
Causal relationships between gut microbiome, short-chain fatty 
acids and metabolic diseases

Serena Sanna1,¶, Natalie R. van Zuydam2,3,¶, Anubha Mahajan2,3,¶, Alexander Kurilshikov1, 
Arnau Vich Vila1,4, Urmo Võsa1, Zlatan Mujagic5, Ad A. M. Masclee5, Daisy M.A.E. Jonkers5, 
Marije Oosting6, Leo A.B. Joosten6, Mihai G. Netea6, Lude Franke1, Alexandra 
Zhernakova1, Jingyuan Fu1,7, Cisca Wijmenga1,8,§, and Mark I. McCarthy2,3,9,§

1University of Groningen, University Medical Center Groningen, Department of Genetics, 
Groningen, the Netherlands 2Wellcome Centre for Human Genetics, University of Oxford, Oxford, 
UK 3Oxford Centre for Diabetes Endocrinology and Metabolism, Churchill Hospital, University of 
Oxford, Oxford, UK 4University of Groningen, University Medical Center Groningen, Department 
of Gastroenterology and Hepatology, Groningen, the Netherlands 5Maastricht University Medical 
Center, Division Gastroenterology-Hepatology, NUTRIM School for Nutrition, and Translational 
Research in Metabolism, Maastricht, the Netherlands 6Department of Internal Medicine, Radboud 
Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), 
Radboud University Medical Center, Nijmegen, the Netherlands 7University of Groningen, 
University Medical Center Groningen, Department of Pediatrics, Groningen, Groningen, the 
Netherlands 8K.G. Jebsen Coeliac Disease Research Centre, Department of Immunology, 
University of Oslo, Oslo, Norway 9Oxford NIHR Biomedical Research Centre, Oxford University 
Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK

Abstract

Correspondence should be addressed to S.S. (s.sanna@umcg.nl), C.W. (c.wijmenga@umcg.nl) or M.M. 
(mark.mccarthy@drl.ox.ac.uk).
Author Contributions
S.S. performed statistical analyses in LifeLines and 500FG cohorts; N.vZ. and A.M. performed statistical analyses in UK Biobank and 
DIAGRAM studies; A.K. and A.V.V. processed raw microbiome data in Lifelines-DEEP and 500FG; U.V. and L.F. downloaded and 
harmonized the summary statistics from GIANT, MAGIC and DIAGRAM consortia; L.F., and C.W. provided LifeLines-DEEP data; 
Z.M., A.A.M.M., D.M.A.E.J. provided critical input to manuscript revisions; M.O., L.J. and M.G.N. provided 500FG data; S.S., N.vZ. 
and M.M. wrote the manuscript, with critical input from J.F., A.Z. and C.W.; S.S., N.vZ., A.M., C.W. and M.M. designed the study. 
All authors read, revised and approved the manuscript.
¶These authors contributed equally to this work.
§These authors jointly supervised this work.

Competing Interests statement
M.M serves on advisory panels for Pfizer, NovoNordisk, Zoe Global; has received honoraria from Pfizer, NovoNordisk and Eli Lilly; 
has stock options in Zoe Global; has received research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, 
Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier, Takeda. All other authors declare no competing financial interests.

Reporting Summary
Further information on research design is available in the Life Sciences Reporting Summary linked to this article.

Data availability
The LifeLines-DEEP metagenomics sequencing data are available at the European Genome-phenome Archive (EGA), with access 
code EGAS00001001704. Genotype and phenotype data can be requested from the Lifelines Biobank https://www.lifelines.nl/
researcher/biobank-lifelines/application-process.
Summary statistics for metabolic traits were downloaded from MAGIC, GIANT and DIAGRAM websites (see URLs).

HHS Public Access
Author manuscript
Nat Genet. Author manuscript; available in PMC 2019 October 01.

Published in final edited form as:
Nat Genet. 2019 April ; 51(4): 600–605. doi:10.1038/s41588-019-0350-x.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.lifelines.nl/researcher/biobank-lifelines/application-process
https://www.lifelines.nl/researcher/biobank-lifelines/application-process


Microbiome-wide association studies on large population cohorts have highlighted associations 

between the gut microbiome and complex traits, including type 2 diabetes (T2D) and obesity1. 

However, the causal relationships remain largely unresolved. We leveraged information from 952 

normo-glycemic individuals for whom genome-wide genotyping, gut metagenomic sequence and 

fecal short chain fatty acid (SCFA) levels were available2, and combined these with genome-wide 

association summary statistics for 17 metabolic and anthropometric traits. Using bidirectional 

Mendelian Randomization (MR) analyses to assess causality3, we found that host genetic-driven 

increase in gut production of the SCFA butyrate is associated with improved insulin response 

following an oral glucose test (P = 9.8 × 10−5), while abnormalities in production or absorption of 

another SCFA, propionate, are causally related to increased risk of T2D (P = 0.004). These data 

provide evidence of a causal effect of the gut microbiome on metabolic traits, and support the use 

of MR as a route to elucidate causal relationships from microbiome-wide association findings.

There is increasing evidence that the human gut microbiome plays a role in immune function 

and metabolic disease1,4,5. Manipulation of the gut microbiome offers an alternative to 

pharmacological interventions provided it can be demonstrated that altering microbiota 

composition and/or function (e.g. through personalized nutrition) has clinical benefit. To 

demonstrate this, it is essential to discriminate between microbiome features that are causal 

for disease, from those that are a consequence of disease or its treatment, and those that 

show statistical correlation due to confounding or pleiotropy.

Animal studies support a causal role for the gut microbiome in the development of type 2 

diabetes (T2D), insulin resistance and obesity6,7, but translating these findings to humans 

and identifying the specific bacterial species responsible has proven challenging8. Cross-

sectional studies have confirmed that gut microbiota composition is altered in subjects with 

pre-diabetes or T2D compared to controls, while fecal transplantation studies have shown 

that insulin sensitivity increases in obese subjects with metabolic syndrome after the transfer 

of gut microbiota from lean donors4,5,9,10. Whilst the specific microbiome features identified 

as responsible for these effects have differed between studies, one consistent finding in T2D 

subjects is a shift in microbiome composition away from species able to produce butyrate. 

Butyrate and other short-chain fatty acids (SCFAs), such as acetate and propionate, are 

produced by gut bacterial fermentation of undigested food components. Following 

absorption by the colonocytes, these SCFAs are either used locally as fuel for colonic 

mucosal epithelial cells or they enter the portal bloodstream11. While the bulk of evidence 

suggests that increased SCFA production benefits the host by exerting anti-obesity and anti-

diabetic effects4,10,12–14, some in vitro and in vivo studies have indicated that over-

production or accumulation of SCFAs in the bowel may also lead to obesity due to increased 

energy accumulation15,16. Resolution of these conflicting data requires a detailed 

understanding of the causal relationships between gut microbiome composition, SCFA 

abundance and host energy metabolism.

Using a Mendelian Randomization (MR) approach3, we set out to identify if any bacterial 

species or pathways, i.e. sets of species grouped according to the specific functions they play 

in the gut, have a causal effect on metabolic traits. We and others have recently shown that it 

is possible to detect variants in the host genome that influence the composition of the gut 
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microbiota2,17,18. This allowed us to deploy a MR approach to infer causal relationships by 

asking whether genetic predictors of microbiome content influence metabolic traits—or the 

reverse. This formulation holds even though the quantitative contribution of host genetics to 

variation in microbiome composition may be limited19.

We assembled genome-wide genetic data, gut metagenomic-sequencing, measurements of 

fecal SCFAs, and clinical phenotypes for 952 normo-glycemic individuals from the 

LifeLines-DEEP (LL-DEEP) cohort. From consortium websites (GIANT, MAGIC and 

DIAGRAM, see URLs), we also gathered publically-available genome-wide association 

(GWA) summary statistics for 17 anthropometric and glycemic traits20–27 (Supplementary 

Table 1). We focused our analyses on 245 microbiome features (2 fecal SCFA levels, 57 

unique taxa, 186 pathways) that were, in LL-DEEP, correlated (false discovery rate (FDR) < 

0.1) with at least one of the measured anthropometric and metabolic traits (Methods, 

Supplementary Table 2 and 3).

For each of these features, we sought genetic predictors -- independent genetic variants (r2 ≤ 

0.1), associated (P < 1 × 10−5) with the respective features – using GWAS data from LL-

DEEP, reprocessed from our previous study2 (Methods). The threshold P < 1 × 10−5 for 

variant inclusion was identified by maximizing the amount of genetic variance explained by 

the genetic predictors in 445 independent normo-glycemic individuals (the 500FG 

cohort)28(Methods, Supplementary Figure 1), and designed to capture sets of variants likely 

to be enriched for association. On average, in LL-DEEP the identified genetic predictors 

explained 13% (range 2%−30%) of variance in their respective microbiome features. The 

average F-statistic, another measure of the strength of these genetic predictors, was 21.7 

(range 15.3 – 25.5); an F-statistic >10 is considered sufficiently informative for MR 

analyses29.

We used the inverse-variance weighted (IVW) test to identify causal relationships between 

the 245 microbiome features and the 17 traits of interest in a two-sample bidirectional MR 

analysis using pairs of GWAS summary statistics (one from a microbiome feature and one 

from a metabolic/anthropometric trait)29. Based on principal component analysis (PCA) and 

cluster analyses conducted on the microbiome and metabolic and anthropometric traits 

(Methods, Supplementary Figure 2), we adopted a conservative multiple testing adjusted 

threshold of P < 1.3 × 10−4 to declare a causal relationship significant. Because the presence 

of horizontal pleiotropy (where a genetic predictor has independent effects on the diseases 

through multiple traits) could bias the MR estimates, we investigated the robustness of 

URLs
MAGIC: https://www.magicinvestigators.org/
GIANT: http://portals.broadinstitute.org/collaboration/giant/index.php/Main_Page
DIAGRAM: http://www.diagram-consortium.org/
UK Biobank: http://www.ukbiobank.ac.uk/
Human Functional Genomics Project: http://www.humanfunctionalgenomics.org/
Bracken: https://github.com/jenniferlu717/Bracken
MetaCyc metabolic pathway database: http://www.metacyc.org/
PLINK: www.cog-genomics.org/plink2
Michigan imputation server: https://imputationserver.sph.umich.edu/
R: https://www.r-project.org/
LDScore: https://github.com/bulik/ldsc
MR-PRESSO: https://github.com/rondolab/MR-PRESSO
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significant findings to pleiotropy by using three additional MR tests: the MR-PRESSO30, the 

weighted median test31, and the MR-Egger32. We formally examined the presence of 

horizontal pleiotropy using the MR-PRESSO Global test30 and the modified Rücker’s Q’ 

test33,34. Finally, we sought to validate these causal relationships in an independent cohort 

(UK Biobank)35 (Figure 1).

We observed a significant causal influence for one specific microbiome feature, a microbial 

pathway involved in 4-aminobutanoate (GABA) degradation (MetaCyc designation 

PWY-5022: 4-aminobutanoate degradation V) on increased insulin secretion, and 

specifically the ratio of the areas under the curve for insulin and glucose, AUCinsulin/

AUCglucose, measured during an oral glucose tolerance test (oGTT) (Figure 2a). Using nine 

genetic predictors (variance explained = 16%; F-statistic = 21, Supplementary Table 4), we 

estimated that each standard deviation (SD) increase in the abundance of PWY-5022 

generated a 0.16 mU/mmol increase in AUCinsulin/AUCglucose (P = 9.8 × 10−5) 

(Supplementary Table 5, Supplementary Figure 3). This causal relationship was robust when 

additional MR tests were performed (PMR-PRESSO = 0.02, PWeighted-Median = 0.02 and 

PMR-EGGER = 0.02), and there was no evidence for horizontal pleiotropy (PMR-PRESSOglobal 

= 0.18 and PRückerQ’(modified) = 0.77) (Supplementary Figure 4). The reverse MR analysis 

(testing the relationship between genetic predictors of AUCInsulin/AUCglucose and PWY-5022 

abundance) was not significant (P > 0.1, Supplementary Table 6). There was no evidence of 

causality with seven metabolic and anthropometric traits (body-mass index (BMI), body fat 

%, waist-hip ratio (WHR), visceral adipose tissue, abdominal subcutaneous adipose tissue, 

obesity and T2D) in a MR analyses that used UK Biobank summary statistics 

(Supplementary Table 7); insulin secretion phenotypes after oGTT were not available. We 

also found supportive evidence (P < 0.05) for a causal impact of this pathway on other 

insulin response parameters (Figure 2b). Though other types of causal relationship are 

possible, these data are consistent with a model whereby host genetic variation that 

influences gut microbiome composition so as to modulate GABA degradation activity 

results in improvements in the capacity of the pancreatic islets to secrete insulin in response 

to a physiological glucose challenge.

Butyrate and acetate are products of GABA degradation. In our taxonomic analyses, the 

bacterial species most correlated with the abundance of PWY-5022 were Eubacterium 
rectale and Roseburia intestinalis (Spearman ρ = 0.52 and 0.30, respectively, Figure 2c), 

both well-known butyrate-producing bacteria36,37. Plasma butyrate levels were not measured 

in our study; current assays are challenging to perform and provide unreliable estimates38. 

Whilst we consider the abundance of the PWY-5022 pathway to act as a proxy for butyrate 

production in the gut, we were unable to directly link PWY-5022 abundance to the amount 

of butyrate absorbed by the host. The abundance of PWY-5022 was poorly correlated with 

fecal butyrate levels (Spearman ρ = 0.1), and we did not detect any causal relationships 

between this SCFA and the 17 traits (P > 0.05), indicating that fecal butyrate is a poor proxy 

for butyrate production and absorption.

These results point towards a causal role for gut-produced butyrate that is focused on the 

dynamic insulin response to food ingestion, rather than the homeostatic mechanisms 

involved in the maintenance of glucose metabolism in the fasted state. Independent clinical 
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studies support this hypothesis. For example, an intervention study evaluating the role of 

Bifidobacteria-increasing prebiotics (fructo-oligosaccharides) in 35 healthy individuals 

showed that prebiotics decrease levels of butyrate-producing bacteria and result in adverse 

effect on glucose metabolism following an oGTT39.

The PWY-5022 finding led us to consider the role of other SCFAs in metabolic and 

anthropometric traits. In our cross-sectional analysis within LL-DEEP, we had detected 

associations between fecal propionate levels and BMI (FDR < 0.1). Propionate is produced 

by different bacteria than those producing butyrate40, and its three genetic predictors 

(variance explained = 6.3%, F-statistic = 21) were independent of those implicated in 

PWY-5022 abundance (Supplementary Table 4, 8). In MR analyses for the 17 traits of 

interest, we found that each SD increase in fecal propionate levels was causally associated 

with a 0.03 SD increase in BMI (P = 0.0068) and an odd’s ratio (OR) = 1.15 for T2D (P = 

0.004) (Supplementary Table 9), although these did not pass our significance threshold. No 

associations were evident in the reverse MR analysis testing the effect of T2D and BMI on 

fecal propionate levels (P > 0.1, Supplementary Table 10).

Of the two observed effects of fecal propionate, on BMI and T2D, the latter was more 

robust. The causal relationship on increased T2D risk was robust when other MR tests were 

performed (PMR-PRESSO = 0.03, PWeighted-Median = 0.03) and there was no evidence for 

pleiotropy (PMR-PRESSOglobal 0.75, PRückerQ’(modified) = 0.50) (Supplementary Figure 5). By 

contrast, the effect of propionate on increased BMI was not significant when using other MR 

tests and there was also evidence for pleiotropy (PMR-PRESSOglobal = 2.0 × 10−3, 

PRückerQ’(modified) = 9.2 × 10−4)(Supplementary Table 9, Supplementary Figure 6). The 

pleiotropy in the BMI effect could be accounted for by SNP rs7142308 (NC_000014.8:g.

79482379A>G) (PMR-PRESSOOutlierTest = 0.01), located within a BMI-associated locus20 but 

independent of the lead variant (rs7141420 (NC_000014.8:g.79899454C>T), r2 = 0.01 with 

rs7142308 in 1000 Genomes Europeans).

Applying MR analyses to UK Biobank summary statistics, we replicated the relationship 

between fecal propionate levels and increased risk of T2D (PIVW = 0.01, PMR-PRESSO = 

0.007, PWeighted-Median = 0.04; PIVWcombined = 4 × 10−5, Figure 3), and there was no 

evidence of pleiotropy (PMR-PRESSOglobal = 0.97, PRückerQ’(modified) = 0.99). The relationship 

between fecal propionate and BMI was again not robust to pleiotropy, highlighting the need 

for caution in interpreting this effect as causal (Supplementary Table 11).

Over 95% of gut-produced SCFAs are absorbed by the host41, such that increases in fecal 

propionate levels could be the consequence of either increased production or reduced 

absorption. The latter (which would link increased fecal propionate to reduced circulating 

levels) would be more consistent with the preponderance of evidence that indicates that 

SCFAs have a largely beneficial effect on energy balance and metabolic 

homeostasis4,10,12–14. As with plasma butyrate, plasma propionate levels were not measured 

in our cohorts. Further studies are warranted to explore the mechanisms underlying this 

relationship between fecal propionate levels and T2D.
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In summary, these data are consistent with a causal role for gut-produced SCFAs, 

specifically butyrate and propionate, with respect to energy balance and glucose homeostasis 

in man. We have shown that a genetically-influenced shift in the gut microbiome towards 

increased production of butyrate has beneficial effects on beta-cell function, though no 

impact on T2D risk could be detected. We have also demonstrated that host genetic variation 

that results in increased fecal propionate levels (reflecting some combination of increased 

production or impaired absorption) has impact on T2D-risk.

Although the LL-DEEP cohort represents the largest population study on the genetics of 

microbiome2,17,18, it is still underpowered to capture the limited genetic component that has 

been estimated for microbiome features19. The results from this and other microbiome 

GWAS2,17,18 showed only limited direct overlap, highlighting the need for standardized 

protocols for data analyses and larger sample size42. This will be crucial also in the context 

of MR analyses, as expanded GWAS will deliver more robust genetic predictors43. A better 

understanding of the complex interplay between gut microbiome and host metabolism will 

require expansion of current analyses and the ability to fold in measures of circulating 

SCFAs. Nevertheless, this study demonstrates that microbiome GWAS provide a route to 

causal inference that can guide and complement more direct experimental approaches, such 

as those based around fecal transplantation and animal models. We envisage that with 

expanded microbiome-genetic studies, for example the MiBioGen consortium44, MR will 

become a standard tool for systematically screening a large number of hypotheses generated 

in current and future microbiome-wide association studies.

Online Methods

Study samples

The discovery cohort of this study is LifeLines-DEEP (LL-DEEP), a population-based 

cohort of 1,539 individuals from Northern Netherlands (age range 18–84 years) that is a 

subset of the largest Lifelines biobank (N = 167,000). For all LL-DEEP volunteers, an 

extensive dataset of measured and self-reported phenotypic information has been collected, 

as well as blood and stool specimens, all as described previously45,46. Measurement of 

SCFAs in stool was carried out by gas chromatography-mass spectrometry following the 

method of Garciá-Villalba et al47.

To identify the appropriate threshold for the selection of genetic predictors of microbiome 

features we used the 500 Functional Genomics (500FG) cohort28, an independent cohort of 

534 healthy individuals from the Netherlands (age-range 18–75 years). Protocols for stool 

collection and metagenomic sequencing were similar to those used in LL-DEEP, as 

previously described48.

All participants from both studies signed an informed consent form. The LL-DEEP study 

was approved by the institutional ethics review boards of the UMCG (ClinicalTrials.gov 

NCT00775060). The 500FG study was approved by the Ethical Committee of Radboud 

University Nijmegen (NL42561.091.12, 2012/550).
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To replicate our findings we used genotype and phenotype data from the UK Biobank, a 

study of 500,000 subjects from the United Kingdom aged 45–65 years of age35. Each 

participant provided a blood sample for DNA extraction and completed a detailed 

questionnaire providing baseline data. Individuals are also linked to electronic medical 

records on a number of traits including BMI and T2D.

Data generation and pre-processing

Genotyping—Genotype data was available for 1,268 LL-DEEP volunteers, as previously 

described2,45. In brief, genotyping was carried out using two Illumina arrays, 

HumanCytoSNP-12 BeadChip and ImmunoChip. After standard per-sample and per-SNP 

quality control filters, data from the two arrays were merged and additional markers were 

imputed using the HRC reference panel v1.149 on the Michigan server (see URLs). For our 

analyses, we focused on 15,001,957 variants with imputation accuracy RSQR > 0.3. In the 

500FG cohort, 516 samples were genotyped using the Illumina Human OmniExpress 

Exome-8 v1.0 SNP chip and, after standard quality controls checks28, were imputed using 

the same procedure and reference panel used with LL-DEEP. The UK Biobank samples 

were genotyped using the Affymetrix UK BiLEVE Axiom array on an initial 50,000 

participants. The remaining 450,000 participants were genotyped using the Affymetrix UK 

Biobank Axiom® array35. Quality control on samples and genotypes were performed 

centrally and subsequent imputation was performed using the HRC reference panel at the 

Wellcome Centre Human Genetics.

Metagenomic sequencing—Metagenomic sequencing of the gut microbiome was 

performed using the Illumina HiSeq platform on 1,179 LL-DEEP samples. After applying 

per-sample and per-read quality filters2, the profile of microbial composition was determined 

using Bracken pipeline (see URLs). In total, 903 taxonomies were identified and normalized 

using a log transformation; normalized non-zero values were then adjusted for age, sex and 

read depth using linear regression.

Functional profiling was performed using HUMAnN2 (v 0.4.0), which maps reads to a 

customized database of functionally annotated pan-genomes50. This analysis identified 742 

pathways from the MetaCyc metabolic pathway database51. Similar to the taxonomy data, 

we normalized pathway abundances using log transformation and corrected the normalized 

nonzero values for age, sex and read depth. We considered only non-zero values for 

analyses, and therefore restricted analyses to microbiome features (taxonomies and 

pathways) that had non-zero values in less than 50% of the samples and retained only one of 

pairs of pathways or bacteria showing > 0.99 Spearman correlation. This filtering resulted in 

a final set of 796 features (273 taxa and 523 pathways) that were used for analyses.

We further confined all statistical analyses to normo-glycemic samples with good quality 

genetic and microbiome data. Normo-glycemic status was assigned to samples from 

individuals not reported to have diabetes or to be taking oral anti-diabetes medications and 

who had fasting glucose levels < 7 mml/L. We also removed individuals who were taking 

antibiotics at the time of the stool collection. This filtering resulted in a final set of 952 
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samples available for analyses. In the 500FG cohort, we used the same filters and selected 

445 normo-glycemic samples with both genetic and microbiome data for analyses.

Genome-wide association scans of anthropometric and glycemic traits—We 

downloaded full GWAS summary statistics from 9 studies that represented 17 GWAS for 

different anthropometric and glycemic traits. These traits were BMI and waist-hip-ratio 

(WHR), fasting glucose, insulin and pro-insulin, 2hr glucose, HOMA-derived measurements 

of insulin resistance (HOMA-IR) and sensitivity (HOMA-B)), glycated hemoglobin 

(HbA1c), T2D, and 7 insulin response parameters measured during an oral glucose tolerance 

test (oGTT) (Supplementary Table 1 and URLs). SNP names and genomic positions were 

aligned to the genomic build GRCh37/hg19.

Statistical Analysis

Correlation of short chain fatty acids and microbiome features with 
anthropometric and glycemic traits—We correlated 5 short chain fatty acids (Acetate, 

Butyrate, Propionate, Calproate and Valerate) and 796 other microbiome features (taxa or 

pathways) with measured anthropometric (BMI and WHR) and glycemic traits (fasting 

glucose, insulin, HbA1c, HOMA-IR and HOMA-B) in the LL-DEEP cohort. 

Anthropometric and glycemic traits were adjusted for age, sex, and BMI (except for BMI 

phenotype). We used the non-parametric Spearman correlation test 

(cor.test(method=“Spearman”) function in R (v3.3)) and considered results significant when 

the multiple-testing-adjusted two-sided P-value was < 0.1. The multiple-testing-adjusted P-

value, FDR P, was calculated using the Benjamini-Hochberg procedure in the p.adjust() 
function in R (v3.3) (see URLs).

Genome-wide association analyses of short-chain fatty acids and microbiome 
features—For each microbiome feature and short-chain fatty acid, we performed a 

genome-wide association scan in LL-DEEP samples by re-processing data from our 

previous study in a different manner2. In particular: a) we re-mapped metagenomic reads to 

a more recent database, b) we restricted analyses to only normo-glycemic samples and those 

who were no under antibiotics, and c) we performed genetic analyses using a linear mixed 

model that accounts for population structure instead of the Spearman correlation method. In 

particular for genetic analyses, we used EPACTS (v3.2.6)52, a software program that 

performs a linear mixed model adjusted with a genomic-based kinship matrix that is 

calculated using all quality-checked genotyped autosomal SNPs with minor allele frequency 

> 1%. The advantage of this model is that the kinship matrix encodes a wide range of sample 

structures, including both cryptic relatedness and population stratification; this produces 

more robust results than standard linear regression. All traits were inverse quantile 

normalized before genetic analysis. Specifically for SFCAs, age, sex, Chromogranin A, stool 

type according to Bristol scale, and BMI were added as covariates.

The variance explained (adjusted R squared) and the F-statistic for each microbiome feature 

were extracted from a linear model that fitted all the selected genetic predictors on the 

normalized, covariates-adjusted microbiome feature.
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Mendelian Randomization analyses with 17 GWAS traits—The Mendelian 

Randomization procedure consists of two steps: i) identification of proper instrumental 

variables or genetic predictors, e.g. variants independently associated with the exposure 

factor, and ii) calculation of causal estimates. For each GWAS summary statistic, we first 

selected independent SNPs using the clumping procedure in PLINK v1.9 (see URLs) and 

setting a linkage disequilibrium threshold of r2 < 0.1 in a 500-Kb window. Linkage 

disequilibrium was calculated using the LL-DEEP cohort when running the clumping 

procedure on the GWAS of microbiome features and short chain fatty acids, whereas for 

GWAS of anthropometric and glycemic traits we used the linkage disequilibrium estimates 

from the 1000 Genomes phase 3 European samples.

Furthermore, since the majority of the downloaded GWAS were based on the HapMap2 

genetic map, for each independently associated variant, we identified the best HapMap2 

proxy (r2 > 0.8) or discarded that variant if no proxy was available.

Finally, we selected only variants that showed association at P < 1 × 10−5. We identified this 

as the optimal P-value threshold to use for selection of genetic predictors associated with 

microbiome features because this threshold led to a larger variance explained, on average, of 

the same microbiome features in the 500FG cohort (Supplementary Figure 1). For 

consistency, we used the same threshold and procedure for selecting genetic predictors from 

the downloaded GWAS on anthropometric and glycemic traits.

To calculate causal estimates, we used the inverse-variance weighted (IVW) method32 as a 

two-sample MR analysis of summary association statistics of the exposure and the outcome. 

Specifically, we estimated the causal effect in a fixed-effect meta-analysis framework, i.e. as 

a sum of single-SNP causal effects (derived as a ratio of the SNP-effect on the outcome by 

the SNP-effect on the exposure) weighted by the inverse of their variance (derived as a 

squared ratio of the SNP-standard deviation on the outcome on SNP-effect on the exposure). 

The P-value was calculated as P = 2* (1- Φ(Z)), where Φ(Z) is the standard normal 

cumulative distribution function and Z is ratio of the combined (using inverse variance 

weights) causal effect and its standard error. Of note, the causal estimate is equivalent to that 

obtained as a weighted linear regression of the outcome SNP-effects on the exposure SNP-

effects with a fixed intercept of 0 and with the inverse of the variance of the effect sizes on 

the outcome as weights. For analyses, we set the effect allele of the genetic predictors to be 

the allele with the positive direction. We also calculated causal estimates using additional 

MR methods: MR-PRESSO30, which removes pleiotropy by identifying and discarding 

influential outlier predictors from the IVW test and uses a t-test to calculate P-values; the 

weighted-median test31, which uses a statistical estimator that is robust to the presence of 

pleiotropy in a subset (< 50%) of the predictors; and the MR-Egger32, which adjusts for 

average horizontal pleiotropy and assumes that > 50% of the predictors have pleiotropy. 

Furthermore, we specifically evaluated presence of pleiotropy using MR-PRESSO Global 

test30 and the modified Rücker’s Q’ test33.

Calculation of significance threshold—To define our significance threshold for the 

IVW-based MR analyses, we first run a principal component analysis of the 245 microbiome 

features, and observed that the total variability could be explained by the first 57 principal 
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component axes. To derive the number of independent anthropometric and metabolic traits 

out of the 17 of interest, we used pairwise genetic correlation calculated using LDScore 

regression (LDscore v1.0.0). Variants were restricted to those from HapMap3 and pre-

computed LD Scores estimated in subjects of European descent were used as recommended 

by the authors53. Traits were hierarchically clustered based on genetic correlation values ρg, 

with dissimilarity metric (1-ρg)/2 (Supplementary Figure 2). The number of resulting 

clusters was used to define the number of independent traits. Genetic correlation could not 

be calculated with four insulin secretion traits so we counted these as fully independent 

traits. We set our multiple testing significance threshold at 1.3 × 10−4 (0.05/(57*7)).

Mendelian randomization analyses in UK Biobank—We first calculated association 

of the 12 genetic predictors (9 for PWY-5022 and 3 for fecal propionate) with 7 metabolic 

and anthropometric traits (BMI, body Fat %, WHR, visceral adipose tissue (VAT), 

subcutaneous adipose tissue (SAT), obesity and T2D) using a linear mixed model as 

implemented in BOLT-LMM (v2.3.2)54. T2D status was defined according to the definition 

used by Eastwood et al.55; BMI was defined according to that used by the GIANT 

consortium20 and obesity was defined by ICD code 278. Analyses were restricted to 442,817 

unrelated individuals of European descent and were adjusted for age, sex, genotyping array 

and 6 genetic principal components; WHR was also adjusted for BMI. We then used the 

summary statistics at these 12 variants to estimate causal relationships and investigate 

presence of pleiotropy by applying the same statistical tests that were used with the GWAS 

summary statistics and described in the previous paragraph.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic representation of the study
Figure 1 is a schematic representation of our study, highlighting for each step the research 

question we want to answer, the analysis workflow, and the data used. We first aimed to 

identify which microbiome feature (taxa, microbiome pathway or short-chain fatty acid 

(SCFA)) correlated with metabolic traits in the LifeLines-DEEP (LL-DEEP) cohort (Step 1). 

We then performed genome-wide association (GWA) analysis in LL-DEEP to identify 

genetic predictors of those microbiome features (Step 2), and used the genetic predictors to 

estimate causal relationships through bidirectional Mendelian Randomization analysis and 
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effect sizes for metabolic traits extracted from summary statistics of large GWA studies 

(Step 3). Finally, we validated our causality results using the UK Biobank (Step 4).
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Figure 2. Causal effect of butyrate-producing activity of the gut on glucose-stimulated insulin 
response
a) Schematic representation of the Mendelian Randomization analysis results: genetic 

predisposition to higher abundance of butyrate-producing microbiome pathway PWY-5022 

(4-aminobutanoate degradation V pathway) is associated with insulin response after glucose 

challenge. The causal effect of PWY-5022 was also seen on other insulin response 

parameters, and the forest plot in panel (b) represents the magnitude of the effect on each 

parameter per one-standard-deviation increase in pathway abundance, as estimated in the 

inverse-variance weighted Mendelian Randomization (MR) analysis. MR analysis was 

carried out using up to nine genetic predictors and their effect size from LL-DEEP (952 

samples) and MAGIC summary statistics (trait specific sample sizes are: AUCinsulin/

AUCglucose = 4213; insulin at 30 min = 4,409; AUCinsulin = 4,324; correct insulin response = 

4,789; insulin increase at 30 min = 4,447; Disposition index = 5,130) (Methods, 

Supplementary Table 4 and 5). Corresponding two-sided P-values are given in the annexed 
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table. (c) Correlation plots with PWY-5022 abundance and the bacteria correlating the most 

with it in 950 LL-DEEP samples (subset of the 952 normo-glycemic samples for which 

presence of those bacteria was detected). The Spearman correlation coefficient ρ is given in 

blue in each panel.
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Figure 3. Causal effect of fecal propionate on type 2 diabetes (T2D)
a) Schematic representation of the Mendelian Randomization analysis results: genetic 

predisposition to higher fecal propionate levels is associated with increased risk of T2D. b) 

A forest plot depicts the magnitude of the causal effect on T2D per each one-standard-

deviation increase in fecal butyrate levels, as estimated by the inverse-variance weighted 

Mendelian Randomization (MR) analysis. MR analysis was carried out using the three 

genetic predictors derived in LifeLines-DEEP (LL-DEEP) and their effects in the discovery 

data set (DIAGRAM; 26,676 T2D cases and 132,532 controls) and in the replication cohort 

(UK Biobank; 19,119 T2D cases and 423,698 controls). The effect derived combining the 

two causal effects (from discovery and replication) with an inverse-variance weighted meta-

analysis approach is also given. Corresponding two-sided P-values are listed in the annexed 

table. OR, odd’s ratio.
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