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Purpose: Type 1 diabetes mellitus (T1DM) is associated with different types of

infections; however, studies on the causal relationship between T1DM and

infectious diseases are lacking. Therefore, our study aimed to explore the

causalities between T1DM and six high-frequency infections using a Mendelian

randomization (MR) approach.

Methods: Two-sample MR studies were conducted to explore the causalities

between T1DM and six high-frequency infections: sepsis, acute lower respiratory

infections (ALRIs), intestinal infections (IIs), infections of the genitourinary tract

(GUTIs) in pregnancy, infections of the skin and subcutaneous tissues (SSTIs), and

urinary tract infections (UTIs). Data on summary statistics for T1DM and infections

were obtained from the European Bioinformatics Institute database, the United

Kingdom Biobank, FinnGen biobank, and Medical Research Council Integrative

Epidemiology Unit. All data obtained for summary statistics were from European

countries. The inverse-variance weighted (IVW) method was employed as the

main analysis. Considering the multiple comparisons, statistical significance was

set at p< 0.008. If univariate MR analyses found a significant causal association,

multivariable MR (MVMR) analyses were performed to adjust body mass index

(BMI) and glycated hemoglobin (HbA1c). MVMR-IVW was performed as the

primary analysis, and the least absolute shrinkage and selection operator

(LASSO) regression and MVMR-Robust were performed as complementary

analyses.

Results: MR analysis showed that susceptibility to IIs increased in patients with

T1DM by 6.09% using the IVW-fixed method [odds ratio (OR)=1.0609; 95%

confidence interval (CI): 1.0281–1.0947, p=0.0002]. Results were still

significant after multiple testing. Sensitivity analyses did not show any

significant horizontal pleiotropy or heterogeneity. After adjusting for BMI and

HbA1c, MVMR-IVW (OR=1.0942; 95% CI: 1.0666–1.1224, p<0.0001) showed

significant outcomes that were consistent with those of LASSO regression and
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MVMR-Robust. However, no significant causal relationship was found between

T1DM and sepsis susceptibility, ALRI susceptibility, GUTI susceptibility in

pregnancy, SSTI susceptibility, and UTI susceptibility.

Conclusions:Our MR analysis genetically predicted increased susceptibility to IIs

in T1DM. However, no causality between T1DM and sepsis, ALRIs, GUTIs in

pregnancy, SSTIs, or UTIs was found. Larger epidemiological and metagenomic

studies are required to further investigate the observed associations between the

susceptibility of certain infectious diseases with T1DM.
KEYWORDS

mendelian randomization, infections, intestinal, sepsis, lower respiratory, pregnancy,
skin, urinary tract
1 Introduction

Type 1 diabetes mellitus (T1DM) is a chronic autoimmune

illness characterized by hyperglycemia caused by insulin deficiency

due to the secondary loss of the pancreatic islet bcells (1). T1DM,

the most prevalent autoimmune disorder in children and teenagers,

currently affects more than 500,000 children globally (2). Long-term

hyperglycemia can destroy microvascular and macrovascular

systems. Therefore, patients with T1DM may develop multiple

organ or tissue diseases, such as cardiovascular disease,

cerebrovascular disease, peripheral artery disease, sudden cardiac

death, and cognitive dysfunction (2).

Infectious diseases are experienced several times in almost every

human. Many people may experience sepsis, a high-mortality

syndrome that develops with infection (3). Acute lower

respiratory infection (ALRI) was the most common cause of

death in children in 2019 and accounted for the deaths of 700,000

children (4). Urinary tract infection (UTI) is a common infectious

disease in adults, with more than half of all women experiencing at

least one UTI in their life; moreover, UTIs are associated with

significantly increased mortality in elderly people (5). Infection of

the genitourinary tract (GUTI) is the most common bacterial

infection in pregnancy, and GUTIs may cause preterm birth (6).

Infection of the skin and subcutaneous tissues (SSTI) is another

common infectious disease that can progress to a life-threatening

infection (7). A recent nationwide study in the United States found

that intestinal infection (II) was one of the most common infectious

diseases experienced by patients in hospital (8).

Infectious diseases cause a significant burden on families and

society. Recently, there has been much debate regarding whether

T1DM increases the risk of infections. Some studies have found that

patients with diabetes mellitus may be more susceptible to

infectious diseases (9–11). However, Liberatore et al. argued that

there was no strong relationship between T1DM and the occurrence

of infections (12), and other studies revealed that the relationship

between T1DM and infections is bidirectional (13). Remarkably,

these studies had small sample sizes and possible confounding

variables. Some recent meta-analyses found a significant positive
02
relationship between T1DM and different infectious diseases (14–

16); however, most of the studies pooled in meta-analyses were

case-control studies and case series, which cannot negate the

possibility of reverse causality. Therefore, we cannot distinguish

which is the cause and which is the effect in the relationship between

T1DM and infectious diseases through meta-analyses. A recent

review argued that patients with poorly controlled diabetes were

immunocompromised and hence were at increased risk of

experiencing infectious diseases and their complications (17).

Confirming a causal relationship between T1DM and infectious

diseases is challenging due to the possibility of reverse causality and

confounders (18). Therefore, randomized controlled trials (RCTs)

are considered the gold standard for exploring exposure-outcome

causality; however, conducting rigorous RCTs is challenging

because of the restriction of the medical ethics committees and

selection of participants, and the extrapolation of results is limited

because of the strict requirements of population selection (19).

The Mendelian randomization (MR) method was used to infer

causal associations between exposures and outcomes using single

nucleotide polymorphisms (SNPs) as instrumental variables (IVs)

(20). Variants were randomly allocated from parents to offspring at

conception. Therefore, the MR method was not susceptible to

confounding or reverse causation, similar to the random assignment

in RCTs (20). In this study, a two-sample MR was performed to

investigate the causality of T1DM with high-frequency infections.
2 Materials and methods

2.1 Study design and data sources

2.1.1 Genetic association datasets for T1DM
Summary statistical data for T1DM, including 9,266 cases and

15,574 controls with European ancestry, came from the European

Bioinformatics Institute (EBI) database (21) and can be extracted

from the genome-wide association study (GWAS) datasets by

“GWAS ID” (Table 1). The EBI database is an international,

innovative, interdisciplinary, and open dataset in life sciences (22).
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2.1.2 Genetic association datasets for six high-
frequency infections

As ALRIs, IIs, GUTIs in pregnancy, SSTIs, and UTIs were the

most common infectious diseases in children, women, pregnant

women, and in-hospital patients, respectively, and all infectious

diseases can progress to sepsis; therefore, sepsis, ALRIs, IIs, GUTIs

in pregnancy, SSTIs, and UTIs were chosen as the outcomes in

our study.

Summary-level GWAS results regarding sepsis were

obtained from UK Biobank with adjustment for age and sex.

UK Biobank is an open dataset that included more than 500,000

participants for health-related research (23). Summary-level

GWAS of ALRIs, IIs, GUTIs, and SSTIs were obtained from the

FinnGen biobank. The FinnGen biobank is a well-known open

dataset and comprises the genotype and phenotype data from

approximately 20,000 Finnish individuals (24). Summary-level

GWAS of UTIs were obtained from the Medical Research

Council Integrative Epidemiology Unit (MRC-IEU). The

MRC-IEU is an openly available dataset that comprises

the most advanced population health science research in the

United Kingdom, utilizing genetics, population data, and

experimental interventions to identify the etiology of chronic

disease (25).

All patients and controls (of both sexes) included in these

summary-level GWASs were mainly of European descent. The

detailed diagnostic criteria and the methods used to recruit

participants in these GWASs are available in the original

publications. No significant sample overlap was evident between

these GWAS datasets. The profiles of GWAS datasets of T1DM and

infections are summarized in Table 1.
Frontiers in Endocrinology 03
2.1.3 Informed consent statement and ethics
approval statement

Informed consent and ethics approval were unnecessary for this

study as consent and ethics approvals have already been obtained in

the previous induvial studies. Furthermore, all summary-level

GWAS data were obtained from an open dataset (https://

gwas.mrcieu.ac.uk/).
2.2 Instruments selection

Three key assumptions for MR analysis should be met (Figure 1)

(19). SNPs linked to T1DM at the genome-wide significance levels

from a meta-analysis of GWAS were selected as IVs (p< 5 10−8).

Additionally, the related linkage disequilibrium was considered

(kb=10,000, r2<0.001) (26). Subsequently, F statistic was calculated

to evaluate the strength between the IVs and exposure with the

following equation: F = N�k�1
k � R2

1−R2 (27), where R
2 is the quantity

that IVs can represent exposure, k is the number of SNPs selected,

and N is the exposure sample size. If F is more than 10, the

relationship is believed to be robust enough to minimize the bias

induced by weak IVs. Thereafter, the SNPs related to potential

confounders of the outcomes were eliminated. SNPs were selected

after adjusting for body mass index, chronic obstructive pulmonary

disease, fatigue, arteritis, vaginitis, urolithiasis, depression,

immunocompromised, long-standing illness, disability or infirmity,

and inflammatory skin disease, whichmay influence the risk of sepsis,

ALRIs, IIs, GUTIs in pregnancy, SSTIs, and UTIs in PhenoScanner

V2 (http://www.phenoscanner.medschl.cam.ac.uk/) (28). Finally,

SNPs that were not directly associated with outcomes (sepsis,
TABLE 1 Profiles of exposure and outcomes in GWAS datasets.

Outcome GWAS ID Consortium Sample
Size

Number
of Cases

Number
of Con-
trols

Year Adjustment Population

sepsis ieu-b-4980 UK Biobank 486,484 11,643 474,841 2021 BMI, COPD, fatigue,
arteritis, vaginitis,
urolithiasis, depression,
immunocompromised,
LIDI, ISD

European

ALRIs finn-b-J10_LOWERINF FinnGen
biobank

218,792 10,103 208,689 2021

IIs finn-b-
AB1_VIRAL_OTHER_INTEST_INFECTIONS

FinnGen
biobank

201,463 4,165 197,298 2021

GUTIs in
pregnancy

finn-b-O15_PREG_GU_INFECT FinnGen
biobank

111,731 1,401 110,330 2021

SSTIs finn-b-L12_INFECT_SKIN FinnGen
biobank

218,792 10,343 208,449 2021

UTIs ukb-b-8814 MRC-IEU 463,010 5,447 457,563 2018

Exposure GWAS ID Consortium Sample
Size

Number
of Cases

Number
of

Controls

Year nSNP Population

T1DM ebi-a-GCST010681 EBI
database

24,840 9,266 15,574 2020 12,783,129 European
fro
GWAS, genome-wide association study; ID, identity; nSNP, number of single nucleotide polymorphism; ALRIs, acute lower respiratory infections; IIs, intestinal infections; GUTIs, infections of
genitourinary tract; SSTIs, infections of the skin and subcutaneous tissue; UTIs, urinary tract infections; T1DM, type 1 diabetes mellitus; BMI, body mass index; COPD, chronic obstructive
pulmonary disease; LIDI, Long-standing illness, disability or infirmity; ISD, Inflammatory skin disease; UK, United Kingdom; MRC-IEU, Medical Research Council Integrative Epidemiology
Unit; EBI, European Bioinformatics Institute.
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ALRIs, IIs, GUTIs in pregnancy, SSTIs, and UTIs) were selected using

PhenoScanner V2 (2018 Cardiovascular Epidemiology Unit,

University of Cambridge) (28).

We attempted to infer positive-strand alleles using allele

frequencies for palindromes across exposure and outcome

datasets. SNPs for incompatible alleles and palindromic sequences

with intermediate allele frequencies were removed. Proxy SNPs

were used when the SNPs were unavailable in the outcomes GWAS

datasets, and the minimum linkage disequilibrium r2 was set at 0.8.

Final IVs for ensuing MR analysis were then carefully selected.
2.3 MR analysis

The inverse-variance weighted (IVW) method was used as the

main analysis approach because of its precise estimate (29). When

heterogeneity was statistically significant, the random effect model

was utilized. Otherwise, the fixed effect model was utilized. Other

MRmethods were also performed to guarantee the effectiveness and

stability of the outcomes. The maximum likelihood method

provides an estimator with the lowest standard error under

essentially all conditions compared with other MR methods (30).

The penalized weighted median (PWM) estimator is a novel MR

method that can provide a consistent estimator when significant

heterogeneity exists (31). The weighted median estimator (WME)

can control type I errors efficiently to improve the detection ability

of causal effects and can provide a stable estimator, even when more

than 50% of the information is acquired from invalid IVs (32). The

MR-Egger method can identify and correct potential pleiotropy and

provide a relatively consistent estimate (33). Considering the

multiple comparisons, the Bonferroni method was performed to

rectify overall type I errors, and p<0.008 (a = 0.05/6) was

considered statistically significant. If a significant causal

association was found in univariate MR analyses, multivariable

MR (MVMR) analyses would be performed. MVMR-IVW was

performed as the primary analysis (34). The least absolute

shrinkage and selection operator (LASSO) regression provides the

best estimation for moderate-to-high levels of pleiotropy and valid

inference in a three-sample setting (35). MVMR-Robust supplies

precision estimates in all scenarios (even with 70% pleiotropy),
Frontiers in Endocrinology 04
corrects type I error rates, and assesses instrument strength (35).

Therefore, we conducted LASSO regression and MVMR-Robust as

complementary analyses. MVMR analyses were performed by

adjusting for potential confounders, including body mass index

(BMI), which had a causality association with T1DM and infectious

diseases in previous MR studies (36, 37), and glycated hemoglobin

(HbA1c), which reflects the average blood sugar over the past 3

months. We choose HbA1c as a confounder, as numerous studies

have found that the status of hyperglycemia in diabetes was

responsible for increased morbidity and mortality of infectious

diseases rather than diabetes itself (17, 38). Detailed information

on the genetic association datasets of the two confounders is

presented in Supplementary Table 1.
2.4 Sensitivity analysis

Cochran’s Q statistic (R Foundation for Statistical Computing,

Vienna, Austria) was used to identify SNP heterogeneity (34). The

MR-Egger intercept (differs on average from zero) method was used

to test whether genetic variants of T1DM have pleiotropic effects on

infections (33). Mendelian randomization pleiotropy residual sum

and outlier (MR-PRESSO) (39) and leave-one-out (40) methods

were employed to detect potential outlier SNPs. The forest plot was

used to exhibit the single SNP effect size of T1DM on infections.

The scatter plot was used to test the causal effects of T1DM on

infections. Finally, the funnel plot was used to demonstrate the

symmetrical distribution of the selected SNPs. For sensitivity

analysis, p<0.05 indicated statistical significance. All data were

ana lyzed us ing the “TwoSampleMR,” “MRPRESSO,”

“MendelianRandomization,” and “MVMR” packages in R

software 4.0.5 (R Foundation for Statistical Computing).
3 Results

After the initial screening, 44 SNPs were obtained as IVs.

Extensive information on 44 SNPs is presented in Supplementary

Table 2. Five SNPs (rs9273363, rs1131017, rs6679677, rs10830227,

and rs2111485), which may be associated with confounders,
FIGURE 1

Three principles of the Mendelian randomization study. (I) The genetic instrumental variables (IVs) are strongly associated with T1DM; (II) The genetic
IVs do not affect the outcome through the confounders; (III) The genetic IVs do not affect outcomes directly, but only via exposure. ALRIs, acute
lower respiratory infections; IIs, intestinal infections; GUTIs, infections of the genitourinary tract; SSTIs, Infections of the skin and subcutaneous
tissue; UTIs, urinary tract infections; T1DM, type 1 diabetes mellitus.
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were deleted using the PhenoScanner tool (http://www.

phenoscanner.medschl.cam.ac.uk/), and no SNP traits were

associated with sepsis, ALRIs, IIs, GUTIs in pregnancy, SSTIs,

and UTIs (Table 2). Finally, we obtained 39 SNPs as IVs of T1DM.
3.1 MR Analysis Between T1DM and IIs

3.1.1 Univariate MR analyses
After removing SNP (rs34954) for incompatible alleles, we did

not find proxy SNP in the GWAS dataset of IIs. Finally, we obtained

33 SNPs as IVs in the MR analysis of T1DM on IIs. For these IVs,

the F statistic was 22.80604. Detailed information about the SNPs of

T1DM on IIs is shown in Supplementary Table 3.

The risk of IIs was found to be increased in patients with T1DM

by 6.09% using the IVW method (OR=1.0609; 95% CI 1.0281–

1.0947, p=0.0002), increased by 7.09% using the MR-Egger method

(OR=1.0709; 95% CI, 1.0161–1.1286; p=0.0158), increased by 6.35%

using the WME method (OR=1.0635; 95% CI, 1.0143–1.115;

p=0.0108), increased by 6.12% using the Maximum likelihood

method (OR=1.0612; 95% CI, 1.0281–1.0954; p=0.0002), and

increased by 6.12% using the PWM method (OR=1.0634; 95% CI,

1.0141–1.115; p=0.0112). The results are shown in Table 3.

No heterogeneity (MR-Egger, p=0.4049; IVW, p=0.4447) and

no potential pleiotropy (MR-Egger, intercept=-0.0041; p=0.6633)

were observed in the univariate MR analysis. The MR-PRESSO test

showed no outliers. The funnel plot showed the selected SNPs were

distributed symmetrically (Figure 2A). The scatter plot

demonstrated the causality between T1DM and IIs (Figure 2B).

The forest plot displays the effect size for every single SNP on the

risk of IIs and shows that causality existed between T1DM and the

occurrence of IIs (Figure 2C). The “Leave-one-out plot” suggested

that no SNP had an important impact on the estimated causal

association (Figure 2D).
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3.1.2 MVMR analyses
The MVMR-IVW estimates also showed that T1DM had a

significant causal association with IIs after adjusting for BMI and

HbA1c (OR=1.0942; 95% CI, 1.0666–1.1224; p<0.0001). No

heterogeneity (MR-IVW, p=0.9580) was observed. The LASSO

regression (OR=1.0942; 95% CI, 1.0666 - 1.1224; p<0.001) and

MVMR-Robust (MVMR-Robust, OR= 1.0932; 95% CI, 1.0608 -

1.1263; p<0.05) results were consistent with those of the MVMR-

IVW analyses. The F-statistic was 45.4855, and the number of valid

instruments was 88.
3.2 MR analysis between T1DM and sepsis,
ALRIs, GUTIs in pregnancy, SSTIs, and UTIs

One SNP (rs34954) was removed for incompatible alleles when

combining the GWAS data of sepsis, ALRIs, GUTIs in pregnancy,

and SSTIs separately with the selected IVs of T1DM. No SNP was

removed for incompatible alleles when combining the GWAS data

of UTIs and the selected IVs of T1DM. No proxy SNP was found in

the GWAS dataset of ALRIs, GUTIs in pregnancy, SSTIs, and UTIs.

SNP (rs34296259) was proxied by rs190824943 in the GWAS

dataset of sepsis. Finally, we obtained 38, 33, 33, 33, and 26 SNPs,

respectively, as IVs in the MR analysis of T1DM on sepsis, ALRIs,

GUTIs in pregnancy, SSTIs, and UTIs separately. For these selected

IVs, F statistics were more than 10. Detailed information about

SNPs of T1DM on sepsis, ALRIs, GUTIs in pregnancy, SSTIs, and

UTIs are separately presented in Supplementary Tables 4-8.

The primary IVW-fixed method showed no causality between

T1DM and sepsis, ALRIs, GUTIs in pregnancy, SSTIs, or UTIs. The

other MR method (MR-Egger, WME, maximum likelihood, and

PWM) results were consistent with IVWs (Table 3).

Apart from a significant heterogeneity in the analysis of

T1DM on SSTIs, no other heterogeneity was observed in the

analysis of T1DM on sepsis, ALRIs, GUTIs in pregnancy, or UTIs.

No potential pleiotropy or outliers were observed in the analysis of

T1DM on sepsis, ALRIs, GUTIs in pregnancy, UTIs, and SSTIs

(Table 4). The funnel plots, the scatter plots, the forest plots, and

the leave-one-out plots of T1DM for sepsis, ALRIs, GUTIs in

pregnancy, SSTIs, and UTIs are displayed in Figures 3–

7 separately.
4 Discussion

Based on the first MR study, we investigated the causality of

T1DM in six high-frequency infections. There were two main

results of the present MR study. First, the risk of IIs increased by

6.09% (OR=1.0609; 95% CI: 1.0281–1.0947, p=0.0002) in patients

with T1DM even when a significant threshold was set at 0.008

(corrected by the Bonferroni method). The result was confirmed by

sensitivity analyses. In the MVMR analyses, after adjusting for BMI

and HbA1c, the causality of T1DM on IIs was still significant

(MVMR-IVW, OR=1.0942; 95% CI, 1.0666–1.1224; p<0.0001);

these results were consistent with those of the LASSO regression

and MVMR-Robust. Second, T1DM may not be responsible for
TABLE 2 Deleted SNPs associated with confounders.

confounders SNPs

BMI rs9273363, rs1131017

COPD -

Fatigue -

Arteritis -

Vaginitis -

Urolithiasis -

Depression rs10830227

Immunocompromised -

LIDI rs6679677

ISD rs2111485
BMI, body mass index; COPD, chronic obstructive pulmonary disease; LIDI, long-standing
illness, disability or infirmity; ISD, inflammatory skin disease; SNP, single nucleotide
polymorphism.
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TABLE 3 Results of main MR analyses on the causal effects of T1DM with six infections.

Outcome MR method SNPs No. OR (95% CI) SE p-value

Sepsis IVW-random 38 0.9926 (0.9727, 1.0129) 0.0103 0.4709

IVW-fixed 38 0.9926 (0.9754, 1.0101) 0.0089 0.4047

MR-Egger 38 0.9881 (0.9543, 1.0231) 0.0178 0.5051

WME 38 0.9988 (0.9734, 1.0249) 0.0131 0.9293

Maximum likelihood 38 0.9925 (0.9752, 1.0101) 0.0090 0.4023

PWM 38 0.9989 (0.9731, 1.0253) 0.0133 0.9314

ALRIs IVW-random 33 1.0181 (0.9977, 1.0390) 0.0104 0.0831

IVW-fixed 33 1.0181 (0.9977, 1.0390) 0.0104 0.0831

MR-Egger 33 1.0162 (0.9829, 1.0507) 0.0170 0.3509

WME 33 1.0070 (0.9792, 1.0355) 0.0142 0.6261

Maximum likelihood 33 1.0182 (0.9977, 1.0392) 0.0104 0.0825

PWM 33 1.0070 (0.9784, 1.0364) 0.0147 0.6360

IIs IVW-random 33 1.0609 (1.0279, 1.0950) 0.0161 0.0002

IVW-fixed 33 1.0609 (1.0281, 1.0947) 0.0160 0.0002

MR-Egger 33 1.0709 (1.0161, 1.1286) 0.0268 0.0158

WME 33 1.0635 (1.0143, 1.1150) 0.0241 0.0108

Maximum likelihood 33 1.0612 (1.0281, 1.0954) 0.0162 0.0002

PWM 33 1.0634 (1.0141, 1.1150) 0.0242 0.0112

GUTIs in pregnancy IVW-random 33 0.9889 (0.9378, 1.0427) 0.0270 0.6791

IVW-fixed 33 0.9889 (0.9378, 1.0427) 0.0270 0.6791

MR-Egger 33 1.0196 (0.9345, 1.1124) 0.0444 0.6655

WME 33 1.0033 (0.9294, 1.0832) 0.0391 0.9323

Maximum likelihood 33 0.9887 (0.9374, 1.0429) 0.0272 0.6772

PWM 33 1.0030 (0.9271, 1.0851) 0.0401 0.9404

SSTIs IVW-random 33 1.0036 (0.9788, 1.0290) 0.0128 0.7794

IVW-fixed 33 1.0036 (0.9833, 1.0243) 0.0104 0.7312

MR-Egger 33 0.9923 (0.9520, 1.0343) 0.0211 0.7167

WME 33 1.0185 (0.9892, 1.0486) 0.0149 0.2186

Maximum likelihood 33 1.0037 (0.9832, 1.0245) 0.0105 0.7286

PWM 33 1.0188 (0.9883, 1.0502) 0.0155 0.2309

UTIs IVW-random 26 0.9999 (0.9996, 1.0003) 0.0002 0.7487

IVW-fixed 26 0.9999 (0.9996, 1.0003) 0.0002 0.7356

MR-Egger 26 1.0000 (0.9994, 1.0005) 0.0003 0.8692

WME 26 0.9999 (0.9995, 1.0003) 0.0002 0.6085

Maximum likelihood 26 0.9999 (0.9996, 1.0003) 0.0002 0.7346

PWM 26 1.0000 (0.9994, 1.0003) 0.0002 0.6245
F
rontiers in Endocrinology
 06
 fron
T1DM, Type 1 diabetes mellitus; IVW, inverse-variance weighted; WME, weighted median estimator; PWM, penalized weighted median; No., number of; SE, standard error; ALRIs, acute lower
respiratory infections; IIs, intestinal infections; GUTIs, infections of genitourinary tract; SSTIs, Infections of the skin and subcutaneous tissue; UTIs, urinary tract infections; OR, odds ratio; CI,
confidence interval. Statistical significance was set at p< 0.05.
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some infections, such as sepsis, ALRIs, GUTIs in pregnancy, SSTIs,

and UTIs.

The findings of the present MR study did not support the

findings of some observational studies that suggested that patients

with T1DM had an increased risk of contracting some infections

(41–43). A prospective cohort study reported that patients with

T1DM were at a highly increased risk of lower respiratory tract,

urinary tract, and skin infection (42). Another retrospective study

that adjusted for age and sex also found that patients with T1DM

were more susceptible to infection with the SARS-CoV-2 virus

(43). Hence, our findings are consistent with those of many

previous observational studies (12, 44, 45). One case-control

study concluded that patients with T1DM were not susceptible

to infections by comparing the plasma levels of immunoglobulins

and complement proteins in patients with T1DM and controls

(12). A survey with 10 years of follow-up stated that sexual activity

rather than the T1DM was linked to an increased risk of UTIs in

women (44). Czaja et al. believed that patients with T1DM may

have an increased risk of asymptomatic bacteriuria (ASB).
Frontiers in Endocrinology 07
Nevertheless, due to impaired immunity caused by T1DM, ASB

would not progress to a symptomatic infectious disease (44).

Another prospective study showed that the risk of sepsis

increased when T1DM was complicated with hind foot

ulceration (45). Recently, a meta-analysis discovered that

diabetes mellitus did not affect sepsis prognosis, although high

blood glucose levels did (46).

T1DM and infections have been linked bidirectionally. As

mentioned above, some studies argued that T1DM increased the

occurrence of infections, whereas many other studies found that

infections also have a marked influence on the onset of T1DM. For

example, a study based on a population-based registry in Abruzzo

(central Italy) found that multiple bacterial infections before

diabetes mellitus could significantly delay the onset of T1DM

(47). A review summarized that enterovirus infections, such as

coxsackievirus B4, accelerated or promoted the initiation of T1DM

(48). Another review also suggested that gut dysbiosis might be

associated with the onset of T1DM, and different intestinal bacteria

play different roles (49).
B

C D

A

FIGURE 2

The funnel plot (A), scatter plot (B), Forest plot (C) and leave-one-out plot (D) of the genetic risk of T1DM on IIs.
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TABLE 4 Sensitive analysis of T1DM on outcomes.

Outcomes F statistics Heterogeneity Pleiotropy (MR-Egger) Outliers
(MR-PRESSO)

MR-Egger IVW Intercept p-value

Sepsis 22.27958 p=0.0691 p=0.0833 0.002 0.7546 NO

ALRIs 22.79959 p=0.6079 p=0.6557 0.0008 0.8921 NO

IIs 22.80604 p=0.4049 p=0.4447 -0.0041 0.6633 NO

GUTIs in pregnancy 22.87157 p=0.5019 p=0.5144 -0.0134 0.3923 NO

SSTIs 22.79959 p=0.0299 p=0.0336 0.005 0.5048 NO

UTIs 30.5624 p=0.2689 p=0.3174 -2.882E-6 p =0.9769 NO
F
rontiers in Endocrinology
 08
T1DM, Type 1 diabetes mellitus; IVW, inverse-variance weighted; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; ALRIs, acute lower respiratory infections; IIs,
intestinal infections; GUTIs, infections of genitourinary tract; SSTIs, Infections of the skin and subcutaneous tissue; UTIs, urinary tract infections. Statistical significance was set at p< 0.05.
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FIGURE 3

The funnel plot (A), scatter plot (B), Forest plot (C) and leave-one-out plot (D) of the genetic risk of T1DM on sepsis.
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T1DM is a chronic disease, and patients with this disease may

experience complications, long-term abnormal blood sugar levels,

unhealthy diet habits, and different environments; hence, it is

challenging for observational studies to adjust for all confounders (2).

Therefore, residual confounding or reverse causation bias in

observational research may explain our disagreement. The present

study used anMR design to confirm the causality pathway fromT1DM

to six high-frequency infections. As no heterogeneity was observed in

the MR analysis of T1DM on IIs, sepsis, ALRIs, GUTIs in pregnancy,

and UTIs, we selected the IVW-fixed analysis results as our primary

results. As significant heterogeneity was observed in the MR analysis of

T1DM on SSTIs, we selected the IVW-random analysis result as the

primary result. We also conducted different MR methods as

complementary and sensitivity analyses to confirm our results.

Moreover, to strictly meet the criteria of an “IVs not linked to

confounding factors” and “IVs influence outcomes only through

T1DM,” we deleted all SNPs potentially associated with confounders

and outcomes according to the trait in PhenoScanner V2.
Frontiers in Endocrinology 09
Approximately 451 million people have diabetes mellitus

globally, approximately 5 million deaths were attributed to

diabetes mellitus (DM) in 2017, and the number of people with

DMmay increase to 693 million by 2045 (50). Recently, Wang et al.

conducted an MR to explore the causal relationship between T2DM

and five high-frequency infectious diseases, including UTIs in

pregnancy, ALRIs, sepsis, and SSTIs. They stated that no causal

relationships existed (51). The present MR study complemented

and extended the abovementioned study by Wang et al. In this

study, we not only confirmed that T1DM has no causality with

those five high-frequency infectious diseases but also found that

T1DM increased the occurrence of IIs due to genetic liability.

Early in 2007, Oikarinen et al. examined enteroviruses in small

intestinal tissue of T1DM and suggested that most had a persistent

enterovirus infection of the intestinal mucosa (52). A later case-

control study confirmed that enterovirus RNA was found more

frequently in patients with T1DM than in controls, and the

enterovirus was considered to be associated with IIs (53).
B

C D
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FIGURE 4

The funnel plot (A), scatter plot (B), Forest plot (C) and leave-one-out plot (D) of the genetic risk of T1DM on ALRIs.
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The potential mechanism between T1DM and IIs may be

explained by the following three pathways. First, many studies

have reported dysbiosis of the intestinal microbiomes in patients

with T1DM, which would promote inflammation in the gut (49,

54). Second, a review article suggested that a genetically deficient

macrophage migration inhibitory factor, one of the mechanisms for

the occurrence of T1DM, would induce the Th1 inflammatory

cytokines and reduce regulatory T cells (Treg), thereby finally

causing colitis (55). Third, celiac disease primarily affects the

small intestine, causes weight loss, anemia, and intestinal mucosal

damage, and has been found to be associated with T1DM (56, 57).

Both celiac disease and T1DM are linked to high-risk human

lymphocyte antigens (HLAs) (58). HLAs present antigens to

antigen-responsive T cells, resulting in the destruction of the

intestinal enterocyte (58).
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Based on our positive findings, we provide some prevention

strategies for infections in T1DM. First, hand hygiene: good hand

hygiene is the most important step in preventing infections. Second,

food hygiene: individuals with T1DM should ensure that their food

is clean and thoroughly cooked. Third, immunization: individuals

with T1DM should receive all recommended vaccinations,

especially some vaccines to prevent intestinal infections, such as

the rotavirus vaccine, enterohemorrhagic E. coli vaccine, and

salmonella vaccine (59). Fourth, blood sugar control: individuals

with T1DM should aim to maintain good glycemic control to

reduce the risk of infections. Fifth, probiotics are live

microorganisms that can help to promote a healthy gut

microbiome and prevent intestinal infections. T1DM can take

probiotic supplements. Sixth, follow a strict gluten-free diet when

T1DM is complicated with celiac disease (60).
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FIGURE 5

The funnel plot (A), scatter plot (B), Forest plot (C) and leave-one-out plot (D) of the genetic risk of T1DM on GUTIs in pregnancy.
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The MR study design, which reduces confounders and reverse

causality which may influence the findings of epidemiological studies,

is a key strength of this work. Additionally, we systematically explored

the causalities between T1DM and six common infections. For all the

selected IVs, F-statistics were more than 10. Furthermore, no

pleiotropy was detected, confirming our results’ accuracy. After a

causal association between T1DM and IIs was detected, we

performed three different MVMR analyses (MVMR-IVW, LASSO,

andMVMR-Robust) to assess the validity of the results by adjusting for

BMI and HbA1c. LASSO and MVMR-Robust provided a reliable

estimation even with high pleiotropy, and no heterogeneity was

observed; the results obtained using the three methods were

consistent, demonstrating their credibility. The datasets of exposure

and outcomes were mainly composed of European populations;
Frontiers in Endocrinology 11
consequently, these findings were less likely to be influenced by

population stratification, although it limits the applicability to other

ethnic groups. Moreover, we presented a checklist based on the

previous work by Woolf et al. (61) to improve our reporting quality,

and most of the list items were attained. Since we could not obtain

detailed information from the original research, it was challenging to

evaluate the quality of the data sources (Supplementary Table 9). We

only chose recent datasets provided by widely recognized consortiums

to address this limitation. Furthermore, we cannot exclude the

possibility that other potential confounders may have influenced our

results. We excluded all SNPs associated with more than ten potential

confounders possibly associated with the outcomes and performed

three MVMR methods adjusting for BMI and HbA1c. However, we

cannot rule out all the direct pathways between T1DM and IIs, as
B

C D

A

FIGURE 6

The funnel plot (A), scatter plot (B), Forest plot (C) and leave-one-out plot (D) of the genetic risk of T1DM on SSTIs.
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pleiotropy could not be controlled entirely. Since some previous studies

showed some infectious diseases might cause T1DM, a bidirectional

MR analysis should be performed to explore the association of

infectious diseases with T1DM. However, none of the six infectious

diseases GWAS datasets could supply sufficient SNPs (clumped at p<

5 × 10−8, kb=10,000, and r2<0.001) to perform MR and sensitivity

analyses. Therefore, this was one limitation we could not improve and

should be performed in future studies.

In conclusion, our study found no convincing evidence of a

causal link between T1DM and sepsis, ALRIs, GUTIs in

pregnancy, SSTIs, or UTIs in the European population.

However, there was a genetic liability in T1DM for increased

risk of contracting IIs. Larger epidemiological studies or

metagenomic studies are needed to better understand the

observed association between susceptibility of certain infectious

diseases in patients with T1DM.
Frontiers in Endocrinology 12
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FIGURE 7

The funnel plot (A), scatter plot (B), Forest plot (C) and leave-one-out plot (D) of the genetic risk of T1DM on UTIs.
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Term Definition

Single
nucleotide
polymorphism
(SNP)

A variation at a single position in a DNA sequence that
occurs when one nucleotide is replaced by another in at least
1% of the population. SNPs can result in different alleles at
that position.

Trait A phenotype of an SNP.

Genome-wide
association
study (GWAS)

A genetic study in which the phenotype is regressed for each
genetic variant to correct the bias resulting from multiple
testing.

Genetic variant Any change in the DNA sequence that distinguishes one
individual from another. This can include variations such as
SNPs.

Harmonization Some SNPs may have more than one possible allele.
Harmonization is the process of formatting GWAS statistics
to ensure that exposures and outcomes use the same allele as
the effect allele; otherwise, the Mendelian randomization
analysis results will be incorrect.

Palindromic
variants

An SNP in which the same two nucleotides are found on
both forward and reverse strands (e.g., A/T on the forward
and T/A on the reverse). This can cause problems in
harmonization because it is difficult to establish which is the
minor allele in cases where both nucleotides have a similar
frequency.

Mendelian
randomization
(MR) analysis

The statistical analysis used in a two-sample MR design,
which estimates the cause association of the exposure on the
outcome.

Multivariable
Mendelian
randomization
(MVMR)

A statistical technique that uses genetic variants to
investigate the causal relationships between multiple
exposure variables and an outcome variable.

Instruments Instruments were randomly assigned, associated with the
exposure, and performed in MR analyses to infer the causal
association between exposure and outcome.

Linkage
disequilibrium
(LD)

A non-random association between nearby genetic variants.
In MR studies, LD can lead to biased results if not accounted
for. Researchers adjust for LD or select independent variants
as instruments to avoid this.

Proxy variant Some SNPs of exposure cannot be extracted from the dataset
of the outcome. We could use other SNPs as proxy variants
highly correlated with the unavailable SNPs to perform the
MR analysis.

Genetic
liability to the
exposure

Binary traits with many associated genetic variants have an
underlying continuous genetic liability measured through
GWASs. People’s genes can make them more or less likely to
be affected by environmental factors that can harm them,
like pollution or toxins. Some people may have genes that
make them more sensitive to these things, while others may
have genes that make them less sensitive.

Pleiotropy Pleiotropy in MR occurs when the genetic instruments used
to estimate the causal effect of an exposure on an outcome
also directly affect the outcome through other pathways.

Heterogeneity Heterogeneity indicates a violation of the exclusion
restriction assumption in MR (validity), which can lead to
biased effect estimates.

(Continued)
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Term Definition

Cochran’s Q
statistic

A statistical test is used to determine whether there is
significant heterogeneity (variation) in the effect sizes of
multiple studies included in a meta-analysis.

Population
stratification

The uneven distribution of genetic variants between different
subpopulations can bias associations between exposures and
outcomes in genetic studies.
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