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Abstract

Causality is an important aspect of how we construct reality. Yet, while many psy-
chological phenomena have been studied in their relation to virtual reality (VR),
very little work has been dedicated specifically to causal perception, despite its po-
tential relevance for user interaction and presence. In this paper, we describe the
development of a virtual environment supporting experiments with causal percep-
tion. The system, inspired from psychological data, operates by intercepting events
in the virtual world, so as to create artificial co-occurrences between events and
their subsequent effects. After recognizing high-level events and formalizing them
with a symbolic representation inspired from robotics planning, it modifies the
events’ effects using knowledge-based operators. The re-activation of the modified
events creates co-occurrences inducing causal impressions in the user. We con-
ducted experiments with fifty-three subjects who had to interact with virtual world
objects and were presented with alternative consequences for their actions, gener-
ated by the system using various levels of plausibility. At the same time, these sub-
jects had to answer ten items from the Presence Questionnaire corresponding
mainly to control and realism factors: causal perception appears to have a positive
impact on these items. The implications of this work are twofold: first, causal per-
ception can provide an interesting experimental setting for some presence determi-
nants, and second, the elicitation of causal impressions can become part of VR
technologies to provide new forms of VR experiences.

1 Introduction

Causality is an essential aspect of our common sense understanding of
the physical world, whose implications for our sense of reality have been dis-
cussed by physicists (d’Espagnat, 2002) and philosophers (Zubiri, 2001) alike.
In cognitive psychology, causal perception has been considered as one of the
main phenomena through which we perceive our everyday reality. This natu-
rally makes causality an interesting focus of experimentation for virtual reality.

Although rarely referred to explicitly, there is significant evidence of the use
of causality in presence research, most specifically when considering those as-
pects of presence dealing with action, agency, environment control, and the
realism of the environment’s responses. From a fundamental perspective, this
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should not be entirely surprising, as causality is one of
the few psychological phenomena bridging the gap be-
tween perception and high-level cognitive concepts
(Scholl & Tremoulet, 2000). One of the early works
that introduced concepts related to causal perception
was that of Loomis (1992) on distal attribution, al-
though causality was not considered explicitly. Man-
tovani and Riva (1999) following Schloerb (1995) in-
troduced the concept of causal interaction as an
essential aspect of presence. In Witmer and Singer’s
Presence Questionnaire (Witmer & Singer, 1998), sev-
eral items typically involve causal perception. For in-
stance, Item #2 of their original questionnaire reads
“How responsive was the environment to actions that
you initiated?” Further, their use of McGreevy’s argu-
ment (McGreevy, 1992) about “continuities, connect-
edness and coherence of the stimulus flow” is also evoc-
ative of causal perception. Finally, Zahorik and Jenison
(1998) in their in-depth discussion of the phenomeno-
logical conditions of presence, advocate that a “lawful
response” from the environment to our actions should
be a major determinant of presence. More importantly,
their strong Gibsonian perspective is somehow close, in
terms of its philosophy of perception, to that of Mi-
chotte, the father of causal perception (Michotte,
1963).

In this paper, we advocate that causal perception can
play a major role in the subjects’ experience in VR. We
describe experiments in causal perception that investi-
gate the connections between causality and several de-
terminants of presence, in particular those identified in
terms of interactivity and environment controllability.

While there exists a rich literature on various aspects
of perception in VR, there has been little work specifi-
cally investigating causal perception in VR. The only
specific studies of techniques for enforcing causality
have taken place in distributed virtual environments
(see, e.g., Roberts & Sharkey, 1997), and has investi-
gated the correct propagation of consequences rather
than the fundamental determinants of causality itself,
which we are discussing here.

The only specific work on the visualization of causal
relations is that of Ware et al. (1999), which, however,
addresses 2D noninteractive visualization, and as such

does not directly transpose to the study of presence in
virtual environments. Finally, in the field of experimen-
tal psychology, the use of 3D animation has previously
been reported to elicit causal perception in subjects
(Wolff & Zettergren, 2002). However, these systems
were noninteractive 3D animations: only virtual envi-
ronments can support proper experiments on presence
factors such as control.

This is why we have developed specific techniques to
control causal impressions in virtual reality, which we
have used to support our experiments.

In the next sections, after introducing the determi-
nants of causal perception, we describe our approach to
the elicitation of causal perception, which is based on
the explicit representation of actions taking place in a
virtual environment and their consequences. We devise
a test environment supporting experiments with subjects
that simultaneously investigate causal perception and
certain determinants of presence. We analyze these find-
ings and suggest new directions for the use of causality
in VR, both as a theoretical framework and as a support
for the development of VR technology.

2 Causal Perception

In the context of this research, we should only
consider causality between physical events, sometimes
referred to as event causality (Galavotti, 2001), to dis-
tinguish it from other causal relations established be-
tween properties, such as “smoking causes diseases” (see
Pearl, 2000; or Cheng, 1997; for authoritative reports
on property causality).

This distinction can also be rephrased as one between
causal induction and causal perception. The former is
based on a Humean perspective of causality, according
to which causal relations cannot be perceived directly.
Instead, causal knowledge has to be derived from ob-
servable entities such as the presence and absence of
events, and the spatio-temporal relations between them.
One of Hume’s premises for causal induction is the
“constant conjunction” of the events in question; in
other words, only if one is exposed to multiple cause-
effect sequences will one form a mental causal link be-
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tween them. There are various psychological theories
about how such causal learning takes place (see Cheng,
1997, or Buehner & Cheng, 2005, for an overview).

Causal perception is in stark contrast to induction, in
that it appears to be spontaneous, irresistible, and not
dependent on multiple trials. Michotte (1963) was the
first to note that the apprehension of causality often ap-
pears perceptual in nature, despite causality being gener-
ally considered a high-level property of the world
(Scholl & Nakayama, 2002). In Michotte’s theory, cau-
sality is attributed to co-occurring events from their
spatio-temporal contiguity. The canonical example used
by Michotte consists of one pool ball striking another,
thus “launching” the latter, which acquires autonomous
motion. In these experiments, Michotte explored the
spatio-temporal conditions (namely, the gap between
the two balls and the delay between the two motion
events) for the attribution of causality between the two
events. Central to the attribution of a causal relation
between the two events is the time interval separating
them: Michotte (1963) reported that if the second
event was delayed by more than 150 ms, 50% of sub-
jects failed to recognize a causal relation between them.
Recently, White and Milne (1999) have extended Mi-
chotte’s catalog of functional relations, which suggests
that causal perception is not restricted to launching events.

The distinction between perceptual causality and
causal judgment or induction has been investigated by
Schlottmann and Shanks (1992), who found an inter-
esting dissociation: Judgment and perception can reach
opposite conclusions, with participants expecting an ef-
fect (thus knowing that the cause will produce it), yet
reporting that the interaction looked non-causal due to
a spatial or temporal gap. This need not mean that
causal induction and causal perception are two entirely
independent processes. Cheng (1993), for instance,
provided an inductive analysis of Michotteian perceptual
causality. Recent work by Scholl and Nakayama (2002)
likewise suggests that the perceptual system, despite its
immediate recognition of causal stimuli, incorporates an
inductive component.

In sum, causal perception lies at an interesting inter-
section between perception and cognition, as if a high-
level property of visual events can sometimes be per-

ceived directly (Scholl & Nakayama, 2002). This
reinforces its interest in the current context, as one of
the major difficulties of presence studies has precisely
been to relate perceptive aspects to higher-level psycho-
logical determinants (see, e.g., Riva, Davide, & Ijssel-
steijn, 2003).

Our objective is to induce causal perception from col-
lision events in a virtual world. We hypothesize that
causal perception can be elicited through the real-time
manipulation of events as they take place, to create new
co-occurrences that can be interpreted in causal terms
by a user. Figure 1 illustrates this process: the fall of the
glass on the table is immediately followed by the nearby
menu tilting.

Because of the importance of temporal aspects for
causal perception, this whole process of creating co-
occurrences should be inserted in the natural interaction
cycle of the VR system (including in terms of sampling
rate), so as to be transparent to the user.

3 System Architecture and Overview

We have developed a “causal engine,” which oper-
ates by modifying virtual world events as they take
place, so as to create event co-occurrences of the kind
pictured on Figure 1 that will induce causal impressions
in the user. The causal engine operates by intercepting
ongoing events and altering them while their effects are
temporarily “frozen.”

What the causal engine exploits is the strong pro-
pensity of humans to perceive co-occurring events as
causally linked, especially when they initiate the first
event through their own actions. From the subject’s
perspective, his or her interactions with the world
objects will not result in their ordinary consequences.
Rather, these default consequences will be “inter-
cepted” and substituted with other effects. For in-
stance, while a glass falling on a table would normally
shatter (spilling its contents), the causal engine can
generate alternative effects, such as the glass landing
intact on the table but causing another glass to tum-
ble and spill its contents.

Our causal module has been developed as an additional
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layer on top of the visualization engine, the Unreal Tour-
nament 2003 Game Engine™ (Lewis & Jacobson, 2002),
corresponding to over 70,000 lines of C�� and Unreal-
Script code. The causal layer communicates with the
visualization engine using UDP messages and is inte-
grated to the engine’s behavioral API using a set of ded-
icated UnrealScript wrappers. The software architecture
(Figure 1) was designed to support the system’s main
operating cycle, which consists of i) intercepting native
events at a regular sampling rate, ii) recognizing the
high-level actions they correspond to, and iii) modifying
their default consequences, so as to create new co-
occurrences on a principled basis.

As such, it integrates the following components: an
Event Interception System (EIS), an action recognition
layer, and a causal layer.

3.1 Event Interception System

An Event Interception System (EIS) was devel-
oped on top of the native event system in UT 2003.
Event systems are generally derived from the low-level
graphical primitives for collision detection (between
objects, and between objects and volumes). Events con-
stitute an intermediate-level formalism for interaction
and play an important role in the basic architecture of
VR systems (Jiang, Kessler, & Nonnemaker, 2002).
This module processes occurrences of the game engine’s
native events, to produce a refined set of low-level
events henceforth called Basic Events (BE). For in-
stance, the magnitude of the object momentum in a
colliding event can be used to instantiate a Hit(?obj,
?surface) BE, from system-level events signaling the
collision. This makes it possible to differentiate between
various types of impact (hitting, landing, etc.).

The EIS derives its name from the fact that it over-
rides part of the native physics engine, namely the pro-
cessing of physical interactions between objects, corre-
sponding to various kinds of contact and collisions.

3.2 Action Recognition Layer

An action recognition layer interprets BE in terms
of higher-level actions. Our representation for high-level

actions is referred to as CE (for “Cause-Effect”) struc-
tures, and constitutes a detailed formalization of actions
and their consequences. For instance, the Break-on-
impact CE represented in Figure 2 describes the ac-
tion through which a fragile object can be broken when
hitting (or being hit by) a harder one. The CE represen-
tation contains in its condition part the physical
properties of its objects, and describes the action’s con-
sequences in its effect part. This representation is
thus organized around the notion of action and conse-
quences, which is the most appropriate to represent
event causality. A detailed description of the formalism
is given in Section 4.1.

This module constitutes one of the innovative aspects
of our approach, as it underpins the virtual world with
an ontology of possible actions that could involve/affect
world objects. This is somehow similar to the concep-
tions put forward by Mantovani and Riva (1999).

During a sampling cycle (5–10 ms), it operates by
receiving a stream of BE intercepted during the current
time sample, and outputs a set of instantiated CE to the
causal engine, which correspond to the recognized ac-
tions. It should be noted that these CE are “frozen”
prior to their processing by the causal engine, that is,
their effect part is prevented from being executed.

3.3 Causal Engine

The “causal engine” itself produces new event co-
occurrences in the virtual world by modifying the effects
of the instantiated CE to generate alternative effects.
These event co-occurrences will, in turn, induce causal
impressions of the kind discussed above. The modifica-
tion of the CE’s effects is the key mechanisms for gener-
ating such co-occurrences.

This module receives a set of CE from the action rec-
ognition system and (after altering their default effects)
outputs a set of modified CEs, which are ready to be
reactivated, and have their effects triggered in the virtual
world.

The detailed behavior of these modules, as well as the
working cycle of the whole system, is discussed in subse-
quent sections.
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4 The Causal Engine

The causal engine is developed on top of the native
event system, which supports event discretization in the
physics engine (which in the case of UT 2003 is the
Karma™ engine). This means that the default physics is
overridden by the new mechanisms provided by the causal
engine for any event involving interactions between ob-
jects (other aspects such as kinematics are not altered and
remain under the control of the physics engine).

The rationale for using an explicit representation for
actions is that it supports action modification on a prin-
cipled basis. Rather than directly associating effects to
specific actions, which can be a tedious process and re-
quires a priori definition of that association, the action
representation can be modified using high-level opera-
tions, for instance, substituting the action’s object or
modifying its effects. Only this can support proper ex-
perimentations with causality, as it makes it possible to
explore alternatives in a systematic fashion, and suggests
associations to be experimented with.

The causal engine is a generic system that operates
regardless of the action’s origin (i.e., a user intervention,
a simulated process, etc.). However, for the purpose of
these experiments we have only considered actions initi-
ated by the user. We are also only concerned with ef-
fects that could be perceived as directly resulting from
the user’s actions rather than complex causal chains.
Even in the case where effects tend to propagate further
(as in the case of an impact causing a glass to tilt, and
consequently to spill out its contents), only the first
consequence (the glass tilting) will be subject to modifi-
cation by the causal engine. Further consequences
within the same time sample are not altered.

The causal engine operates continuously through
sampling cycles that are initiated by the occurrence of
actions in the virtual world. Basically, the occurrence of
events affecting world objects initiates a sampling cycle,
during which the system recognizes potential CE and
stores them while inhibiting their effects (it could be
said that it freezes them). The causal engine then trans-
forms these frozen CE, by altering their effects, before
reactivating them. This reactivation then initiates a new
sampling cycle.

4.1 Action Representations and the
Creation of Co-Occurrences

Action representation should be supported by an
appropriate formalism for change-inducing events,
which should clearly identify actions as well as their con-
sequences. The second step consists in defining an on-
tology of such events, that is, describing the most im-
portant high-level events that can be recognized in the
virtual environment. This form of representation echoes
the proposal of Mantovani and Riva (1999), according
to which a virtual environment should be characterized
by an ontology, where, however, we consider an ontol-
ogy for actions.

Typically, an action is represented in the causal engine
using our Cause-Effect action formalism (henceforth
CE) inspired from those used in planning and robotics,
such as STRIPS (Fikes & Nilsson, 1971). These repre-
sentations originally describe operators transforming
states of affairs in the world. They tend to be organized
around pre-conditions, that is, conditions that should
be satisfied for that action to take place, and post-
conditions, that is, those world changes induced by
their application.

Our CE formalism is composed of three main fields,
which are analogous to the SIPE representation
(Wilkins, 1998); we shall illustrate it in an example that
will play an important role in our experiments, the
Break-on-impact CE, which describes the event by
which a fragile object will shatter upon colliding with a
hard object (Figure 2).

The first field, called trigger, contains the basic
events from which the CE can be recognized, and which
prompts instantiation of the corresponding CE representa-
tion. In the Break-on-impact CE, this field contains
the BE Hit, derived from the low-level event systems of
the UT 2003 engine, such as Touch, Bump, Kimpact
events. Any occurrence of a Hit BE can potentially acti-
vate the instantiation of a Break-on-impact CE
(Figure 2, event 1).

The condition field determines the physical prop-
erties that should be satisfied by objects taking part in
that specific action, such as being “movable” or “break-
able” (these semantic properties being characterized by
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physical properties). For instance (Figure 2), a moving
object hitting another object will break only if its sub-
stance is fragile and the object it hits is hard (Figure 2,
event 2).

The condition field is used to filter between candi-
date CEs primed by a similar basic events. For instance,
the CE representations for Bouncing and Break-on-
impact can be activated from the same Hit BE. It is
the physical properties of the objects involved in the
action that will determine which candidate CE describes
the situation at hand.

The trigger and condition fields govern the CE
instantiation: once these fields can be instantiated by the
CE recognition mechanism, a corresponding CE repre-
sentation is created, whose modification will create
event co-occurrences. It can be noted that CE actually
represent events rather than intentional actions, as they
ignore the course of events preceding the CE. The
above CE for breaking-on-impact is recognized in
a similar fashion regardless of the origin of the impact,
whether the object is falling on a hard surface, has been
launched, or is struck by a harder object. This contrib-
utes to making this kind of representation more generic
and expressive.

Finally, the effect field corresponds to the conse-
quence part of the CE. It contains the default transfor-
mations to be applied to the objects affected by the CE
(Figure 2, event 3). For instance, consider a case of a
glass shattering, the deletion of the glass and the cre-
ation of glass fragments (Figure 2, event 4). The CE
formalism plays a central role in the creation of event
co-occurrences. As it essentially associates actions with
their consequences, it can be modified, for instance, by
substituting alternative consequences to the default
ones. In that sense, new event co-occurrences are pro-
duced by i) inhibiting the activation of CE’s default ef-
fects immediately after their instantiation, ii) modifying
the CE’s effects while these are suspended, and iii) re-
activating the CE’s modified effects. As a result, for any
given CE processed by the system, the user would per-
ceive the corresponding triggering event followed by an
alternative effect (see Figure 3 for a set of alternative
effects following the fall of an empty glass on a table).

4.2 The Causal Engine in Action

Throughout this discussion, we will illustrate the
behavior of the causal engine in a simple example (Fig-
ure 3), to be part of our subsequent experiments. The
test case we will consider is that of a glass being grasped,
then dropped by the user from a given height onto the
surface of a table, which can also hold other objects,
such as similar glasses, a cardboard menu, a candle, and
a beer bottle. The default physical behavior would con-
sist of the glass shattering on impact (Figure 2), as it
would be directly obtained from the use of the system’s
native physics engine. This type of event also constitutes
a traditional example for causality (see, e.g., Collins,
Hall, & Paul, 2004). The corresponding CE, Break-
on-impact, is represented in Figure 2: its triggering
event is the glass hitting the table surface.

The causal engine operates by first instantiating CE
representations for ongoing actions, then modifying the
effects of some or all of these representations. CE in-
stantiation is a bottom-up process, which starts with the
processing of incoming Basic Events. BE are directly
generated by virtual world objects taking part in interac-
tions. The native event system has been modified to rec-
ognize a specific set of fifteen Basic Events (such as
Hit, Push, Aligned, Fall, etc.). Our event
controller continuously intercepts BE instances as they
are generated, as shown in Figure 2: when the glass hits
the table, this generates a Hit (glass # 1, table
# 1) BE.

The next step consists of the recognition of potential
actions through the identification of CE, which is a dis-
crete process executed at a high sampling frequency,
typically 5 to 10 ms. During this operation, the inter-
cepted BE instances are redistributed to relevant CE
prototype representations (Figure 2, event 1), that is,
those CE that have a compatible BE in their trigger
field. In our example, the Hit (glass # 1 table
# 1) BE activates several CE, among which are the
Break-on-impact (glass # 1 table # 1).
This step is optimized through off-line pre-processing,
which indexes CE on their triggering BE categories.
Once activated by the reception of a BE, the CE be-
come candidates for instantiation.
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Figure 1. System overview.

Figure 3. Level of plausibility and the action generation algorithm.

Cavazza et al. 629



Activated CE representations immediately execute
their Condition predicates on those BE that have ac-
tivated them. If objects involved in a BE instance sat-
isfy the entire set of predicates, a CE instance is gen-
erated. In the falling glass example (Figure 2, event
2), Substance (glass # 1, FRAGILE) is true,
and so is Substance (table # 1, HARD).
Hence a Break-on-impact (glass # 1, ta-
ble # 1) CE is instantiated. Once a CE is gener-
ated, it becomes a target for transformation by the
causal engine. The CE recognition system operates
essentially within the visualization engine, while the
causal engine is an external module communicating
via UDP. The CE instances are thus transmitted to
the causal engine encoded as a set of data frames.
Once it receives a set of instantiated CE, the causal
engine modifies the action’s outcome by altering the
effect field of the CE representation (Figure 2,
event 3). The effect field contains an action (e.g.,
shattering) to be applied to the CE’s objects (e.g.,
the falling glass). This is why the causal engine can
modify either the type of action, or the objects af-
fected, or both. It does so by applying specific trans-

formation operators (called Macro-Operators or
MOp). For instance, the change_object MOp re-
places the CE’s object with another virtual world ob-
ject. Its consequences are visible in Figure 3. The de-
fault object of the Break-on-impact CE is the
falling glass, which should shatter on landing. The
causal engine intercepts that event and substitutes the
Break-on-impact object with another one, which
is table surface. As a result, the falling pint glass lands
on the table, “causing” the other pint glass to shatter.
From the user’s perspective, the normal cause-effect
sequence is disrupted: the triggering event of a given
CE, in this case the glass falling on a table, will be
followed, not by its default consequence (e.g., the
falling glass breaking), but by an alternative effect
(e.g., a nearby glass breaking without being directly
hit). From an identical initial context (Figure 5, event
1), the same Change_object MOp could have as-
sociated the table rather than the glass to the CE ef-
fect (Figure 5, event 3). This results in the table,
rather than the glass, breaking upon impact, even
though it is by default the hardest object (Figure 5,
event 4). This also illustrates the use of generic proce-

Figure 2. The cause-and-effect (CE) formalism and its use of objects’ semantic properties.
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dures for effects, which depend on generic physical
properties, associated with specific animation visualizing
object transformations. For instance, the generic state
DAMAGED is automatically translated into shattering
when applied to a glass, while, when applied to the table
on which an object falls, it corresponds to the cracking

of the table surface (Figure 5, event 4). As explained in the
following section, transformations involving object substi-
tutions are based on semantic measures of action and ob-
ject compatibility. These measures can be tuned to favor
substitution of objects having different physical properties,
so as to induce different levels of believability.

Figure 4. The compatibility matrix provides heuristics based on the difference in type between the

original effect and the modified one.

Figure 5. Example of macro-operator application (creation of an artificial co-occurrence).
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4.3 Alternative Action Generation

From the modifications of an intercepted action,
the causal engine generates alternative consequences
and evaluates their plausibility with regard to the normal
effects expected. As shown in Figure 3, simple variations
of a single parameter, called “level of plausibility,” sup-
ports the generation of different consequences that vary
from normal to plausible, implausible, or completely
unrealistic effects. The mechanism allowing such flexi-
bility relies on a heuristic search executed by the causal
engine, when an action in progress is intercepted by our
EIS module (Figure 3, event 1). The search is based on
three successive processes: Generation, Evaluation, and
Selection.

The Generation phase (Figure 3, event 2) creates a
collection of potential consequences based on the popu-
lation of objects surrounding the initial action location.
The algorithm successively applies a list of Macro-
Operators on the intercepted action. For our experiment,
the algorithm is using two different MOps: Change-
Effect and Change-Object. As previously shown
(Figure 5), those transformation operators create alter-
native actions by directly modifying the EFFECT type
or the object of the action considered. Here, Change-
Object replaces the Glass object instance (Glass
# 1) by the Table instance (Table # 1), its closest
object. Hence, if the modified action is reactivated, the
table will suffer damage instead of the glass. In a similar
fashion, the Change-Effect operator modifies the
effect type of an action, replacing the default effect by
another one supported by the object (Figure 3, event
3). For instance, the effect by which the structure of the
glass is damaged (Structure (Glass # 1, DAM-
AGED)) could be replaced by a simple change in the
glass position (Position (Glass # 1, TILTED),
or Movement (Glass # 1, REBOUNDS)). The suc-
cessive combination of those two operators quickly
develops a large set of possible effects around the initial
action.

The Evaluation phase is next. Once the list of appli-
cable MOps has been executed, the collection of action
generated along the previous phase is evaluated in terms
of plausibility. As shown in Figure 3, event 4, our sys-

tem associates to each action a normalized Plausibility
weight, which is calculated from three heuristic values
named validity, compatibility, and proximity weight.

Plausibility Weight � Validity Weight
� Compatibility Weight � Proximity Weight

The validity weight simply considers if a generated
action is actually applicable with an object by testing if
the object, previously substituted by the MOp, satisfies
the action’s conditions. A validity weight of 1.0 means
the entire set of pre-conditions is satisfied. By contrast, a
value of 0 means that no object properties can satisfy
the preconditions.

The compatibility weight is computed using a matrix
associating a heuristic value to each possible combina-
tion of effect type (Figure 4). For instance, changing a
MOVEMENT effect, such as Tilting, by another
MOVEMENT effect, such as sliding, appears a lot
less disruptive than replacing Tilting by a
FUNCTION-type effect such as Emptying. The Plau-
sibility matrix has been initially established by identify-
ing analogies between potential consequences of a
sample set of actions. In a subsequent step, the weights
associated with the matrix elements have been readjusted
according to feedback from previous user experiments.

However, the plausibility of a modification is also
considerably influenced by the spatial contiguity of co-
occurring events. Based on the principle that correlation
between distant events is less likely to induce causal per-
ception, we have reinforced the plausibility weight by
spatial consideration using a proximity weight. A spatial
weight valued at 0.0 corresponds to the original object’s
position, where a value of 1.0 represents the farthest
object.

In the Selection process (Figure 3, event 5) our level
of plausibility is acting as a threshold to guide the search
process toward a plausible or implausible consequence
according to its value. A level of plausibility of 1.0 cor-
responds to the default consequence, while a zero value
represents a total absence of effect. The range of alter-
native action is then classified in decreasing order of
Plausibility weight. As a first step, the process extracts
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the set of actions with a value equal or superior to the
level chosen. Then, for each object involved in this pre-set,
it opts for action closer to the plausibility level wished. Fi-
nally, the set of selected action will be forwarded to the
EIS module to be reactivated (Figure 3, event 6).

The combination of MOp and heuristic search pro-
vides an original approach that allows a systematic ex-
ploration of a transformation space. The innovative as-
pect of our system lies in the possibility of adjusting
dynamically the plausibility of an action’s output using a
single variable without specifying manually the conse-
quences of a given action in a given context (which
would be more likely to introduce a bias).

Overall, the system performance is in line with its ini-
tial design constraints, which imposed a response time
in the order of 90–120 ms. The action recognition and
reactivation process is achieved between 40–60 ms,
while the action modification occurs in a range of time
of 20–60 ms.

4.4 Results

Figure 3 shows some co-occurrences generated by
the causal engine used in our experiments, for different
tunings of the “realness” heuristic. In all realistic config-
urations, the falling glass would shatter on impact, but
the system would generate additional effects, resulting
in some of the example associations depicted in Figure 6
(for instance, the falling glass will shatter upon impact-
ing on the table, with additional effects affecting one
neighboring object; e.g., the cardboard menu falls). It
should thus be noted that realistic effects do not result
from the use of the default’s physics engine: they are
still artificial effects created by the system which are sim-
ply plausible, plausibility being defined as the preserva-
tion of basic mechanisms (the falling glass still shatters)
and physical compatibility of effects (e.g., motion effect
like tilting is more similar to a motion effect like slid-
ing). The definition of implausible causality rests on the
creation of event co-occurrences for which no straight-
forward relations exist between events. For instance,
upon impact of the falling glass on the table, another
glass will start emptying itself without its walls being
cracked or the glass tilting at all. A fundamental aspect

of the system is that these co-occurrences can be auto-
matically generated by tuning one single parameter in
the heuristic search: the level of plausibility targeted.
The actual generation of co-occurrences is thus dynamic
and independent from the experiment’s design, leading
to the production of variable effects (both in nature and
order) for each user.

A preliminary evaluation of the causal engine should
compare its performance (in terms of response times)
with data from psychological literature prior to the de-
sign of causal perception experiments involving subjects.
Our tests have shown the overall response time to be on
average 90–100 ms. This has to be compared to data in
the psychological literature, which reported the maxi-
mum delay between consecutive events for these to be
perceived as causally linked. In the original experiments
from Michotte (1963), events delayed by more than
150 ms progressively ceased to be perceived as causally
linked. Buehner and May (2003) contrasted “immedi-
ate” and “delayed” action-outcome sequences. The av-
erage response time on immediate pairings was “less
than 0.25 s” (Buehner & May, 2003, p. 884) and par-
ticipants assessed action-outcome contingencies under
such a schedule accurately. Finally, when interpreting
Michotte-style launching events, Kruschke and Fragassi
(1996) considered that motion ampliation (considered
to account for causal impressions in Michotte’s theory)
took place within a critical 200 ms interval. All these
data suggest that the system’s response time is compati-
ble with results from the psychological literature: as a
consequence, the co-occurrences generated should be
perceived by the vast majority of subjects as sufficiently
close to induce causal perception.

5 The Experiments

Our experiments aimed at evaluating the possible
association between causal perception and some previ-
ously described factors of presence (Witmer & Singer,
1998), mostly described as control factors. In that sense,
the variable we controlled was the elicitation of causal
perception, while measuring presence factors by using a
10-item subset of the Presence Questionnaire. We have
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selected 10 questions from the original Presence Ques-
tionnaire of Witmer and Singer, considering them from
the perspective of how they could relate to simulated
causality. This questionnaire is made up of 9 of the 12
questions of the Presence Questionnaire categorized as
questions exploring the control factor. We have not in-
cluded more questions in the realism cluster as most of
these referred to multimodal sensory perception and/or
included sound, which was not used in our experiments.
Further, it can also be noted that nine of these ten ques-
tions exhibit a strong correlation between their individ-
ual score and the total PQ score (actually among the
highest correlations for all questions in the PQ).1 We
used the virtual environment described above to stage
different types of causal situations. We posited that
causal perception can be triggered by automatically gen-
erating co-occurring events, the first event consisting of
a collision triggered by the user, provided there exist no
temporal gaps between those events. Our control group
thus corresponds to an environment where no such co-
occurrences are created. Namely, when a subject drops a
glass, the glass floats in midair before eventually landing
on the table after a few seconds, without that landing
being followed by any specific consequence. This behav-
ior introduces temporal gaps (which are known to im-
pair causal perceptions) while also possibly decreasing
perceived motion transfer (through slow or irregular
motion of the falling object). For this control group,
the causal engine was not activated; rather, scripted be-
haviors were randomly selected, each corresponding to
the select object returning to its original place unaltered
(Figure 7).

In a first group, subjects will be presented with realis-
tic event co-occurrences, which should induce causal
perceptions (Figure 6). A third group of subjects (Fig-
ure 8) will be presented with deliberately “unrealistic”
effects, that is, behaviors not semantically or physically
related to the initial action (e.g., following the impact of
a glass on the table, a nearby glass’s contents would

evaporate). The presence score for these two groups is
to be compared to the control group, while simulta-
neously assessing the actual level of causal perception in
each group, through the analysis of verbal explanations
provided by subjects.

5.1 Experimental Setting

A total of 53 subjects were recruited and allocated
to the three groups above. Group 1 was composed of
16 subjects (average age 22.6; 8 male, 8 female), Group
2 was composed of 20 subjects (average age 27.8; 9
female and 11 male) and Group 3 was composed of 17
subjects (average age 26.9; 6 female and 11 male). The
average duration of a session was 30 minutes and each
subject was rewarded for participation with a £15
(equivalent to $28) voucher.

Subjects were introduced to a desktop 3D virtual en-
vironment supporting interactions with the virtual
world’s objects. The environment is represented in Fig-
ures 6–8 and is composed of five tables, each support-
ing two glasses (one empty, one full), a beer bottle, a lit
candle, and a cardboard menu.

Subjects were facing an 18-inch screen from a dis-
tance of 30–45 cm. The corresponding field of vision in
the virtual environment was approximately 80°. In addi-
tion, they operated in a silent room.

After having the basic interaction mechanisms for grasp-
ing, lifting, and dropping objects explained to them in a
similar but different environment (including a short train-
ing session to familiarize themselves with the system con-
trols), subjects were given instructions for the “task” they
had to carry out. For each table in the virtual world, the
task was to select the empty glass, lift it above the table,
then drop it and let it fall on the table, aiming at a specific
virtual marker drawn on the table (this in order to avoid
unwanted situations, such as subjects dropping the glass
on other objects on the table).

They would then witness the virtual world reaction to
their actions; in other words, the consequences of the
falling pint glass hitting the table. The subjects would
interact with the virtual objects using the controls pro-
vided by the native game engine: through a combina-
tion of mouse buttons and mouse movements, they are

1. This point has been criticized by Slater (1999) in his reply to
Witmer and Singer, and the reader is referred to that reply. Our em-
phasis in this paper is, however, on presence factors, in particular those
dealing with control and predictability.
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Figure 6. Example of co-occurrence generated by the system with a high level of plausibility

(experiment group 1).

Figure 8. Example of co-occurrence generated by the system with a low level of plausibility

(experiment group 3).
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able to select and move objects in the 3D world. Visual
feedback was provided for object selection, as well as
object position above the table (through a virtual
shadow, disappearing when a sufficient height had been
reached, signaling the object could be dropped).

After each interaction, the subjects were asked to give a
short textual explanation of the observed events, which
they entered directly on the computer used for the experi-
ments. The rationale is that explanations, rather than sim-
ple descriptions, would force the expression of causal con-
cepts relating their actions to the observed system
response. These explanations were to be used in analyzing
whether subjects actually attributed causality between the
events they observed. We thus collected four short textual
explanations for each subject taking part in these experi-
ments (i.e., a total of 64 for Group 1, 80 for Group 2, and
68 for Group 3). The average length of one textual expla-
nation was 20 words for Group 1 and 30 words for both
Group 2 and Group 3. The goal was to analyze these an-
swers for the occurrence of causal explanations, hence vali-
dating the existence of causal perception in any given ex-
periment. The analysis of free text explanations was also a
way to determine how implausible events were perceived
or judged, and whether mechanistic explanations were
invented for them.

After completing their participation in the experi-
ments, subjects were asked to fill in a questionnaire

composed of the ten items extracted from the Presence
Questionnaire (Witmer & Singer, 1998). The question-
naire was presented in a paper form and subjects had to
respond by putting an X on the continuous 7-grade
scale (Figure 9).

Each of these ten questions (shown in Figure 10) was
presented to the subjects as a continuous seven-point
scale (from 0 to 6), where extremities, as well as the
middle point, were associated textual descriptions (as
originally described in Witmer and Singer, 1998). Care
was taken, at all times, not to mention the words
“cause” or “causality” in the experiments’ instructions,
in the questionnaire elements, or in the textual descrip-
tions underlying the grading scale.

5.2 Results and Discussion

The presence scores for each group were calcu-
lated by adding the responses to all 10 selected ques-
tions (Figure 11) on their 0–6 scales. Figure 12 rep-
resents the presence scores for each of the three
groups with their error margins. For Group 1 (the
group with realistic causal effects) the average pres-
ence score was 46.28; for Group 3 (the group with
unrealistic causal effects) it was 33.92, and for the
reference group, Group 2 (absence of causality) it was
30.82.

Figure 7. Example of an “absence of causality” scenario (control group).
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An ANOVA computed over the presence scores
revealed a significant effect of group, F (2, 50) �

20.17, p � .001. Tukey HSD post-hoc tests con-
firmed that presence scores for the realistic causality
group were higher than those in the absence of cau-
sality and unrealistic causality groups (ps � .001),
and that these latter two groups did not differ. In
each group, subjects were asked to enter on-screen a
brief explanation of the phenomena observed after

each trial. They were specifically instructed to explain
what happened, rather than just describe the events
they had witnessed. The set of explanations (five for
each subject) was pooled over individual groups and
was subsequently analyzed for causal explanations.
One problem in the interpretation of these textual
explanations is, of course, the use of language. Al-
though sometimes a simple juxtaposition of descriptions
can constitute an implicit causal statement (see, e.g., Oes-

Figure 9. Example question and its associated response grade scale.

Figure 10. Questionnaire.
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termeier & Hesse, 2001), we could only interpret descrip-
tions making explicit use of causal vocabulary.

The method we decided to use consists of analyzing
each individual explanation for causal expressions corre-
sponding to linguistic descriptions identified by Wolff
(2003). We have retained the following expressions as
causal:

● Explicit causal vocabulary (causes, causing, caused
by), as in, the glass fell and smashed causing the bottle
to fall over, glass shattered causing candle to fall over

● Lexical causatives (verbs that allow speakers to de-
scribe a causal situation in a single clause, as listed
in Wolff (2003), for example, when dropping the
glass it moved the other glass along the table.

● Two-argument activity verbs (also listed in Wolff,
2003) whenever their effects are also mentioned
(to overcome one of Wolff’s objections), as in the
following, glass shattered also knocking card over
or when dropping the glass, it broke and the pieces
hit the candle which in turn fell over.

Figure 11. Scores obtained per question/per group (1-2-3).

Figure 12. Presence score and production of causal explanations for each group.
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It can be noted that such vocabulary encompasses
both the reporting of causal perception and the produc-
tion of more sophisticated mechanistic explanations.
Our method consists of considering each individual ex-
planation, and considers it as a causal explanation if it
contains one or more of the above causal expressions.
We then compute the ratio of causal explanations for
the whole group of subjects. Figure 12 shows the results
of that analysis. For the reference group (Group 2),
there were no detectable causal explanations (0 percent
score). The few occurrences of causal (or mechanistic)
vocabulary (e.g., because) were not referring to the
events observed but rather to the subject’s own analysis
of performance (e.g., . . . which missed the mark because
I had moved the mouse after the glass began to drop). For
Group 1 (plausible causality), the level of causal expla-
nations was approximately 50 percent. For Group 3
(unrealistic causality) it was 22 percent. Overall, a signifi-
cant number of subjects simply neglected to give the ex-
planations they were asked for, and merely gave descrip-
tions of the events without any such explanation. This
obviously affected the absolute number of causal explana-
tions, although in a uniform fashion across groups.

The detailed proportions of causal explanations pro-
vided by participants were 32/64 for the realistic causal-
ity group, 0/80 for the non-causal group, and 15/68
for the unrealistic causality group. A Chi-Square test
revealed that the frequencies of causal explanations were
distributed differently between the three groups, �2(2)
� 51.52, p � .001. Because the proportion of causal
explanations was 0 in group 2 (“absence of causality”),
we also performed another Chi-Square test on the real-
istic and unrealistic causality groups only. This test also
revealed a significant difference in distribution of causal
explanations between those groups, �2(1) � 11.23, p �

.001 Some of the causal explanations provided by the
subjects are shown in Figure 13. Several subjects per-
ceived a causal link between co-occurring events, but
provided, in addition, mechanistic explanations, such as
the fact that “vibrations” accounted for the perceived
causality (as in the vibrations due to the fall of the pint
have broken the bottle). This is consistent with reports
linking causal perceptions to mechanistic explanations
(Schlottmann, 1999); although with this analysis we

were not able to observe any instance of dissociation
between causal perception and causality judgment
(Schlottmann & Shanks, 1992).

The presence score was significantly higher for Group
1 (plausible causality) than for the control (Group 2),
with a difference in total score of approximately 50%
with respect to the control group. Confirmation of
causal perception in Group 1 comes from the level of
causal explanations in this group, while confirmation
that Group 2 indeed behaved as a reference group can
be derived from the absence of causal descriptions.

Secondly, no major difference was observed between
Group 3, in which the system produced highly unrealis-
tic associations, and Group 2, the reference group
where effects were selected not to elicit causal percep-
tion (even though the difference observed was found to
be statistically significant). There are several possible
explanations for this observation. The first one would
consider that “realism” contributes most significantly to
the presence score, even with our specific selection of
control questions (some of which are categorized by
Witmer and Singer (1998) as involving both aspects,
and some also occur in the “Reality Questionnaire” un-
der a slightly rephrased form.2 In that sense, the unreal-
istic behavior observed in Group 3 would be less likely
to produce high presence scores with the use of PQ. On
the other hand, the control factor of presence, also being
defined in terms of anticipation (Witmer & Singer),
would naturally be affected by the occurrence of unreal-
istic effects.

But the simultaneous analysis of the verbal explana-
tions suggests another explanation, due to the low level
of causal perception in Group 3, at 22 percent, which is
that some effects in Group 3 actually failed to induce
causal perception. This is further confirmed by the oc-
currence, in the textual explanations of Group 3, of ex-
plicit statements of surprise or incomprehension (e.g., I
have no explications for that, it surprised me because . . .).
The mixed results observed for Group 3 could be ex-

2. The importance given to realism could constitute a limitation of
the Presence Questionnaire, as it would rule out presence in some
purposefully unrealistic environments (artistic installations or fantasy/
narrative worlds).
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plained by the fact that some “unrealistic events” appear
more unrealistic than others.

6 Conclusions

The specific contribution of this work is to at-
tempt to relate one well-observed psychological phe-
nomenon, causal perception, to some fundamental ideas
of presence, namely the action-based conception of
presence (see, e.g., Zahorik & Jenison, 1998; Held &
Durlach, 1992; Sheridan, 1992). Throughout this pa-
per, we have referred to “conceptual” determinants of

presence as originally introduced by Witmer and Singer
(1998), although they lack the validation of factor anal-
ysis (Schubert, Friedmann, & Regenbrecht, 2001). It is
interesting to note, however, that in their paper on the
analysis of the respective contribution of presence fac-
tors, Schubert et al. (2001) have only attributed a minor
role to “control and predictability” (stating that it
would account for only 2.9% of variance in presence
scores), making it one of the least significant determi-
nants of presence. In these experiments, causal per-
ception appears to be correlated with higher presence
scores, a finding that cannot be totally accounted for
by realism factors, as some of the co-occurrences gen-

Figure 13. Examples of causal explanations provided by subjects for Group 1 and 3.
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erated already departed from strict physical realism
(hence our use of the term plausible causality). One
question that we could not answer completely con-
cerns the exact impact of unrealistic cause-effect asso-
ciations on presence. In that experiment, subjects
produced a lower proportion of causal explanations
and sometimes clearly stated their disbelief at some
observed effects. It could indeed be the case that
some “implausible” generated effects could actually
violate certain principles of causal perception, such as
feature transfer or motion ampliation. This should
probably be revisited after gaining a better under-
standing of causal perception in realistic environ-
ments, which will include knowledge of relevant per-
ceptual features inducing causal perception.

Overall, our findings suggest that causal perception
could play a significant role in VR experiences, which
has several implications. The first one is that causal
perception could become a topic of investigation and
measurement in presence studies, which would bene-
fit from specific methodological work developed in
cognitive psychology. The second one is that the in-
duction of causal perception could become part of
VR technology, offering the prospect of creating new
experiences, in particular by departing from real-
world physics. We have been exploring this approach,
which we termed alternative reality, in the field of VR
arts (Cavazza et al., 2005). This however raises the
issue of presence in unrealistic worlds, as the type of
questionnaire we have been using in this research still
includes realism as one of the determinants of pres-
ence.
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