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Causal composition allows people to generate new causal relations by combining existing

causal knowledge. We introduce a new computational model of such reasoning, the force

theory, which holds that people compose causal relations by simulating the processes

that join forces in the world, and compare this theory with the mental model theory

(Khemlani et al., 2014) and the causal model theory (Sloman et al., 2009), which explain

causal composition on the basis of mental models and structural equations, respectively.

In one experiment, the force theory was uniquely able to account for people’s ability

to compose causal relationships from complex animations of real-world events. In three

additional experiments, the force theory did as well as or better than the other two theories

in explaining the causal compositions people generated from linguistically presented

causal relations. Implications for causal learning and the hierarchical structure of causal

knowledge are discussed.
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CAUSAL REASONING WITH FORCES

Causal relations can be generated by forming links between

non-adjacent entities in a causal chain. The phenomenon is exem-

plified in ordinary causal transitive reasoning. When told, for

example, that A causes B and that B causes C, people can infer

that A causes C, or when told, for instance, that Sanding causes
dust and Dust causes sneezing, they conclude that Sanding causes
sneezing. In transitive reasoning, such as this, the two component

relations (e.g., the two CAUSE relations) are the same (Egenhofer,

1994). Interestingly, the process of deriving new causal relations

can also occur in chains in which the component relations dif-

fer, that is, in chains involving different kinds of causal relations,

including relations such as causing, allowing, and preventing. For

example, when told that A causes B and that B prevents C, people

may infer that A prevents C (Goldvarg and Johnson-Laird, 2001;

Barbey and Wolff, 2006, 2007; Sloman et al., 2009; Khemlani et al.,

2014), or more concretely, when told Sanding causes dust, Dust
prevents adhesion, we can infer that Sanding prevents adhesion.

When causal relations are formed from different kinds of causal

relations, the process is not simple transitive reasoning: instead,

the reasoning involves a process known as relation composition.

More formally, given the relations a Ri b and b Rj c, relation

composition is the process that determines the relation (Rk) that

holds between a and c (Ulam, 1990; Egenhofer, 1994). The pro-

cess is often symbolized by the relation composition symbol, a

small circle “◦,” written between the names of the relations being

composed.

The process of relation composition can be depicted graphi-

cally, as shown in Figure 1 (e.g., Rodríguez et al., 2002). In the

top panel of Figure 1, the composition of the relation between a

and b and the relation between b and c, is Cause ◦ Prevent. In the

bottom panel of Figure 1, the symbols in the top graph are fleshed

out in an actual example; in this case, the relation composition of

CAUSE and PREVENT is PREVENT. Relation composition can

occur across a range of relation types. For example, the process

applies to relations of equality and inequality: if a is equal to

b and b is greater than c, then a must be greater than c (Hein,

2002); temporal relations: if a occurs during b, and b occurs after

c, then a occurs after c as well (Allen, 1984; Van Beek, 1989;

Hajnicz, 1996; Rodríguez et al., 2002); and spatial relations: if a
is inside of b and b is outside of c, then a must be outside of c
(Egenhofer, 1994; Rodríguez and Egenhofer, 2000; Skiadopoulos

and Koubarakis, 2004).

Recently, researchers have begun to examine relation compo-

sition with respect to causation (Sloman et al., 2009; Khemlani

et al., 2014), a kind of relation composition that will be referred

to as causal composition. According to the mental model the-
ory (Goldvarg and Johnson-Laird, 2001; Khemlani et al., 2014),

causal composition involves operations on relations that spec-

ify possible logical entailments, whereas, according to the causal
model theory, causal composition involves operations on rela-

tions that imply families of dependencies (sometimes statistical).

According to both of these theories, the process of causal com-

position occurs over units of cognition that bear little or no

resemblance to entities in the outside world, just as the word

“tree” bears no resemblance to what it refers to in the actual world.

The current state of the literature might be interpreted as indicat-

ing that generative processes, such as causal composition, require

units of cognition that are inherently abstract in nature and quite

different from the codes used in the perception of causal relations.
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FIGURE 1 | The top panel shows how relation composition can be

realized in a directed graph as a relation between non-adjoining

elements in a chain. The bottom panel replaces the symbols in the top

graph with a real world example.

In this paper, however, we describe a new theory of causal com-

position, the force theory, which suggests that the underlying units

need not be so abstract. In particular, according to the force the-

ory, relation composition occurs over iconic perceptual codes.

The codes are iconic in the sense that they are internally organized

in a manner that parallels the structure of the quantities they refer

to the physical world. The codes parallel the structure of the phys-

ical world just as a road map reflects the spatial organization of

the streets and highways in the world. The codes are perceptual

in the sense that they are internally organized in a manner that

mirrors the internal organization of the mental representations

produced from directly perceiving a causal event. The force theory

assumes mental representations like those proposed in Kosslyn’s

(1980) quasi-pictorial theory and Shepard and Chipman’s (1970)

theory of second-order isomorphisms. Of central interest in this

paper will be whether a theory of causal composition based on

iconic perceptual codes is able to account for the phenomenon of

causal composition as well as, or even better than, theories based

on abstract codes. To the extent that this is possible, it would

imply that causal reasoning may be based on representations that

are perceptual in nature, without the need for abstract mental

codes (Barsalou, 1999; Wolff, 2007; Battaglia et al., 2013; Wolff

and Shepard, 2013).

ABSTRACT CODE THEORIES OF CAUSAL COMPOSITION

MENTAL MODEL THEORY

According to the mental model theory (Khemlani et al., 2014),

causal relations and their composition can be explained in terms

of logical relations. As with the other theories to be discussed, the

mental model theory assumes three major kinds of causal rela-

tions: CAUSE, ALLOW, and PREVENT. The theory holds that

these three kinds of causal relations are associated with differ-

ent combinations of possible co-occurrences. The sets of possible

co-occurrences associated with CAUSE, ALLOW, and PREVENT

are shown in the first column of Table 1. For example, a CAUSE

Table 1 | Possible co-occurrences associated with the concepts

CAUSE, ALLOW, PREVENT, and various derivatives though negation.

Basic Antecedent Consequent

relation negated negated

CAUSE a b ¬A_CAUSE ¬a b CAUSE¬B a ¬b

¬a b a b ¬a ¬b

¬a ¬b a ¬b ¬a b

ALLOW a b ¬A_ALLOW ¬a b ALLOW¬B a ¬b

a ¬b ¬a ¬b a b

¬a ¬b a ¬b ¬a b

PREVENT a ¬b ¬A_PREVENT ¬a ¬b PREVENT¬B a b

¬a b a b ¬a ¬b

¬a ¬b a ¬b ¬a b

¬A, Lack of antecedent, ¬B, Lack of consequent.

relation is associated with a set of co-occurrences in which A

is present and B is present, A is absent and B is present, and

A is absent and B is absent. Critically, the theory holds that a

CAUSE relation is not associated with a co-occurrence in which

A is present and B is absent. The theory implies, then, that in a

CAUSE relation the presence of A is sufficient for the occurrence

of B, but not necessary. ALLOW relations, on the hand, are asso-

ciated with co-occurrences in which A is present and B is present,

A is present and B is absent, and A is absent and B is absent; they

are not associated with co-occurrences in which A is absent and

B is present. The theory implies, then, that in an ALLOW rela-

tion, the presence of A is necessary for the occurrence of B, but

not sufficient. Finally, PREVENT relations are associated with co-

occurrences patterns in which A is present and B is absent, A is

absent and B is present, and A is absent and B is absent, but not

a co-occurrence pattern in which A is present and B is present.

Negation is handled using the negation operator, ¬. Negating the

antecedent or consequent of a causal relation involves flipping the

states of affairs of the antecedents and consequents (respectively)

in all of the possible co-occurrences.

An interesting consequence of the model theory is that it

implies certain correspondence relationships between different

types of causal expressions. For example, as shown in Table 1,

the theory predicts that A prevents B and A causes ¬B should be

paraphrases of each other because they share the same set of co-

occurrences and hence the same truth conditions. In support of

this particular correspondence, the claim pain prevents sleep can

be fairly accurately paraphrased as pain causes lack of sleep (Wolff

et al., 2010). As we will see, correspondences between negated

and non-negated expressions of causation play an important role

in the interpretation of the findings in several experiments: for

example, if a theory predicts that the overall relation for a causal

chain is PREVENT, and people respond with CAUSE¬B, their

response is not necessarily inconsistent with the theory’s pre-

diction since the two expressions are assumed to have the same

meaning.

The mental model theory provides an account of the composi-

tion of various types of causal relations. In discussing this and the

following theories, we will use terminology typical of syllogistic
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reasoning. That is, we will refer to the relations in the causal chain

as “premises” and their composition, as a “conclusion.”

Table 2 outlines a simplified version of the steps involved in

deriving a conclusion in the mental model theory (see Khemlani

et al., 2014 for details). The first step is to list the possible co-

occurrences associated with each causal relation, or premise. For

example, in Table 2, the co-occurrences associated with a causes
b and b prevents c are listed. The next main step is to conjoin

the sets of possible co-occurrences with respect to their shared

common argument. In Table 2, the shared common argument

is b. Once the sets are conjoined, the common argument (i.e., b)

can be dropped since the goal of the procedure is to identify the

relationship between the unconnected arguments (i.e., a and c).

Any resulting redundancies are dropped as well (e.g., dropping

the b term results in two a c co-occurrences, so one is deleted).

Finally, the kind of relation entailed by the conjoining of the co-

occurrences can be interpreted. In Table 2, the co-occurrences

(a c), (a c), (a c) make up the set of co-occurrences associated

with PREVENT. Thus, according to the mental model theory,

when CAUSE is composed with PREVENT, the resulting rela-

tion between the non-connected arguments, or conclusion, is

PREVENT.

CAUSAL MODEL THEORY

A second symbolic approach to causal composition is repre-

sented in Sloman et al. (2009) causal model theory. The causal

model theory represents an approach to causal composition based

on causal Bayesian networks. In causal Bayesian networks, vari-

ables are connected to one another with “arcs,” as in A → B.

Each arc is associated with a set of conditional probabilities in

conjunction with assumptions about the effect of actual or hypo-

thetical interventions (Woodward, 2003, 2007; Sloman, 2005;

Schulz et al., 2007). In the causal model theory, the notions of

CAUSE, ALLOW, and PREVENT are represented in terms of

different causal structures. When the causal relations are deter-

ministic, it is often convenient to represent variables and arrows of

a graph structure in terms of structural equations (Sloman et al.,

2009). In the causal model theory, structural equations, just as

in structural equation modeling (SEM), serve as a way to identify

and think about relationships between variables. For example, the

graph A → B can be instantiated in a structural equation such as

B:= A (Sloman et al., 2009; see also Hitchcock, 2001). The “:=”

relation differs from “equal to” in that variables on one side of

the relation cannot be moved to the other: causes must be kept

on one side and effects on the other. Loosely stated, “:=” can

be likened in meaning to the notion of “gets”; thus, rather than

saying “B equals A,” one could say “B gets A.” According to their

theory, the claim A causes B would be represented by the struc-

tural equation B:= A. The concept of ALLOW is associated with a

different structural equation; namely, the claim A allows B would

be represented as B:= A and X, in which the variable X is an acces-

sory variable. In the causal model theory, an accessory variable

is an additional causal factor or event that is necessary for the

main event, e.g., B, to occur. Accessory variables may either be

unknown or given by prior knowledge or given by the environ-

ment (Sloman et al., 2009). Sloman et al. (2009) speculate that the

concept of PREVENT is vaguer than CAUSE or ALLOW and, as a

consequence, may be represented by several structural equations.

On their account, the claim A prevents B could be represented by

either B:= ¬A, B:= ¬A and X, or B:= ¬A and ¬X1 . Negation

is handled using the negation operator. For example, whereas the

claim A causes B would be represented B:= A, the claim Not-A
causes B would be represented as B:= ¬A.

To account for relation composition, Sloman et al. (2009)

make several processing assumptions. According to one of these

assumptions, relations are combined via substitution. Consider,

for example, the following relations:

A causes B.

B causes C.

These two relations can be represented as

B:= A.

C:= B.

The theory holds that the representations can be combined with

respect to their common argument to obtain, through substitu-

tion, C:= A. According to the causal model theory, a structural

equation such as C:= A is characteristic of a CAUSE conclusion;

1When the causal model theory is applied to situations in which the vari-

ables are binary and the relations are deterministic, the truth conditions of

the equations can be derived from Boolean algebra. Thus, the equation B:= A

is consistent with B = true and A = true, B = false and A = false, and is not

consistent with B = true and A = false or B = false and A = true. Although

the causal model theory reduces to Boolean algebra in this context, Sloman

et al. (2009) note that the causal model theory remains relevant. First, it pro-

vides the motivation for the proposed structural equations and the fact that

causal graphs can be used directly to derive predictions. Second, causal model

theory can be applied to a range of arguments including arguments involving

uncertainty, different structural relations, intervention, and arguments with

arbitrarily-valued variables (see Hitchcock, 2001).

Table 2 | Important steps in composing CAUSE and PREVENT relations in the mental model theory.

Step1: represent premises Step 2: conjoin premises Step 3: reduce Step 4: interpret

A causes B B prevents C

a b b ¬c a b ¬c a ¬c A prevents C

¬a b ¬b c ¬a b ¬c ¬a c

¬a ¬b ¬b ¬c ¬a ¬b c ¬a ¬c

¬a ¬b ¬c
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hence, people should infer that the composition of two CAUSE

relations is another CAUSE relation. A different conclusion is

predicted from the composition of a CAUSE and an ALLOW

relation. The theory would represent the claims A causes B, B
allows C, with the structural equations: B:= A and C:= B and X.

Substituting the first “B” into the second equation would lead to

C:= A and X. According to the theory, such an equation would be

indicative of an ALLOW relation; hence, the theory predicts that

the composition of CAUSE and ALLOW would be an ALLOW

relation.

For certain relation compositions, the causal model theory,

unlike the mental model theory, predicts more than one con-

clusion. In particular, for compositions involving two PREVENT

relations, the causal model theory predicts either CAUSE or

ALLOW, depending on whether or not the PREVENT relations

include an accessory variable.

Negation is handled using the negation operator. For example,

while the claim A causes B would be represented B:= A, the claim

Not-A causes B would be represented as B:= ¬A. Interestingly, the

structural equation for Not-A causes B is the same as one of the

equations associated with PREVENT, since the claim A prevents
B can be represented as B:= ¬A. Absent effects are handled by

negation as well. For example, the claim A causes not-B would be

represented as ¬B:= A.

A PERCEPTUAL ICONIC THEORY OF CAUSAL COMPOSITION

THE FORCE THEORY

In this paper we introduce a new theory of causal composition,

the force theory. The force theory is based on Talmy’s (1988)

theory of force dynamics. In the force theory, individual inter-

actions involve two main entities: an affector and a patient (the

entity acted on by the affector). The theory holds that people

specify causal relations in terms of configurations of forces that

are evaluated with respect to an endstate. It is assumed that the

configurations of forces associated with different kinds of causal

relations can be directly aligned with the configuration of forces

present in various domains. In particular, it is assumed that peo-

ple specify the origin and direction of the various forces in a

configuration of forces, and to a limited extent, the magnitudes

of these forces. This alignment makes the representation of causa-

tion in the force theory iconic. An endstate can be conceptualized

as a location in a space that the patient either moves toward

or away from. The forces may be physical, psychological (e.g.,

intentions), or social (e.g., peer pressure) (Talmy, 1988; Wolff,

2007; Copley and Harley, 2014). It is assumed that people are

able to conduct partial reenactments of the processes that join

forces in the world (see Wolff and Zettergren, 2002; Wolff, 2007;

White, 2011, 2012; Hubbard, 2013b,c). A reenactment involves

specifying the objects and the forces acting on those objects as

well as carrying out a simulation. A simulation involves per-

forming a qualitative type of vector addition as specified and

empirically examined in Wolff ’s (2007) Experiment 4 (see also

Hubbard, 2010). The forces in these simulations are assumed to

be underspecified and often inaccurate, especially with respect to

magnitude (Wolff, 2007). As discussed in Hubbard (2005, 2012),

people’s notions of force may often be incorrect, but good enough

to be adaptive. It is also assumed that people may often infer

forces when they are not actually present, as when they infer forces

in the context of chance occurrences (e.g., closing a book and

the lights going out) or when watching a magic show (Wolff and

Shepard, 2013).

REPRESENTING INDIVIDUAL CAUSAL RELATIONS

The force theory predicts that there should be three main causal

concepts, CAUSE, HELP, and PREVENT. These three concepts

can be differentiated with respect to three dimensions: (a) the ten-
dency of the patient for an endstate, (b) the presence or absence

of concordance between the affector and the patient, and (c)

progress toward the endstate (essentially, whether or not the result

occurs). Table 3 summarizes how these dimensions differentiate

the concepts of CAUSE, HELP (also ALLOW and ENABLE), and

PREVENT. When we say, for example, High winds caused the tree
to fall, we mean that the patient (the tree) had no tendency to fall

(Tendency = No), the affector (the wind) acted against the patient

(Concordance = No), and the result (falling) occurred (Endstate

approached = Yes).

The force theory specifies how the notions of tendency, con-

cordance, and progress toward the endstate can be instantiated in

non-linguistic terms, namely in terms of force and position vec-

tors. The way the theory does this is shown in Figure 2. Each scene

in Figure 2 shows a situation involving a pool of water, a boat

with an outboard engine, a bank of fans, and a buoy. Below each

scene is a free-body diagram which makes explicit the direction

and relative magnitude of the forces in each scene.

As is customary in the construction of free-body diagrams

in physics, the forces are shown acting on only one object, the

patient; the free-body diagrams do not show the locations of the

affector (i.e., A), only the direction and magnitude of the affec-

tor’s force on the patient. In each of the configurations shown

in Figure 2, the patient is associated with a force (i.e., P). The

force associated with the patient, P, can be generated in a num-

ber of ways, including from gravity or mechanisms internal to

the patient, or from the patient’s resistance to changes in speed

or direction due to frictional forces or momentum (Wolff, 2007).

Copley and Harley (2014) provide a compelling argument for the

view that the force associated with the patient is often best under-

stood as emerging from the patient’s position in a “normal field.”

In their account, the normal field gives rise to an object’s tendency

to fall due to gravity, as well as more abstract tendencies such as an

entity’s tendency to “grow,” “redden” or “straighten.” In Figure 2,

the patient’s force corresponds to the force generated by the boat’s

motor.

According to the force theory, the patient has a tendency for

the end-state when the patient vector, P, points in the same

Table 3 | Representations of several causal concepts.

Patient tendency

for endstate

Affector-patient

concordance

Endstate

approached

CAUSE No No Yes

HELP (also ALLOW

and ENABLE)

Yes Yes Yes

PREVENT Yes No No
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FIGURE 2 | The images above each depict a scene showing a boat,

a bank of fans, and a cone. In the CAUSE scene, the boat motors

away from the cone, but is pushed back to the cone by the fans. In

the HELP scene, the boat motors toward the cone, and the fans push

it along in the same direction. In the PREVENT scene, the boat motors

toward the cone, but the fans push it back away from the cone.

Free-body diagrams associated with each type of causation are shown

below each scene. In these diagrams, A, the affector force, P, the

patient force, R, the resultant force, and E, endstate vector, which is a

position vector, not a force.

direction as the end-state vector, E; otherwise, P points in a dif-

ferent direction. The patient’s tendency for a particular endstate

is similar to the Bayesian notion of a prior probability because

it expresses what will happen before other factors are taken into

account. It differs from being a prior probability in that it does not

express an uncertainty. Returning to the force theory, the patient

and the affector are in concordance when their respective vectors

point in the same direction. Finally, a patient entity will approach

the end-state when the resultant (sum) of the A and P vectors, R,

is in the same direction as the end-state vector, E. Importantly,

the end-state vector, E, is a position vector, not a direction vector.

Hence, the length of the end-state vector specifies how close the

patient is to reaching the end-state.

Support for the force theory’s account of CAUSE, ALLOW,

and PREVENT was provided in a series of experiments in

which participants categorized 3-D animations of realistically

rendered objects with trajectories that were wholly determined

by the force vectors entered into a physics simulator. As reported

in Wolff (Wolff and Zettergren, 2002; Wolff, 2007), people’s

descriptions of the events closely matched the predictions of the

model.

COMBINING RELATIONS IN THE FORCE THEORY

In addition to explaining the representation of individual causal

relations, the force theory also explains how individual rela-

tions can be joined to form causal chains and how these chains

may then be used to derive new overarching causal relations.

In the force theory, a new overarching configuration of forces

is derived by selecting and adding certain forces from the

sub-configurations. Specifically, an affector force is determined

by selecting the affector force from the first sub-configuration

of forces; a patient force is derived from the vector addition

of all of the patient forces in the sub-configurations; and an

endstate vector is determined by selecting the endstate vec-

tor from the last sub-configuration of forces. While the pro-

cess used for deriving an overarching configuration of forces

is the same across all types of causal chains, the manner in

which the causal chains is constructed in the first place depends

on whether the chain involves the transmission or removal of

forces.

In transmissions of force, the resultant of the first sub-

configuration of forces is used as the affector of the subsequent

configuration of forces. The idea can be explained in terms of

a simple sequence of collision events like the one depicted in

Figure 3. In Figure 3, car A begins moving first, it hits B, and B

then hits C, sending C over the line. The animation can be sum-

marized by the sentence A caused C to cross the line, implying that

the individual relations in the causal chain can be combined to

form an overarching causal relationship between non-contiguous

entities2 .

Figure 4 offers a different view of the same sequence of events

shown in Figure 3. On the left side of Figure 4 is a picture of

the first frame of the animation. Above car B and C are CAUSE

configurations of forces. In the first CAUSE configuration, the

affector force (A) comes from car A and the patient force (B)

comes from car B. In the second CAUSE configuration, the affec-

tor force is the resultant of the A and B forces in the first CAUSE

configuration. The patient force in the second CAUSE config-

uration is C, specifically, its resistance to moving forward. The

resultant of the affector and patient forces acting on the third car

sends it over the line. In Figure 4, the direction and speed of A

and B are determined by the direction and magnitude of the (red)

affector vectors acting on A and B.

Whereas some causal chains involve transmissions of force,

other causal chains involve the removal of a force. When a chain

2The availability of a construal that highlights just the initial and final ele-

ments of causal chain has been referred to in the linguistics literature as

windowing of attention (Talmy, 2000). The phenomenon was also noted by

Michotte (1946/1963) as the tool effect: In a three object chain, A appears

to launch C while B simply “drops out” as if it were a tool for A (Hubbard,

2013a).
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FIGURE 3 | The animation instantiates a CAUSE/CAUSE causal

chain in which A causes B, and B causes C. A begins moving

first. It hits B, sending B into C, which then moves over the

line. The arrows indicate the direction of the cars’ motion. The

animation can be summarized by the sentence A caused C to

cross the line.

FIGURE 4 | Above cars B and C are CAUSE configurations of forces. The

smaller vectors pointing to the left are the patient vectors acting on cars B

and C (i.e., friction). The longer vectors (with big heads) pointing to the right

are affector vectors and the dashed vectors are the resultant vectors. In this

sequence of collisions, the resultant vector associated with car B becomes

the affector vector acting on car C. On the right side are two free-body

diagrams depicting the same configurations of forces shown on the left, but

this time, they are arranged vertically rather than horizontally. In the free-body

diagrams, the line pointing down shows how the resultant of the first CAUSE

configuration becomes the affector in the second CAUSE configuration.

involves the removal of a force, the manner in which resultant

forces become affector forces reverses. To illustrate, consider, a

chain of PREVENT relations such as A PREVENTS B and B

PREVENTS C. A chain of PREVENT relations is known as a dou-

ble prevention (Collins, 2000; Hall, 2000, 2004, 2006; Schaffer,

2000; Dowe, 2001; McGrath, 2005; Sartorio, 2005; Livengood and

Machery, 2007; Lombrozo, 2010; Wolff et al., 2010; Walsh and

Sloman, 2011). At first glance, it may be unclear how a double pre-

vention could be realized because if A prevents B, B cannot then

prevent C because B has already been prevented. The solution to

how a double prevention can occur rests in the order in which

the prevent relations are realized. In particular, a double preven-

tion can occur if the second prevent relation is realized before the

first prevent relation is realized. So, for example, if A prevents B

and B prevents C, such a chain can occur if B is first preventing

C and then A prevents B. The intuition behind this can be illus-

trated with a real world example. Consider pulling a plug to allow

water to flow down a drain. Such a sequence of PREVENTs begin

with the plug (B) preventing the water (C) from draining (that is

the second relation in the double prevention). Then, someone (A)

prevents B by pulling the plug, that is, by removing B’s force on C.

Note that when A pulls B, A opposes not just the force associated

with B, but also the force associated with C, that is, the resultant

of the B and C forces (the plug and the water). Thus, in the case

of double prevention, the resultant of the second premise (CB),

which is computed first, serves as the patient vector in the first

premise (BCB). The way forces are transmitted in a double pre-

vention can be illustrated in a different way based on the chain

depicted in Figure 5.

In the beginning of the animation depicted in Figure 5, C

approaches the line. B prevents C from crossing the line by pulling

C back with a rope. The middle panel shows A pushing B back,

thereby loosening the rope between B and C. In the panel on

the far right, with the removal of B’s force on C, C crosses the

line. The animation can be summarized by the sentence A allowed
C to cross the line, implying that the individual relations in the
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sequences of events can be combined to form an overarching

causal relationship between non-contiguous entities. A differ-

ent way of viewing the same sequence of events is shown in

Figure 6.

On the left side of Figure 6 is a frame from one of the mid-

dle frames of the animation. Above B and C are PREVENT

configurations of forces. On the left side of Figure 6, in the sec-

ond PREVENT configuration (involving car C), the affector force

comes from car B and the patient force comes from car C. In the

first PREVENT configuration (on the left side of Figure 6), the

affector force comes from A while the patient force comes from

the sum of the forces B and C, that is, BC.

On the right side of Figure 6 is a pair of free-body diagrams

depicting the same configuration of forces shown in the frame of

the animation, this time arranged vertically. The diagram above

depicts the configuration of forces acting on car B, while the dia-

gram below depicts the configuration of forces acting on car C. As

discussed above, in chains of PREVENT relations, the resultant of

the second PREVENT configuration serves as the patient vector

in the first PREVENT configuration. This transmission of forces

is reflected in the vertical arrow connecting the resultant vector

in the lower configuration with the patient vector in the higher

configuration.

COMPOSING CAUSAL RELATIONS

As discussed earlier, the process of composing causal relations

involves constructing an overall summative configuration of

forces based on all of the configurations in the chain. Whether

the chain involves the transfer or removal of a force, the manner

in which a summary configuration is derived remains the same.

Figure 7 shows how a summary configuration is derived from a

chain of two CAUSE relations. As depicted in Figure 7, the affec-

tor in the summary configuration is the affector from the first

relation (A); the end-state is based on the end-state vector in the

last relation (E); and the patient in the summary configuration is

derived by summing all of the remaining forces in the causal chain

(B + C).

ALLOW RELATIONS

The force theory offers an account of how people represent

ALLOW relations. Following McGrath (2003), we propose that

ALLOW relations are necessarily based on double preventions

(see also Barbey and Wolff, 2007; Wolff et al., 2010). In the sim-

plest case, ALLOW relations involve removing a force that was

originally preventing an event from happening. An example is

given in the animation depicted in Figure 5: when A pushes B

toward C, it allows C to cross the line. This account of ALLOW

FIGURE 5 | The still frames depict key stages in a PREVENT/

PREVENT chain. First, C attempts to cross the line but is prevented

by B. Then, A pushes B toward C, preventing B from preventing C.

With the removal of B’s preventive force, C crosses the line. The

animation can be summarized by the sentence A allowed C to cross

the line.

FIGURE 6 | The scene depicts the configuration of forces instantiated

in a PREVENT/PREVENT causal chain. The smaller vectors pointing left

and right are patient vectors, while the longer vectors (with big heads) are

affector vectors. The dashed vectors are resultant vectors. On the right

side are two free-body diagrams depicting the same forces shown on the

left arranged vertically. In the diagrams, the vector E is the position vector

pointing to the end-state, which, in the animation on the left, is the area

on the right side of the line. Note that in a double prevention, the

resultant vector of B and C, CB, becomes the patient vector in the

interaction between cars B and A.
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FIGURE 7 | The affector force in the summary configuration, A, is the

affector force in the first relation, A. The end-state in the summary

configuration is the end-state vector from the last relation. The patient force

in the summary configuration, C, is based on the vector addition of all of

the patient forces in the chain (B and C).

was supported in a set of studies described in Wolff et al. (2010).

Participants saw animations like the one shown in Figure 5 and

were asked to choose one of several possible descriptions. Across

a range of double preventions, participants indicated that the rela-

tionship between the first and last entities in a double prevention

instantiated an ALLOW relation. We further propose that the con-

cepts of ENABLE and LET are closely related to that of ALLOW.

All three concepts entail double preventions but differ slightly

in the manner in which the particular PREVENT relations are

instantiated3. In all cases of double prevention, the chaining of

two PREVENT relations leads to what could be called a posi-

tive relation, much like double negatives in a sentence imply a

positive.

ACCOUNTING FOR NEGATION

The force theory offers an account of the negation of causal rela-

tions. There are two kinds of causal negation, one of which is

causation by omission. Causation by omission is causation in

which an absence of an influence brings about an effect, as in

The absence of nicotine causes withdrawal or Not watering the plant
caused it to wilt (Schaffer, 2000; Wolff et al., 2010). Causation of

omission can be expressed by a not-operator applied to the first

argument of a cause relation, as in ¬A CAUSES B. In this paper,

we refer to a causal relation like ¬A CAUSES B with the expres-

sions ¬CAUSE or ¬C. Following McGrath (2003), we propose

that causation by omission is another way of describing a double-

prevention. When we say A PREVENTS B and B PREVENTS C,

we can re-express the double prevention as causation by omis-

sion: the lack of B allows/causes C. In a series of studies in

3In the following experiments, all references to the concept of ALLOW assume

that the underlying forces form a double prevention. We limited the forces

underlying double prevention to those leading to an ALLOW conclusion in

a qualitative manner, specifically, by only using the patient vector in the sec-

ond premise of the double prevention. We further assume the resultant of an

ALLOW relation that is passed on to the next relation is based on the vector

addition of all of the (non-derived) forces in the two PREVENT relations, not

just the resultant of the last PREVENT relation in the double prevention. It is

in this way that the two prevention relations are treated as a single unit in the

causal chain.

Wolff et al. (2010), we found evidence for this proposal: when

shown animations of double preventions, people endorsed state-

ments stating that the lack of the second entity (i.e., B) in a double

prevention allowed or caused the occurrence of the third entity. In

particular, when people were shown double preventions like the

one shown in Figure 6, they were willing to endorse the statement

the absence of B caused/allowed C to cross the line. With respect

to the force theory, an expression like ¬A CAUSES B entails the

occurrence of a double prevention before the CAUSE relation,

thus leading to a three-premise chain, that is, A PREVENTS B,

B PREVENTS C, and C CAUSES D. A conclusion is generated

between the A and D entities like any other relation composition.

This conclusion is then re-phrased in terms of the absence of the

second entity, i.e., Lack of B caused D (Wolff et al., 2010). It should

be noted that in causation resulting from an omission, force is not

transmitted from the cause to the effect; rather, a force is removed

or not realized and an effect results (Wolff et al., 2010).

A second kind of causal negation is the causation of an absence,

as exemplified in expressions of the form A CAUSES ¬B, or

more intuitively, by such statements as Pain causes lack of sleep
and Black holes allow no escape. We propose that people rep-

resent causation of an absence by treating the negation of the

consequent as a PREVENT relation in the causal chain. The

PREVENT relation is added to the causal chain by assuming an

unnamed entity—which can be referred to by x—to connect the

relations. Expressions of the form A CAUSES ¬B are thereby

represented as A CAUSES x, x PREVENTS B. The overarching

relation implied by this causal chain is based on the relation

composition of CAUSE and PREVENT relations, which accord-

ing to the force theory, is a PREVENT relation virtually 100% of

the time. Thus, according to the force theory A CAUSES ¬B is

virtually synonymous with A PREVENTS B4.

ACCOUNTING FOR MULTIPLE CONCLUSIONS

As discussed in the previous sections, the composition of a dou-

ble prevention can lead to an ALLOW conclusion. However,

interestingly, the composition of a double prevention sometimes

leads to a CAUSE conclusion (McGrath, 2003; Barbey and Wolff,

2006, 2007; Chaigneau and Barbey, 2008; Sloman et al., 2009;

Wolff et al., 2010). Consider, for example, the double preven-

tion instantiated in dropping a pencil to the floor: initially, a

person prevents the pencil from falling by holding it in his or

her hand, but this prevention is prevented by opening the hand,

with the pencil falling as a result. One could describe this sit-

uation as instantiating an ALLOW relation: The person allowed
the pencil to fall to the floor, but one could also describe the

situation as instantiating a CAUSE relation: The person caused
the pencil to fall to the floor. Some scenarios seem to be biased

more toward ALLOW interpretations, such allowing water to flow

down the drain by pulling a plug. Other scenarios are more biased

toward CAUSE interpretations. Imagine a situation in which a

person knocks out a post resulting in the collapse of a roof. It

sounds more natural to say the person caused the roof to collapse

4When the magnitude of the patient is 0, the configuration of forces is poten-

tially compatible with A CAUSES¬B but not A PREVENTS B, and it is because

of this one difference that the two expressions are not perfectly synonymous.
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than that he allowed the roof to collapse. The question of what

biases a double prevention toward CAUSE or ALLOW is inter-

esting, but for present purposes, we point out that the force

theory predicts that double preventions are potentially ambigu-

ous between CAUSE and ALLOW relations. The reason why is

highlighted exemplified by the two double prevention shown in

Figure 8.

As shown on the left side of Figure 8, in some double preven-

tions, adding the two patient vectors in the premises results in a

patient vector in the conclusion (C) that points toward the end-

state, leading to an ALLOW configuration. On the other hand, as

shown on the right side of Figure 8, adding the patient vectors can

also result in a patient in the conclusion pointing away from the

endstate, resulting in a CAUSE configuration. Although certain

sets of premises may be compatible with more than one conclu-

sion, the force theory makes it possible to determine the prob-

ability of any conclusion for a given set of premises. One way in

which these probabilities can be calculated is by using integral cal-

culus, as explained in Appendix B of the Supplemental Materials.

Another way is to use an iterative procedure that varies the magni-

tudes of each of the forces in the causal chain and then counts the

number of times a particular conclusion is generated. A program

has been written to conduct such a process (http://psychology.

emory.edu/cognition/wolff/software.html). The results from this

simulation (as well as from integral calculus) indicate that dou-

ble preventions will lead to ALLOW conclusions 62% of the

time, and CAUSE conclusions 38% of the time. In other rela-

tion compositions, only one conclusion is predicted. For example,

the composition CAUSE◦PREVENT is predicted to give rise to

PREVENT conclusions 100% of the time. In still other relation

compositions, the theory still predicts only one conclusion, but at

a weaker level. For example, the composition PREVENT◦CAUSE

gives rise to PREVENT conclusions 37% of the time. The

remaining 63% of the conclusions are associated with an unde-

fined configuration of forces. Under these conditions, we pre-

dict that people would associate a PREVENT◦CAUSE compo-

sition with a PREVENT conclusion, but to a weaker degree

than they would a CAUSE◦PREVENT composition, which result

in PREVENT conclusions 100% of the time. Thus, in the

absence of clear information about the magnitude of the vec-

tors, the force theory explains how a particular causal chain

may be probabilistically related to a particular conclusion. In

effect, the force theory explains how different causal structures

can give rise to different probability distributions for different

conclusions.

SUMMARY AND PREDICTIONS OF THE THEORIES

As discussed in the previous sections, three theories provide

accounts of how people compose causal relations. Each of these

theories makes assumptions about the basic units of cognition

that are involved in causal reasoning, the complexes of units that

define causal relations, the processes involved in causal composi-

tion, and the number of conclusions that may follow from a par-

ticular causal composition. These assumptions are summarized in

Table 4.

One of the key differences between the three theories concerns

whether they predict causal composition can give rise to multiple

conclusions. The mental model theory predicts a single conclu-

sion for each composition, whereas the causal model theory and

the force theory predict that certain causal compositions can give

rise to multiple conclusions. The indeterminacy predicted by the

force theory may come as a surprise given the theory’s ground-

ing in perceptual experience. The indeterminacy predicted by the

force theory does not simply emerge with the shift to multiple

events: in the force theory, a particular kind of causal relation

(e.g., CAUSE) viewed multiple times will give rise to a set of causal

relations of the same kind (e.g., CAUSE). Rather, the indetermi-

nacy predicted by the force theory emerges with a shift from single

relations to causal chains viewed multiple times: the theory pre-

dicts that relation compositions conducted over the same kind of

causal chain multiple times will sometimes give rise to different

kinds of overarching causal relations. In effect, the force theory

offers an account of how deterministic causation might be related

to probabilistic causation.

Arguably, the most important difference between the three

theories concerns the basic units of cognition. In the case of the

mental model and causal model theories, the underlying unit

complexes are abstract. In the case of the force theory, in con-

trast, the underlying units are iconic. The iconic nature of the

mental units in the force theory allow it to make predictions that

the other theories cannot make. In particular, the force theory is

able to make predictions about how causal chains and their nega-

tions may be instantiated in the physical world. This is potentially

important because if the force theory is right, then the mental

codes used in the perception of causal events may be the same

codes used in causal reasoning.

EXPERIMENT 1

In the following experiment we examined whether the configu-

rations of forces specified in the force model can be entered into

a physical simulator to produce animations reflecting real-world

FIGURE 8 | The composition of two PREVENT relations can either lead to an ALLOW (left side) or CAUSE (right side) conclusion.
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causal chains and then whether these animations are identified

by people as instantiating the kinds of causal relations specified

in the theory. These predictions were tested by creating the nine

possible kinds of causal chains that can be formed from all pos-

sible pairings of CAUSE, ALLOW, and PREVENT. The nine types

of animations used in this experiment are listed in Table 5, two

of which were depicted in Figures 3, 5. The force theory not only

predicts how different kinds of causal chains might be instanti-

ated in the physical world, but also how these causal chains might

be described. The mental model and causal theories are unable to

predict how various kinds of causal chains might be instantiated,

but are able to predict how these chains might be described once

the chains are represented in terms recognized by the theories.

The predictions of the three theories are shown in Table 5.

As can be seen in Table 5, for this particular set of relation

compositions, the three theories make very similar predictions

about how the various kinds of causal chains might be composed,

though there are a few differences. For several of the compo-

sitions, the force theory predicts more than one conclusion;

however, in each case, one conclusion is predicted to dominate.

The causal model theory also predicted more than one response

for one of the causal chains, P/P, that is for double prevention.

However, while the causal model theory predicts that double pre-

ventions can lead to either CAUSE or ALLOW conclusions, it does

not specify which of these responses should dominate. Given that

the causal model is silent with respect to which responses should

dominate, we assigned to the theory the prediction that ALLOW

and CAUSE relations should each be expected to appear 50% of

the time.

There were two sub-experiments. The purpose of Experiment

1a was to verify that the causal chains used in the following

Experiment 1b contained the intended component relations. The

purpose of Experiment 1b was to test whether participants com-

bined the sub-relations as predicted by the three theories.

EXPERIMENT 1A

In this experiment, each of the animations used in the follow-

ing experiment, Experiment 1b, were re-rendered as two separate

animations: one showing the cars involved in the first causal rela-

tion and the other showing the cars used in the second causal

relation. For example, in a CAUSE/CAUSE causal chain, partic-

ipants saw an animation showing either cars A and B or cars

B and C. After watching an animation, participants choose the

expression that best described the relation between the cars in the

animation (e.g., A and B or B and C). The expressions named

two cars joined by the verbs cause, allow, or prevent, or the option

“none of the above.” The choices predicted by the force theory are

shown in the bottom half of Table 6.

Methods

Participants. The participants were 24 Emory University under-

graduates who took part in the study for course credit. All par-

ticipants were native speakers of English. In this and all following

experiments, participants gave informed consent in accordance

with the requirements of the Internal Review Board at Emory

University.

Materials. Eighteen 3D animations were made from an anima-

tion package called Autodesk 3 3ds Max 8. The eighteen anima-

tions depicted either the first or second part of one of nine causal

chains: A/A, A/C, A/P, C/A, C/C, C/P, P/A, P/C, and P/P. The

direction and speed of the cars was calculated using a physics

simulator called Havok Reactor, which is a sub-program in 3ds

Max. The mass of each car, including its wheels, was 5 kg (approx-

imately 11 pounds). Table A1 in the Supplementary Materials

shows of the forces in Newtons entered into the physics simulator

for each of the cars that appeared in the animations. As a matter of

comparison, the amount of force exerted by gravity on an object

with a mass of 1 kg near the surface of the earth is approximately

10 N. The number of cars differed across the animations because

the different kinds of relation compositions required different

numbers of forces. For example, a C/C chain only requires three

cars in order to instantiate three unique forces (see Figures 3, 4),

whereas a C/A chain requires four cars in order to instantiate

four unique forces because the ALLOW relation is composed of

two PREVENT relations. All of the interactions occurred within

Table 4 | Three models of causal composition and how they compare on several key dimensions.

Mental model theory Causal model theory Force theory

Basic units of cognition States of affairs Variable/event states Forces

Basic relations between units Co-occurrence Functional relation Spatial orientation/Relative magnitude

Complexes of units defining causal relations Mental models Structural equations Configurations of force

Process involved in relation composition Conjoining mental models Variable substitution Vector addition

Number of conclusions per composition One Sometimes more than one Sometimes more than one

Table 5 | Predicted relation composition for each type of causal chain animation used in Experiment 1.

A/A A/C A/P C/A C/C C/P P/A P/C P/P

Mental model theory A A P A C P P P P

Causal model theory A A P A C P P P A (50%) C (50%)

Force theory A A (76%) C (24%) P A (76%) C (24%) C P P P A (62%) C (38%)

C, “Cause”; A, “Allow”; P, “Prevent.”
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Table 6 | Experiments 1a predictions and results for entire chains [Mean (SD)] and Experiment 1b predictions and results individual component

relations [Mean (SD)].

Composition A/A A/C A/P C/A C/C C/P P/A P/C P/P

Prediction A A P A C P P P C (62%) A (38%)

“Cause” 0.04 (0.204) 0.08 (0.282) 0.04 (0.204) 0.17 (0.381) 0.79 (0.415) 0.08 (0.282) 0.04 (0.204) − 0.50 (0.511)

“Allow” 0.63 (0.495) 0.67 (0.482) 0.13 (0.338) 0.67 (0.482) 0.13 (0.338) − 0.08 (0.282) 0.04 (0.204) 0.50 (0.511)

“Prevent” 0.13 (0.338) 0.04 (0.204) 0.50 (0.511) 0.04 (0.204) − 0.83 (0.381) 0.79 (0.415) 0.88 (0.338) −

“No verb” 0.21 (0.415) 0.21 (0.415) 0.33 (0.482) 0.13 (0.338) 0.08 (0.282) 0.08 (0.282) 0.08 (0.282) 0.08 (0.282) −

1ST RELATION

Prediction A A A C C C P P P

“Cause” 0.04 (0.204) 0.04 (0.204) 0.13 (0.338) 0.42 (0.504) 0.88 (0.338) 0.92 (0.282) 0.17 (0.381) − 0.08 (0.282)

“Allow” 0.71 (0.464) 0.79 (0.415) 0.75 (0.442) 0.25 (0.442) 0.04 (0.204) − 0.08 (0.282) 0.08 (0.282) 0.08 (0.282)

“Prevent” 0.08 (0.282) − − 0.38 (0.495) − 0.04 (0.204) 0.67 (0.482) 0.79 (0.415) 0.79 (0.415)

“No verb” 0.17 (0.381) 0.17 (0.381) 0.13 (0.338) 0.21 (0.415) 0.08 (0.282) 0.04 (0.204) 0.08 (0.282) 0.04 (0.204) 0.04 (0.204)

2ND RELATION

Prediction A C P A C P A C P

“Cause” 0.04 (0.204) 0.50 (0.511) − 0.08 (0.282) 1 (0) − 0.04 (0.204) 0.83 (0.381) −

“Allow” 0.79 (0.415) − − 0.83 (0.381) − − 0.54 (0.509) 0.04 (0.204) −

“Prevent” 0.04 (0.204) 0.13 (0.338) 0.96 (0.204) 0.04 (0.204) − 0.96 (0.204) 0.08 (0.282) 0.04 (0.204) 0.96 (0.204)

“No verb” 0.13 (0.338) 0.38 (0.495) 0.04 (0.204) 0.04 (0.204) − 0.04 (0.204) 0.33 (0.482) 0.08 (0.282) 0.04 (0.204)

Participant’s modal responses are in bold.

a single dimension; as a consequence, the directions of the forces

listed in Table A1 are described as either to the right or left. In

this simulated world, the cars were 2 feet, 5 inches. The camera

was directed toward the center of the interaction at an angle of

15 degrees and was located 18 feet, 8 inches away from the cen-

ter of action. In every animation, A was green, B was red, C was

blue, D was yellow, and E was purple. The cars moved over a gray

cement surface and the sky was a slightly lighter gray. The anima-

tions used in this experiment can be viewed at http://psychology.

emory.edu/cognition/wolff/animations.html.

Procedure. The animations were presented in random order

on Windows-based computers using E-Prime (version 2.0) by

Psychology Software tools. Participants were told that they would

see a series of animations in which cars bumped into or pulled

one another. After each animation, participants chose a sentence

that best described the occurrence. All of the sentences named

the first and last cars in the causal chain and were the same

(A____ C to [from] cross[ing] the line) except for the verb, which

was caused, allowed or prevented. Another option was none of the
above. Participants were instructed to choose the sentence that

best described what actually occurred in the scene, not what could

have occurred. Participants indicated their answers by clicking a

radio button next to their choice.

Results and discussion

As shown in the lower two sections of Table 6, participants

described the two parts of the causal compositions as intended.

For the animations depicting the first and second relations of

the A/A chain, participants chose the sentences containing allow
and allow, χ

2(3, N = 24) = 30.2, p < 0.0001, χ
2(2, N = 24) =

24.56, p < 0.0001; for the animations depicting the first and sec-

ond relations of the A/C chain, participants chose the sentences

containing allow and cause, χ
2(2, N = 24) = 25.04, p < 0.0001,

χ
2(2, N = 24) = 6.08, p < 0.05; for the animations depicting the

first and second relations of the A/P chain, participants chose the

sentences containing allow and prevent, χ
2(1, N = 24) = 6.76,

p < 0.01, χ
2(1, N = 24) = 21.16, p < 0.001; for the animations

depicting the first and second relations of the C/C chain, partici-

pants chose the sentences containing cause and cause, χ
2(2, N =

24) = 31.75, p < 0.0001, χ
2(1, N = 24) = 18.62, p < 0.0001;

for the animations depicting the first and second relations of the

C/P chain, participants chose sentences containing cause and pre-
vent, χ2(1, N = 24) = 12.46, p < 0.0001, χ2(1, N = 24) = 20.17,

p < 0.0001; for the animations depicting the first and second rela-

tions of the P/A chain, participants chose sentences containing

prevent and allow, χ
2(2, N = 24) = 12.00, p < 0.01, χ

2(3, N =

24) = 15.67, p = 0.001; for the animations depicting the first and

second relations of the P/C chain, participants chose the sentences

containing prevent and cause, χ2(2, N = 24) = 27.91, p < 0.0001,

χ
2(2, N = 24) = 27.0, p < 0.001; and for the animations depict-

ing the first and second relations in the P/P chain, participants

chose the sentences containing prevent and prevent, χ
2(2, N =

24) = 23.25, p < 0.0001, χ
2(1, N = 24) = 20.167, p < 0.001. In

the case of the C/A chain, the most frequently chosen sentence for

the first relation was the one containing cause, as predicted, but

participant’s choices in this case did not differ from chance, χ2(3,

N = 24) = 3.25, p = 0.355. For the animation depicting the sec-

ond relation of the C/A chain, participants’ modal response was

allow, χ2(2, N = 24) = 28.88, p < 0.0001.

EXPERIMENT 1B

The goal of this experiment was to examine how people

form causal compositions from depictions of causal chains.

Participants saw animations of various kinds of causal chains.

For example, in one case, participants saw an animation of a
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CAUSE/CAUSE causal chain involving three cars, A, B, and C.

After watching an animation, participants choose the expression

that best described the relation between the first and last cars in

the chain (e.g., A and C). The expressions named two cars joined

by the verbs cause, allow, or prevent, or the option “none of the

above.” Participants’ predicted choices are shown in the top half

of Table 6.

Methods

Participants. The participants were 25 Emory University under-

graduates who took part in the study for course credit. None of

the participants in the current study participated in Experiment

1a. All participants were native speakers of English.

Materials. Nine 3D animations were made from an anima-

tion package called Autodesk 3 3ds Max 8 as described in

Experiment 1a.

Procedure. The procedure was the same as in Experiment 1a.

Participants watched animations and then chose a sentence that

best described what they saw. The sentences named the first and

last cars in the animation. The sentence choices were the same as

in Experiment 1a.

Results and Discussion

The predictions of the force theory were fully borne out by the

results. The top of Table 6 shows the percentage of times people

chose each of the four options for each of the nine chains.

As shown at the top of Table 6, for every type of causal chain,

people chose the sentence that matched the relation composition

predicted by the force theory. Specifically, for the animation

depicting the A/A chain, people chose the sentence contain allow,

χ
2(3, N = 25) = 21.56, p < 0.0001; for the A/C chain, they

chose the sentence containing allow, χ
2(3, N = 25) = 26.04,

p < 0.0001; for the A/P chain, they chose the sentence containing

prevent, χ
2(3, N = 25) = 13.88, p < 0.01; for the C/A chain,

they chose the sentence containing allow, χ2(3, N = 25) = 13.88,

p < 0.01; for the C/C chain, they chose the sentence containing

cause, χ2(2, N = 25) = 24.56, p < 0.0001; for the C/P chain, they

chose the sentence containing prevent, χ
2(2, N = 25) = 11.56,

p = 0.001; for the P/A chain, they chose the sentence containing

prevent, χ
2(2, N = 25) = 25.04, p < 0.0001; and for the P/C

chain, they chose the sentence containing prevent, χ
2(2, N =

25) = 33.68, p < 0.0001. For the P/P chain, participants used

both cause or allow verbs, just as predicted by the force theory.

Since the percentages for the two choices were the same and

participants did not choose any of the other options, chi-square

could not be computed.

The results support the assumption of the force theory that

the representations specified in the theory are iconic since they

could be entered into a physics simulator to produce events that

were classified by people as predicted by the theory. In contrast

to the predictions made by the mental model theory, people did

not indicate that the double preventions should lead to PREVENT

relations. According to the force theory and the causal model the-

ory, double preventions can lead to either CAUSE or ALLOW

responses, which is exactly what was observed. The results from

Experiments 1a,b imply that the simulation of causal chains may

be based on mental units that are also capable of supporting

a particular kind of causal reasoning in the form of relation

composition.

ABSTRACT CAUSATION AND FORCES

The results from Experiments 1 demonstrate how the process of

composing causal relations might be based on representations of

physical forces, but also suggest how the process of composing

causal relations might occur in the case of abstract causal rela-

tions, such as Tax cuts cause economic growth and Competition
prevents inflation. Evidence from cognitive psychology, cognitive

linguistics, and cognitive neuroscience has converged on the idea

that people may recruit representations from the physical domain

to understand the abstract, a proposal that has sometimes been

called the redeployment hypothesis (Boroditsky, 2001; Gentner

et al., 2002; Casasanto and Boroditsky, 2008; DeWall et al., 2010;

Chafee and Crowe, 2013; Parkinson et al., 2014). In the case of

the force theory, extending it from physical forces to abstract

forces (e.g., social forces) requires no change to the underlying

processing mechanisms. For example, if told that Stress causes for-
getfulness and Forgetfulness causes confusion, people may represent

the component causal relations by imagining CAUSE configura-

tions of forces like the one shown in Figure 2. The forces in this

case, would not be physical forces, but instead abstract influences.

The magnitude of the vectors would not be precise, but they

would not need to be because the force theory already assumes

that people do not have access to exact magnitudes of the forces

(Wolff, 2007); what they do have is knowledge of the relative mag-

nitudes and directions of the forces. People may represent abstract

versions of ALLOW and PREVENT by generating ALLOW and

PREVENT configurations of forces. Once abstract relations are

represented in terms of configurations of forces, the processes

used for composing configurations of forces in the physical world

can be recruited for composing configurations of forces in the

non-physical world.

Data already exists on the kinds of conclusions people draw

when they compose abstract causal relations. In Experiment 4

of Goldvarg and Johnson-Laird (2001), participants were pre-

sented with 16 different types of causal chains and were asked to

write out a conclusion. To minimize the effect of prior knowl-

edge, the relations in the chains involved abstract psychological

terms such as compliance, anxiety, and depression. Such terms are

vague enough that when they are placed in a causal chain, the

entire chain sounds plausible. For example, one of the sequences

read as follows:

Obedience allows motivation to increase.

Increased motivation causes eccentricity.

What, if anything, follows?

The specific 16 chains are listed in Table 7, along with the relation

compositions predicted by the mental model theory, the causal

model theory, and force theory. Table 6 also shows the most fre-

quent relation composition chosen by participants in Goldvarg

and Johnson-Laird’s (2001) Experiment 4.

The chains examined in Goldvarg and Johnson-Laird’s (2001)

Experiment 4 included the nine causal chains examined in
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Experiment 1a, plus seven others. All told, the mental model

theory predicted the modal conclusion produced by the partici-

pants for all 16 causal chains. The causal model theory and the

force theory also did reasonably well, each accounting for the

modal conclusion for 13 of the 16 compositions. These results

provide some initial evidence that the predictions of the force

theory extend beyond the just the physical domain.

For several chains, the predictions of the force theory, as well

as of the causal model theory, diverged from what was observed.

One such chain was A/P. Whereas the mental model predicted

an ALLOW¬ (i.e., A allows ¬B) conclusion, both the force the-

ory and the causal model theory predicted PREVENT, which was

also the result observed in Experiment 1a. Another chain for

which the results differed was P/P. As discussed earlier, a sequence

of PREVENT relations constitutes double prevention, which,

according to many researchers and the results from Experiment

1a, should lead to either ALLOW or CAUSE compositions (Foot,

1967; McMahan, 1993; McGrath, 2003). One reason why partici-

pants may have chosen PREVENT over either CAUSE or ALLOW

in Goldvarg and Johnson-Laird (2001) is because of the “atmo-

sphere” of the chain (see Bucciarelli and Johnson-Laird, 1999).

In particular, participants may have chosen a PREVENT con-

clusion because the relations in the premises were PREVENT

relations, not necessarily because the chain of two PREVENT

relations led to a PREVENT composition. The third conclusion

missed by both the causal model theory and the force theory

was A/¬C (i.e., A allows B, ¬B causes C): the mental model the-

ory predicted the observed modal response of ALLOW¬ (i.e., A

allows ¬B), whereas the causal model theory and the force theory

predicted the conclusion would be PREVENT. To better under-

stand the nature of these differences, we re-ran Goldvarg and

Johnson-Laird’s (2001) Experiment 4.

EXPERIMENT 2

The ability of three theories of causal composition to address

abstract causation was examined in this experiment. The mate-

rials used in this experiment were those used in Goldvarg and

Johnson-Laird’s (2001) Experiment 4. In particular, all of the

materials used in this experiment were based on psychological

terms that were highly familiar to the participants but also vague

enough that they could be used in different causal statements

with different relations and still sound plausible5 . For instance,

as an example of the causal chain P/A, participants read Learning
prevents anxiety, Anxiety allows fixation. Also as in Goldvarg and

Johnson-Laird (2001), negations were encoded with the word no.

For instance, one example of ¬C read No learning causes anxi-
ety. As described below, our analyses include an assessment of the

modal response and measures that are sensitive to the distribu-

tion of responses (t-tests computed over correlations). Both of

these measures will be important in our assessment: the modal

response equates the theories so that they (broadly speaking)

motivate only one (dominant) conclusion, whereas the correla-

tion analysis allows us to assess the more fine-grained predictions

of each theory.

5We thank Eugenia Goldvarg-Steingold and Phil Johnson-Laird for access to

their materials.
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In generating the predictions for the three theories in this

experiment and in the experiments to follow, we adopted Sloman

et al.’s matching assumption, which can be viewed as a type

of atmosphere effect (see Bucciarelli and Johnson-Laird, 1999),

except that the effect does not necessarily lead to an incorrect

response. According to Sloman et al. (2009), people are biased

to generate causal compositions in which the arguments in the

conclusion match those in the premises. Thus, if the first premise

is given in terms of an absence, people will prefer to describe

the conclusion in terms of an absence. The matching assumption

turned out to be a good rule of thumb. However, there are cases

for which the matching assumption should probably be relaxed

since it occasionally lowers the fit to the data for all of the the-

ories, suggesting the existence of other biases; for example, there

may be a bias for conclusions without negations over those with

negations.

Methods

Participants. The participants were 20 Emory University under-

graduates who participated for course credit. None of the par-

ticipants in the current study participated in any of the other

experiments described in this paper. All participants were native

speakers of English.

Materials. The materials were based on two examples each of the

16 causal chains shown in Tables 6, 7. For example, the chain

C/C was instantiated by the pairs of sentences Obedience causes
motivation, Motivation causes eccentricity and Attention causes
rumination, Rumination causes paranoia. As demonstrated in

these examples, the premises were based on psychological terms

such as obedience, motivation, and paranoia. A complete list of the

materials is provided in Table A3 in the Appendix.

Procedure. The experiment was run on Windows-based comput-

ers using Presentation (version 12.2) by Neurobehavioral Systems.

Participants were told that the experiment concerned how people

reason on the basis of causal knowledge. They were told that

they would be presented with reasoning problems that consisted

of two statements, such as Smoking causes cancer, Cancer causes
health problems, which they should assume to be true. Each pair

of premises was followed by the question “What, if anything, fol-

lows?” For each pair of premises, participants were instructed

to type in a response. Participants were asked to think about

the premises carefully before drawing a conclusion, and they

were allowed to spend as much time as they needed on each

problem. Pairs of premises were presented one at a time in a dif-

ferent random order for each participant. The authors coded the

participants’ responses as to the type of conclusion generated.

Design. Participants were randomly assigned one of two lists.

Each list contained one half of the materials, which included one

example each of the 16 possible compositions.

Results and Discussion

The results provided support for all three models of causal com-

position. The predictions of the three models and the percentage

of times these predictions were observed are shown in Table 86.

A comparison between these results and those of Goldvarg and

Johnson-Laird (2001), reported in Table 7, shows a relatively high

level of agreement between the studies. Two cases where the con-

clusions differed were for the chains A/P and A/¬C. In both cases,

the participants in our study strongly preferred PREVENT con-

clusions, as opposed to ALLOW¬ conclusions in Goldvarg and

Johnson-Laird (2001). Another case where the conclusions in

the two studies differed was for the chain ¬C/A. In our study,

participants’ most frequent conclusion was ¬CAUSE (i.e., ¬A

causes C), whereas in Goldvarg and Johnson-Laird (2001), it

was ¬ALLOW (i.e., ¬A allows C). However, as shown in Table 8,

6The percentages in Tables 8–10 do not always sum to 100% because partic-

ipants sometimes indicated that no conclusion followed (Experiment 2) or

chose “none of the above” (Experiments 3 and 4).

Table 8 | Experiment 2 results and predictions by composition and theory.

Composition C/C C/A C/P C/¬C A/C A/A A/P A/¬C

Mental model theory C A P P A A *A¬ *A¬

Causal model theory C A P P A A P P

Force theory C A (76%) C (24%) P P A (76%) C (24%) A P P

Observed responses C (85%) A (95) P (100%) P (95%) A (65%) A (95%) P (80%) P (70%)

C (5%) C (35%) A¬ (0%) A¬ (0%)

Composition P/C P/A P/P P/¬C ¬C/C ¬C/A ¬C/P ¬C/¬C

Mental model theory P P P C ¬C *¬A ¬P ¬P

Causal model theory P P *A (50%) C (50%) C (50%) A (50%) ¬C *¬A ¬P ¬P

Force theory P P *A (62%) C (38%) C (49%) A (22%) ¬C (50%) ¬A (43%) *¬A (90%) ¬C (9%) ¬P (51%) ¬P (20%)

Observed responses P (75%) P (80%) P (65%) C (60%) ¬C (90%) ¬C (50%) ¬P (90%) ¬P (45%)

A (20%) A (15%) ¬A (0%) ¬A (40%) C (15%)

C (15%) P (15%)

C, “Cause”; A, “Allow,” P, “Prevent”; ¬C, e.g., “Not A cause B”; C¬ = e.g., “A cause not C”; *missed prediction, Observed responses in bold, conclusions that

were predicted by one of the theories.
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the percentage of ¬CAUSE, 50%, was only slightly higher than

that for ¬ALLOW, 40%, so the results observed here do not dif-

fer radically from those observed in Goldvarg and Johnson-Laird

(2001).

The mental model theory correctly predicted 13 of the 16

compositions, a result that was significantly greater than chance

by a binomial test, p < 0.05. The causal model theory and

the force theory correctly predicted 14 of the 16 composi-

tions, a result that also differed from chance by a binomial test,

p < 0.01.

It needs to be acknowledged that for two of the relation

compositions, ¬C/P and ¬C/¬C, the force theory predicted the

modal response, but at a different level of acceptability than what

was observed. For example, for ¬C/P, the force theory predicted

that people would produce ¬P at a level of 51%; ¬P was the dom-

inant response, but at a level of 90%. This difference in level of

acceptability predicted by the theory and actual responding need

not be interpreted as a problem for the force theory. It is quite

possible that in cases like ¬C/P, people were not happy with their

conclusion, but they went with it anyway because they could not

think of another possible response and they did not want to leave

the question unanswered.

One prediction that was missed by both the force theory and

the causal model was that associated with the chain P/P. In both

Goldvarg and Johnson-Laird and in this experiment, the modal

response was PREVENT, whereas in Experiment 1a, based on

visual materials, the model responses were ALLOW and CAUSE.

As already discussed, the force and causal model theories pre-

dict ALLOW and CAUSE conclusions. As mentioned earlier, one

reason why people may have reached a PREVENT conclusion to

chains containing two PREVENTs is because of an atmosphere

effect: with two PREVENT relations in the premises, partici-

pants may have been biased to report PREVENT conclusions. The

potential impact of atmosphere might be especially salient when

people do not fully understand the nature of the PREVENT rela-

tions in the premises, which is exactly what might be expected

given the nature of the materials used in this experiment. As dis-

cussed earlier, the materials used vague psychological terms that

could be combined in different ways while still sounding plau-

sible. These materials were used to minimize the influence of

prior knowledge, but because they were not based on real causal

relations, participants may have done less well in instantiating

the underlying representations, which may have partially com-

promised the composition process, making it more vulnerable

to atmosphere effects. Our speculation is supported by recent

findings that people are more likely to generate CAUSE and

ALLOW conclusions to double preventions when the conclu-

sions are supported by prior knowledge (Chaigneau and Barbey,

2008) than when they are not supported by prior knowledge.

This finding is consistent with the well-known phenomenon

that performance on reasoning problems often improves when

participants are given “concrete” or “realistic” content in the

task (Wason and Shapiro, 1971; Johnson-Laird et al., 1972;

Almor and Sloman, 2000; see Eysenck and Keane, 2000 for a

review). The potential benefits of computing causal composi-

tions from known causal relations were examined in the next

experiment.

EXPERIMENT 3

The purpose of Experiment 3 was to once again examine the

ability of the three models to predict the conclusions that fol-

lowed from the composition of relatively abstract causal relations.

As in Experiment 2, participants drew conclusions from a set of

two-premise problems. However, in this experiment, the premises

were based on actual causal relationships found in text that could

be accessed via the internet. By using such materials, we could

investigate the ability of the models to account for complex real

world causal relations. Some of the causal relations described

physical processes, but the majority of the causal relations were

quite abstract (e.g., Economic freedom causes wealth). A second

difference between the current experiment and Experiment 2

is that in the current experiment the number of chain types

was doubled. One final difference between the current experi-

ment and Experiment 2 was in the use of a different dependent

measure. Instead of having people type out responses, partici-

pants selected from a list of possible responses, such as CAUSE,

ALLOW, PREVENT, ¬A_CAUSE, etc. One of the advantages

to using a multiple-choice dependent measure is that it high-

lighted for the participants the full range of possible conclusions

that could be derived. A second advantage was that it poten-

tially encouraged participants to spend more time thinking about

the conclusions than typing out a response. Minimizing the

time requirements of the experiment was important since there

were 6 times as many trials in the current experiment than in

Experiment 2.

Methods

Participants. The participants were 40 Emory University under-

graduates who took part in the study for course credit.

Participants in the current study did not participate in any of the

other experiments described in this paper. All participants were

native speakers of English.

Materials. For each of the 32 causal compositions listed in

Table 8, we found six real-world examples for a total of 192 causal

chains (see Table A3 in the Appendix). All of the premises used

in these chains were found on the internet using the Google and

Yahoo search engines7 .

7Finding an example typically began with typing in a causal verb, sometimes

with a negation, such as cause, allow, prevent, lack of causes, absence of causes,
causes lack of, and then looking for results with an A-cause-verb-B structure.

We sought examples in which the A and B terms consisted of only one or two

words. Sometimes it was possible to shorten longer phrases into one or two

words. For example, the sentence Scanning probe microscopes allow observa-
tion of insulating organic materials was re-written as simply Microscopes allow
observation. In effect, the process of sampling the A and B arguments involved

finding the “head” noun of the A and B term phrases, that is, the main noun

that is modified by other elements in a noun phrase (Radford, 1988). Once a

possible premise was identified, we searched for a second premise that could

be linked to it. For example, given the premise Microscopes allow observation,

we looked for phrases containing a causal verb, either with or without nega-

tion, that either ended with microscopes or began with observation. We used

search terms such as cause microscopes, allows microscopes, observation causes,
observation allows, etc. As with the initial premise, the arguments in the second

premise sometimes needed to be reduced to their head nouns.
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Procedure. Participants were run on windows-based computers

in sound-attenuating carrels using E-Prime (version 2.0) by

Psychology Software tools. Participants were told that the exper-

iment concerned how people reason on the basis of causal

knowledge. They were told that they would be presented with

reasoning problems that consisted of two statements such as

Smoking causes cancer, Cancer causes health problems. Each pair

of premises was followed by the question “What, if anything, fol-

lows?” For each pair of premises, participants chose from a list

of ten possible responses including nine conclusions (CAUSE,

ALLOW, PREVENT, ¬A_CAUSE, ¬A_ALLOW, ¬A_PREVENT,

CAUSE¬, ALLOW¬, PREVENT¬) and “none of the above.” The

list of possible responses was changed to fit the content of each

particular composition. For example, for the premises Sanding
wood causes dust, Dust prevents good adhesion, the possible conclu-

sions included Sanding causes good adhesion, Sanding allows good
adhesion, Sanding prevents good adhesion, Lack of sanding causes
good adhesion, Lack of sanding allows good adhesion, and so on.

Participants were told to assume that the premises were true and

that they should select the conclusion that best followed from the

premises. Pairs of premises were presented, one at a time, in a

different random order for each participant.

Design.Participants were randomly assigned to one of two list ver-

sions. In each, participants made judgments on one half of the

materials, which included three examples each of the 32 possible

causal chains, for a total of 96 chains.

Results and Discussion

The results provided stronger support for the force theory and the

causal model theories over the mental models theory. The use of

real-world materials led to an improvement in the already high fit

to the data provided by the force theory and causal model the-

ory. Table 9 lists (in bold) the percentage of times that people

chose one of the types of conclusions predicted by at least one

of the theories. The mental model theory correctly predicted the

most frequent response on 26 of the 32 possible compositions,

a result that was significantly greater than chance by a binomial

test, p < 0.001. The force theory and the causal model theory cor-

rectly predicted 30 of the 32 possible compositions, which was

also significant by a binomial test, p < 0.000001. The Friedman

test indicated that the number of correct predictions made by the

force theory and the causal model theory was greater than the

number of correct predictions made by the mental model theory,

χ
2
(2) = 8.00, p = 0.018.

The two chains that were missed by the force theory, ¬C¬/A

and ¬C¬/P, were also missed by the causal model theory and

the mental model theory. The reason why the theories failed to

correctly predict these two compositions can be explained by

our adoption of the matching processing assumption. As dis-

cussed earlier, we assumed that people’s conclusions would be

expressed in a manner similar to the way they were expressed in

the premises. For example, if the first premise was given in terms

of an absence, we assumed that people would express the conclu-

sion in terms of an absence. In contrast to this assumption, the

modal response to ¬C¬/A was ALLOW, rather than ¬PREVENT,

as predicted by all three theories. As it turns out, in all three

theories, ¬PREVENT compositions can also be expressed as

ALLOW relations8. In the case of ¬C¬/P, the modal response was

PREVENT, instead of ¬ALLOW as predicted by the force theory,

or ¬CAUSE as predicted by the causal model and model theories.

As it turns out, the force theory predicts that ¬ALLOW implies

PREVENT 100% of the time, and the causal model theory pre-

dicts that ¬CAUSE can be re-described as PREVENT. In other

words, the mismatch between the predictions of the theories and

participants’ responses was due to our assumption that partici-

pants would describe the conclusions in a manner that matched

the premises. If we allow paraphrases of the predicted conclu-

sions, the force theory, and perhaps the causal model theory, are

able to predict the responses to all 32 chains.

One particularly important finding in this experiment was

with respect to P/P chains. Consistent with Experiment 1a, the

most frequently derived conclusion for these chains was ALLOW,

not PREVENT. As noted earlier, it has been argued that double

preventions should lead to either ALLOW or CAUSE conclusions

(Foot, 1967; McMahan, 1993; McGrath, 2003). The current find-

ings, based on real-world causal relations, provide support for this

claim.

The results from this experiment suggest that an approach to

relation composition based on iconic codes is as good as the causal

model theory and better than the mental model theory in being

about to predict abstract causal compositions. The force theory’s

ability to account for causal reasoning was strengthened when the

underlying causal relations were based on causal relations with

real world correlates, as used in Experiment 2.

In experiments reported so far, the relation compositions

involved only two relations. However, all of the theories allow

for relation compositions involving three or more relations. In

the case of the mental model theory, the composition of C/A/C

might begin with the derivation of a conclusion between the

first two relations, C and A (leading to an ALLOW conclusion),

which could then be composed with the next relation, CAUSE,

to yield the overall conclusion ALLOW. As discussed in Sloman

et al. (2009), in the causal model theory, the process of substitu-

tion can be extended to three-premise compositions and beyond.

Finally, in the case of the force theory, adding additional relations

simply involves adding together more patient vectors in the con-

clusion. In the next experiment, we examined the ability of the

three models to account for relation compositions involving 3

relations.

EXPERIMENT 4

As in Experiment 4, the materials were based on real-world

causal statements obtained from the internet. However, in this

experiment, the chains were based on three relations instead

of two.

Methods

Participants. The participants were 24 Emory University under-

graduates who took part in the study for course credit.

8For ¬C¬/A, the causal model theory implies C:= ∼(∼A) and X, which is

equivalent to ¬PREVENT (Sloman et al., 2009); however the composition can

also be re-described as C:= A and X, which maps onto ALLOW.
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Participants in the current study did not participate in any of the

other experiments described in this paper. All participants were

native speakers of English.

Materials. The materials were based on the 25 causal chains listed

in Table 10. We found four real-world examples for each of these

Compositions for a total of 100 causal chains (see Table A4 in

Appendix A in the Supplementary Materials). As in Experiment

3, all of the premises used in these compositions were found on

the internet using the Google and Yahoo search engines.

Procedure and Design. The procedure was essentially the same

as in Experiment 3, except that participants were presented with

three connected premises instead of two. For example, people saw

statements like Factories cause pollution. Pollution causes global
warming. Global warming prevents snow fall. Below each triplet

were ten possible responses including nine conclusions (e.g.,

Factories cause snow fall, Factories allow snow fall, Factories pre-
vent snow fall, Lack of factories cause snow fall, Lack of factories
allow snow fall, Lack of factories prevent snow fall, Factories cause
lack of snow fall, Factories allow lack of snow fall, Factories prevent
lack of snow fall) and None of the above. Participants were told to

assume that the premises were true and that they should select the

conclusion that best followed from the premises. Pairs of premises

were presented, one at a time, in a different random order for each

participant. The list of causal chains was divided in half, with each

list containing two examples of each type of causal chain. Half of

the participants saw one list and the remaining participants saw

the other list.

Results and Discussion

The results provided further evidence that people may reason

about causal chains using iconic codes, even when the component

causal relations are complex and abstract. The results are shown

Table 10 | Experiment 4 results and predictions by causal chain and theory.

A/C/C C/A/C C/C/A A/C¬/C¬ C¬/A/C¬ C¬/C¬/A C/C/C

Mental model theory A A A A *C¬ *P C

Causal model theory A A A A *¬P A C

Force theory A (62%) C (38%) A (65%) C (35%) A (69%) C (31%) A (95%) C (5%) A (52%) C (48%) A (93%) C (7%) C

Observed responses A (54%) A (58%) A (71%) A (42%) A (25%) A (63%) C (77%)

C (38%) C (27%) C (23%) C (19%) C (21%) C (17%)

¬P (15%) P (2%)

C¬ (8%)

C/C¬/C¬ C¬/C/C¬ C¬/C¬/C C¬/C/C C/C¬/C C/C/C¬

Mental model theory *P *P *P P P C¬

Causal model theory C *C C P P C¬

Force theory C (61%) A (39%) *C (60%) A (40%) C (65%) A (10%) P P C¬

Observed responses C (33%) C (18%) C (42%) P (46%) P (42%) C¬ (60%)

A (31%) A (13%) A (23%) C¬ (29%) C¬ (29%) P (25%)

P¬ (8) P¬ (27) P (13%)

C/P/P P/C/P P/P/C P/C/C C/P/C C/C/P

Mental model theory P P P P P P

Causal model theory C (50) A (50) C (50) A (50) C (50) A (50) P P P

Force theory C (61%) A (39%) A (64) C (37) C (49) A (22) P P P

Observed responses C (35) A (38) C (42) P (83) P (56) P (73)

A (25) C (4) A (33)

P (25) P (6) P (4)

Pn (21)

A/P/P P/A/P P/P/A C/P/¬C P/C/¬C C/¬C/P

Mental model theory P P P C C A

Causal model theory A A A C (50) A (50) C (50) A (50) C (50) A (50)

Force theory A (94) C (5) A (52%) C (48%) A (92) C (7) C (54) A (9) C (60) A (22) *C (60) A (40)

A (63) A (42) A (60) C (60) C (44) A (42)

C (0) C (21) C (0) A (19) A (21) C (19)

P (8) P (13) P (6) P (2) P (4) P (23)

C, “Cause,” A, “Allow”; P, “Prevent”; ¬C, e.g., “Not A cause B”; C¬ = e.g., “A cause not C”; *missed prediction; Observed responses in bold, conclusions that

were predicted by one of the theories.
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in Table 10, which lists (in bold) the percentage of times that peo-

ple chose one of the types of conclusions predicted by at least one

of the theories.

The mental model theory correctly predicted the most fre-

quent response in 14 of the 25 possible compositions, a result

that did not differ from chance by a binomial test, p = 0.69. The

force theory and the causal model theory correctly predicted 23 of

the 25 possible compositions, a result that differed from chance

by a binomial test, p < 0.001. The Friedman test indicated that

the number of correct predictions made by the force theory and

the causal model theory was greater than the number of correct

predictions made by the mental model theory, χ
2
(2) = 18.00, p <

0.001.

One chain that was missed by all three theories was C¬/C/C¬.

The mental model theory predicts that the modal response should

be PREVENT while the causal model and the force theory pre-

dict that it should be CAUSE. The actual modal response was

PREVENT¬. As it turns out, both the causal model and force

theory predict that PREVENT¬ is related to CAUSE (because

PREVENT¬ is a way of expressing a double prevention), so

PREVENT¬ conclusions were not at all inconsistent with these

theories.

One chain that both the mental model and the causal model

theory missed was C¬/A/C¬. The mental model theory predicted

CAUSE¬ and the causal model theory predicted ¬PREVENT,

whereas the actual modal response was ALLOW. As described

in Sloman et al. (2009), C¬/A/C¬ implies D:= ∼(∼A and X),

which cannot be re-described as D:= A and X, and hence the

conclusion ¬PREVENT cannot be re-expressed as ALLOW.

The second chain missed by the force theory was C/¬C/P.

The force theory predicted the conclusions CAUSE (60%) and

ALLOW (40%) while the observed conclusions were ALLOW

(42%) and CAUSE (19%). The causal model theory also pre-

dicted CAUSE and ALLOW, but not which conclusion should

occur more frequently. As it turns out, of the six cases for which

the causal model theory predicted both CAUSE and ALLOW,

the C/¬C/P chain was the only chain for which the force theory

did predict the most frequent conclusion. Indeed, given that the

causal model theory does not specify which conclusion should be

more frequent in chains where both CAUSE and ALLOW con-

clusions are predicted, it could be argued that the causal model

theory only correctly predicted 18 of the 25 modal responses, in

contrast to the force theory’s 23 out of 25. In sum, the results

indicate that the force theory provides at least as good account

of people’s causal compositions as the causal model theory, and a

better account than the mental model theory.

GENERAL DISCUSSION

In this paper we investigated three accounts of causal composi-

tion. One of the main questions addressed in this research was

whether generative causal reasoning could be accomplished in

terms of iconic mental codes, or whether such reasoning neces-

sarily involved the use of abstract mental codes. The results from

Experiment 1 provide strong support for the force theory over the

causal model and mental model theories. All of the theories did

a good job of predicting how the causal chains would be com-

posed, but only the force theory was able to be able to predict

how such chains might be instantiated in the physical world.

This is important because the ability to predict how the chains

might be instantiated in the world can be reversed to explain how

such events might be perceived. In the other theories, additional

machinery must be formulated to explain how the representa-

tions used in these theories are related to perceptual experience.

The remaining experiments examined whether reasoning on the

basis of iconic representations could account for the way people

compose abstract causal relations. The results in Experiment 2

showed that reasoning on the basis of iconic representations could

account for relation composition just as well as reasoning on the

basis of abstract representations. The results from Experiments

3, 4 showed that when the relations being composed were asso-

ciated with actual causal relations, an account based on iconic

mental codes was able to explain the data as well as or better than

accounts based on abstract mental codes.

SIGNIFICANCE OF CAUSAL COMPOSITION

Theories of relation composition allows us to address a number

of theoretical challenges in the causal representation and reason-

ing literatures. For one, theories of relation composition help

explain why causal relations sometimes require spatial and tem-

poral contiguity, while other times they do not (Einhorn and

Hogarth, 1986). The importance of spatial and temporal contigu-

ity has been repeatedly observed in standard “billiard ball” type

events in which one object hits and launches another into motion

(Michotte, 1946/1963; Leslie, 1984; for a review, see Scholl and

Tremoulet, 2000; Hubbard, 2013a,b). But clearly, in other sce-

narios, spatial-temporal contiguity is not needed. To borrow an

example from Davidson (2001, p. 177), putting poison in the

water tank of a spaceship while it is still on earth constitutes mur-

der even if the astronauts do not drink the water and die until

they reach Mars. Relation composition offers a way to address

this non-contiguity: when a causal relation consists of a sin-

gle relation, spatial-temporal contiguity is necessary, but when a

causal relation is derived from the composition of causal relations,

spatial-temporal contiguity is not necessary (Wolff, 2007).

Another phenomenon that theories of relation composition

help us to explain is the hierarchical structure of causal knowl-

edge. The process of relation composition results in an over-

arching causal relation. This summary relation can then serve as

a component in another causal chain, which, in turn, might be

chunked into an even more abstract causal relation (Keil, 2006;

Walsh and Sloman, 2011).

Yet another reason why causal relation composition may be

essential to our understanding of causal knowledge is that it may

support a special kind of causal learning. Consider, for exam-

ple, how people might learn the causal relation overgrazing causes
desertification. At first, overgrazing causes the lack of vegeta-

tion. Once the vegetation is removed, the dry unprotected soil is

blown away by the wind or washed away by water, leaving the

lower, infertile soil that prevents the re-establishment of plants.

Eventually, the dry rocky soil forms dunes (Wilson, 2002). The

causal relationship between overgrazing and desertification was

probably not learned by directly observing a statistical depen-

dency between overgrazing and desertification; the time periods

involved are too long. Instead, such relations are probably learned
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though the composition of simple causal relations into more

complex causal relations. When people acquire causal relations

from the composition of relations, it illustrates learning by rea-
soning (Barbey and Wolff, 2007). Learning by reasoning allows for

the online construction of causal structures from various snippets

of causal knowledge (di Sessa, 1993; Barsalou, 1999; Keil, 2006).

CONCLUSION

Much of the recent research on causal cognition has been domi-

nated by theories of causation that assume non-iconic represen-

tations. The emphasis is quite understandable since such theories

have been able to address in a rigorous fashion some of the most

interesting aspects of causal cognition, in particular, the prob-

lems of how people put causal relationships together into larger

structures and then reason over those structures. The force the-

ory represents the first iconic-based theory to address these more

demanding problems. The results from this paper show that a

process approach is not only able to address these kinds of prob-

lems, but may also offer a stronger fit to the data than accounts

based on abstract representations, demonstrating how the units of

cognition that are generated from perceptual processes may enter

directly into higher-order reasoning.
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