Supplementary Fig. 2). The
remaining 1926 genes are denoted in red in Fig. 2a, b and
are used for the subsequent analysis. GO enrichment analysis of
these genes revealed that they are significantly enriched in the
type I interferon signaling pathway and defense response to the
virus in addition to other GO terms (Fig. 2c). Next, in order to
analyze the link between SARS-CoV-2 infection and aging, we
analyzed RNA-seq samples from the lung of different aged
individuals collected as part of the Genotype-Tissue Expression
(GTEx) study24. Given the stark increase in case fatality rates of
COVID-19 after age 7017,18, we performed a differential expres-
sion analysis comparing the youngest group (20–29 years old)
and oldest group (70–79 years old), thereby identifying 1923
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genes differentially regulated in aging (Fig. 2d, Supplementary
Fig. 3). As shown in Fig. 2e, these genes show a significant overlap
with the 1926 genes found to be differentially regulated by SARS-
CoV-2 (p value= 0.01999, one-sided Fisher’s exact test), thereby
confirming results obtained using a different analysis in ref. 32.
Interestingly, these 219 genes that we found to intersect the
SARS-CoV-2 infection and aging pathways (Fig. 2e) display
concordant changes in gene expression (i.e., the majority of genes
are either upregulated or downregulated with SARS-CoV-2
infection and aging) as shown by the log 2-fold changes in
Fig. 2f and Supplementary Fig. 4a. The association in the direc-
tionality of regulation between SARS-CoV-2 infection and aging
is statistically significant (p value < 2.2 × 10−16, one-sided Fisher’s
exact test), thereby providing further evidence for the interplay of
SARS-CoV-2 host response and aging as hypothesized in ref. 21.
Fig. 2g shows the log 2-fold changes of the ten most differentially
expressed genes across aging and SARS-CoV-2 infection (based
on the sum of their ranks with Supplementary Fig. 4b showing
the distribution of the ranks).

Identification of SARS-CoV-2 infection signature in reduced
L1000 gene expression space. Next, we focused our analysis on

identifying the SARS-CoV-2 transcriptional signature, which we
then correlated with the transcriptional signatures of FDA-
approved drugs in CMap to identify drugs that could revert the
effect of SARS-CoV-2 infection. While this analysis resulting in
an initial ranking of FDA-approved drugs did not take the
transcriptional signature of aging into account, aging was a cri-
tical component in the final selection of FDA-approved drugs
described below.

Since gene expression in CMap was quantified using L1000
reduced representation expression profiling2, which measures
gene expression of 1000 representative genes, we first sought to
analyze whether these genes sufficiently capture the transcrip-
tional signature of SARS-CoV-2 infection. For this, we intersected
the genes measured both by Blanco et al.23 and CMap2, resulting
in 911 genes. We found a statistically significant overlap between
the genes identified as differentially expressed by SARS-CoV-2
infection in Fig. 2 and the L1000 genes (p value= 7.94 × 10−16,
one-sided Fisher’s exact test), thereby providing a rationale for
using the CMap database for drug identification in this disease
context (Fig. 3a). We thus proceeded to obtain the signature of
SARS-CoV-2 infection in the reduced L1000 gene expression
space by projecting the RNA-seq data of A549 cells with and
without ACE2 receptor and SARS-CoV-2 infection onto the

Fig. 1 Overview of computational drug repurposing platform for COVID-19. a COVID-19 is associated with more severe outcomes in older individuals,

suggesting that gene expression programs associated with SARS-CoV-2 and aging must be analyzed in tandem. A potential hypothesis regarding the

cross-talk between SARS-CoV-2 and aging relies on changes in tissue stiffness in older individuals, outlined in ref. 21. Ciliated cells are denoted in blue,

stromal/fibroblast cells are in orange and SARS-CoV-2 viral particles are in red. b In order to identify potential drug candidates for COVID-19, we

integrated RNA-seq data from SARS-CoV-2-infected cells, obtained from ref. 23, and RNA-seq data from the lung tissue of young and old individuals,

collected as part of the Genotype-Tissue Expression (GTEx) project24, with protein–protein interaction data (from ref. 42), drug–target data (from

DrugCentral45) and the large-scale transcriptional drug screen Connectivity Map (CMap)2. c, d Based on this data, we develop a drug repurposing pipeline,

which consists of first, mining relevant drugs by matching their signatures with the reverse disease signature in the latent embedding obtained by an

overparameterized autoencoder and sharing data across cell types to obtain missing drug signatures via synthetic interventions. Blue and orange points in

the latent space represent data associated with the drug screen and the SARS-CoV-2 infection study. Second, we identify a disease interactome within the

protein–protein interaction network by identifying a minimal subnetwork that connects the genes differentially expressed by SARS-CoV-2 infection and

aging using a Steiner tree analysis. Third, we validate the drugs identified in the first step that have targets in the interactome (greed diamond) by

identifying the potential drug mechanism using causal structure discovery. Nodes are colored according to the log 2-fold gene expression change

associated with SARS-CoV-2 infection, and gray nodes indicate Steiner nodes.
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shared 911 genes. The resulting signatures of SARS-CoV-2
infection and ACE2 receptor are visualized using the first two
principal components in Fig. 3b. Interestingly, the signature of
SARS-CoV-2 infection (indicated by arrows) was aligned across
both A549 and A549-ACE2 cells as well as across different levels
of infection (MOI of 0.2 and 2), suggesting that the SARS-CoV-2
transcriptional signature was captured robustly by the L1000
genes, thus providing further rationale for using CMap to identify
drugs that could reverse the effect of SARS-CoV-2 infection.

Combined autoencoder and synthetic interventions framework
to identify drug signatures and rank FDA-approved drugs for
SARS-CoV-2. Next, we sought to determine transcriptional drug
signatures using the CMap database, which includes among other
cell lines A549. The data were visualized using Uniform Manifold
Approximation and Projection (UMAP)33 in Supplementary
Fig. 5a, showing that the perturbations clustered by cell type and
hence the drug signatures were small relative to the differences
between cell types. We intersected the perturbations from CMap

with a list of FDA-approved drugs using Slinky34, resulting in 759
drugs of which 605 were available for A549. After removing batch
effects using k-means clustering (see “Methods” and Supple-
mentary Fig. 5b), we computed initial signatures of these drugs
based on the mean before and after drug perturbation in A549
cells. Fig. 3c shows a selection of drug signatures in relation to the
signature of SARS-CoV-2 infection visualized using the top two
principal components.

Since the effect of a drug can be cell type-specific35, this
standard approach to computing drug signatures may not allow
extrapolating the obtained signatures beyond A549 cells. In order
to determine robust drug signatures and consider also FDA-
approved drugs that have been dosed on cell lines other than
A549 in CMap, we employed an autoencoder framework.
Autoencoders, a particular class of neural networks where input
is mapped through a latent space to itself, have been widely used
for representation learning25,26,36 and more recently also in
genomics and single-cell biology37–39. We trained an autoencoder
(architecture described in Supplementary Fig. 6) to minimize
reconstruction error on CMap data and applied it to data from
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Fig. 2 Identification of differentially regulated genes in SARS-CoV-2 infection and aging. a Gene expression (log 2 RPKM+ 1) of A549-ACE2 cells

infected with SARS-CoV-2 versus normal A549-ACE2 cells. Genes associated with ACE2-mediated SARS-CoV-2 infection after removing just ACE2-

specific or just SARS-CoV-2 infection-specific genes are shown in red with the remaining protein-coding genes shown in gray. b Venn diagram, showing

the number of genes in sets considered for obtaining the 1926 genes in the red subset and shown in red in (a) associated with ACE2-mediated SARS-CoV-

2 infection. Purple, red, and green whole circles indicate differentially expressed genes associated with A549 cells infected with SARS-CoV-2, A549-ACE2

cells infected with SARS-CoV-2, and A549 cells with and without ACE2, respectively. c Top ten gene ontology terms associated with SARS-CoV-2 infection

(adjusted p value < 0.05, Benjamini–Hochberg procedure). d Gene expression (log 2 RPKM+ 1) of cells collected from lung tissue of older (70–79 years

old) versus younger (20–29 years old) individuals. Differentially expressed genes associated with aging are shown in blue and genes that are associated

with both aging and SARS-CoV-2 are shown in orange with the remaining protein-coding genes shown in gray. e Venn diagram of genes associated with

SARS-CoV-2 (red circle) and aging (blue circle); intersection (orange) is significant (p value= 0.01999, one-sided Fisher’s exact test). f Heatmap of

log 2-fold changes of differentially expressed genes shared by SARS-CoV-2 and aging; most genes show concordant expression, i.e., they are both

upregulated or both downregulated with SARS-CoV-2 infection and aging. g Table of the top ten most differentially expressed genes across aging and

SARS-CoV-2, based on the sum of their ranks with log 2-fold changes for each gene.
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Blanco-Melo et al.23 in the L1000 gene expression space. We then
computed the disease and drug signatures based on the
embedding of the data in the latent space. Interestingly, by
comparing the correlations between drug signatures obtained
from A549 cells and MCF7 cells (Fig. 3d) as well as HCC515 cells
(Supplementary Fig. 8), cell lines with many perturbations in
CMap, it is apparent that the autoencoder aligned the drug
signatures across different cell types. While autoencoders and

other generative models have been used for computing signatures
of perturbations also in other works39,40, these works have used
autoencoders in the standard way to obtain a lower-dimensional
embedding of the data. Motivated by our recent work which,
quite counter-intuitively, described various benefits of using
autoencoders to learn a latent representation of the data that is
higher-dimensional than the original space41, we found that
overparameterized autoencoders not only led to the better
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Fig. 3 Mining FDA-approved drugs by correlating disease and drug signatures using an overparameterized autoencoder embedding. a Gene expression

(log 2 RPKM+ 1) of A549-ACE2 cells infected with SARS-CoV-2 versus normal A549-ACE2 cells with genes collected as part of the CMap study using the

L1000 reduced representation expression profiling method highlighted as stars, showing that L1000 genes significantly overlap with SARS-CoV-2

associated genes, shown in red, (p value= 7.94 × 10−16, one-sided Fisher’s exact test). b Signature of SARS-CoV-2 infection on A549 and A549-ACE2

cells visualized using the first two principal components based on RNA-seq data from ref. 23. The signature of SARS-CoV-2 infection is aligned across

normal A549 and A549-ACE2 cells as well as across different levels of infection. Green and orange points indicate data from A549-ACE2 and A549 cells,

respectively. Circles and crosses indicate data from two different batches, the multiplicity of infection (MOI) of 0.2 versus 2, respectively. c Comparison of

the signatures of a selection of 13 representative FDA-approved drugs (black arrows) as compared to the reverse signature of SARS-CoV-2 infection based

on A549-ACE2 cells (green arrow) visualized using the first two principal components. Drugs whose signatures maximally align with the direction from

SARS-CoV-2-infected cells (red) to normal cells (blue) are considered candidates for treatment. As expected, drugs have varying signatures of varying

magnitudes. d Correlation between drug signatures in A549 and MCF7 cells when using the original L1000 expression space versus the embedding

obtained from an overparameterized autoencoder. The overparameterized autoencoder aligns the drug signatures in A549 and MCF7 cells by shifting the

correlations towards −1 or 1 while maintaining the sign of the correlation in the original space. e Histogram of correlations between cell types for a given

drug using original L1000 gene expression vectors (blue), overparameterized autoencoder embedding (pink), top 100 principal components (purple), and

top 3 principal components (green). The overparameterized autoencoder achieves about the same alignment of drug signatures as using the top three

principal components, while at the same time faithfully reconstructing the data (10−7 training error). f A list of drugs whose signatures maximally align with

the direction from SARS-CoV-2 infection to normal in A549-ACE2 cells (MOI 2) with respect to correlations using the overparameterized autoencoder

embedding, the original L1000 gene expression space, and the top 100 principal components.
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reconstruction of the data than standardly used autoencoders
(Supplementary Fig. 7 and architectures described in Supple-
mentary Fig. 6), but also to a better alignment of drug signatures
between different cell types (Supplementary Fig. 8). Interestingly,
overparameterized autoencoders provided about the same align-
ment of drug signatures as using the top three principal
components (Fig. 3e), while at the same time allowing a near-
perfect reconstruction of the original gene expression vectors
from the embedding. We thus used this latent space embedding
to rank the drugs based on their correlation with the reverse
disease signature in A549 cells (Supplementary Data 1). Since
overparameterized autoencoders aligned drug signatures across
cell types, this embedding also allowed constructing synthetic
interventions27,28, i.e., to predict the effect of a drug on A549 cells
without measuring it, by linearly transferring the corresponding
drug signature in the latent space from a cell type where it has
been measured. In this way, we obtained an enlarged list of drug
signatures, which we correlated in the latent space with the
reverse disease signature to obtain further candidates of FDA-
approved drugs for SARS-CoV-2 (Supplementary Data 1). To
compare the correlations obtained with the different embeddings,
a list of the top-ranked drugs is shown in Fig. 3f and the similarity
between drug lists is quantitatively assessed by an analysis akin to
a receiver operating characteristic (ROC) plot (Supplementary
Note and Supplementary Fig. 9), showing that the drug lists
obtained using an embedding in the PCA or the original space are
similar but not identical to the autoencoder embedding (area
under the ROC curve (AUC) of 0.901 and 0.904, respectively).
Interestingly, these drug lists contain various drugs that were
identified also in6 using a different analysis (clemastine,
haloperidol, ribavirin) or are currently in clinical trials (ribavirin,
quinapril). To put these AUC values into perspective and assess
the robustness of the identified drug list using the autoencoder
embedding, we repeated the analysis on two other SARS-CoV-2
datasets from23, namely infected A549 cells without ACE2
supplement as well as samples collected at a lower MOI
(0.2 instead of 2). This resulted in very similar drug lists
(Supplementary Fig. 10); in fact, the drug lists from A549 cells
with and without ACE2 supplement in the autoencoder
embedding were more similar than the drug lists obtained from
the PCA and the original space embedding.

Steiner tree analysis identifies candidate drug targets by con-
structing combined SARS-CoV-2 and aging interactome. Our
differential expression analysis revealed relevant genes to inves-
tigate in the context of SARS-CoV-2 infection and aging, while
the combined autoencoder and synthetic interventions analysis
provided candidate FDA-approved drugs for reverting the effect
of SARS-CoV-2 infection. Next, we integrated these two separate
analyses to obtain a final list of FDA-approved drugs by con-
structing a combined SARS-CoV-2 infection and aging protein-
protein interactome and intersecting it with the targets of the
candidate drugs (Fig. 4a). For this, we selected the differentially
expressed genes identified in Fig. 2f that showed concordant
regulation between aging and SARS-CoV-2 infection and inter-
sected them with the nodes of the human protein–protein
interaction (PPI) network (IRefIndex Version 1442), which con-
tains 182,002 interactions between 15,759 human proteins along
with a confidence measure for each interaction. This resulted in
162 protein-coding genes, which we call terminals (Supplemen-
tary Fig. 11 and “Methods”). To gain a better understanding of
the molecular pathways connecting these terminal genes, we used
a Steiner tree algorithm30,43 to determine a “minimal” subnet-
work or interactome within the PPI network that connects these
genes (see “Methods”). A Steiner tree is minimal in that it is a

minimum weight subnetwork that connects the terminals. As
edge weights in the PPI network, we used 1 minus the confidence
in the corresponding interactions so as to favor high-confidence
edges. After a careful sensitivity analysis to select the various
tuning parameters (“Methods” and Supplementary Fig. 12), this
resulted in an interactome containing 252 nodes and 1003 edges
(Fig. 4b and Supplementary Fig. 13). Interestingly, the inter-
actome contained five genes whose corresponding proteins have
been found in ref. 6 to interact with SARS-CoV-2 proteins
(EXOSC5, FOXRED2, LOX, RBX1, and RIPK1). The two-
nearest-neighborhoods of these proteins are shown in Fig. 4c.
Another Steiner tree analysis revealed that two additional SARS-
CoV-2 interaction partners (CUL2 and HDAC2) were connected
to the identified interactome via few high-confidence edges
(Supplementary Figs. 14–16).

Next, we intersected the interactome with the targets of the
candidate drugs identified in the previous analysis. A compound
was considered if its signature matched the reverse SARS-CoV-2
signature with at least a correlation of 0.86, resulting in 142 FDA-
approved drugs (see “Methods”). The targets of these drugs were
determined using DrugCentral44,45 and filtered for high affinity
(activity constants lower than 10 μM, a common threshold used
in the field for Ki, Kd, IC50, or EC50). Interestingly, the resulting
drugs, shown in Fig. 4d, consisted (with few exceptions) of
protein kinase inhibitors (e.g., axitinib, dasatinib, pazopanib, and
sunitinib). To analyze the specificity of our findings to SARS-
CoV-2 infection in aged individuals, we repeated the above
analysis without using the GTEx data. This resulted in an
interactome containing 1052 edges across 270 nodes, 42 of which
(15%) were also present in the interactome taking age into
consideration (Supplementary Fig. 17). This pure SARS-CoV-2
interactome contained six SARS-CoV-2 interaction partners
(ETFA, GNB1, NUP62, RBX1, RIPK1, and SNIP1). Drugs
targeting proteins in this interactome belonged to several families
including serotonin inhibitors (clozapine, cyproheptadine, desi-
pramine, and methysergide), histamine H1 blockers (clemastine,
cyproheptadine, and ketotifen), protein kinase inhibitors (includ-
ing axitinib, dasatinib, pazopanib, and sunitinib) and HDAC
inhibitors (vorinostat and belinostat). This analysis shows that
taking aging into account acted as a valuable filter for the
identification of drugs.

Causal structure discovery methods validate serine/threonine
and tyrosine kinases as critical targets in SARS-CoV-2 infec-
tion in the elderly. Finally, in order to suggest putative causal
drug mechanisms and validate the predicted drugs for COVID-
19, we supplemented the PPI analysis with causal structure dis-
covery. Since the edges in the PPI network and hence in the
SARS-CoV-2 and aging interactome are undirected, it is a priori
not clear whether a drug that targets a node in the interactome
has any effect on the differentially expressed terminal nodes, since
the target may be downstream of these nodes (Fig. 5a). To
understand which genes can be modulated by a drug, it is
therefore critical to obtain a causal (directed) network. We
obtained single-cell RNA-seq data for A549 cells from46 and
intersected it with the genes present in the combined SARS-CoV-
2 and aging interactome. To learn the (causal) regulatory network
among these genes, we took advantage of recently developed
causal structure discovery algorithms, in particular, the greedy
sparsest permutation (GSP) algorithm: it performs a greedy
search over orderings of the genes to find the sparsest causal
network that best fits the data, and it has been successfully applied
to single-cell gene expression data before11,12,47. To validate the
obtained causal model and benchmark the performance of GSP to
other prominent causal structure discovery algorithms including
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PC and GES48, we took advantage of the gene knockout and
overexpression data available from CMap. A causal model should
allow predicting the effect of such interventions. Thus, for each
such gene knockout and overexpression experiment in CMap
that targeted a gene in the interactome, we inferred the genes
whose expression changed as a result of the intervention, when
compared to control samples (“Methods” and Supplementary
Fig. 18a). We then constructed ROC curves to evaluate GSP, PC,
and GES by varying their tuning parameters and counting an
edge i→ j as a true positive if intervening on gene i resulted in a
change in the expression of gene j and a false positive otherwise,
thereby showing that GSP exceeded random guessing based on
the PPI network (p value= 0.0177, see “Methods”) and out-
performed the other methods (Supplementary Fig. 18b).

Having established that the causal network obtained by GSP
can be used to predict the effect of an intervention, we turned to

analyzing the regulatory effects of the identified candidate drugs
on the SARS-CoV-2 and aging interactome in A549 cells. The
main connected component of the corresponding causal graph is
shown in Fig. 5b (see also Supplementary Fig. 19a) highlighting
the drug targets and the genes that were found to be differentially
expressed by SARS-CoV-2 infection and aging. We then traced
the possible downstream effects for each identified drug, thereby
finding that the protein kinase inhibitors and HDAC inhibitors
could target the majority of differentially expressed genes in this
connected component (Supplementary Table 1). Similarly, we
traced the downstream effects for each gene in the interactome
that can be targeted by one of the identified drugs, thereby finding
that EGFR, FGFR3, HDAC1, HSP90AA1, IRAK1, PAK1, RIPK1,
RIPK2, and STK3 all have downstream nodes in the interactome
with RIPK1 having the largest number of them (127). To
validate these results in a broader context, we obtained single-cell

a c

d

gene prize log2FC virus log2FC age

ACAT1 1.20 -1.20 -0.51

ADK 1.19 -1.19 -0.57

AGA 1.59 -1.59 -0.40

AIFM1 1.42 -1.42 -0.45

drug protein target target EC50 (nM) IC50 (nM) Kd (nM) Ki (nM)

acetazolamide Carbonic anhydrase 12 CA12 69.67 154.50 5.23

amantadine Sigma non-opioid intracellular receptor 1 SIGMAR1 20.00

amiloride Urokinase-type plasminogen activator PLAU 57000.00 3906.00

axitinib Polo-Like Kinase 4 PLK4 4.20
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gene protein name drug correlation affinity

ACVR2A Activin receptor type-2A dasatinib 0.88 6.68

erlotinib 0.87 6.22

sorafenib 0.87 6.68

sunitinib 0.87 6.66

pazopanib 0.87 6.12

ruxolitinib 0.87 5.06

axitinib 0.88 8.89

BRSK1 Serine/threonine-protein kinase BRSK1 sunitinib 0.87 5.46

sorafenib 0.87 5.8

sunitinib 0.87 5.92

dasatinib 0.88 7.1

docetaxel 0.87 9.0862

erlotinib 0.87 9.22

imatinib 0.87 5.12

sunitinib 0.87 6.07

axitinib 0.88 5.64

afatinib 0.86 10
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AURKC Aurora kinase C

CDK17 Cyclin-dependent kinase 17

EGFR Epidermal growth factor receptor

FGFR1 Fibroblast growth factor receptor 1

FGFR3 Fibroblast growth factor receptor 3

gene protein target drug correlation affinity
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RIPK2 Receptor-interacting serine/threonine-protein kinase 2
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IRAK1 Interleukin-1 receptor-associated kinase 1
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Fig. 4 Drug target discovery via Steiner tree analysis to identify putative molecular pathways linking differentially expressed genes in SARS-CoV-2

infection and aging. a The general procedure takes as input a list of genes of interest (terminal nodes) with prizes indicating their respective importance, a

protein–protein interaction (PPI) network with edge cost/confidence information (e.g., from IRefIndex v1442, edge cost shown by blue shading), and a list

of drugs of interest along with their protein targets and available activity constants (e.g., from DrugCentral44,45, activity constants shown by green

shading). In this study, we consider 181 terminal nodes, shown as a purple circle in the Venn diagram (of which 162 are present in the PPI network)

corresponding to genes differentially expressed in SARS-CoV-2 infection (red circle) and aging (blue circle) from Fig. 2 that are either upregulated in both

SARS-CoV-2 infection and aging or downregulated in both SARS-CoV-2 infection and aging. The prize of a terminal node equals the absolute value of its

log 2-fold change in SARS-CoV-2-infected A549-ACE2 cells versus normal A549-ACE2 cells (shown in purple shading) based on the data from ref. 23.

Terminals and PPI data are processed using OmicsIntegrator230 to output the disease interactome, i.e., the subnetwork induced by a Steiner tree, with drug

targets indicated by green diamonds and terminal nodes colored according to their prizes. Gray nodes represent Steiner nodes. b Interactome obtained

using this procedure. Proteins are grouped by general function (colored boxes in the background) and marked with a cross if they are known to interact

with SARS-CoV-2 proteins based on data from6. c 2-Nearest-neighborhoods of nodes of interest (denoted by a red hexagon) in the interactome. Proteins

known to interact with SARS-CoV-2 are denoted by blue squares, drug targets are denoted as green diamonds, terminal nodes are colored according to

their log 2-fold change in SARS-CoV-2-infected A549-ACE2 cells versus normal A549-ACE2 cells, Steiner nodes appear in gray. Edges are colored

according to edge confidence, which is thresholded to improve readability (see “Methods”). d Table of drug targets and corresponding drugs in the

interactome. Selected drugs are FDA-approved, high affinity (at least one of the activity constants Ki, Kd, IC50 or EC50 is below 10 μM), and match the

SARS-CoV-2 signature well (correlation > 0.86). The affinity column displays (and is colored by) �log 10ð activity Þ. The correlation column displays

(and is colored by) correlations between drug signatures and the reverse signature of SARS-CoV-2 infection based on the overparameterized autoencoder

embedding. Discovered drug targets generally fall into two categories: serine/threonine protein kinases (light yellow) and receptor tyrosine kinases

(dark yellow). The remaining drug targets are in white. The protein name corresponding to each gene is included.
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RNA-seq data from ref. 49 and repeated the analysis in AT2 cells,
which have been shown to be critically affected by SARS-CoV-2
in humans31. The resulting causal network for AT2 cells
(Supplementary Fig. 19b) is similar to the one for A549 cells,
intersecting it in 55.3% of the edges, with EGFR, HDAC1,
HSP90AA1, IRAK1, RIPK1, and RIPK2 all having descendants in
the interactome, and targets of protein kinase inhibitors and
HDAC inhibitors being particularly central (Supplementary
Table 1). To analyze the most critical targets for the crosstalk
between SARS-CoV-2 and aging, we repeated the analysis in the
interactome obtained without taking aging into account (Supple-
mentary Fig. 19c). Interestingly, while HDAC1 and HSP90AA1
continued to have a widespread effect, the number of genes
downstream of RIPK1 changed drastically to just 1, suggesting
that RIPK1 plays a critical role in the SARS-CoV-2 and aging
cross-talk. In line with this, while the effect of HDAC inhibitors
remained similar in the analysis without aging, the effect of
protein kinase inhibitors changed drastically (Supplementary
Table 1). Collectively, our combined analysis points to protein
kinase inhibitors, and it in particular highlights RIPK1, a serine/
threonine–protein kinase, as one of the main targets against
SARS-CoV-2 infections with a highly age-dependent role and the
largest number of downstream differentially expressed genes in
the combined SARS-CoV-2 and aging interactome.

Discussion
The repurposing of drugs for SARS-CoV-2 has been a major
challenge given the many pathways involved in host-pathogen

interactions and the intricate interplay of SARS-CoV-2 with
inflammatory pathways13–16. Interestingly, while both young
and old individuals are susceptible to SARS-CoV-2 infection,
the virus’ pathogenicity is significantly more pronounced in the
elderly17,18. Since the mechanical properties of the lung tissue
change with aging19, this led us to hypothesize an interplay
between viral infection/replication and tissue aging21, suggesting
that this could play an important role in drug discovery pro-
grams. While ongoing drug repurposing efforts have analyzed
host–pathogen interactions and the associated gene expression
programs6,23, they have lacked integration with aging. More
generally, while a number of data-driven and experimental
approaches have been proposed for drug identification and
repurposing1, a platform that systematically integrates different
data modalities including transcriptomic, proteomic and struc-
tural data into a principled causal framework to predict the effect
of different drugs has been missing.

By combining bulk RNA-seq data from GTEx24 and Blanco
et al.23, we identified a critical group of genes that were differ-
entially expressed by aging and by SARS-CoV-2 infection. While
previous analysis relied primarily on contrasting the expression in
cells with and without SARS-CoV-2 infection32, we made an
attempt to separate the effect of the ACE2 receptor alone and the
effect of SARS-CoV-2 in cells without ACE2 receptor to extract a
more refined differential expression pattern of ACE2-mediated
SARS-CoV-2 infection. While previous computational efforts
to repurpose drugs have mainly considered two approaches:
(1) identifying drug targets by analyzing disease networks based
for example on PPI or transcriptomic data4–6, and (2) identifying

Fig. 5 Causal mechanism discovery of potential drug targets. a In an undirected protein–protein interaction network (left), edge directions for a

particular drug target (green diamond) are unknown. Establishing causal directions is important since it is of interest to avoid drug targets that do not have

many downstream nodes in the disease interactome (middle) and instead choose drug targets that have a causal effect on many downstream nodes in the

disease interactome (right). b Causal network underlying the combined SARS-CoV-2 and aging interactome in A549 cells with gene targets of selected

drugs in boxes (largest connected component shown). c Causal subnetwork of A549 cells corresponding to nodes within five nearest neighbors of RIPK1

(highlighted with lightning bolt). Drug targets are represented by boxes. In a–c, the node color corresponds to the log 2-fold change of expression in A549-

ACE2 cells with SARS-CoV-2 infection versus without SARS-CoV-2 infection. Gray nodes represent Steiner nodes. d Heatmap of log 2-fold change of genes

that are downstream of RIPK1.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21056-z

8 NATURE COMMUNICATIONS |         (2021) 12:1024 | https://doi.org/10.1038/s41467-021-21056-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


drugs by matching their signature (e.g., obtained from the CMap
project2) to the reverse disease signature3, we developed a prin-
cipled causal framework that encompasses these two approaches.
First, in order to ensure that the CMap database, which measures
expression using 1000 representative genes, would be useful in the
context of SARS-CoV-2, we validated that the intersection of
these genes with the SARS-CoV-2 differentially expressed genes
was significant. Second, to establish drug signatures based on the
CMap database, we employed a particular autoencoder frame-
work41. Rather unintuitively, we showed that using an over-
parameterized autoencoder, i.e., by using an autoencoder not to
perform dimension reduction as usual but to instead embed the
data into a higher-dimensional space, aligned the drug signatures
across different cell types. This allowed constructing synthetic
interventions, i.e., to predict the effect of a drug on a cell type
without measuring it by using other cell types to infer it. Third, to
identify drug targets in the pathways intersecting SARS-CoV-2
and aging, we connected the differentially expressed genes in the
PPI network using a Steiner tree analysis30 and intersected the
resulting interactome with high-affinity targets of the drugs
obtained using the overparameterized autoencoder framework.
Finally, while computational drug discovery programs have been
largely correlative1, we made use of recent causal structure dis-
covery algorithms11,47,48 to validate the identified drug targets
and their downstream effects, thereby identifying protein kinase
inhibitors such as axitinib, dasatinib, pazopanib, and sunitinib
as drugs of particular interest for the repurposing against
COVID-19. Among the various protein kinases, in particular
from the family of serine/threonine–protein kinases, identified by
our drug repurposing pipeline, RIPK1 was singled out by our
causal analysis as being upstream of the largest number of genes
that were differentially expressed by SARS-CoV-2 infection and
aging, while losing its central role in the corresponding gene
regulatory network without taking aging into account. Notably,
RIPK1 has been shown to bind to SARS-CoV-2 proteins6 and has
also been found to be in an age-dependent module32. RIPK1
belongs to an interesting family of proteins comprising of a kinase
domain on the N terminus and a death domain on the C ter-
minus; activation of the kinase domain has been associated with
epithelial cell homeostasis, while activation of the death domain
leads to triggering necroptotic or apoptotic pathways50,51, the
death pathways potentially triggering tissue fibrosis52. Interest-
ingly, our differential expression analysis found RIPK1 to be
upregulated with SARS-CoV-2 infection. We hypothesize that
upon SARS-CoV-2 infection in older individuals the death
pathways may be favored, thereby leading to fibrosis and
increased blood clotting. Consistent with this, recent post-
mortem lung tissue biopsies of SARS-CoV-2 human patients
revealed a fibrotic epithelium and increased blood clotting53,54.

In order to test how specific our findings are to SARS-CoV-2
and demonstrate the broad applicability of our pipeline,
we repeated the analysis on gene expression data available from23

for the respiratory syncytial virus (RSV) and influenza A virus
(IAV); see Supplementary Note for a detailed description of the
analysis. Differential gene expression analysis showed that the
intersection of the identified genes with RSV and IAV was
only 3.19% and 19.6%, respectively (Supplementary Fig. 20).
Comparing the drug lists resulting from the overparameterized
autoencoder analysis for IAV and RSV to SARS-CoV-2 shows
that the drug rankings for SARS-CoV-2 and RSV are significantly
different, while the rankings for SARS-CoV-2 and IAV are
more similar, but less so than between different SARS-CoV-2
datasets (Supplementary Figs. 21 and 10). The Steiner tree ana-
lysis further reinforced these findings (Supplementary Fig. 22),
which are in line with SARS-CoV-2 and IAV having more
similar clinical symptoms with higher morbidity and fatality

rates in the aging population, while RSV is riskier for young
children.

Collectively, our results highlight the importance of RIPK1 in
the interplay between SARS-CoV-2 infection and aging as a
potential target for drug repurposing programs to be adminis-
tered postinfection. There are various drugs currently approved
that non-specifically target RIPK1 (such as pazopanib and suni-
tinib) as well as under investigation that are highly specific to
RIPK155,56. Given the distinct pathways elicited by RIPK1, there
is a need to develop appropriate cell culture models that can
differentiate between young and aging tissues to validate our
findings experimentally and allow for highly specific and targeted
drug discovery programs. While our method is broadly applic-
able, we note several limitations. First, our drug repurposing
pipeline relies on the availability of RNA-seq data from normal
and infected/diseased cells in the cell type of interest and there-
fore the availability of such data is necessary for the application of
our platform. Second, since our autoencoder is trained on CMap
data, which only contains the expression of 1000 genes (L1000
genes), it is possible that the signal of the infection may not be
captured by these 1000 genes. However, this can be checked by
assessing whether there is a statistically significant overlap
between the L1000 genes and the differentially expressed genes in
the disease/infection of interest, which we performed in our
analysis for SARS-CoV-2. Finally, since the CMap data contains a
limited set of drugs, it is possible that none of the drugs are
anticorrelated with the disease signature, thus preventing the user
from identifying drug candidates. While our work identified
particular drugs and drug targets in the context of COVID-19,
our computational platform is applicable well beyond SARS-
CoV-2, and we believe that the integration of transcriptional,
proteomic, and structural data with network models into a causal
framework is an important addition to current drug discovery
pipelines.

Methods
Bulk gene expression data. The RNA-seq gene expression data related to SARS-
CoV-2 infection in A549 and A549-ACE2 cells were obtained from ref. 23 under
accession code GSE147507. The RNA-seq data of lung tissues for the aging analysis
was downloaded from the GTEx Portal (https://gtexportal.org/home/index.html)
along with metadata containing the age of the individual from whom the RNA-seq
sample was obtained. The RNA-seq raw read counts were transformed into
quantile normalized, log 2ðx þ 1Þ scaled RPKM values, following the normalization
performed in ref. 2.

Differential expression analysis. For differential expression analysis, we focused
on genes that were highly expressed, filtering out any genes with log 2 (RPKM +1)
< 1 for all considered datasets. In order to determine the ACE2-mediated SARS-
CoV-2 genes, we computed three different log 2-fold changes based on the data
from23. Namely, we defined as ACE2-mediated SARS-CoV-2 genes all genes that
had an absolute log 2-fold change between A549-ACE2 cells infected with SARS-
CoV-2 and A549-ACE2 cells above the threshold, excluding genes that had an
absolute log 2-fold change above the same threshold in A549-ACE2 cells versus
A549 cells and also excluding genes that had an absolute log 2-fold change above
the same threshold in A549 cells infected with SARS-CoV-2 versus normal A549
cells. In other words, the ACE2-mediated SARS-CoV-2 genes were defined as the
genes denoted in red in the Venn diagram in Fig. 2b (with pink, brown, and yellow
subsets removed). The absolute log 2-fold change threshold was determined such
that the number of ACE2-mediated SARS-CoV-2 genes was 10% of the protein-
coding genes.

In order to determine the age-associated genes, we analyzed lung tissue samples
obtained from the GTEx portal (https://gtexportal.org/home/index.html) from
individuals of varying ages. We computed the absolute log 2-fold change between
samples of the lung tissue from older (70–79 years old) and younger (20–29 years
old) individuals, defining the age-associated genes as the top 10% of protein-coding
genes with the highest absolute log 2-fold change. We also considered defining age-
associated genes based on the absolute log 2-fold change comparing individuals
who are 20–29 years old versus 60–79 years old, which yielded similar age-
associated genes, with 1339 out of the 1923 genes in common between the two sets
as shown in Supplementary Fig. 3b.
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Gene ontology enrichment analysis. Gene ontology analysis was performed on a
given gene set using GSEApy (v0.9.18), keeping the top ten gene ontology biolo-
gical process terms with the lowest p values. All reported terms had p values ≤ 0.05,
after adjusting for multiple hypothesis testing using the Benjamini–Hochberg
procedure.

L1000 gene expression data from CMap. The CMap data measured via L1000
high-throughput reduced representation expression profiling, which quantifies the
expression of 1000 landmark genes, was obtained from2 under accession code
GSE92742. We chose level 2 data, truncated to only the genes that were also
measured by ref. 23, and then performed log 2ðx þ 1Þ scaling and min–max scaling
on each of the resulting 911-dimensional expression vectors.

Combined autoencoder and synthetic interventions framework. We first
describe our training procedures for the autoencoder framework. CMap contains a
total of 1,269,922 gene expression vectors and we performed a 90-10 training-test
split resulting in 1,142,929 training examples and 126,993 test examples. We
selected the best model by applying early stopping with an upper bound on the
number of total epochs being 150. Note that this is well past the usual early
stopping method of applying a patience strategy with the patience of at most ten
epochs57. All hyperparameter settings, optimizer details, and architecture details
are presented in Supplementary Fig. 6c. To summarize, we considered a range of
fully connected autoencoders with varying width and nonlinearity, and we used
Adam with a learning rate of 1−4 for optimization. To compute the drug signatures
via the trained autoencoder, we used as embeddings the output of the first hidden
layer prior to application of the activation function.

Drug signatures for the A549 cells (and similarly for the MCF7 and HCC515
cells) in CMap were computed by taking the difference between the mean
embedding for the A549 samples with drug and the mean embedding for the A549
control (DMSO) samples. To remove batch effects, we performed k-means
clustering of the control samples in the embedding space and removed all points
falling in the smaller of the two clusters (see Supplementary Fig. 5b). Subsequent
analysis of the removed cluster revealed that it consisted of samples with a
minimum gene-expression value of 1 (after log 2ðx þ 1Þ scaling), while all other
gene expression values fell in the range of [5, 13], thereby providing further reason
for the removal of this cluster. Next, we briefly describe the framework of the
synthetic intervention and how the embedding from our trained overparameterized
autoencoder is used for this. The traditional application of synthetic
interventions27,28 in the context of drug repurposing would proceed as follows:
when a drug signature is unavailable on a given cell type but is available on other
cell types, we would express the cell type as a linear combination of the other cell
types and use this linear combination to predict the signature on the cell type for
which data is unavailable. Since we demonstrated that overparameterized
autoencoders align drug signatures between different cell types (Supplementary
Fig. 8), instead of using a linear combination of drug signatures across cell types,
we can simply use one of the available drug signatures as the synthetic intervention.
In particular, in this work, we used drug signatures on MCF7 cells to construct
synthetic interventions for A549 cells. We also considered drug signatures on
HCC515 cells; however, there was only one FDA-approved drug that was applied
to HCC515 cells which was not also applied to A549 cells in CMap. While this
analysis did not help to increase the number of considered drugs, we used the data
on HCC515 cells in conjunction with the data on A549 and MCF7 cells to validate
that the overparameterized autoencoder aligns the signatures of drugs between
different cell types (Fig. 3d and Supplementary Fig. 8).

Cosine similarity between perturbations. For each cell type and perturbation, we
computed a cell type-specific “perturbation signature”, which is defined as the
difference between the average gene expression of a cell type under that pertur-
bation and under the control perturbation, DMSO. Then, for each perturbation, we

computed the cosine similarity ð a�b
kakkbkÞ between the perturbation vectors for all

pairs of cell types which received that perturbation in CMap. For example, dau-

norubicin was applied to 14 cell types in CMap, resulting in
14
2

� �

¼ 91 cosine

similarities associated with daunorubicin. All cosine similarities were plotted
(Fig. 3e).

Steiner tree analysis
Human PPI network. A weighted version of the publicly available IRefIndex v14
(IREF) human PPI network42 was retrieved from the OmicsIntegrator2 GitHub
repository (http://github.com/fraenkel-lab/OmicsIntegrator2). The interactome
contains 182,002 interactions between 15,759 proteins. Each interaction e has an
associated cost c(e)= 1−m(e) where the score m(e) is obtained using the MIScore
algorithm58, which quantifies confidence in the interaction e based on several
evidence criteria (e.g., number of publications reporting the interaction and cor-
responding detection methods).

Human-SARS-CoV-2 PPI network. A high-confidence host–pathogen interaction
map of 27 SARS-CoV-2 viral proteins with HEK293T proteins6 was retrieved from
NDEx, which reports interactions with 332 human proteins.

Drug–target interaction data. Data on the targets of drugs was obtained from
DrugCentral, an online drug information resource, which includes drug–target
interaction data extracted from the literature along with metrics (such as inhibition
constant Ki, dissociation constant Kd, effective concentration EC50, and inhibitory
concentration IC50) measuring the affinity of the drug for its target44,45. Drugs in
the database are approved by the FDA and may also be approved by other reg-
ulatory agencies (such as the EMA). From this database, we filtered out compounds
targeting non-human proteins. We also discarded drug–target pairs with affinity
metrics (Ki, Kd, EC50, or IC50) higher than 10 μM, a commonly used threshold in
the field. Based on this filtering we obtained a data set containing 12,949 high-
affinity drug-target pairs involving 1457 unique human protein targets and 2095
unique compounds. This dataset was further restricted to drugs predicted to
reverse the SARS-CoV-2 signature (correlation greater than 0.86 in the over-
parameterized autoencoder embedding). This correlation threshold was chosen to
be the point at which the proportion of selected drugs decreases the most rapidly
(Supplementary Fig. 23). As a result, the final drug–target data set included
information on 2296 drug–target pairs involving 652 unique human gene targets
and 117 unique FDA-approved drugs.

Prize-collecting Steiner forest algorithm. The Prize-Collecting Steiner Forest (PCSF)
problem is an extension of the classical Steiner tree problem: Given a connected
undirected network with non-negative edge weights (costs) and a subset of nodes,
the terminals, find a subnetwork of minimum weight that contains all terminals.
The resulting subnetwork is always a tree, which in general contains more nodes
than the terminals; these are known as Steiner nodes. In the special case when there
are only 2 terminals, this boils down to finding the shortest path between these
nodes. The Steiner tree problem, in general, is known to be NP-complete, but
various approximations are available. The PCSF problem generalizes this problem
by introducing prices for the terminals (in addition to the edge costs already
present in the Steiner tree problem) and a dummy node connected to all terminals.
The problem is then to find a connected subnetwork that minimizes an objective
function involving the cost of selected edges and the prizes of terminals that are
missing from the subnetwork as detailed below; we used OmicsIntegrator2 to solve
this optimization problem30.

To formally introduce the objective function, let G= (V,E, c(⋅), p(⋅)) denote the
undirected PPI network with protein set V (containing N proteins), interaction set
E, edge cost function c(⋅), set of terminals S⊂V (containing N proteins) and
attributed prizes p(⋅). The version of the PCSF problem solved by
OmicsIntegrator230 and used in this article consists of finding a connected
subnetwork T= (VT, ET) of the modified graph G*= (V∪{r}, E∪{{r,s}:s∈S}) that
minimizes the objective function

ψðTÞ ¼ b
X

v=2VT

pðvÞ þ
X

e2ET

c�ðeÞ ð1Þ

The node r is a dummy root node connecting all terminals in the network. The

parameter b 2 Rþ linearly scales the node prizes (which are non-zero for terminal
nodes exclusively), and the modified edge cost function c*(⋅) can be expressed as
follows. For any edge e= {x, y}

c�ðeÞ ¼
cðeÞ þ

dxdy
dxdyþðN�dx�1ÞðN�dy�1Þ 10

g if e 2 E

w if e 2 ffr; sg : s 2 Sg

(

ð2Þ

where dx denotes the degree of node x in G and g;w 2 Rþ are tuning parameters.
If the resulting tree contains the root node r, r is removed from the tree, and the
output is an ensemble of trees, a forest. The final output, the interactome, is the
subnetwork in the PPI network induced by the nodes of this forest.

Selection of terminal nodes. Results from the differential expression analysis yielded
219 protein-coding genes that were associated with both aging and SARS-CoV-2
infection. Of particular interest among these genes were 181 genes that showed
concordant regulation, i.e., they were either upregulated in both SARS-CoV-2
infection and aging or downregulated in both SARS-CoV-2 infection and aging.
Intersecting the proteins corresponding to these 181 genes with proteins in the
IREF interactome resulted in 162 proteins. These 162 proteins were selected as
terminal nodes for the PCSF algorithm and prized according to their absolute
log 2-fold change between SARS-CoV-2-infected A549-ACE2 cells and normal
A549-ACE2 cells (Supplementary Fig. 11).

Parameter sensitivity analysis. Running the PCSF algorithm in the OmicsInte-
grator2 required specifying three tuning parameters: g, w, and b. In order to
guarantee the robustness of the resulting network with respect to moderate changes
in these parameters, we selected the parameters based on a sensitivity analysis.

The parameter g modifies the background PPI network by imposing an additive
penalty on each edge based on the degrees of the corresponding vertices. It reduces
the propensity of the algorithm to select hub nodes connecting many proteins in
the interactome. While this feature may be relevant in certain biological
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applications, it was not necessarily the case in our work since high degree nodes
may be of interest for the purpose of drug target identification. In the cost function
in Eq. (2), the absence of penalty corresponds to g=−∞. However, the

OmicsIntegrator2 implementation only allows for g 2 Rþ . In Supplementary
Fig. 12a1, we reported boxplots of penalized edge costs in the IREF interactome for
different values of g. These boxplots suggest that the hub penalty parameter g= 0
yields similar edge costs to the desired setting where g=∞. For this reason, we
chose the value g= 0 in all OmicsIntegrator2 runs in this work.

The parameter w corresponds to the cost of edges connecting terminal nodes to
the dummy root r. This parameter influences the number of trees in the Steiner
forest. If w is chosen too low compared to the typical shortest path cost between
two terminals, a trivial solution will connect all terminal nodes via r, leading to fully
isolated terminals in the final forest. For high values of w the PCSF algorithm will
not include the root r and output a connected network. Based on the histogram of
the cost of the shortest path between any two terminals in the IREF interactome
reported in Supplementary Fig. 12a2, we ran a sensitivity analysis for w in the range
[0.2, 2].

The parameter b linearly inflates the prizes of terminal nodes in the objective
function. Higher values of b result in more terminal nodes in the final PCSF. We
analyzed edge costs in the network to determine a suitable range for b so as to
include many terminal nodes in the resulting interactome. Supplementary Fig. 12a1
shows that the maximum edge cost in the network for g= 0 was lower than 1,
which meant that making b of order greater than 1 was necessary to ensure that
trading off cost of edges added and prizes collected in the solution would rarely
require discarding a terminal node. For this reason, we ran a sensitivity analysis for
b in the range [5, 50].

Based on the previous considerations we fixed g= 0 and ran a sensitivity
analysis as described in Supplementary Fig. 12b with w∈ {0.2, 0.4, 0.6, 0.8, 1, 1.2,
1.4, 1.6, 1.8, 2} and b ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. We obtained 100
PCSFs, each corresponding to a particular choice of (w, b). All of them included the
entire terminal set S, the desired property resulting from the chosen range of
the values of b. To analyze the robustness of the resulting networks to changes in
the parameters, we analyzed the matrix M∈ [0, 1]100×100 defined by

Mij ¼

nodes in

network i

� �
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nodes in
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�
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for every pair of PCSFs i and j corresponding to parameters (wi, bi) and (wj, bj),
respectively. Supplementary Fig. 12c displays the heatmaps of this matrix. We
considered three different node sets C, namely the set of all nodes in the input PPI
network (Supplementary Fig. 12c1), the subset of terminal nodes (C ¼ S,
Supplementary Fig. 12c2), and the subset of SARS-CoV-2 interaction partners
(Supplementary Fig. 12c3). Supplementary Fig. 12c1–c3 illustrate that choosing any
(w, b) ∈ [1.2, 2] × [5, 50] led to the same connected PCSF with 252 nodes and 1003
edges. This network is robust to moderate parameter changes for w and b.
Collectively, this sensitivity analysis motivated the choice of g= 0, w= 1.4, and
b= 40 used to obtain the interactome in Fig. 4b, where nodes are grouped by
general function. The same interactome is presented in Supplementary Fig. 13 with
nodes grouped by the general process. Note that since this interactome included all
terminals and did not include the root node, it is equivalent to the solution of the
classical Steiner tree problem.

Neighborhood analysis. For the interactomes obtained in this work, we reported
two-nearest-neighborhoods of genes of interest in Fig. 4c for the interactome of
Fig. 4b, in Supplementary Fig. 16 for the interactome of Supplementary Fig. 15, and
in Supplementary Fig. 17d for the interactome in Supplementary Fig. 17c.
Depending on the interactome, genes of interest include SARS-CoV-2 interaction
partners (e.g., EXOSC5, FOXRED2, LOX, RBX1, and RIPK1) as well as genes of
potential therapeutic interest (e.g., HDAC1, EGFR). Neighborhood plots were
enriched with information such as SARS-CoV-2 interaction partners and FDA-
approved, high affinity (based on data from DrugCentral) drugs with high corre-
lation to the reverse SARS-CoV-2 infection signature. To improve the legibility of
the neighborhood networks, we discarded the highly connected hub node UBC
(connected to 62% of proteins in the IREF network). To further improve legibility,
we applied an upper threshold on edge cost (i.e., only visualizing high confidence
edges) when the neighborhood networks were too densely connected. We generally
chose this threshold at 0.53, with the exception of the LOX neighborhood (0.58)
and the FOXRED2, ETFA, and GNB1 neighborhoods (no thresholding). For each
edge e in a given neighborhood, we defined the min–max scaled edge confidence
C(e) as

CðeÞ ¼
max
e02E

cðe0Þ � cðeÞ

max
e02E

cðe0Þ �min
e02E

cðe0Þ
2 ½0; 1� ð4Þ

where E denotes the edge set of the corresponding interactome and c(e) denotes the
cost of edge e in the PPI network. This confidence metric was used to color edges in
the neighborhood plots.

Addition of SARS-CoV-2 interaction partners to the terminal node list. In order to
understand which other SARS-CoV-2 protein interaction partners were in the
neighborhood of the identified interactome, we also ran the PCSF algorithm on the
IREF PPI network using the SARS-CoV-2 and aging terminal list augmented with
all known SARS-CoV-2 interaction partners. All SARS-CoV-2 interaction partners
(with the exception of EXOSC5, FOXRED2, and LOX which were already present
in the original terminal gene list) were given a small prize p. This prize was chosen
by sensitivity analysis over a range of possible values from p= 0 (5 SARS-CoV-2
interaction partners initially selected by the method: EXOSC5, FOXRED2, LOX,
RBXL1, and RIPK1) to p= 0.02, beyond which all 332 known SARS-CoV-2
interaction partners belonged to the computed interactome. The fine-grained
analysis revealed that choosing p∈ [4 × 10−4, 10−3] leads to interactomes which
include a stable set of 7 SARS-CoV-2 interaction partners, the five present initially
plus CUL2 and HDAC2 (Supplementary Fig. 14a). Supplementary Fig. 14b, c
display heatmaps of the matrix M∈ [0, 1]16×16 defined as
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for every pair of PCSFs i and j corresponding to parameters pi and pj, respectively. For
the sensitivity analysis, we considered two different node sets C, namely the set of all
nodes in the input PPI network (Supplementary Fig. 14b) as well as the subset of
SARS-CoV-2 interaction partners (Supplementary Fig. 14c). Supplementary Fig. 14b
shows that the obtained interactome was stable over the range p∈ [7 × 10−4, 10−3].
Supplementary Fig. 14c shows that all SARS-CoV-2 interaction partners collected in
the interactome when p∈ [7 × 10−4, 10−3] were also collected for higher values of p,
which is a consequence of the observation from Supplementary Fig. 14b. We used the
value p= 8 × 10−4 for all subsequent analyses and figures, including Supplementary
Fig. 15 and Supplementary Fig. 16.

Randomization and robustness analysis. We conducted several randomization
assessments to understand the importance of each step in the pipeline, analyzing
the impact of changes in the RNA-seq expression data, the underlying PPI net-
work, the CMap drug signatures, as well as the list of terminal genes on the final
selection of drug targets and corresponding drugs. This was quantified by the
frequency of appearance of each drug in the final drug list after 1000 randomi-
zation runs, for both drugs that were and that were not selected in the original non-
randomized analysis. Results from this analysis suggest that the choice of terminal
genes is the most critical step of the Steiner tree procedure; see Supplementary Note
and Supplementary Table 2.

To ensure the robustness of our results to different ways of mitigating batch
effects in the CMap dataset, we repeated the analysis by dropping all genes for
which there was at least one sample containing a 1 in the expression value
(reducing the total number of genes from 911 to 867 for the A549 cell line). As with
the original batch correction approach, the resulting drugs consist mainly of
protein kinase inhibitors (7 out of 9) and the drug targets are highly overlapping
with the drug targets obtained from the original analysis (Supplementary Fig. 24).

Single-cell RNA-seq analysis. Single-cell RNA-seq for A549 cells was obtained
from GSE8186146, where each entry in the matrix represents the gene expression
(FPKM) of gene i in cell j. We preprocessed the data, keeping only genes that had a
nonzero gene expression value in more than 10% of the cells, followed by the
transformation of the data. Single-cell RNA-seq data for AT2 cells were obtained
from http://www.nupulmonary.org/resources associated with ref. 49. In order to
avoid batch effects, we subset the data to include cells only from Donor 7 since that
donor had the largest number of AT2 cells collected (4002 cells). We preprocessed
the data using the same threshold as for A549 cells for filtering out genes across
cells. Since single-cell RNA-seq data for AT2 cells were not yet normalized, we
normalized the expression values across genes for each cell by the total RNA count
for that cell, followed by log 2ðx þ 1Þ transformation of the data as for A549 cells.

Evaluation of causal structure discovery algorithms. Prior to reporting the
results of learning gene regulatory networks on A549 and AT2 cells, we bench-
marked several causal structure discovery methods on the task of predicting the
effects of interventions using gene knockout and overexpression data collected on
A549 cells as part of the CMap project2, similar to prior evaluations of causal
methods11,12. We estimated the gene regulatory network underlying the identified
interactome in A549 cells using the prominent causal structure discovery methods
PC, GES, and GSP8,47,48. Since not all edge directions are identifiable from purely
observational data, these methods output a causal graph containing both directed
and undirected edges. Since the advantage of causal networks is their ability to
predict the effects of interventions on downstream genes, we evaluated these
methods using interventions collected in CMap. In the following, we first describe
how we estimated the effects of interventions based on the CMap data to use as
ground truth for evaluating causal structure discovery methods. We focused our
evaluation on genes and interventions that are shared between the combined
SARS-CoV-2 and aging interactome and CMap knockout and overexpression
experiments, resulting in 32 genes and 41 interventions (note that the number of

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21056-z ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1024 | https://doi.org/10.1038/s41467-021-21056-z | www.nature.com/naturecommunications 11

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81861
http://www.nupulmonary.org/resources
www.nature.com/naturecommunications
www.nature.com/naturecommunications


interventions is larger than the number of genes since in CMap interventions have
been performed on genes that are not part of the L1000 landmark genes but are
contained in the interactome). We formed a matrix of genes by interventions,
where each (i, j)-entry in the matrix represents the log 2-fold change in expression
of gene i when gene j was intervened on in comparison to the expression of gene i
without intervention. We denoted by Q the binary matrix of intervention effects
with Qij= 1 if the sign of the log 2-fold change for the (i, j) entry was opposite for
knockout and overexpression interventions to filter out unsuccessful interventions,
the rationale being that knockout and overexpression should have opposite
downstream effects. Thus Qij= 1 denotes that perturbing gene j affects gene i and
hence that gene i is downstream of gene j (Supplementary Fig. 18a). Taking this
matrix of interventional effects, Q, as the ground truth, we estimated the causal
graph using the PC, GES, and GSP algorithms and determined the corresponding
ROC curve, counting and edge from j→ i as a true positive if Qij= 1 and a false
positive otherwise (Supplementary Fig. 18b). In order to statistically evaluate
whether the different algorithms performed better than random guessing, we
sampled causal graphs (from an Erdös–Renyi model, where the edges were directed
based on a uniformly sampled permutation) with different edge probabilities from
the PPI network and calculated the corresponding number of true and false
positives. For each false positive level, we created a distribution over true positives
based on the sampled random causal graphs and calculated the p value for the
number of true positives obtained from the PC, GES, and GSP algorithms. We
combined the p values across different numbers of false positives using Fisher’s
method and used this combined p value for evaluating whether the PC, GES, and
GSP algorithms were significantly different from random guessing.

Causal structure discovery for learning gene regulatory networks. In order to
learn the gene regulatory networks governing A549 and AT2 cells, we used the
recent structure discovery method GSP11,12,47 on single-cell RNA-seq data from
A549 cells as well as AT2 cells with the PPI network on 252 nodes as a prior. We
used GSP since based on the previous analysis it outperformed the PC and GES
algorithms in terms of ROC analysis on predicting the effect of gene knockout and
overexpression experiments in A549 cells (p value= 0.0177 for GSP, p value=
0.0694 for GSP and p value= 0.5867 for GES); in addition, GSP is also preferable
from a theoretical standpoint, since it is consistent under strictly weaker
assumptions than the PC and GES algorithms47. To obtain an estimate of the
causal graph that is robust across hyperparameters and data subsampling, we used
stability selection59. In short, stability selection estimates the probability of selec-
tion of each edge by running GSP on subsamples of the data. Aggregating selection
probabilities across algorithm hyperparameters (in this case the α-level for con-
ditional independence testing), edges with high selection probability (0.3 for A549
cells and 0.4 for AT2 cells) were retained. The threshold for AT2 cells was chosen
so as to approximately match the number of edges in the A549 network.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All datasets used in this work are publicly available from the following sources: The gene

expression data for SARS-CoV-2 was obtained from GSE14750723 and the gene

expression data for the aging analysis was obtained from https://gtexportal.org/home/

index.html24. The CMap data was downloaded using accession code GSE927422. We

used the PPI network from http://github.com/fraenkel-lab/OmicsIntegrator2 (IRefIndex

Version 14)42 and drug–target data from DrugCentral44,45. The single-cell RNA-seq data

for the causal analysis was obtained from GSE8186146 for A549 cells and http://www.

nupulmonary.org/resources for AT2 cells associated with49. The host–pathogen

interactions of SARS-CoV-2 proteins were obtained from http://www.ndexbio.org/

#/network/5d97a04a-6fab-11ea-bfdc-0ac135e8bacf6.

Code availability
We relied on open source libraries to build our analysis pipeline. In particular, we used R

(v3.6) package pcalg (v2.6) and the following python (3.7) packages: OmicsIntegrator2

(v2), causaldag (v0.1a133), GSEApy (v0.9.18), networkx (v2.4), numpy (v1.17.3), pandas

(v0.25.3), PyTorch (v1.6), scikit-learn (v0.22.2), scipy (v1.4.1), cmapPy (v4.0.1), and

graphviz (v2.40.1). Our code is available at https://github.com/uhlerlab/

covid19_repurposing60.
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