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Abstract Neurons engage in causal interactions with one

another and with the surrounding body and environment.

Neural systems can therefore be analyzed in terms of

causal networks, without assumptions about information

processing, neural coding, and the like. Here, we review a

series of studies analyzing causal networks in simulated

neural systems using a combination of Granger causality

analysis and graph theory. Analysis of a simple target-

fixation model shows that causal networks provide intuitive

representations of neural dynamics during behavior which

can be validated by lesion experiments. Extension of the

approach to a neurorobotic model of the hippocampus and

surrounding areas identifies shifting causal pathways dur-

ing learning of a spatial navigation task. Analysis of causal

interactions at the population level in the model shows that

behavioral learning is accompanied by selection of specific

causal pathways—‘‘causal cores’’—from among large and

variable repertoires of neuronal interactions. Finally, we

argue that a causal network perspective may be useful for

characterizing the complex neural dynamics underlying

consciousness.
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Introduction

A basic fact about neural systems is that their elements

enter into causal interactions with one another, as well as

with the surrounding body and environment. Because

neural systems are generally composed of large numbers of

elements, a useful analysis of their causal interactions must

involve causal networks. Neural systems can be analyzed

in terms of causal networks without assumptions about

whether or not they are ‘information processing’ devices

(Churchland and Sejnowski 1994), or whether or not there

exist ‘neural codes’ (deCharms and Zador 2000).

In this paper, time-series analysis techniques based on

Granger causality (Granger 1969) are combined with net-

work theory in order to characterize causal networks in

simulated neural systems (Seth 2005; Krichmar et al.

2005b; Seth and Edelman 2007; Seth et al. 2006). Because

our aim is to elaborate a particular theoretical perspective

on neural dynamics, and not to analyze existing empirical

data, we illustrate causal network analysis using concrete

simulation models. This approach has the advantage of

providing complete knowledge of the underlying (simu-

lated) physical system, allowing informative comparisons

of structural connectivity and causal connectivity. By

considering several different neural simulations we show

that causal network analysis can flexibly be deployed in

diverse neural modeling scenarios, yielding different

insights in each case.

It is important to underline the difference between a

‘structural network’ and a ‘causal network’ as used in the

present context. The former corresponds to the network

defined by the synaptic connections among neurons; these

connections can be unidirectional or reciprocal. The ‘cau-

sal network’ is the network of significant causal

interactions among neurons. In other words, a causal

A. K. Seth (&)

Department of Informatics, University of Sussex, Brighton BN1

9QJ, UK

e-mail: a.k.seth@sussex.ac.uk

123

Cogn Neurodyn (2008) 2:49–64

DOI 10.1007/s11571-007-9031-z



network reflects an aspect of ‘functional’ and/or ‘effective’

connectivity (Friston 1994) whereas a structural network

reflects physical connectivity. It also bears emphasizing

that Granger causality is a statistical measure of causality,

meaning that Granger-causal links do not necessarily

reflect physical causal chains.

After reviewing the principles of Granger causality

analysis (Granger 1969; Ding et al. 2006; Seth 2007), we

illustrate the causal network approach by analyzing a

simple simulation model involving sensorimotor coordi-

nation. In this model, genetic algorithms (GAs) are used to

specify neural network controllers supporting target fixa-

tion behavior in a simulated head/eye system (Seth 2005;

Seth and Edelman 2004), and causal networks are com-

pared with underlying structural networks (i.e., the evolved

neural network controllers). We find that causal networks

provide an intuitive description of neural dynamics that

reflect agent-environment interactions during behavior and

we also show that they reliably predict the effects of

(structural) network lesions. This study serves to validate

the causal network approach and to demonstrate its

potential in examining adaptation of sensorimotor net-

works to different environmental conditions.

In order for causal network analysis to provide useful

heuristics for interpreting empirical data it is necessary to

move beyond simple ‘toy’ models and to consider more

detailed models incorporating aspects of neuroanatomy and

neurophysiology. To address this need we extend our

analysis to an embodied neural simulation—a robotic brain

based device (BBD) (Krichmar and Edelman 2002)—that

incorporates a detailed model of the mammalian hippo-

campus (Krichmar et al. 2005a, b). This BBD learns a task

similar to a classical experimental paradigm in which

rodents are trained to locate a ‘hidden platform’ in a pool

of milky water (a Morris ‘water maze’ (Morris 1984)); a

task for which an intact hippocampus is required. Causal

network analysis of this BBD reveals causal pathways

involving the hippocampus that mediate sensory input and

motor output and that map onto known anatomical con-

nections. The analysis also shows how these pathways are

modulated as a result of learning, for example by the

emergence of causal ‘short cuts’ through the hippocampus.

These findings facilitate interpretation of existing empirical

data and also suggest specific hypotheses that may be

testable in future animal experiments.

The BBD just described has &90,000 neuronal units

and &1,400,000 synaptic connections. This substantial

simulated nervous system invites analysis at the mesoscale

level, i.e., the level of description of neural systems that

lies between small neuronal circuits and systems-level

neural areas (Sporns et al. 2005; Lin et al. 2006). Due to

the lack of appropriate experimental methods detailed

mesoscale descriptions of biological neural systems are

rare, yet theoretical approaches suggest that mesoscale

dynamics are highly significant for neural function. For

example, the theory of neuronal group selection (TNGS,

(Edelman 1987, 1993)) proposes that functional neural

circuits are selected from highly variant repertoires during

development and behavior.

An important issue at the mesoscale level is the identi-

fication of causal interactions in complex neural

populations that lead to specific outputs. To address this

issue we introduce the concept of a causal core to refer to

the set of neuronal interactions that are significant for a

given output, as assessed by Granger causality (Seth and

Edelman 2007). Applying this extended analysis to the

neurorobotic model of the hippocampus reveals that large

repertoires of neural interactions contain comparatively

small causal cores and that these causal cores become

smaller during learning. These results are consistent with

the hypothesis, drawn from the TNGS, that behavioral

learning involves selection of specific causal pathways

from diverse repertoires.

Importantly, recent methodological advances promise to

reveal comprehensive microscale and mesoscale details of

neurobiological systems (Kelly and Strick 2004; Konkle

and Bielajew 2004; Raffi and Siegel 2005). The causal core

concept, and causal network analysis in general, provides

both useful heuristics and practical methods for interpret-

ing and analyzing this cutting-edge and future data.

Because causality analysis makes no assumptions about

information processing or neural coding, a causal network

approach offers an objective framework for considering

global aspects of brain function which have remained

poorly understood from existing theoretical perspectives.

Foremost among these global aspects are the neural

mechanisms underlying consciousness.

Most attempts to understand the neural mechanisms of

consciousness have proceeded by searching for the so-

called ‘neural correlates of consciousness’ (Rees et al.

2002). However, correlations by themselves do not provide

explanations and there is a need for theories that connect

fundamental aspects of conscious phenomenology to cor-

responding aspects of neural dynamics. A promising

approach in this regard has been to notice that all conscious

scenes are both differentiated (each is composed of many

parts and is therefore unique) and integrated (each is

experienced as a unified whole) (Edelman 2003; Tononi

and Edelman 1998). Quantitative multivariate measures

that track these properties and that are applicable to neural

dynamics are therefore very useful for neural theories of

consciousness, and indeed several such measures have now

been proposed (Edelman 2003; Tononi and Edelman 1998;

Tononi 2004). Here, we adopt a causal network perspective

on the neural dynamics underlying consciousness and we

analyze the proposal that a particular measure applicable to
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causal networks, causal density, provides a useful means of

quantifying the complexity of the neural dynamics relevant

to consciousness (Seth et al. 2006). Causal density is

argued to overcome certain limitations associated with

alternative measures by (i) naturally incorporating causal

interactions and (ii) providing a genuine measure of pro-

cess rather than capacity.

Finally, we discuss limitations and possible extensions

of the causal network approach, its relation to other

methods for extracting causal representations, and future

applications both in neural modeling and in the analysis of

empirical data. As a whole, the research surveyed in this

article indicates that a causal network perspective provides

both novel concepts for understanding neural systems, and

a set of practically applicable methods for illustrating,

refining, and testing the usefulness of these concepts.

Granger causality

The concept of Granger causality is based on prediction: If

a signal X1 causes a signal X2, then past values of X1 should

contain information that helps predict X2 above and beyond

the information contained in past values of X2 alone

(Granger 1969). In practice, Granger causality can be tes-

ted using multivariate regression (MVAR) modelling

(Hamilton 1994). For example, suppose that the temporal

dynamics of two time series, X1(t) and X2(t) (both of length

T), can be described by a bivariate autoregressive model:

X1ðtÞ¼
Pp

j¼1A11;jX1ðt�jÞþ
Pp

j¼1 A12;jX2ðt�jÞþn1ðtÞ

X2ðtÞ¼
Pp

j¼1A21;jX1ðt�jÞþ
Pp

j¼1 A22;jX2ðt�jÞþn2ðtÞ
ð1Þ

where p is the maximum number of lagged observations

included in the model (the model order, p \ T), A contains

the coefficients of the model (i.e., the contributions of each

lagged observation to the predicted values of X1(t) and

X2(t)), and n1, n2 are the residuals (prediction errors) for

each time series. If the variance of n1 (or n2) is reduced by

the inclusion of the X2 (or X1) terms in the first (or second)

equation, then it is said that X2 (or X1) Granger-causes X1

(or X2). In other words, X2 Granger-causes X1 if the coef-

ficients in A12 are jointly significantly different from zero.

This can be tested by performing an F-test of the null

hypothesis that A12 = 0, given assumptions of covariance

stationarity on X1 and X2. The magnitude of a Granger

causality interaction can be estimated by the logarithm of

the corresponding F-statistic (Geweke 1982).1

As mentioned in section ‘‘Introduction’’, the statistical

basis of Granger causality implies that Granger-causal

links need not directly reflect physical connections. In

particular, variables that are not included in the regression

model can induce ‘common-input’ artifacts. For example,

if X1 and X2 both receive input from a third variable X3

with different time delays, then a bivariate analysis of X1

and X2 will show a causal link from one to the other even in

the absence of a physical connection. Common-input

problems can be avoided by extending Granger causality to

the n variable case (where n [ 2), by estimating an n

variable autoregressive model. In this case, X2 Granger-

causes X1 if knowing X2 reduces the variance in X1’s pre-

diction error when the activities of all other variables X3 ...

Xn are also taken into account. This multivariate extension

is sometimes referred to as conditional Granger causality

(Ding et al. 2006). As well as eliminating common-input

artifacts, conditional Granger causality is useful for

revealing causal interactions among sets of nodes.

Significant Granger causality interactions between

variables can be represented as edges in a graph, allowing

the application of graph-theoretic techniques (Seth 2005;

Eichler 2005). Because Granger causality is in general not

symmetric, these edges will be directed. As shown in the

following, the resulting graphs, or causal networks, can

provide intuitive and valuable representations of functional

connectivity within a system.

Causal networks during target fixation

To illustrate causal networks in a simplified setting, we

first analyze a simulation model of target fixation requir-

ing coordination of ‘head’ and ‘eye’ movements. Full

details of the model are given in Seth (2005) and Seth and

Edelman (2004). Here only a minimal set of features are

described.

In the model, a planar environment contains a target (T)

and a neural network controls a gaze direction (G) onto this

xy plane by modulating head direction (H), and eye

direction (E) which is relative to head direction (see

Fig. 1a). Networks consisted of 32 neurons and 256 ini-

tially randomly distributed synaptic connections. Each

neuron was modeled by a sigmoidal transfer function; six

neurons were sensor inputs, including two visual (v-)inputs

and four proprioceptive (h- and e-)inputs. V-inputs reflec-

ted displacement of G from T; h-inputs reflected

displacement of H from an arbitrary origin, and e-inputs

reflected displacement of H from E (see Fig. 1b). Each pair

of input neurons signalled displacements in the x and y

dimensions. The remaining 22 neurons were ‘interneurons’

(INs) with initially random connectivity to the remainder of

the network.

1 Many applications in neurophysiology make use of a frequency-

domain version of Granger causality (Geweke 1982; Kaminski et al.

2001). However, because in this paper we analyze simulation models

without oscillatory dynamics, we remain in the (simpler) time domain.
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The topology of the network (both the structural con-

nectivity and the synaptic strengths) was evolved using a

genetic algorithm (GA). The GA was permitted to explore

all possible network architectures with no constraints (e.g.,

organisation into layers was not imposed). The fitness

function F was designed to maximize target fixation while

simultaneously keeping head and eye aligned.2

To test how causal networks depended on agent-envi-

ronment interactions, networks were evolved in both

‘simple’ and ‘complex’ conditions where complexity was

reflected by unpredictable target movement and by varia-

tions in parameters affecting head and eye movement,

including a time-delay for head movements relative to eye

movements (for full details see Seth 2005; Seth and Ed-

elman 2004). Ten evolutionary runs were carried out in

each condition.

Causal networks were derived from the fittest network

from each evolutionary run in each condition. From each

such network, causal networks were identified by computing

10-dimensional MVAR models for time-series of the six

input and four output neurons only. Before MVAR compu-

tation, each time-series was first-order differenced to ensure

covariance stationarity (see section ‘‘Stationarity’’), and the

number of lags (p in Eq. 1) was set according to the Bayesian

Information Criterion (BIC, (Schwartz 1978)) to be four.

Significant Granger causality interactions were calculated

between input-output neuron pairs only (P \ 0.01).

Causal networks

Figure 2a shows representative casual networks from each

condition (top) as well as the corresponding structural

networks (bottom). Networks adapted to complex

conditions (C-nets) showed strong causal connectivity from

visual inputs to motor outputs, suggesting that their

dynamics were driven largely by visual signals. These

networks also showed strong reciprocal causality involving

e-inputs but little involving h-inputs, suggesting that the

former may influence behavior more than the latter. By

contrast, networks adapted to simple conditions (S-nets)

showed significantly fewer strong driving influences and

less distinction among e-inputs and h-inputs, suggesting

that these networks were less functionally differentiated

than C-nets.

Causal networks overlapped with but were not identical

to structural networks (Fig. 2a bottom). For C-nets the

strong causal influence from v-inputs to motor outputs was

reflected in network structure but the strong reciprocal

causality was not structurally prominent. S-nets also

showed differences between structural and causal connec-

tivity, especially in regard to reciprocal connectivity. These

differences are expected because causal networks, unlike

structural networks, depend on interactions among network

structure, phenotype, and environment.

It is important to note that causal network analyses are

agnostic with respect to ‘feedforward’ and ‘feedback’

connections. In particular, reciprocal causal connectivity

between an input and an output does not mandate the

interpretation that the input?output connection is driving

and that the reverse connection is modulatory. If both

connections are causally significant then both should be

considered to be ‘driving’, although possibly to different

extents depending on magnitude (this issue is discussed

further in section ‘‘Discussion’’).

The effect of environment on causal connectivity is

illustrated in Fig. 2b, in which warm (cool) colors indicate

causal interactions that were reliably strengthened (weak-

ened) when a C-net was tested in a complex environment

as compared to a simple environment. Consistent with

Fig. 2a, testing in a complex environment led to greater

input?output causal connectivity and increased reciprocal

v

v

H

H

E

E

A B

e

e

h

h

Fig. 1 Target fixation model. (a) The agent controls head-direction

(H) and eye-direction (not shown) in order to move a gaze point (G)

towards a target (T). (b) Neural network controller. Six input neurons

are shown on the left: v-inputs reflect displacement of G from T; h-

inputs and e-inputs reflect proprioceptive signals (see text). Four

output neurons are shown on the right: H-outputs control head

velocity and E-outputs control the velocity of E relative to H. For

clarity only 4 of the remaining 22 neurons and only a subset of the

256 connections are shown.

2 The fitness function was F = tfix + 0.25(35 – d̄), where tfix denotes

the proportion of time for which the target was fixated and d̄ the mean

offset between H and G (the environment was a toroidal square plane

with side length 100).
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causality from outputs to e-inputs. However, connections

from outputs to v-inputs were weaker, suggesting that

visual signals are less predictable from prior head move-

ments in complex environments. These observations

together suggest that, in this model, environmental sim-

plification leads to a reduction in the range of causal

interactions sustained by a network.

Predicting the influence of lesions

A useful way to validate causal networks derived by Granger

causality is to test whether they predict the effects of network

lesions. To explore this idea, we computed causal networks

involving all 32 neurons of each C-net and assessed the fit-

ness consequences of lesioning each of the 22 INs in turn.

For each IN we also calculated the total strength of incoming

and outgoing causal connections (‘unit causal density’), and

covariance of the dynamics of each IN with the remainder of

the network (calculated as the mean absolute covariance of

the IN with each other neuron in the network). Figure 3

shows that post-lesion fitness has a strong negative correla-

tion with unit causal density, but no correlation with

covariance, confirming that the causal connectivity of a

neuron is a useful predictor of the dynamical and behavioral

consequences of network damage.

Summary

The analysis of simple ‘toy’ models can be useful for

validating the causal network approach and for gaining

insight into the modulation of causal interactions by

adaptation to different environments. In addition, simple

models allow easy comparisons of structural connectivity

and functional connectivity, both in normal conditions and

following network damage. However, for the causal net-

work approach to engage more directly with empirical data

it is necessary to study more detailed models incorporating

substantial neurobiological detail.

Causal networks in a brain-based device

Darwin X is a brain-based device (BBD), that is, a physical

device which interacts with a real environment via sensors

Fig. 2 (a) Causal connectivity

in the target fixation model.

Each panel shows input (v: v-

inputs, e: e-inputs, h: h-inputs)

and output neurons (E: E-

outputs, H: H-outputs). Red

arrows show input?output

causality, green arrows show

output?input causality, and

blue arrows show reciprocal

causality. Arrow width reflects

magnitude of causal influence.

(b) Effect of environment on

causal connectivity. See text for

details; color online

Fig. 3 Post-lesion fitness

following lesions to INs as a

proportion of the fitness of the

intact network, plotted against

(a) mean unit causal density of

the IN and (b) mean absolute

covariance of the IN with the

remainder of the network (see

text). Each panel shows

Pearson’s correlation coefficient

(r) as well as the corresponding

p-value.
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and motors, whose behavior is guided by a simulated

nervous system incorporating detailed aspects of the neu-

roanatomy and neurophysiology of the mammalian

hippocampus and surrounding areas (Fig. 4).

The hippocampal system is particularly attractive for

causal network analysis because of its distinctive func-

tional neuroanatomy. Signals from many neocortical areas

enter the hippocampus via the entorhinal cortex. Hippo-

campal output is also funneled via entorhinal cortex in

divergent projections to neocortex. Within the hippocam-

pus, there are connections from the entorhinal cortex to the

dentate gyrus, from the dentate gyrus to CA3 (mossy

fibers), from CA3 to CA1 (Schaffer collaterals), and then

from CA1 back to the entorhinal cortex (Lavenex and

Amaral 2000). This pathway is referred to as the trisynaptic

loop. There are also perforant pathway ‘short-circuit’

projections from entorhinal cortex directly to CA3 and

CA1. Functionally, an intact hippocampus is necessary for

laying down episodic memories in humans as well as for

learning spatial navigation behavior in rodent models. Both

of these functions require integrating multimodal inputs

over different timescales and it is possible that the unique

looping anatomy of the hippocampal system underlies this

integration. Causal network analysis of a hippocampal

simulation is well placed to explore this idea.

Full details of the construction and performance of

Darwin X are given in Krichmar et al. (2005a, b); for

present purposes it is sufficient to mention only the fol-

lowing. Darwin X contained analogs of several mammalian

brain areas including subareas of the hippocampus and

three sensory input streams which received input from a

CCD camera and from odometry (Fig. 4). Each neuronal

unit in Darwin X represented a group of &100 real neurons

and was simulated using a mean firing rate model. Synaptic

plasticity was implemented using a modified version of the

BCM learning rule (Bienenstock et al. 1982) in which

synapses between strongly correlated neuronal units are

potentiated and synapses between weakly correlated neu-

ronal units are depressed. In some pathways, synaptic

changes were further modulated by the activity of a sim-

ulated value system (area S in Fig. 4) which responded to

salient events (see below). Value-dependent modulation

was implemented using the temporal-difference learning

rule in which learning is based on the difference between

temporally successive predictions of reward (Sutton and

Barto 1998). The full Darwin X model contained 50 neural

areas, &90,000 neuronal units, and &1,400,000 synaptic

connections.

Darwin X was trained on a ‘dry’ version of the well-

known Morris water maze task (Morris 1984), in which the

device learned to locate a hidden platform in a rectangular

arena with diverse visual landmarks hung on the walls.

Darwin X could only detect the hidden platform when it

was directly overhead, by means of a downward facing

infrared sensor. Each encounter with the platform stimu-

lated the value system which modulated synaptic plasticity

in the value-dependent pathways of Darwin X’s simulated

nervous system. Darwin X was trained over 17 trials, each

Camera Odometry

IT Pr ATN

HIPPOCAMPUS

S
IR

Platform

Cortical Connectivity Hippocampal Connectivity

inhibitoryexcitatory

value dependent plastic

Connection Types

Visual
"what"

Visual
"where"

Head
direction

Motor

IT/Pr/
ATN 

ECin

ECout

DG CA3 CA1

S Motor

900

900
900 900 900

900 225 400

16

Fig. 4 Schematic of Darwin X’s simulated nervous system. There

were two visual input streams responding to the color (IT), and width

(Pr), of visual landmarks on the walls, as well as one odometric input

signalling Darwin X’s heading (ATN). These inputs were reciprocally

connected with the hippocampus which included ‘entorhinal’ cortical

areas ECin and ECout, ‘dentate gyrus’ DG, and the CA3 and CA1

hippocampal subfields. The number of simulated neuronal units in

each area is indicated adjacent to each area. This figure is reprinted

with permission from Seth and Edelman (2007)
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beginning from one of four initial positions. Initially,

Darwin X moved randomly, but after about 10 trials, the

device reliably took a comparatively direct path to the

platform from any starting point (Krichmar et al. 2005b).

Causal networks in Darwin X

Causal interactions in Darwin X were analyzed by select-

ing ‘functional circuits’ as follows. For each neuronal unit

in CA1 (the reference unit), a functional circuit of neuronal

units was selected by identifying those units, from different

neural areas, that covaried most strongly with the reference

unit. The activity time-series corresponding to these func-

tional circuits were then first-order differenced and circuits

which were not covariance stationary were discarded.

Remaining functional circuits were analyzed using a mul-

tivariate Granger causality analysis with model order p = 3

set according to the BIC.

Figure 5 shows patterns of causal interactions from a

representative CA1 reference unit both early in learning

(left) and late in learning (right). After learning, the causal

network involving the reference unit is much denser and

has developed a trisynaptic loop.

Analyzing all functional circuits from both trials 1 and

17 revealed an increase in the proportion of perforant

pathway short-cuts in which signals from cortex causally

influence the CA1 reference unit without causally involving

the intermediate stages of DG and CA3, and a corre-

sponding decrease in the proportion of causal trisynaptic

pathways (Table 1). A possible explanation for this is that

the trisynaptic pathway, which integrates more areas of the

hippocampus, may be necessary when in unfamiliar envi-

ronments, and that the comparatively direct perforant

pathway may be more useful when translating sensory cues

into motor actions in familiar environments.

We also found that the causal influence exerted by

neuronal units in area ATN, reflecting odometric head-

direction signals, grew markedly during learning, whereas

influence from the visual areas remained the same

(Krichmar et al. 2005b). This suggests that, in this task,

Darwin X over time relied less on integrating multisensory

signals and its behavior was increasingly driven by odo-

metric signals with modulation from visual areas. These

hypotheses may be testable in future animal experiments.

Causal cores in neural populations

The causal networks just described were identified using a

multivariate analysis of a small number of neuronal units

from different regions of Darwin X’s simulated nervous

system. We turn now to a variant of this analysis which

distinguishes causal interactions within large neural popu-

lations that lead to specific outputs (Seth and Edelman

2007). This new analysis is motivated by the need to

understand neural dynamics at the mesoscale, i.e., the

population level that intervenes between small neuronal

circuits and systems-level neural areas (Sporns et al. 2005;

Lin et al. 2006). Because our analysis requires complete

knowledge of neuroanatomy and dynamics of the studied

system, it is also well illustrated by application to Darwin X.

The general framework for this mesoscale analysis is

illustrated in Fig. 6. First, a neural reference (NR) is

selected from among many possible neuronal events, in this

example by virtue of its relation to a specific behavioral

output (Fig. 6a). In the terminology introduced in the

foregoing, a NR refers to the activity of a reference unit at a

particular time. Second, a context network is identified by

recursively examining the activity of all neurons that led to

each NR, a procedure referred to as a backtrace (Krichmar

et al. 2005a) (Fig. 6b). The first iteration of a backtrace

identifies those neurons that were both anatomically con-

nected to the NR neuron and active (above a threshold) at

the previous time-step. This procedure can be iterated as

allowed by computational tractability, but in general a low

iteration depth ensures the identification of the most salient

neural interactions for a particular NR while avoiding a

combinatorial explosion. Third, a Granger causality anal-

ysis is applied to assess the causal significance of each

connection in the context network (Fig. 6c). In order to

ensure robust statistical inferences, each connection is

Fig. 5 Causal connectivity patterns for a representative CA1 refer-

ence unit during the first trial (left) and the last trial (right). Grey

arrows show unidirectional connections and black arrows show

bidirectional connections. The width of each arrow (and size of

arrowhead) reflect the magnitude of the causal interaction

Table 1 Percentage of causal pathways that were either trisynaptic or

(perforant) shortcut, before and after experience

Trial 1 (n = 231) Trial 17 (n = 162)

Trisynaptic 42.0 29.0

Short-cut 14.8 21.6
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assessed over a time period considerably longer than that

used to identify the context network.3 Also, each connec-

tion is assessed separately; i.e., using a repeated bivariate

design with correction for multiple comparisons. The

resulting networks of significant Granger causality inter-

actions are referred to as Granger networks. Last, the

causal core of each NR is identified by extracting the

subset of the corresponding Granger network consisting of

all causally significant connections leading, via other

causally significant connections, to the NR (Fig. 6d–e).

As reported in detail in Seth and Edelman (2007),

application of the above analysis to Darwin X involved

selecting 93 NRs corresponding to bursts of activity in CA1

neuronal units at different time points spanning the learn-

ing process. Context networks for each NR were identified

by iterating the backtrace algorithm for six time steps.

Figure 7 shows the context network, Granger network, and

causal core for a representative NR. The causal core is

strikingly small as compared to the context and Granger

Fig. 6 Distinguishing causal

interactions in neuronal

populations. (a) Select a neural
reference (NR), i.e., the activity

of a particular neuron (yellow)

at a particular time (t). (b) The

context network of the NR

corresponds to the network of

all coactive and connected

precursors, assessed over a short

time period. (c) Assess the

Granger causality significance

of each interaction in the

context network, based on

extended time-series of the

activities of the corresponding

neurons. Red arrows indicate

causally significant interactions.

(d, e) The causal core of the NR

(red arrows) is defined as that

subset of the context network

that is causally significant for

the activity of the corresponding

neuron (i.e., excluding both

non-causal interactions (black

arrows) and ‘dead-end’ causal

interactions such as 5?4,

indicated in blue). Color online

3 The analyzed time series varied in length from 450 to 4,994 time-

steps. Robustness to different lengths was assessed by reanalyzing

causal interactions after dividing each time series into two parts;

results were qualitatively identical (see (Seth and Edelman 2007) for

details).
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networks, and is largely free from the entorhinal interac-

tions which dominate these other networks. These

observations generalized to the remaining 92 NRs

(Table 2), suggesting that (i) even in large neural popula-

tions, only comparatively small subsets may be causally

recruited at a given time for a given function, and (ii)

trisynaptic and perforant pathways had greater causal

influence on the selected NRs than did entorhinal interac-

tions. Importantly, as shown in Seth and Edelman (2007),

causal cores could not in general be identified on the basis

of synaptic strengths alone.

Causal core refinement during learning

The functional circuit analysis described in section ‘‘Causal

networks in brain-based device’’ showed that learning in

Darwin X was accompanied by a shift in the balance of

causal pathways from trisynaptic loops to perforant ‘short-

cuts’. Here, we explore how population causal interactions

are modulated during learning, which raises the general

issue of how synaptic plasticity and behavioral learning are

related. It is often assumed that learned behavior depends

on the cumulative effects of long-term potentiation (LTP)

and depression (LTD) of synapses. However, synaptic

plasticity and behavioral learning operate over vastly dif-

ferent temporal and spatial scales (Drew and Abbott 2006)

and although empirical evidence indicates that learning can

induce LTP and LTD in certain cases (Malenka and Bear

2004; Dityatev and Bolshakov 2005), the precise functional

contributions of synaptic plasticity to learned behavior

have so far remained unclear.

Figure 8 shows that causal cores reliably diminish in

size as learning progresses; we have called this reduction in

size refinement (Seth and Edelman 2007). Furthermore,

causal core size appeared to reach an asymptote after about

10 trials, which corresponds to the number of trials

required for Darwin X to learn the task. Because neither

context networks nor Granger networks showed similar

refinement during learning, and because causal cores were

not composed solely of the strongest synaptic interactions,

causal core refinement in Darwin X can be understood as

arising from the selection of particular causal pathways

from a diverse and dynamic repertoire of neural interac-

tions. This is consistent with the notion that synaptic

Fig. 7 (a) The context network

for a representative NR in

Darwin X. The thickness of

each line (and size of each

arrowhead) is determined by the

product of synaptic strength and

the activity of the presynaptic

neuron. (b) The corresponding

Granger network. Line

thickness here reflects

magnitude of the corresponding

causal interaction. (c) The

corresponding causal core.

Networks were visualized using

the Pajek program (

http://vlado.fmf.uni-lj.si/pub/

networks/pajek/), which imple-

ments the Kamada-Kawai

energy minimization algorithm.

Color online

Table 2 Mean composition and size of context networks, Granger

networks, and causal cores

% entorhinal % cortical input % hippocampal Size

Context 71 20 9 723

Granger 26 52 22 223

Causal core 7 48 45 29
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plasticity underlies behavioral learning via modulation of

causal networks at the population level, and not by

strengthening or weakening associative links between

neural representations of objects and actions. In this view,

the comparatively large size of causal cores early in

learning reflects a situation where selection has not yet

acted to consolidate a causal pathway within a large space

of possible pathways.

Summary

The analyses described above demonstrate the usefulness

of a causal network perspective for probing the functional

connectivity of neural circuits and for analyzing the prin-

ciples governing causal interactions in large neural

populations. By performing these analyses in detailed

neurorobotic models we have generated both heuristics and

hypotheses engaging with empirical data. Indeed it is at

this level that interaction with empirical data is most

plausible, whether via existing methods (e.g., by using

multielectrode recordings to explore the increasing causal

dominance of head-direction information seen in Darwin X

during learning) or by leveraging cutting-edge and future

techniques to look for causal cores (see section ‘‘Relation

to neurobiological data’’).

However, causal networks also offer new opportunities

for developing theoretical perspectives on global aspects of

brain function. In the following section we turn to the

utility of a causal network perspective for characterizing

the possible neural bases of consciousness.

Causal density and consciousness

A prominent theory of global brain function that has been

applied to consciousness, the TNGS, proposes that con-

sciousness is entailed by complex interactions among

neural populations in the thalamocortical system, the so-

called dynamic core (Edelman 2003; Edelman and Tononi

2000; Tononi and Edelman 1998; Seth and Baars 2005).

This proposal raises the question: How can these complex

interactions best be characterized quantitatively?

A rewarding approach is to consider phenomenology. A

fundamental property of conscious scenes is that they are

both differentiated (reflecting the discriminatory capability

of consciousness; every conscious scene is one among a

vast repertoire of different possible scenes) and integrated

(reflecting the unity of conscious experience; every con-

scious scene is experienced ‘‘all of a piece’’) (Edelman

2003; Edelman and Tononi 2000; Tononi and Edelman

1998). Therefore, a useful measure of complex neural

interactions relevant to consciousness should reflect a

balance between integration and differentiation in neural

dynamics; this balance can be referred to as the relevant

complexity of the system (Seth et al. 2006). Searching for

neural dynamics of high relevant complexity marks an

important departure from standard approaches seeking to

isolate anatomical correlates of conscious experience (Rees

et al. 2002). Unlike anatomical correlates, relevant com-

plexity provides an explanatory link between specific

aspects of conscious phenomenology and corresponding

aspects of neural dynamics (Tononi and Edelman 1998).

As we have argued previously (Seth et al. 2006), a

useful quantitative measure of relevant complexity should

also reflect the fact that consciousness is a dynamic process

(James 1904), and not a thing or a capacity; it should also

take account of causal interactions within a neural system

and between a neural system and its surroundings, i.e.,

bodies and environments. To be practically applicable, a

useful measure should also be calculable for systems

composed of large numbers of interacting elements.

Several measures of relevant complexity have now been

proposed, including ‘neural complexity’ (CN) (Tononi et

al. 1994), ‘information integration’ (U) (Tononi 2004), and,

most recently, causal density (cd) (Seth 2005; Seth et al.
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Fig. 8 (a) Size of context networks as a function of trial number

during learning, in terms of number of edges (K), for 15 different CA1

neuronal units. (b) Sizes of the corresponding Granger networks. (c)

Sizes of the corresponding causal cores. Insets of panels (b) and (c)

show the same data on a magnified scale. Reprinted with permission

from Seth and Edelman (2007)
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2006). All of these measures reflect in some way the bal-

ance between differentiation and integration within

multivariate neural dynamics. In the present, we focus on

causal density; a detailed comparative analysis of all three

measures is provided in Seth et al. (2006).

Causal density

The causal density (cd) of a network’s dynamics measures

the fraction of interactions among nodes that are causally

significant (Seth 2005; Seth et al. 2006). cd is calculated as

a/(n(n – 1)), where a is the total number of significant

causal links observed, according to a multivariate Granger

causality analysis, and n is the number of elements in the

network; calculated this way, the value of cd will be

bounded in the range [0,1]. It is also possible to calculate a

‘weighted’ version of cd which takes into account the

varying contributions of each causally significant interac-

tion; this version of cd is unbounded.

In terms of the criteria just described, cd naturally

reflects a process because it is based on ongoing dynamics

and it reflects causal interactions because it is based on an

explicit statistical measure of causality. However, it is

presently difficult to calculate for large systems because

multivariate autoregressive models become difficult to

estimate as the number of variables increases. Extended

approaches based on Bayesian methods (Zellner 1971) may

overcome this practical limitation (see section ‘‘Limitations

and extensions’’).

Does causal density capture aspects of relevant com-

plexity? Figure 9 shows a comparison of structural

connectivity and causal connectivity for three example

networks, along with the corresponding values of cd. The

dynamics for each network were generated using a mean-

firing-rate neuronal model in which each node received an

independent Gaussian noise input. While both a fully

connected network (having near-identical dynamics at each

node) and a fully disconnected network (having indepen-

dent dynamics at each node) have low cd, a randomly

connected network has a much higher value. These results

support the notion that high values of cd indicate that ele-

ments in a system are both globally coordinated in their

activity (in order to be useful for predicting each other’s

activity) and at the same time dynamically distinct

(reflecting the fact that different elements contribute in

different ways to these predictions). High causal density is

therefore consistent with high relevant complexity in that it

reflects a dynamical balance between differentiation and

integration.

It is important to recognize the limited role that a

quantitative measure of neural dynamics can play within a

scientific theory of consciousness. For example, at present

it is not possible to measure the cd (or CN or U) exhibited

by a human brain. Quantitative measures are therefore

offered for their theoretical and conceptual utility which

can be further elucidated by additional modeling and by

application to simplified experimental preparations.

In addition, the relevant complexity of neural dynamics

is likely to be multidimensional, involving spatial, tem-

poral, and recursive aspects (Seth et al. 2006). Because

phenomenal states appear to exhibit a balance between

differentiation and integration along each of these dimen-

sions, a satisfying measure of relevant complexity must be

sensitive to these aspects of complexity in neural dynam-

ics; indeed, the simultaneous application of multiple

measures may be required.4 Like other measures of rele-

vant complexity (e.g., CN (Tononi et al. 1994) and U
(Tononi 2004)), cd is best suited to measuring complexity

in the spatial domain, although its basis in autoregressive

modelling implies some integration over time.

Finally, some aspects of consciousness are likely to

resist quantification altogether. Conscious scenes have

many diverse features, several of which do not appear to be

readily quantifiable (Edelman 2003; Seth et al. 2005,

2006). These features include subjectivity, the attribution

of conscious experience to a self, and intentionality, which

reflects the observation that consciousness is largely about

events and objects. It is therefore clear that the quantitative

Fig. 9 Example simple networks (top row) and corresponding causal

connectivity patterns (bottom row). (a) Fully connected network. (b)

Fully disconnected network. (c) Randomly connected network. Grey

arrows show unidirectional connections and black arrows show

bidirectional connections. The width of each arrow (and size of

arrowhead) reflect the magnitude of the causal interaction. Corre-

sponding values of causal density (cd) are also given

4 Recursive complexity refers to the balance between differentiation

and integration across different levels of description. The phenomenal

structure of consciousness appears to be recursive inasmuch as

individual features of conscious scenes are themselves Gestalts which

share organizational properties with the conscious scene as a whole.
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characterization of relevant complexity can only constitute

one aspect of a scientific theory of consciousness.

Summary

The concept of causal density cd provides a measure of

dynamical complexity that reflects a balance between

integration and differentiation in neural dynamics. This

balance has previously been proposed to provide an

explanatory link to conscious phenomenology (Edelman

2003; Tononi and Edelman 1998; Tononi 2004). cd over-

comes some of the limitations of alternative measures

described in the papers just cited: Unlike CN, cd incorpo-

rates causal interactions, and unlike U it provides a

measure of process rather than capacity.

Discussion

The experiments reviewed in this paper have illustrated a

variety of applications of causal network analysis. Section

‘‘Causal networks during target fixation’’ showed that

causal networks can trace functional pathways connecting

sensory input to motor output in a simple target fixation

model. This model further showed how causal interactions

are modulated by the network environment and verified

that causal connectivity is a useful predictor of the

behavioral consequences of network damage. Section

‘‘Causal networks in a brain-based device’’ extended the

causal network approach to the analysis of a large-scale

embodied model of the hippocampus and surrounding

cortical areas, showing how causal networks were modified

during learning of a spatial navigation task. This analysis

found an increasing dominance of perforant pathway sig-

nals over trisynaptic signals, and of head-direction signals

over those from other sensory modalities; these observa-

tions constitute hypotheses which can be tested in animal

experiments. Section ‘‘Causal cores in neural populations’’

leveraged the power of large scale simulation modelling to

develop the concept of a causal core which provides a

mesoscale description of causal interactions. The causal

core ‘refinement’ observed in Darwin X suggests an

intriguing mesoscale connection between synaptic plastic-

ity and behavioral learning, one which may be testable in

future animal experiments using cutting-edge technologies

(see section ‘‘Relation to neurobiological data’’). Finally,

section ‘‘Causal density and consciousness’’ broadened the

perspective to speculate on possible causal interactions

underlying conscious experience, arguing that a measure of

causal connectivity—causal density—can connect global

features of neural dynamics to corresponding features of

conscious scenes.

Causal networks

The identification of causal networks in neural systems

involves no assumptions about whether these systems

‘process information’ or operate according to ‘neural

codes’. For example, causal cores are not information-

bearing representations nor do they require explicit

encoding and decoding. Instead, they are dynamic causally

effective processes that give rise to specific outputs. This

perspective can lead to different interpretations of com-

monly observed phenomena. For example, variability in

neural activity (Knoblauch and Palm 2005) is often treated

as an inconvenience and is minimized using averaging.

From a population coding perspective, attempts have been

made to identify whether variation is unavoidable neural

noise, or is part of a signal transmitted via a neural code

(Stein et al. 2005). According to the present view, how-

ever, such variability is expected and indicates the

existence of diverse and dynamic repertoires of neuronal

interactions underlying selection.

Causal networks can be interpreted in a variety of ways.

One attractive view is that causal networks distinguish

those aspects of neural dynamics that are driving (i.e.,

causal) from those aspects that are modulatory (i.e., non-

causal). The distinction between driving and modulatory

connections appears frequently in descriptions of neural

activity (see, for example, Sherman and Guillery 2002;

Friston 2005) where it is usually based on anatomical

considerations (e.g., bottom-up versus top-down connec-

tions, input-to-output versus output-to-input) or on the

differential involvement of particular neurotransmitters

(e.g., NMDA-independent versus NMDA-dependent

(Grossberg 1999)). Causal networks provide an alternative

means of distinguishing driving from modulatory connec-

tions that does not depend on these assumptions, which is

based instead on principled inference directly from

dynamics.

It is important to emphasize that non-causal connections

may still be significant for neural system operation. For

example, one cannot expect Darwin X to behave normally

after removing all parts of its simulated nervous system

apart from a few causal cores. These ‘non-causal’ parts

may not only be causal with respect to other NRs, they may

play significant modulatory roles as well. Furthermore,

causal network analysis may be able to differentiate a scale

of possible influences ranging from ‘pure driving’ to ‘pure

modulatory’ according to the relative magnitudes of causal

influence.

Another interpretation of causal networks is that they are

useful inasmuch as they allow inference of underlying

unknown structural connectivity from neural dynamics

(Makarov et al. 2005; Horwitz et al. 2005). The contrasting

view taken here is that causal networks characterize
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dynamical interactions that result from interactions among

network structure, embodiment, and behavior. Causal net-

works are rich representations of brain-body-environment

interactions that should not be expected to recapitulate

structural descriptions.

Relation to neurobiological data

Granger causality analysis has been used for several years

to identify causal relations in neurobiological data. Many

types of neurobiological data are suitable for Granger

causality analysis, including local field potentials (Ber-

nasconi and Konig 1999; Liang et al. 2000; Brovelli et al.

2004), spike trains (Kaminski et al. 2001),5 electroen-

cephalographic (EEG) and magnetoencephalographic

(MEG) recordings (Hesse et al. 2003; Seth 2007), and

functional magnetic resonance imaging (fMRI) data

(Roebroeck et al. 2005; Valdes-Sosa et al. 2005). Even

though these data sources provide incomplete representa-

tions of the underlying neurophysiology, informative

causal networks can nevertheless be constructed.

Having said this, of the analyses described in this paper

the causal core analysis imposes stricter requirements: it

requires extensive knowledge of both anatomical and

functional connectivity during behavior. At present, this

data is fully available only in simulation and as such the

causal core analysis is best considered as providing heu-

ristics for interpreting neural dynamics. However, recent

methodological advances suggest that investigators soon

may be able to characterize both anatomical and func-

tional architectures in biological systems at the required

microscopic and mesoscopic scales. These advances

include retrograde transneuronal transport of virus parti-

cles (Kelly and Strick 2004), metabolic markers for

neuronal activity (Konkle and Bielajew 2004), and high-

resolution optical imaging (Raffi and Siegel 2005). Causal

networks provide both a general perspective and specific

methods suited to making sense of the data generated by

these new techniques. In particular, the causal core

analysis and its future extensions will allow exploration of

mesoscale dynamics, a level of description which has so

far been neglected as compared to both the single neuron

level and the systems level (Sporns et al. 2005; Lin et al.

2006).

Limitations and extensions

Linearity

Because it is based on linear regression Granger causality

can only give information about linear features of signals.

Extensions to nonlinear cases now exist: In the approach of

(Friewald et al. 1999) the globally nonlinear data is divided

into a locally linear neighborhoods (see also Chen et al.

2004), whereas (Ancona et al. 2004) use a radial basis

function method to perform a global nonlinear regression.

However, these extensions are more difficult to use in

practice and their statistical properties are less well

understood. In the analysis of neurophysiological signals

simple, linear methods can be tried first before moving on

to more complicated alternatives.

Stationarity

Application of Granger causality assumes that the analyzed

signals are covariance stationary, i.e., that the mean and

variance of each signal does not change over time. Non-

stationary data are commonly treated, as in this paper, by

first-order differencing. Higher-order differencing can be

applied if first-order differenced series remain non-

covariance-stationary, but interpretation of the resulting

causal networks becomes more difficult when the data are

repeatedly transformed.

Alternative methods for ensuring covariance stationarity

include windowing across relatively short data segments

(Hesse et al. 2003), assuming that sufficiently short win-

dows of a non-stationary signal are locally stationary. A

related approach takes advantage of the trial-by-trial nature

of many neurophysiological experiments (Ding et al.

2000). In this approach, time series from different trials are

treated as separate realizations of a non-stationary sto-

chastic process with locally stationary segments.

Dependence on observed variables

All dynamical methods for inferring causal networks

depend on the appropriate selection of variables. In the

case of Granger causality, causal factors that are not

incorporated into the regression model (latent variables)

obviously cannot be represented in the output. Further-

more, omission of variables can lead to misidentification of

causal links between variables that are included in the

analysis leading to ‘common-input’ artifacts (see section

‘‘Granger causality’’). These considerations emphasize the

statistical nature of Granger causality: Granger causality

networks should not be interpreted as directly reflecting

5 Because Granger causality is based on linear regression it assumes a

continuous signal, but neural systems at the level of spikes are

discontinuous. A straightforward adaptation of the technique is to

convolve spikes with a continuous function (e.g., a half-Gaussian) in

order to generate a continuous signal. A more principled but more

complex alternative is to substitute linear regression modelling with a

point-process prediction algorithm (Okatan et al. 2005; Nykamp

2007).
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physical causal chains. A useful discussion of the important

problem of latent variables is provided in Eichler (2005)

and a new approach based on adapting methods from

partial coherence may also help ameliorate this problem.6

Scaling to large networks

Multivariate Granger causality analyses of large systems

face the problem that the number of parameters estimated

grows as n2 where n is the number of variables in the

system (Eq. 1). If the amount of data available also grows

exponentially with the number of variables then this poses

a severe computational bottleneck but the resulting coef-

ficient matrices, and the subsequent causal networks, will

still be reliable. Normally, however, the amount of data

grows only linearly with the number of variables, in which

case the regression models can be underdetermined by the

data and the resulting causal networks can be unreliable.

One approach to overcoming this problem is to use

Bayesian methods to place limits (priors) on certain coef-

ficients, based on existing knowledge of the system

(Zellner 1971). A Bayesian approach provides a middle

way between a purely data-driven approach in which no

assumptions are made about possible causal relations, and a

model-driven approach in which a priori hypotheses about

causal networks are tested for their fit to the data.

Relation to other causal methods

The Granger causality method for identifying causal net-

works can be contrasted with alternative techniques which

divide into two general classes. In the first, causal networks

are inferred from data using techniques similar to Granger

causality but which have different properties and which

make different assumptions about the data. In the second,

causal networks are inferred by repeatedly perturbing or

lesioning the studied system.

There are several alternatives to Granger causality

which can be used to identify causal networks which lie on

a scale from data-driven to model-driven. Among data-

driven methods, transfer entropy (Schreiber 2000) is an

asymmetric version of mutual information which has the

advantage of responding to both linear and nonlinear

interactions, but which has the disadvantage of applying to

multivariate situations only with difficulty. Sporns and

Lungarella (2006) have used transfer entropy to show how

information flow in sensorimotor networks is affected by

behavior, learning, embodiment, and body morphology, in

a variety of simulation and robotic experiments. For a

useful comparative analysis of transfer entropy, Granger

causality, and other data-driven methods see Lungarella

et al. (2007).

Among model-driven methods, structural equation

modeling (SEM) has gained prominence within neurosci-

ence (McIntosh and Gonzalez-Lima 1994). In SEM,

connections between brain areas are based on known

neuroanatomy, and the interregional activity covariances

are used to calculate magnitudes of the influence of each

directional path. A recent extension of SEM, dynamic

causal modeling, is targeted towards fMRI data in partic-

ular by employing a plausible generative model of the

fMRI signal (Friston et al. 2003). Lastly, the ‘dynamic

Bayesian network’ method (Smith et al. 2006) provides a

compromise between model-driven and data-driven meth-

ods by including an optimization procedure in which the

tested model is progressively refined according to its fit to

the data.

The second class of causal inference methods involves

perturbation or lesioning the studied system (Pearl 1999).

For example, Tononi and Sporns (2003) stimulate selected

subsets of a network with Gaussian noise and interpret the

resulting mutual information between the subset and the

rest of the network as a measure of causal influence.

Similarly, Keinan et al. (2004) assess causal influence by

measuring network performance following selective

lesions to subsets of elements. These interventionist

approaches are in principle robust to artifacts induced by

common input and thus allow identification of physical

causal chains (Timme 2007). However, their practical use

is limited to situations in which networks can be repeatedly

and reversibly perturbed, which for biological neural sys-

tems is rarely the case. Furthermore, the interpretation of

causal inference based on lesions of perturbations is com-

plicated by the fact that the studied system is either no

longer intact (for lesions) or may display different behavior

(for perturbations).

Conclusions

Current theories of embodied cognition stress that adaptive

behavior results from the continuous interplay of causal

influences among brain, body, and environment (Clark

1997). Quantitative development of these theories requires

a framework that restores balance among these factors. One

way to achieve this balance is to treat neural systems not as

information processing devices, nor as devices that encode

and decode stimulus representations, but as causal net-

works that are embedded in larger networks of causal

factors reflecting morphological and environmental con-

straints. This framework can be articulated quantitatively

using a combination of Granger causality and graph theory.6 J. Feng, personal communication.
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The present results have demonstrated how such a quan-

titative framework can shed new light on many areas of

embodied cognitive science including (i) the emergence of

adaptive responses in sensorimotor networks, (ii) how

causal pathways shift during learning in a neurobiologi-

cally plausible architecture, (iii) the relations among

synaptic plasticity, mesoscale causal interactions, and

behavioral learning, and (iv) possible dynamical correlates

of conscious experience. In addition, a causal network

perspective could provide useful design heuristics to guide

the development of artificially intelligent and perhaps even

artificially conscious devices.
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