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Abstract
Intelligence predicts important life and health outcomes, but the biological mechanisms underlying differences in intelligence are not yet
understood. The use of genetically determined metabotypes (GDMs) to understand the role of genetic and environmental factors, and their
interactions, in human complex traits has been recently proposed. However, this strategy has not been applied to human intelligence. Here we
implemented a two-sample Mendelian randomization (MR) analysis using GDMs to assess the causal relationships between genetically determined
metabolites and human intelligence. The standard inverse-variance weighted (IVW) method was used for the primary MR analysis and three
additional MR methods (MR-Egger, weighted median, and MR-PRESSO) were used for sensitivity analyses. Using 25 genetic variants as
instrumental variables (IVs), our study found that 5-oxoproline was associated with better performance in human intelligence tests (PIVW = 9·25 × 

10− 5). The causal relationship was robust when sensitivity analyses were applied (PMR−Egger = 0·0001, PWeighted median = 6·29 × 10− 6, PMR−PRESSO =
0·0007), and no evidence of horizontal pleiotropy was observed. Similarly, also dihomo-linoleate (20:2n6) and p-acetamidophenylglucuronide
showed robust association with intelligence. Our study provides novel insight by integrating genomics and metabolomics to estimate causal effects
of genetically determined metabolites on human intelligence, which help to understanding of the biological mechanisms related to human
intelligence.

Introduction
Intelligence affects all aspects of human life [1]. During the school years, some individuals show higher intelligence, attain better marks in exams,
and have better prospects for further education [2, 3]. In the workplace, intelligence influences performance, efficiency, the ability to cope with
difficulties, and career achievements [4]. Intelligence is also a predictor of higher quality of life and better health outcomes [5, 6]. Revealing the
biological bases of individual differences in human intelligence has become a central and enduring aim of psychological and brain sciences. During
the past decade, advances in genetic research have greatly promoted our understanding of intelligence [7–10]. However, further insight on its
biological basis is needed.

Understanding the role of genetic characteristics and their interaction with environmental factors is the key to reveal the biological mechanisms
underlying differences in human intelligence [11]. Currently, omics technologies (such as genomics, metabolomics, etc.) are widely used to provide a
comprehensive characterization at the molecular level of the human body as a biological system. These approaches have successfully identified a
number of informative biomarkers and greatly advanced our knowledge of the molecular mechanisms responsible for many traits. However, most
omics studies focus only on a single layer, and therefore fail to capture information across multiple omics assays [12]. Recently, researchers have
linked metabolomics traits to genomic information through genome-wide association studies (GWAS) on non-targeted metabolic profiling [13–15].
A large database of genetically determined metabotypes (GDMs) has been thus established to provide comprehensive insights of how genetic
variation influences metabolism [16]. The established GDMs provide important intermediates to reveal the role of the interactions between genetics
and metabolic traits in determining differences in human intelligence.

Mendelian randomization (MR) is a novel genetic epidemiology study design using genetic variants associated with a modifiable exposure or
biological intermediate as instrumental variables (IVs) to estimate the causality of an agent on clinical outcomes of interest [17]. By making use of
inherent genetic variants as proxies, the MR design can avoid the potential confounding factors that are common in conventional observational
studies [18]. In recent years, the explosion in the number of published GWAS summary data has increased the popularity of MR approaches (and in
particular of two-sample MR analysis) as tools to infer the causality of risk factors on complex health outcomes [19–21]. In this study, using GDMs
and the results of GWAS on intelligence, we implement two-sample MR analysis to: (1) assess the causal effects of genetically determined
metabolites on human intelligence; (2) investigate the genetic basis that may play a central role in determining the variation of the related
metabolites and the differences in human intelligence; (3) identify potential metabolic pathways involved in the biological processes related to
intelligence.

Methods

GWAS scans with metabolomics traits
Shin et al. reported the most comprehensive exploration of genetic influences on human metabolism so far, by performing a GWAS of non-targeted
metabolomics on 7824 healthy adults. [16]. Metabolic profiling was carried out on fasting serum using high-performance liquid chromatography
and gas chromatography separation coupled with tandem mass spectrometry. After quality control, 486 metabolites were retained for genetic
analysis, among which 309 were chemically identified and could be further assigned to 8 metabolic groups (amino acids, carbohydrates, cofactors
and vitamins, energy, lipids, nucleotides, peptides, and xenobiotics), while the other 177 were classified as ‘unknown’. The final genome-wide
association analyses were carried out on approximately 2.1 million single nucleotide polymorphisms (SNPs). Full summary statistics for the 486
metabolites can be found at the Metabolomics GWAS Server (http://metabolomics.helmholtz-muenchen.de/gwas/).

IVs for the 486 metabolites



Page 3/11

The foundational principle of MR relies on the existence of valid IVs. A genetic variant is a valid IV if it is (i) significantly associated with the
exposure, (ii) independent of confounders, and (iii) associated with the outcome only through the exposure [22]. To identify valid IVs, we first
selected the SNPs with significance P < 1 × 10− 5, so as to account for a proportion as large as possible of the variance explained for the
corresponding metabolite. We next performed a clumping procedure (linkage disequilibrium threshold of r2 < 0.1 within a 500-kb window) to select
the independent SNPs using the PLINK software (v1.9). To avoid the negative impact of weak IVs, we further used the proportion of variation
explained by each IV (R2) and the F statistics to select SNPs strong enough to be valid IVs. Typically, an F statistic > 10 is considered sufficient for
MR analysis [23].

GWAS summary data on intelligence
GWAS summary statistics for intelligence were obtained from the study by Savage et al. [10]. Briefly, these authors performed the largest available
GWAS meta-analysis of 269,867 individuals from 14 cohorts of European ancestry. Intelligence was assessed using different neurocognitive tests
and the general factor of intelligence (Spearman’s g). Although differences in assessment methods might reduce the power to detect associations in
meta-analyses, this approach can at the same time reduce type I errors by removing measurement errors, and therefore identify SNPs with robust
associations to the common latent factor underlying intelligence across different methods. Stringent quality control procedures were applied to the
summary statistics for each cohort. Finally, 9,295,118 SNPs passing quality control were tested in the meta-analysis.

Statistical analysis
Primary two-sample MR analyses were performed using the standard inverse-variance weighted (IVW) method. The IVW method provides a
consistent estimate of causal effects by combining the ratio estimates of each variant in a fixed-effect meta-analysis model [23]. The P-value was
calculated with a standard normal cumulative distribution function on the ratio of the combined causal effect and its standard error. The
significance threshold to declare a causal relationship for the IVW-based MR estimate was set, using Bonferroni correction, at P < 1·03 × 10− 4 (= 
0·05/486). Associations with P < 0·05, but not reaching the Bonferroni-corrected threshold, were reported as suggestive of association.

The IVW method provides an unbiased estimate under the assumption that all genetic variants are valid IVs. However, this assumption is easily
violated, leading to inaccurate estimates, when horizontal pleiotropy occurs (some variants act on the outcome via a different intermediary) [24]. To
avoid the effects of widespread horizontal pleiotropy in MR, we further performed sensitivity analyses using three additional MR methods: the MR-
Egger method, which provides a consistent causal effect estimate, even when all genetic variants violate the assumptions defining valid IVs, under a
weaker assumption (known as the InSIDE [instrument strength independent of direct effect] assumption) [24]; the weighted median method, which
introduces a weighted median estimator and provides a more precise estimate than MR-Egger regression without the InSIDE assumption [25]; and
the MR-PRESSO method, a newly developed approach which can identify and correct for horizontal pleiotropic outliers in MR [26]. Furthermore, the
MR-PRESSO global test was performed to detect whether horizontal pleiotropy was present. Analyses were carried out using the packages
MendelianRandomization and MR-PRESSO in R (version 3.6.1).

Metabolic pathway analysis
Metabolic pathway analysis was carried out using the web-based tool suite MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/) [27]. For this
analysis, we extracted all metabolites showing suggestive associations in the IVW estimates (PIVW < 0·05). Two libraries of metabolic pathways or
metabolite sets were selected for enrichment analysis, namely the Small Molecule Pathway Database (SMPDB, http://www.smpdb.ca) [28] and the
Kyoto Encyclopedia of Genes and Genomes (KEGG, https://www.kegg.jp/) database [29]. P-values < 0·05 were considered statistically significant.

Results

Causal effects of the metabolites on intelligence
We selected 3–675 independent genetic variants as IVs for each of the 486 metabolites. On average, the IVs explained 4.7% (range 0.8–83.5%) of
the variance of their respective metabolic traits. The minimum F statistic used to evaluate the strength of these IVs was 20·33. Using these IVs, IVW
identified 16 known metabolites and 16 unknown metabolites that might have causal effects on human intelligence (Fig. 1, Table S1). Among the
16 known metabolic traits, 5-oxoproline was significantly associated with intelligence after Bonferroni correction (PIVW = 9·25 × 10− 5). Using 25
SNPs as proxy, we observed a 0·24 increase in the score of the Spearman’s g test for an increase of one standard deviation (SD) in the level of 5-
oxoproline (β = 2·10; 95% Confidence interval [CI]: 0·12 to 0·35). We also found 15 other metabolites to be suggestive for association, including
indolelactate (β = -0·09; 95% CI: -0·81 to -0·01, PIVW= 0·0313), mannitol (β = -0·03; 95% CI: -0·06 to -0·01, PIVW= 0·0223), and 2-
oleoylglycerophosphocholine (β = 0·18; 95% CI: 0·05 to 0·30, PIVW= 0·0055).

Sensitivity analysis
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Table 1 shows the results of the sensitivity analyses for the 16 IVW-identified known metabolites. The causal relationship between 5-oxoproline and
intelligence was robust when additional MR methods were applied (PMR−Egger = 0·0001, P Weighted median = 6·29 × 10− 6, PMR−PRESSO = 0·0007), and no
horizontal pleiotropy was observed (PGlobal test = 0·0678). Two other metabolites showed robust associations with intelligence, namely dihomo-
linoleate (20:2n6) (PMR−Egger = 0·0494, P Weighted median = 0·0236, PMR−PRESSO = 0·0293, PGlobal test = 0·1691) and p-acetamidophenylglucuronide
(PMR−Egger = 0·0075, P Weighted median = 0·0060, PMR−PRESSO = 0·0454, PGlobal test = 0·0611). Dihomo-linoleate (20:2n6) showed a negative association
with intelligence (βIVW = -0·14; 95% CI: -0·25 to -0·04), while the association between p-acetamidophenylglucuronide and intelligence was positive
(βIVW = 0·01; 95% CI: 0·00 to 0·01). The causal association between 5-oxoproline and human intelligence is shown on Fig. 2, while the associations
for dihomo-linoleate (20:2n6) and p-acetamidophenylglucuronide with intelligence are represented on Fig. 3. Notably, the very small effect size for p-
acetamidophenylglucuronide on intelligence might limit its potential utility as a biomarker.

Table 1
Sensitivity analysis of causal associations between metabolites and intelligence

Metabolites MR-Egger Weighted median MR-PRESSO Globle test

β (95% CI) P-
value

β (95% CI) P-
value

β (95% CI) P-
value

RSS P-
value

Amino acid                

5-oxoproline 0.36(0.18,0.55) 0.0001 0.31(0.18,0.45) 6.29E-
06

0.24(0.12,0.35) 0.0007 39.65 0.0678

indolelactate -0.11(-0.27,0.06) 0.2135 -0.11(-0.23,0.02) 0.0872 -0.09(-0.17,-0.02) 0.0244 13.53 0.7565

Carbohydrate                

mannitol -0.01(-0.07,0.06) 0.9040 -0.02(-0.06,0.02) 0.2799 -0.03(-0.06,-0.01) 0.0138 8.71 0.8359

Lipid                

2-oleoylglycerophosphocholine -0.37(-0.82,0.08) 0.1067 0.21(0.05,0.37) 0.0117 0.18(0.05,0.30) 0.0141 21.02 0.2584

2-
palmitoylglycerophosphocholine

0.06(-0.11,0.24) 0.4860 0.11(-0.01,0.23) 0.0682 0.14(0.04,0.25) 0.0117 51.15 0.0041

2-
stearoylglycerophosphocholine

-0.01(-0.39,0.38) 0.9734 0.11(-0.01,0.22) 0.0554 0.11(0.03,0.20) 0.0265 14.73 0.4287

1-oleoylglycerol (1-monoolein) -0.01(-0.33,0.32) 0.9753 0.07(-0.01,0.16) 0.0937 0.09(0.01,0.17) 0.0533 44.60 6.00E-
04

dihomo-linoleate (20:2n6) -0.33(-0.66,-0.01) 0.0494 -0.17(-0.32,-0.02) 0.0236 -0.14(-0.25,-0.04) 0.0293 15.61 0.1691

docosapentaenoate (n3 DPA;
22:5n3)

0.18(-0.03,0.40) 0.0993 -0.16(-0.28,-0.03) 0.0117 -0.16(-0.29,-0.03) 0.0414 44.40 3.00E-
04

linolenate (18:3n3 or 6) -0.37(-0.73,-0.01) 0.0414 -0.19(-0.38,-0.01) 0.0497 -0.20(-0.38,-0.03) 0.0814 15.20 0.0816

acetylcarnitine -0.17(-0.54,0.20) 0.3618 -0.23(-0.39,-0.07) 0.0053 -0.25(-0.40,-0.10) 0.0044 42.19 0.0083

Peptide                

cyclo(leu-pro) -0.09(-0.19,0.02) 0.1018 -0.03(-0.10,0.04) 0.4332 -0.06(-0.12,-0.01) 0.0438 31.19 0.0280

Xenobiotics                

stachydrine 0.10(-0.05,0.25) 0.2068 0.04(-0.02,0.10) 0.1482 0.06(0.02,0.11) 0.0308 8.90 0.4113

p-acetamidophenylglucuronide 0.01(0.00,0.01) 0.0075 0.01(0.00,0.01) 0.0060 0.01(0.00,0.01) 0.0454 82.89 0.0611

salicyluric glucuronide 1.00(0.98,1.02) 0.7825 0.99(0.97,1.01) 0.1379 0.99(0.98,0.99) 0.0373 13.69 0.4820

hydroquinone sulfate 0.97(0.94,1.01) 0.204 0.97(0.94,1.01) 0.0865 0.98(0.96,0.99) 0.0211 14.52 0.6938

Genetic basis for the causal associations
We further investigated the genetic variants that affected both metabolite levels and intelligence. Table 2 shows the 25 SNPs used as IV of 5-
oxoproline. Among them, rs11986602 showed the most significant association with 5-oxoproline (β = -0·0620; SE = 0·0029, P = 6·29 × 10− 104).
Notably, it also showed a strong association signal with intelligence (β = -0·0196; SE = 0·0044, P = 9·53 × 10− 6). Moreover, this SNP had the largest
effect sizes on both 5-oxoproline and intelligence, suggesting that the related genetic locus might provide valuable information on the biological
mechanisms of intelligence, and that 5-oxoproline might be an important functional intermediate to understand the biological process through
which genetics affects intelligence. The IVs for dihomo-linoleate (20:2n6) and p-acetamidophenylglucuronide are shown in Table S2 and Table S3.
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Table 2
Genetic predictors of 5-oxoproline and their association with Intelligence

SNP Gene CHR A1 A2 5-oxoproline Intelligence

Beta SE P value Beta SE P value

rs11986602 EXOSC4 8 A T -0.0620 0.0029 1.07E-104 -0.0196 0.0044 9.53E-06

rs9987070 - 7 C G -0.0280 0.0059 2.43E-06 -0.0083 0.0071 0.2381

rs10890517 - 2 T C -0.0197 0.0043 3.45E-06 -0.0139 0.0069 0.0427

rs5764925 - 22 A G -0.0160 0.0031 1.91E-07 -0.0021 0.0050 0.6782

rs13159409 - 5 T G -0.0148 0.0032 2.74E-06 -0.0075 0.0053 0.1535

rs12294182 MICAL2 11 T C 0.0140 0.0029 1.07E-06 0.0019 0.0041 0.6478

rs2068157 AACSP1 5 T C 0.0137 0.0031 8.99E-06 -0.0037 0.0048 0.4362

rs9964014 DLGAP1 18 T C -0.0132 0.0025 1.80E-07 -0.0060 0.0078 0.4388

rs11605366 - 11 T C -0.0122 0.0027 7.55E-06 -0.0111 0.0043 0.0094

rs12143589 - 1 A G 0.0118 0.0023 3.38E-07 -0.0024 0.0036 0.5034

rs13013224 LOC105369165 2 C G 0.0113 0.0023 7.04E-07 -0.0031 0.0035 0.3781

rs306676 - 13 A G 0.0112 0.0024 2.48E-06 -0.0027 0.0041 0.5047

rs9650466 MROH1 8 T C 0.0110 0.0020 3.80E-08 0.0046 0.0028 0.0938

rs1001210 ATXN1 6 T C -0.0106 0.0023 3.80E-06 -0.0051 0.0037 0.1678

rs17017431 TRAF5 1 A T 0.0105 0.0023 3.80E-06 0.0022 0.0038 0.5628

rs10853533 SLC14A2 18 A C 0.0103 0.0023 6.09E-06 -0.0068 0.0043 0.1133

rs2115151 SPATA5 4 A T 0.0103 0.0022 3.75E-06 0.0024 0.0041 0.5561

rs7015048 - 8 T C 0.0100 0.0015 3.16E-11 -0.0015 0.0028 0.5864

rs9460424 - 6 T G -0.0097 0.0022 9.16E-06 -0.0053 0.0035 0.1328

rs4646693 LRRK1 15 T C -0.0090 0.0020 6.80E-06 -0.0001 0.0054 0.9909

rs8092658 SLC14A2 18 A C -0.0090 0.0020 6.80E-06 0.0001 0.0028 0.9828

rs1578743 - 10 A C 0.0075 0.0016 1.70E-06 0.0026 0.0029 0.3664

rs7973508 - 12 A G -0.0073 0.0016 5.40E-06 0.0007 0.0030 0.8245

rs12464424 - 2 T C -0.0071 0.0016 7.47E-06 0.0055 0.0030 0.0651

rs12611788 GALNT14 2 T C -0.0070 0.0015 5.51E-06 -0.0062 0.0029 0.0301

Metabolic pathway analysis
Table 3 shows the results of the metabolic pathway analysis. Based on the 16 known metabolites identified by the IVW method, we detected only
one significant metabolic pathway associated with intelligence, namely Alpha linolenic acid and linoleic acid metabolism (P = 0·0062). Two
metabolites identified by IVW, docosapentaenoate (n3 DPA; 22:5n3) and linolenate (18:3n3 or 6), are involved in Alpha linolenic acid and linoleic
acid metabolism according to the SMPDB database. Importantly, many of the metabolites found by our analysis have not been assigned to any
metabolic pathway currently recorded in the SMPDB or KEGG databases. Extensive further research will be needed to explore whether these
metabolites are involved in biological processes relevant to differences in human intelligence.
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Table 3
Results of metabolic pathway analysis

Metabolic Pathway Involved Metabolites P value Database

Alpha linolenic acid and linoleic acid metabolism Docosapentaenoate (n3 DPA; 22:5n3);

Linolenate (18:3n3 or 6)

0.0062 SMPDB

Alpha-linolenic acid metabolism Linolenate (18:3n3 or 6) 0.0702 KEGG

Glutathione metabolism 5-oxoproline 0.0912 KEGG

Beta oxidation of very long chain fatty acids Acetylcarnitine 0.0989 SMPDB

Fructose and mannose metabolism Mannitol 0.1140 KEGG

Oxidation of branched chain fatty acids Acetylcarnitine 0.1622 SMPDB

Tryptophan metabolism Indolelactate 0.1816 KEGG

Discussion
We implemented a two-sample MR analysis to assess the causal relationships between genetically determined metabolites and human intelligence.
Using genetic variants as IVs, we found that the genetically determined levels of 5-oxoproline were associated with better performance in human
intelligence tests. This causal relationship was confirmed by sensitivity analyses. Our study also identified other metabolites and metabolic
pathways involved in biological processes related to human intelligence, such as dihomo-linoleate (20:2n6) and p-acetamidophenylglucuronide. To
the best of our knowledge, this is the first study combining information from genomics and metabolomics to assess the causal effects of
metabolome traits on human intelligence.

5-oxoproline, also known as pyroglutamic acid, is a cyclized derivative of L-glutamic acid that participates substantially in the glutamate and
glutathione metabolism [30]. Disturbances in glutamate and glutathione metabolism can lead to a series of neurologic phenotypes, including
developmental delay, ataxia, seizures, and intellectual disability [31]. Moreover, 5-oxoproline was also developed and sold as an over-the-counter
“smart drug” for cognitive and memory improvement [32, 33]. However, it was also demonstrated that metabolic acidosis could be caused by
excessive 5-oxoproline generation, with multiple adverse effects on many organ systems [34]. Our study found that elevated levels of 5-oxoproline
were associated with a higher score in intelligence tests, supporting the potential usefulness of 5-oxoproline in improving intelligence-related
performance. However, more work aimed at understanding the molecular mechanisms involved is needed to further clarify the role of this
compound in human intelligence.

Genetic factors played a central role in our study of the causal relationship between metabolic traits and intelligence. The SNP rs11986602
(corresponding to the EXOSC4 gene) was the most significantly associated to both 5-oxoproline levels and human intelligence. Although rarely
discussed in the past literature, EXOSC4 is known to be related to the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK, encoded by
the EIF2AK3 gene), which regulates gene expression [35]. A recent study reported that locally reduced PERK expression or activity could enhance
neuronal excitability and improve memory and cognitive function in young mice [36]. Another study provided evidence that PERK is a key regulator
of memory impairments and neurodegeneration in Alzheimer’s disease [37]. Thus, EXOSC4 might be a causal risk gene participating in physiological
processes important for human intelligence.

We further focused on the metabolic pathways that might be involved in the biological processes associated to human intelligence. The only
identified metabolic pathway in our study was Alpha linolenic acid and linoleic acid metabolism. Alpha linolenic acid and linoleic acid are long-
chain polyunsaturated fatty acids, which are essential nutrients in the development and functioning of the brain [38]. Many related compounds,
such as alpha linolenic acid and docosahexaenoic acid, are involved in the rapid growth and development of the infant brain [39, 40]. Our study thus
reinforced the importance of alpha linolenic acid and linoleic acid metabolism for human intelligence, providing valuable information for
understanding the biological mechanisms related to human intelligence.

The current study has several strengths. First, we implemented a novel MR study design to assess the causal relationships between genetically
determined metabolites and human intelligence. By using genetic variants as IVs, the MR approach prevents confounding, reverse causation, and
various biases common in observational epidemiological studies. Second, our study provides, indirectly, a comprehensive assessment of the causal
effects of metabolites assessed by non-targeted metabolomics on human intelligence. Third, by integrating genomics and metabolomics, our study
provides novel insight into the biological mechanisms underlying differences in intelligence.

Some limitations of this study should also be noted. First, while our study identified multiple metabolites and metabolic pathways involved in the
biological processes related to human intelligence, these findings need to be further verified in experimental studies. Second, our study highlighted
the role of genetics in determining the causal relationships between metabolites and intelligence, but further work is needed to understand the
molecular mechanisms through which these genetic variants act.
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In summary, our study identified multiple metabolites that might have causal effects on human intelligence, among which 5-oxoproline presented
significant association signals after Bonferroni correction. The association was shown to be robust by sensitivity analyses. Our study also
highlighted that genetic factors (e.g. the EXOSC4 gene) contributed substantially to the variation of metabolite levels and differences in human
intelligence. Moreover, our findings suggest that alpha linolenic acid and linoleic acid metabolism might be involved in the biological processes
underlying intelligence. Our study provides novel insight by integrating genomics and metabolomics to estimate causal relationships between
genetically determined metabolites and human intelligence, which could help our understanding of the biological mechanisms related to human
intelligence.

Abbreviations
GDM: genetically determined metabotype; MR:Mendelian randomization; IVW:inverse-variance weighted; IV:instrumental variable; GWAS:genome-
wide association study; SNP:single nucleotide polymorphism; InSIDE:instrument strength independent of direct effect; SMPDB:Small Molecule
Pathway Database; KEGG:Kyoto Encyclopedia of Genes and Genomes
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Figures

Figure 1

Mendelian randomization associations of genetically determined metabolites on intelligence
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Figure 2

Genetic associations between 5-oxoproline and intelligence

Figure 3
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Genetic associations of two suggestive metabolites with intelligence. a. dihomo-linoleate (20:2n6); b. p-acetamidophenylglucuronide

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

TableS1.docx

TableS2.docx

TableS3.docx

https://assets.researchsquare.com/files/rs-29322/v1/TableS1.docx
https://assets.researchsquare.com/files/rs-29322/v1/TableS2.docx
https://assets.researchsquare.com/files/rs-29322/v1/TableS3.docx

