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ABSTRACT

Motivation: The interpretation of high-throughput datasets has
remained one of the central challenges of computational biology over
the past decade. Furthermore, as the amount of biological knowledge
increases, it becomes more and more difficult to integrate this large
body of knowledge in a meaningful manner. In this article, we propose
a particular solution to both of these challenges.
Methods: We integrate available biological knowledge by
constructing a network of molecular interactions of a specific
kind: causal interactions. The resulting causal graph can be
queried to suggest molecular hypotheses that explain the variations
observed in a high-throughput gene expression experiment. We
show that a simple scoring function can discriminate between
a large number of competing molecular hypotheses about the
upstream cause of the changes observed in a gene expression
profile. We then develop an analytical method for computing the
statistical significance of each score. This analytical method also
helps assess the effects of random or adversarial noise on the
predictive power of our model.
Results: Our results show that the causal graph we constructed from
known biological literature is extremely robust to random noise and
to missing or spurious information. We demonstrate the power of our
causal reasoning model on two specific examples, one from a cancer
dataset and the other from a cardiac hypertrophy experiment. We
conclude that causal reasoning models provide a valuable addition
to the biologist’s toolkit for the interpretation of gene expression data.
Availability and implementation: R source code for the method is
available upon request.
Contact: daniel.ziemek@pfizer.com
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Over the past decade gene expression datasets have been
generated at an increasing pace. Other types of large-scale
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data (e.g. metabolomics or genetics) are also becoming more
commonplace. Approaches for inferring correlative or causal
structure directly from large datasets, generated by perturbing
a biological system and consisting of several data types, e.g.
expression data and genetics data, demonstrate great promise in
uncovering novel biological insights. One example of a successful
inference of causal relationships is the work of (Schadt et al., 2005),
in which the authors predict and validate three novel susceptibility
genes for obesity based on a rodent model. The inference proceeds
from expression data and genetics data from a controlled population
of several hundred mice. In practice, most available datasets are
much smaller, observational in nature and report a single kind of
measurement.

In parallel with an ever-increasing amount of data generated, the
biomedical literature is also growing exponentially. The results of
new experiments should be evaluated in light of this knowledge
for at least two reasons: (i) to discover novel biology, one needs
to know what is already known, understand what hypotheses need
refinement and what phenomena remain unexplained; and (ii) data
interpretation in light of previous experiments can add significant
interpretative power, especially given the limitations of small sample
size in many current omics experiments.

The goal of our methodology is to predict upstream regulators
of observed expression changes based on a set of ∼450 000 causal
relationships. The resulting putative regulators constitute directly
testable hypotheses for follow-up in the laboratory. In this article, we
(i) define a scoring scheme to identify putative upstream regulators
for any given input dataset based on a set of causal relationships
encoded as a causal graph; (ii) analytically compute significance
scores for our predictions based on random input gene sets; (iii)
analytically quantify the recoverability of embedded signals from
regulators for our causal graph under various kinds of noise; and
(iv) give concrete examples where our methodology helps elucidate
biological phenomena when presented with real data.

1.1 Related work
The use of prior knowledge has a long history in gene expression
analysis. (Zien et al., 2000) performed this analysis by harnessing
biological networks. (Hartemink et al., 2001) demonstrated how to
use the Bayesian network formalism to distinguish between two
alternative pre-specified versions of the yeast galactose pathway.
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In both cases, we are not aware of any extensions of the method
that scale to the use of prior information encompassing a significant
fraction of today’s biological knowledge.

The most common approaches utilizing prior knowledge are gene
set enrichment analysis methods. All such methods require two
inputs: (i) a pre-defined collection of gene sets, e.g. derived from
metabolic pathways in the KEGG database (Kanehisa et al., 2010)
and (ii) the measured outcome of a biological experiment, e.g. the
differentially expressed genes in a microarray study. The output is
usually a set of P-values quantifying the degree of association of
each gene set with the experimentally derived data. The drawback
of gene set methods is that they do not take into account any
directionality of regulation, and that gene set libraries often capture
general biological phenomena (e.g. apoptosis) without any regard
to the mechanistic details of the process. This makes it difficult in
many cases to define concise hypotheses for wetlab validation.

(Pollard et al., 2005) presented the outline of an approach very
similar to ours in spirit. In their paper, an analysis of the most
likely regulators of expression changes derived from type 2 diabetes
patients recovered known key genes in diabetes and proposed new
regulators. As in our method, the reasoning is based on a structured
collection of causal relationships. Selventa recently released a
white paper on their website describing this approach in detail
(http://www.selventa.com). We briefly discuss their significance
metric in the Methods section.

2 METHODS
This section describes the methodology used to discover the putative
biological causes of observed gene expression profiles based on directed
causal relationships. The simple intuition is that we can make predictions of
transcriptional effects (up- or down-regulation) starting from any entity using
these causal relationships and then compare these predictions to the actual
data. We describe the construction of a causal graph from a collection of
causal relationships and introduce the reasoning model used on this graph.
We then define the scoring function used to rank putative hypotheses and
show how to compute the statistical significance of the results analytically.

2.1 Constructing a causal graph
We are concerned with relationships that link exactly two biological entities
establishing (1) the direction of causality between them, and (2) the
qualitative response (i.e. up- or down-regulation) of the second entity when
the first one is up- or down-regulated. Furthermore, each relationship must
be clearly linked to a citation in the literature. A causal graph is then a
directed graph G= (V ,E) whose nodes V are transcript levels, compound
concentrations, or states of biological processes, and where a directed edge
from node a to node b means that the abundance or activity of b is regulated
by the abundance of a. Importantly, the edge e= (a,b) has a + sign if the
regulation is positive (an increase in a leads to an increase in b, and a
decrease in a, to a decrease in b), and a − sign if the regulation is negative.
Additionally, in order to facilitate hypothesis validation for the scientists,
each node is annotated with various identifiers and each edge is annotated
with the article it is based on and the specific excerpt that gave rise to it.

Figure 1a gives an illustrative example. In general, our causal graph
can contain conflicting and redundant information. Redundant information
provides additional evidence for a certain causal relationship. The amount
of evidence will not influence our reasoning as it is difficult to assess
whether findings reported in two articles constitute independent evidence.
Conflicting information can either be due to errors in the extraction of
information from literature or to the complexity of the underlying processes.
For instance, relationships might have a different directionality of effect in

different contexts. In principle, it should be possible to distinguish contextual
effects by explicitly including the context in the computation. In practice,
however, we found that only limited information is available for each
context, so we decided to construct a comprehensive collection of causal
relationships without taking the context into account for the computation. To
obtain maximum coverage for each expression dataset, we transformed all
molecular entities to their human homologs using the Homologene database.

Though text-mining technology is maturing at a rapid pace, we
found the only large-scale sources of reliable causal relationships to be
databases of manually extracted facts. Unfortunately, no public-domain
or academic databases exist that contain a sufficient number of causal
relationships. Therefore, we licensed the substrate for our methodology
from two vendors: Ingenuity Inc. (http://www.ingenuity.com) and Selventa
Inc. (http://www.selventa.com). Both provide manually curated high-
quality content. They yield a causal graph containing ∼450 000 causal
relationships, of which over 250 000 are unique, between nearly 37 000
entities, representing ∼65 000 full-text articles indexed by PubMed.

2.2 Reasoning on the causal graph
Algorithmically, causal reasoning models the effects of a change in the
abundance of a on the abundance of z by tracing the shortest path from a to
z in G and then evaluating its sign, determined by the product of the signs
of the edges along the path. It is expected that a upregulates z if this overall
sign turns out to be positive, and that a downregulates z if it is negative.

It is advantageous to transform G= (V ,E) into the computational causal
graph GC = (VC,EC) in order to be able obtain information about the shortest
positive and negative paths by applying standard algorithms to it: breadth-
first search if the edges are unweighted, which is the case we consider here, or
Dijkstra’s algorithm if the edges are weighted. GC is obtained by creating two
copies of each node of G, one with a + sign, one with a − sign, and letting
the corresponding edges be duplicated as well, so as to separate positive
paths (those between nodes of the same sign) from negative paths (those
between nodes of the opposite sign). See Figure 1b for an example. This
transformation also allows us to remove redundancies in the set of edges
since the same interaction may be described in multiple articles. The resulting
graph is simple as it has no loops or parallel edges.

2.3 Scoring hypotheses
We assume that we deal with expression data, and that the only observable
changes are levels of gene transcripts. Let T (G) and T (GC) denote those
nodes of G and GC, respectively, that correspond to gene transcripts.

The gene expression data allows us to determine the subset G+ of all gene
transcripts that are significantly overexpressed and the subset G− of all gene
transcripts that are significantly underexpressed. We define G± :=G+ ∪G−
to be the set of all significant transcripts in the gene expression profile, and
G0 to be the set of all gene transcripts that are not differentially expressed.
We also denote by −v the node v with the opposite sign. We choose a distance
threshold � which determines the maximum length of the paths we consider.
Given a hypothesis h∈V (GC), we partition the set T (GC) into three subsets:

S+
h :={v∈T (GC)|d(h,v)≤�,d(h,v)<d(h,−v)}

S−
h :={v∈T (GC)|d(h,−v)≤�,d(h,−v)<d(h,v)}

S0
h :={v∈T (GC)|d(h,v)>�or d(h,v)=d(h,−v)}

The elements of S+
h are predicted to be upregulated, those of S−

h , to be
downregulated, and those of S0

h are predicted ambiguously.
In order to evaluate the goodness-of-fit of a hypothesis h to the observed

expression data, we score 1 for each correct prediction, −1 for each incorrect
prediction and 0 for each ambiguous prediction made by h about G±. That is,

s(h,G±)= (|S+
h ∩G+|+|S−

h ∩G−|)−(|S+
h ∩G−|+|S−

h ∩G+|).
Note that we identify the node v∈T (G) with the node v+ ∈T (GC) for the

purposes of this computation, since G± ⊆T (G) while S+
h ,S−

h ⊆T (GC). The
scores computed for each putative hypothesis provide us with an overall
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Fig. 1. (a) Schematic depiction of a set of relationships curated from the literature and transformed into a causal graph. (b) For computational purposes, this
graph is transformed into a computational causal graph.

ranking of all hypotheses (ties are broken arbitrarily). However, a good
score does not necessarily mean good explanatory power, because of possible
connectivity differences between the transcript nodes of GC. In particular,
‘hubs’ are likely to have higher scores no matter what the expression data
is like. Therefore we also need to look at the statistical significance of each
score.

2.4 Computing statistical significance
For a given hypothesis h and a given score s0 :=s(h,G±), we would like
to know how likely h is to score s0 or better with a random set of genes
G±

R :=G+
R ∪G−

R , chosen with |G+
R |=|G+| and |G−

R |=|G−|. This question
can clearly be answered if we can compute the distribution of scores that h
can have over all such sets.

Let G±
R be fixed, and let G0

R :=T (G)−G±
R . Define qσ :=|Sσ

h | and
nσ :=|Gσ

R|, where σ ∈{+,−,0}. Note that although |S+
h |=|S−

h | in T (GC),
this is not the case in T (G) since the two sets may have different numbers
of positive entities. Therefore q+ 	=q− in general. Let us further define
nστ :=|Sσ

h ∩Gτ
R| for σ,τ ∈{+,−,0}. This gives us the 3 × 3 contingency

table of values:

n++ n+− n+0 q+
n−+ n−− n−0 q−
n0+ n0− n00 q0

n+ n− n0 |T (G)|
This table will be identical for a large number of sets GR, and this number,

D[n++,n+−,n−+,n−−], depends only on the top left 2 × 2 corner of the table,
since the other entries are determined by the constraints on row and column
sums. Using multinomial coefficients, we can write D[n++,n+−,n−+,n−−]
as (

q+
n++,n+−,n+0

)(
q−

n−+,n−−,n−0

)(
q0

n0+,n0−,n00

)
.

The score for a set GR yielding this table will simply be

S[n++,n+−,n−+,n−−] := (n++ +n−−)−(n+− +n−+).

It also follows from a generalization of Vandermonde’s identity that the total
number of possible such sets is

T :=
∑

n++,n+−,n−+,n−−
D[n++,n+−,n−+,n−−]=

( |T (G)|
n+,n−,n0

)
.

Thus, the distribution we are seeking will be a sum of the
D[n++,n+−,n−+,n−−], grouped by S[n++,n+−,n−+,n−−] and normalized
by T . This distribution can be computed with a quartic dynamic programming
algorithm that produces all the D values. However, special summation
techniques can be used to obtain a cubic algorithm (Petkovšek et al., 1996).

Generally, when processing a particular dataset, our algorithm begins by
computing the scores for each hypothesis and ranking the hypotheses by
their score. Then, several filters are applied to constrain the output. First,

the P-value P of a hypothesis, computed according to the methodology
above, is typically required to be below a certain threshold. Second, an
enrichment P-value PE of a hypothesis is also required to be below a
certain threshold. PE is the probability of finding n++ +n−− +n+− +n−+
differentially expressed transcripts for a putative hypothesis h under the null
model of assigning random transcripts to be differentially expressed, and is
computed by a Fisher Exact Test. This is a standard approach in gene set
enrichment methods [e.g. Draghici et al. (2003)] and treats S±

h as a gene set
without regard to directionality. Finally, we also filter out those hypotheses
whose number of correct predictions, C :=n++ +n−−, is below a certain
user-defined threshold. Each resulting hypothesis is reported to the user in the
form Entity +/− (e.g. MYC+, AKT−) and can then be inspected in detail.
These predictions explicitly include hypotheses about non-transcriptional
molecular events. As tested hypotheses exhibit an intricate dependency
structure, it is not straightforward to apply false discovery rate estimation
procedures. In this work, we generally consider only highly significant
hypotheses as the starting point of any analysis (P,PE <10−3) and let the
user decide to expand to less significant ones based on biological expertise.

2.5 Hypothesis recoverability
In order to understand how well the hypothesis that explains a dataset can
be recovered with our methodology we examine the effect of a family of
perturbations to the ‘perfect’ dataset. Suppose that a hypothesis h and a
distance threshold � are fixed and a set of significant genes G±

R of size
N is to be generated. The hypothesis h partitions T (GC) into S+

h ,S−
h ,S0

h .
We can decide to pick a certain fraction of G±

R from S+
h (signal), a certain

fraction from S−
h (adversarial noise) and the rest from S0

h (random noise).
We call these fractions γ,δ and ε, respectively. However, the random data
sets we obtain this way may contain the same entity with opposite signs,
something that never occurs in real data. Fortunately, this problem can be
easily overcome, as we explain below.

Surprisingly, we can in fact compute the expected effect of such a
perturbation (with fixed N,γ,δ and ε but averaged over all possible G±

R )
analytically. The key observation is that the expected rank of h depends only
on the probabilities that a hypothesis h′ beats h. Indeed, the expected rank
of h is

E[rank(h)]=1+
∑
h′ 	=h

(
Pr[s(h)<s(h′)]+ 1

2
Pr[s(h)=s(h′)]

)

because h will be placed below all the hypotheses that beat it and half the
hypotheses that tie with it (since ties are broken arbitrarily).

Let us now fix a competing hypothesis h′. Let us define mστ :=|Sσ
h ∩Sτ

h′ |
for σ,τ ∈{+,−,0}. Let kστ denote the number of elements chosen for GR in
Sσ

h ∩Sτ
h′ . In order to obtain a dataset with the specified properties we need

to choose |G+
R |=γN elements from S+

h , |G−
R |=δN from S−

h and |G0
R|=εN

from S0
h . This gives us the following conditions on the possible choices of k

values:
0≤kστ ≤mστ ∀σ,τ,kσ+ +kσ− +kσ0 =|Gσ

R|∀σ.
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However, only five of the nine parameters mστ are effectively independent,
because of the relationships

S−
h ∩S−

h′ =−(S+
h ∩S+

h′ ); S−
h ∩S+

h′ =−(S+
h ∩S−

h′ );
S−

h ∩S0
h′ =−(S+

h ∩S0
h′ ); S0

h ∩S−
h′ =−(S0

h ∩S+
h′ );

S0
h ∩S0

h′ =−(S0
h ∩S0

h′ ).

Noting that |T (G)|=m++ +m+− +m+0 +m0+ +(1/2)m00, we can partition
T (G) into five pairwise disjoint sets, and then further specify the sign of each
gene depending on which of the two mutually opposite overlap sets it should
belong to. This ensures that we never consider random sets where the same
transcript enters two different subsets with opposite signs. It follows that
each choice of k values now represents a number of sets given by N1 ·N2,
where:

N1 :=
(

m++
k++,k−−,r++

)(
m+−

k+−,k−+,r+−

)(
m+0

k+0,k−0,r+0

)
;

N2 :=
(

m0+
k0+,k0−,r0+

)(
m00/2

k00

)
2k00 .

Here, rστ :=mστ −(kστ +k−σ−τ ) for each appropriate σ,τ, and the last term
corresponds to the freedom of choosing the sign of each entity in the self-
opposite set S0

h ∩S0
h′ . It remains to compute the distribution of the score

obtained by h′, s(h′), when the k values are subject to the constraints above.
For a given choice of k values the score is

s(h′) :=
( ∑

σ∈{+,−,0}
kσ+

)
−

( ∑
σ∈{+,−,0}

kσ−
)

=

=(k++ −k+− +k−+ −k−−)+(k0+ −k0−) :=s± +s0.

Here, we call s± the part of the scores corresponding to S±
h and s0, the part

corresponding to S0
h . To compute the distribution of s±, we note that it is

precisely the same as the distribution of scores computed in the previous
section, when the parameters q+,q−,q0 and n+,n−,n0 are replaced by
m++,m+−,m+0 and γN,δN,(m++ +m+− +m+0)−(γN +δN).

To compute the distribution of s0, we note that the probability Ps0 of
having a fixed score s0 is just

ps0 :=
∑

k0++k0−+k00=εN
k0+−k0−=s0

(
m0+

k0+,k0−,r0+

)(
m00/2

k00

)
2k00 =

=
∑

k

(
m0+

k

)(
m0+ −k

k−s0

)(
m00/2

εN −2k+s0

)
2εN−2k+s0 ,

which, though it looks complicated, is a one-parameter summation that can
either be computed directly in linear time or in average constant time per
score sσ by using special summation techniques (Petkovšek et al., 1996). By
the Vandermonde identity we have

∑
s0

ps0 =
(

m0+ +m00/2

εN

)
2εN .

Finally, the overall distribution of scores is obtained by a convolution of
the distributions of s± and s0, and the probability of h′ beating h is then the
sum of the probabilities of scores exceeding the score of h, (γ−δ)N .

In order to compute the sizes of the overlaps, mστ , we proceed as follows.
First, we take A to be the adjacency matrix of GC, and then get a reduced
adjacency matrix Ar by keeping only those columns that correspond to
transcripts. We then compute L :=ArAT

r to get the values of m++ and m+− as
entries corresponding to Lh,h′ and Lh,−h′ , respectively. Finally, we compute
the other m values by using

∑
τ∈{+,−,0}mστ =|Sσ

h |.
An important observation greatly reduces the computational effort

required for computing the recoverability of a graph. If two hypotheses, say
h and h′, are disjoint, that is, if m++ =m+− =0, then s± =0 for all choices of
k values, and the score of h′ equals the random noise term s0. Furthermore,
its distribution only depends on the sizes of Sτ

h′ but not on h. Therefore, it

can be computed once for each h′ and aggregated over all h′ that are disjoint
from h before computing the probability of a score equal to or exceeding
that of h. In particular, if γ>1/2, the maximum score of any h′ disjoint from
h, εN , cannot equal or exceed the score of h, (γ−δ)N , and so the disjoint
hypotheses do not make any contribution to h’s recoverability.

2.6 Graph perturbations
In order to examine the sensitivity of the model’s predictions to graph changes
we investigated three ways of perturbing a causal graph. First, we looked
at deleting a fraction μ of the edges at random while preserving the sign
distribution. Second, we looked at inserting an extra fraction ν of edges
uniformly at random. Finally, we compared with a graph generated uniformly
at random from the family of graphs with the same in- and out-degree
distribution as our causal graph. This graph was generated by a method
adapted from (Rao et al., 1996) for causal graphs. The results are presented
below.

Rather than looking at the recoverability of the perturbed graph (which
will tell us about the likelihood of recovering the correct hypothesis from that
graph), we are more interested in computing the expected rank of the correct
hypothesis for a dataset generated with the original graph, but analyzed by
our methodology on the perturbed graph, which we term the two graphs’
cross-recoverability. It turns out that computing the cross-recoverability is
only slightly more difficult than computing the recoverability.

Indeed, let G′ be the perturbed graph [importantly, V (G)=V (G′)]. The
key insight is that it suffices to understand the distribution of scores sh,h′ of
each hypothesis h′ in G′ when a random dataset coming from hypothesis h
in G is given as input. This in turn only depends on the sizes of the overlaps
between the sets Sσ

h in G and Sτ
h′ in G′, which can be read off from the matrix

L :=ArBT
r , where Br is the reduced adjacency matrix of G′. One final change

is that we also get a distribution of scores sh,h for h in G′ (rather than a single
score as before), and in order to compute the contribution h′ makes to the
cross-recoverability of h we need to perform one more convolution to get
Pr[sh,h′ >sh,h]+(1/2)Pr[sh,h′ =sh,h].

2.7 Validation on simulated data: robustness
Figure 2 illustrates the recoverability of hypotheses in the causal graph, as
well as the cross-recoverability with the causal graph perturbed by random
edge deletion. The plots show the fraction of the hypotheses correctly
recovered at each rank cutoff, and can be thought of as analogs of ROC
curves. While we ran this computation with a larger number of parameters,
we just show some representative results for illustration.

Figure 2a shows the recoverability of hypotheses in our causal graph for
datasets of size N =10 when γ =0.4, i.e. only 40% of the dataset is composed
of signal (the correctly predicted consequences S+

h ). When ε=0.6, i.e. the
other six entities in the dataset are random noise, there is almost perfect
recoverability (circles). When δ=0.2, i.e. two of the entities are chosen in an
adversarial manner (i.e. from S−

h ), the recoverability significantly deteriorates
(triangles). Finally, performance is comparable to that of a uniformly random
ranking (red dots) when the adversarial noise level almost reaches signal level
(crosses).

Figure 2b shows the cross-recoverability of hypotheses when the
prediction occurs on the causal graph perturbed by the deletion of a fraction
of its edges. Here, γ =0.8 and δ=0.2. Once again, we consider datasets
of size N =10. Here, we see a clear deterioration of the performance as
progressively more edges are deleted.

We also analyzed the case of additional edges inserted uniformly at
random, with a dataset of size N =10. While the perturbations do affect
performance in a negative way compared to the baseline, the impact is minor
even for a large number of edge insertions. We believe that this is due to the
sparsity of our causal graph, so that the randomly added edges are unlikely
to appreciably affect the connections between hypotheses and transcripts.
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Fig. 2. Estimation of robustness of each hypothesis against noise. Conceptually, we generate all perfect expression data sets of a given size for each hypothesis
and compute the average rank of each hypothesis when ordered by score. Each curve represents the number of correctly detected regulators when thresholding
at a given average rank. Figure (a) compares different noise levels applied to the perfect expression data set for each regulator. Figure (b) assesses recoverability
of the regulator when edges have been deleted from the network. The red curve is a common reference point in both plots.

Finally, the cross-recoverability for a randomly generated graph with the
same in- and out-degree distribution as the original causal graph was even
worse than that of a uniformly random ranking.

The conclusion we can draw from Figure 2a is that our causal graph
is robust to random noise, but not to adversarial noise. The robustness to
random noise is a critical feature for any computational model, since the
gene expression data we deal with in practice is likely to be quite noisy. The
much lower robustness to adversarial noise is not problematic, because we
do not expect gene expression data to ‘try’ to confuse the method by steering
it toward the opposite inference of the one it should make. However, we note
that as long as the ratio of signal to adversarial noise remains >1 we can still
make correct predictions with high probability.

Figure 2b shows that small perturbations to the causal graph do not
significantly affect its ability to make correct inferences. Thus, even though
some of the edges in our causal graph may be incorrect (or incorrect for
the particular context we are investigating), so that the ‘correct’ graph looks
like a version with a number of edges deleted, we can still make meaningful
predictions. The same holds true if other edges are missing, which is likely to
be the case due to the incomplete nature of our current biological knowledge.
On the other hand, we also establish that the important information does not
lie in the connectivity of the causal graph alone; if that had been the case, we
would have been able to make equally good predictions using the randomly
generated graph with the same in- and out-degree distribution as our causal
graph.

The robustness of our method is a desirable feature, and as new knowledge
is added to or removed from the causal graph, we will be able to reassess
the effects that this has on its robustness.

2.8 Alternative assessment of significance
Very recently, the company Selventa released a white paper on their website
providing more details of the approach outlined in (Pollard et al., 2005). We
discuss similarities and differences between the approaches in this section.

Fundamentally, the approaches utilize the same computational model
of a causal graph and attempt to detect upstream regulators. However, no
assessments of robustness of the model in the presence of noise are given
in the white paper. Furthermore, Selventa’s approach does not provide an
aggregate score for each hypothesis, instead ranking them by their statistical
properties. These statistical properties are discussed below in greater detail.
Since the score of a hypothesis, defined as the number of correct predictions
minus the number of incorrect predictions, is a useful indicator for the
goodness-of-fit of the hypothesis to the observed data, we believe that it
is valuable to provide this easily understandable information to the user,

Fig. 3. Overestimation of significance for highly unbalanced hypotheses
based on the concordance P-value.

in addition to the less directly interpretable P-values. In our experience,
although a high score does not always result in a meaningful hypothesis,
meaningful hypotheses always score highly. This score enabled us to derive
the properties of our method in the presence of noise and demonstrate that a
significant amount of noise can be tolerated given the current causal graph.

Finally, the statistical measures we compute take more information into
account than the statistical measures computed by Selventa’s approach. It is
easy to see that the richness of a hypothesis is identical to the enrichment
P-value, PE , as defined in our methods. Therefore, we will focus on
comparing the concordance value of a hypothesis and the P-value, P, as
defined in our methods. We begin by noting that, using our notation, the
concordance can be rewritten as

C := 1

2n++n−

∑
j≥n+++n−−

(
n+ +n−

j

)
.

In other words, the concordance of a hypothesis is the probability of
getting at least the same number of correct predictions out of the number
of predictions made by the hypothesis. The concordance is a fundamentally
different metric as it does not take into account how many transcripts are
regulated in the experimental data. This information is crucial in order to
assess whether the overlap of the experimental data with the hypothesis
is significant. Consequently, the concordance must be used in conjunction
with enrichment to be useful. In contrast, our correctness P-value is a direct
generalization of enrichment that takes the directionality of regulation into
account, and it reduces to the enrichment in the special case when all
regulation is of the same sign.

Perhaps even more importantly, the concordance defined in Selventa’s
white paper does not take into account any imbalance in the number of
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up- and down-regulated transcripts. Specifically, we consider a setting
with 100 transcripts, and a hypothesis H which makes only unambiguous
predictions (i.e. |S±

H |=100,|S0
H |=0). We generate K expression data sets

G±
R uniformly at random, with the constraints n+ :=|G+

R |=80 and n− :=
|G−

R |=20. In each of the K trials, we compute the resulting concordance and
correctness P-values for H. In this scenario, we expect no significant results
at a P-value threshold of 0.05/K , according to the Bonferroni correction
method for multiple testing. Figure 3 shows the number of erroneously
significant findings (false positives) for hypotheses with q+ (the number
of transcripts predicted to be upregulated) ranging from 50 to 100, q− (the
number of transcripts predicted to be downregulated) set to 100−q+ and K
set to 10 000. It demonstrates how the concordance P-value can severely
overestimate significance in an unbalanced case. In contrast, our correctness
P-value correctly controls the false positive rate under the null hypothesis,
giving no false positives as expected. Conversely, the concordance P-value
will severely underestimate significance if the experimental data shows the
opposite imbalance for a given hypothesis.

3 IMPLEMENTATION
The analysis results are communicated using the Causal Reasoning
Browser, a Java application based on the open-source biological
network viewer Cytoscape (Shannon et al., 2003). We have
developed a plugin that enables browsing, clustering, merging and
filtering of all statistically significant predicted upstream hypotheses
in conjunction with the relevant subgraphs of our causal graph.
Each subgraph (Fig. 4) can be evaluated by the user to assess the
validity of a specific hypothesis. An overview graph allows users
to quickly visualize hypotheses and shows how they are related to
each other. Users are able to edit and manipulate the overview graph
to group hypotheses together in the context of existing literature.
The relatedness between hypotheses is displayed in the form of
similarity statistics in a hypothesis table. The browser enables users
to merge two or more hypotheses as a first step toward building
larger explanatory subnetworks. Merging maintains the edge and
node information and thus allows users to hover over edges to show
their sources, providing additional investigative information.

4 BIOLOGICAL RESULTS

4.1 Validation: recovering known perturbations
In order to test the performance of the causal reasoning algorithm
on a biological dataset we sought out experimental data which
had a single, well-defined perturbation that should be identified by
the algorithm. (Bild et al., 2006) used recombinant adenoviruses
to infect non-cancerous human mammary epithelial cells with a
construct to overexpress one of five oncogenes; c-Myc, H-Ras,
c-Src, E2F3 and β-catenin. DNA microarray analysis was performed
to identify gene expression signatures for each of the oncogenes
which were further refined by a supervised classification method
to select genes that differentiated each oncogene from the others,
see methods in (Bild et al., 2006). Importantly, the data from this
paper was not present in our collection of causal interactions, making
it a suitable test set. The gene expression signatures contained 62
(c-SRC), 72 (β-catenin), 196 (c-Myc), 223 (H-Ras) and 238 (E2F3)
transcripts, respectively. Of these, 31 (50%, c-SRC), 28 (38%,
β-catenin), 153 (78%, c-Myc), 190 (85%, H-Ras) and 186 (78%,
E2F3) could be matched with transcripts in our causal graph.

For three signatures (c-Myc, H-Ras and E2F3), either the
overexpressed protein or a protein immediately downstream from

it is correctly identified by the causal algorithm when looking at the
top-ranked predicted hypothesis (Table 1). c-SRC and β-catenin had
few matching genes. Our method did not return significant results
in those cases, meaning that no confident predictions were possible.

For both the Myc and Ras expression signatures, these proteins are
returned as significant regulators of the expression data by our causal
analysis. MYC+ is the top causal result from the Myc signature at
one interaction away from the expression data (P=2·10−14). The
causal graph correctly links the up-regulation of Myc to C =23 of
the expression changes.

For the E2F3 expression data, the E2F family is returned as a
significant result, as is E2F1, but not E2F3; see Table 1. E2F1 and
E2F3 have a very similar role as transcription factors that function
to control the cell cycle and are similarly implicated in cancer (Chen
et al., 2009). However, the top hypothesis is CDKN2A− (also known
as ARF). The ARF tumor suppressor is a key component of the p53
tumor surveillance pathway and is repressed by E2F3 in normal cells
(Aslanian et al., 2004), which supports ARF as our causal hypothesis
and provides a mechanistic link back to E2F3 even if it has not been
reported as significant.

HRAS+ is returned as a significant hypothesis (P=4·10−9)
in the H-Ras dataset and is ranked 10th. The top hypothesis is
tumor necrosis factor alpha (TNF+), which was also up regulated
in the original H-Ras expression signature. HRAS induces the
expression of TNF, and taken together they are able to explain
a large portion (38%) of the gene expression signature. TNF
is multi-functional, having a role in inflammatory responses,
cell proliferation, differentiation, apoptosis, lipid metabolism and
coagulation. (Suganuma et al., 1999) demonstrated that TNF is
essential for tumorigenesis. Causal reasoning correctly found that
activating H-Ras increases TNF levels, promoting tumor formation.

These data provide evidence that causal reasoning can accurately
detect the underlying cause of a biological gene expression
signature and identify regulatory modules from within a larger, more
complex dataset. We are also able to differentiate the immediate
transcriptional events resulting from pathway activation from the
subsequent downstream activity of secondary responses.

4.2 Example use case: causal drivers of cardiac
hypertrophy

In this section, we use causal reasoning to compare myocardial
gene expression changes associated with isoprenaline-induced
(pathological) hypertrophy to those associated with exercise-
induced (adaptive) hypertrophy in mice. The raw data was obtained
from the public domain (Galindo et al., 2009). With the filters set at
P≤0.05,pE ≤0.05 and C ≥3, causal reasoning analysis generates
117 and 207 significant hypotheses for the two datasets, respectively.
We arrive at a set of testable hypotheses by starting with the
highly significant hypotheses and building out subnetworks based
on current biological knowledge.

In the isoprenaline group the highest-ranking hypothesis is
response to hypoxia+, with P=2.07·10−13,pE =7.22·10−65 and
C =122, whereas the highest-ranking hypothesis in the exercise
group is response to hypoxia−, with P=5.3·10−3,pE =2.97·
10−32 and C =140. The cascade of downstream biological events
in the subnetworks generated by our approach provides evidence
that hypoxia is a major event. Note that an enrichment captured
by PE for response to hypoxia seems present in both cases, but
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Table 1. The top five causal hypotheses from the three oncogene expression signatures (Bild et al., 2006) are shown in the table

Myc E2F3 H-Ras

No. Gene C I A P Gene C I A P Gene C I A P
1 MYC + 23 1 1 2e−14 CDKN2A − 13 1 1 3e−9 TNF + 47 11 6 1e−15
2 ZBTB16 − 10 0 0 4e−11 E2F1 + 11 1 0 8e−6 IL1B + 32 4 1 5e−15
3 ALK + 9 0 0 3e−12 E2F family + 5 0 0 7e−5 F2 + 27 4 0 4e−16
4 TP53 − 12 4 0 2e−3 PROX1 + 4 0 0 4e−6 EGF + 26 5 0 1e−12
5 HDAC6 − 3 0 0 6e−5 ITGB1 − 3 0 0 6e−5 TGFB1 + 31 10 2 5e−8

10 … … HRAS + 19 4 0 5e−9

C is the number of transcript changes correctly explained by the hypothesis, I incorrectly and A ambiguously. A +/− indicates the inferred directionality of the hypothesis.

Fig. 4. Example demonstrating opposite predicted effect of USF1 protein abundance or activity based on dissimilar transcript changes (15% overlap). Unaided,
such an inference is very difficult from the gene expression data alone. Data taken from the cardiac hypertrophy use case.

a clear directional effect (response to hypoxia+) is only asserted
in the isoprenaline group. In the exercise group the direction is
captured as opposite (response to hypoxia-) but the confidence is
lower. Biologically, this is a plausible prediction as the effects of
isoprenaline are expected to be severe and pathologic with little or
no compensation. The effects of exercise, however, should be weaker
and adaptive in nature through physiological feedback loops. The
analysis shows a biological network that captures several hallmarks
of cardiac diseases and cardiomyocyte stress signaling (Aragno
et al., 2008; der Heiden et al., 2010; Rona, 1985; Teekakirikul
et al., 2010; Wölkart et al., 2006). The subnetwork demonstrates a
cluster of increased hypoxia (C =146, or ∼19% of the total). Tissue
hypoxia triggers increased activity of the aldosterone/angiotensin
axis evidenced by AGT+, angiotensin II+ and aldosterone+, and
decreased angiotensin antagonists losartan− and captopril− (C =
39). Subsequently, increased nitric oxide synthase (NOS) production
leads to oxidative stress (five hypotheses, C =71). Oxidative
stress together with hypoxia can result in a cell stress positive
feedback loop that additionally includes an inflammatory response
(10 hypotheses, C =102) and endoplasmic reticulum stress (2
hypotheses, C =29). Eventually, the self-reinforcing cell stress
signals culminate in (i) DNA damage and apoptosis, and (ii)
myogenic disruption and structural remodeling supported by an
extensive network that includes TGFβ+ signaling, wounding+ and
pulmonary fibrosis+, dystrophin− and myogenic differentiation-1
transcription factor−.

In contrast, the causal subnetwork for exercise-induced
hypertrophy demonstrates a number of mechanisms that are
generally the reverse of those inferred from the isoprenaline group.
Hypoxia− and ischemia− hypotheses reflect the ability of the
cells to compensate for increased cardiac load and enhanced
oxygenation (C =163, or ∼11% of the total). Endothelin− (EDN1)
and angiotensin II− are inferred downstream of hypoxia (C =53).
Contrary to isoprenaline’s extensive pro-inflammatory subnetwork,
the exercise group exhibits a strong anti-inflammatory subnetwork

(10 hypotheses, C =173). The endoplasmic reticulum (ER) stress
subnetwork in the exercise group contains XBP1− and POR+, while
the opposite is true of the isoprenaline group. The DNA damage
subnetwork shows hypotheses in the opposite direction to that of
isoprenaline. However, FAS+ and mitochondrial DNA damage+
may reflect some degree of cell stress as well.

Several similarities and differences can be noted between our
causal reasoning analysis and the analysis from the original study of
this public dataset (Galindo et al., 2009). The overall analysis in the
original study was similar in that it referred to pathways captured
by causal reasoning in a higher level of detail, such as acute phase
response, fibrosis, oxidative stress and cell morphology. A major
difference is that causal reasoning generates hypotheses on similar
pathways, but with opposite inferred directionality. Note that the
inferred direction of the same upstream entity rely on disparate gene
sets (Fig. 4). Also, the level of detail provided immediately suggests
hypotheses for experimental follow-up.

5 DISCUSSION
In this article, we have presented a comprehensive methodology
to derive concise molecular hypotheses that can explain the
transcriptional changes observed in genome-wide microarrays. We
have compiled a large causal graph of curated interactions, to which
we have successfully applied a simple but powerful reasoning
method. Our method is very similar in spirit to the method of
(Pollard et al., 2005). However, we have shown here for the first time
how to analytically compute the statistical significance of detected
hypothetical drivers of the expression data.

Given the importance of current knowledge for the creation of
the causal network, we investigated how its characteristics such as
redundancy and coverage impact our ability to retrieve clear signals.
In order to understand this based on our current causal graph of
over 250 000 unique causal relationships, we defined the concept
of recoverability and derived an analytical method to assess it for
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any causal graph. Applying it to our causal graph clearly showed
that upstream drivers can be recovered within a wide range of noise
parameters. Furthermore, the signal is not due to the connectivity
structure of the graph alone, as evidenced by a comparison to a
random graph with the same in- and out-degree distribution.

To assess the biological validity of the approach, we have
also applied causal reasoning to two biological datasets. The
first had over-expressed various oncogenes in a normal mammary
epithelial cell line on which microarray analysis was performed.
Causal reasoning was able to correctly identify the overexpressed
oncogene as the cause of the expression changes, and delimit
downstream pathways. This echoes the results of the tests on
simulated data and gives us confidence that causal reasoning is
an effective methodology to interrogate gene expression data. The
second biological use case compared transcriptional changes in
isoprenaline- and exercise-induced hypertrophy and demonstrates
the power of causal reasoning on an experimental dataset. We
were able to identify known hallmarks of disease as well as novel
differences between the two forms of hypertrophy. In comparison
to traditional methods, such as gene set enrichment, our method
provides considerable additional insights.

There are several limitations to the method described here. We are
certainly limited by the amount of biological knowledge currently
available in the form of scientific publications, so our method is
unlikely to elucidate completely unexplored areas of biology. We are
also limited by the incomplete translation of scientific information
from the literature into computationally usable causal relationships,
whether due to the labor-intensiveness of the translation process
or to the more complex nature of many biological relationships
that goes beyond simple causality. The impact of this limitation is
therefore expected to decrease as the coverage of our causal graph
increases, and targeted curation efforts can be made to improve the
breadth and the depth of causal information for specific high value
datasets. The output produced by our method is a ranked list of
succinct molecular hypotheses with all of the associated evidence
to allow deep biological review and interpretation. The ability to
critically review the model is important, as the results presented here
demonstrate. For example, the causal analysis of the E2F3 oncogene
expression data did not report E2F3 itself as a significant hypothesis,
but did return E2F1, a closely related member of the same family
of transcription factors. E2F1 and E2F3 have a similar role and are
similarly implicated in cancer (Chen et al., 2009).

We are currently pursuing several extensions of our methods.
First, our scoring function naturally extends to combinations of
upstream nodes, and we are exploring optimization procedures
to suggest such combinations to the computational biologists.
Combinations of hypotheses will present new mathematical and
algorithmic challenges. However, the biggest challenge will be to
combine hypotheses in a way meaningful to our end users in the
biology field. Furthermore, we currently rely on external sources
for the interaction data (Ingenuity and Selventa). In the future,
we would like to allow biologists to add to and edit this data
as they review our models, so that we could slowly build up a
much more comprehensive and accurate set of interactions in a
decentralized way. Finally, the approach we described provides a
natural framework to enable the integrated analysis of multiple data
types such as proteomics, metabolomics and genetics. We would like

to extend the causal reasoning approach to work with heterogeneous
data as more and more of it becomes available.

We believe that the appropriate encoding of the current state of
the biomedical literature and the routine application of methods to
interpret results from new experiments in light of what is already
known will guide the way to novel insights by reevaluating known
facts in different contexts or identifying unexplored areas of biology.

In our experience, the output of our method was easy to interpret
for biologists, and several hypotheses have already been selected
for follow-up. We hope that the discovery of novel biology and the
enrichment of the causal graph will lead to a virtuous cycle and a
continued expansion of the boundaries of biological knowledge.
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