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Abstract

Obesity traits are causally implicated with risk of cardiometabolic diseases. It remains

unclear whether there are similar causal effects of obesity traits on other non-communicable

diseases. Also, it is largely unexplored whether there are any sex-specific differences in

the causal effects of obesity traits on cardiometabolic diseases and other leading causes of

death. We constructed sex-specific genetic risk scores (GRS) for three obesity traits; body

mass index (BMI), waist-hip ratio (WHR), andWHR adjusted for BMI, including 565, 324,

and 337 genetic variants, respectively. These GRSs were then used as instrumental vari-

ables to assess associations between the obesity traits and leading causes of mortality in

the UK Biobank using Mendelian randomization. We also investigated associations with

potential mediators, including smoking, glycemic and blood pressure traits. Sex-differences

were subsequently assessed by Cochran’s Q-test (Phet). A Mendelian randomization analy-

sis of 228,466 women and 195,041 men showed that obesity causes coronary artery dis-

ease, stroke (particularly ischemic), chronic obstructive pulmonary disease, lung cancer,

type 2 and 1 diabetes mellitus, non-alcoholic fatty liver disease, chronic liver disease, and

acute and chronic renal failure. Higher BMI led to higher risk of type 2 diabetes in women

than in men (Phet = 1.4×10−5). Waist-hip-ratio led to a higher risk of chronic obstructive pul-

monary disease (Phet = 3.7×10−6) and higher risk of chronic renal failure (Phet = 1.0×10−4)
in men than women. Obesity traits have an etiological role in the majority of the leading

global causes of death. Sex differences exist in the effects of obesity traits on risk of type 2

PLOSGenetics | https://doi.org/10.1371/journal.pgen.1008405 October 24, 2019 1 / 22

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPEN ACCESS

Citation: Censin JC, Peters SAE, Bovijn J, Ferreira
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diabetes, chronic obstructive pulmonary disease, and renal failure, which may have down-

stream implications for public health.

Author summary

Obesity is increasing globally and has been linked to major causes of death, such as diabe-

tes and heart disease. Still, the causal effects of obesity on other leading causes of death is

relatively unexplored. It is also unclear if any such effects differ between men and women.

Mendelian randomization is a method that explores causal relationships between traits

using genetic data. Using Mendelian randomization, we investigated the effects of obesity

traits on leading causes of death and assessed if any such effects differ between men and

women. We found that obesity increases the risks of heart disease, stroke, chronic obstruc-

tive pulmonary disease, lung cancer, diabetes, kidney disease, non-alcoholic fatty liver

disease and chronic liver disease. Higher body mass index led to a higher risk of type 2

diabetes in women than in men, whereas a higher waist-hip ratio increased risks of

chronic obstructive pulmonary disease and chronic kidney disease more in men than in

women. In summary, obesity traits are causally involved in the majority of the leading

causes of death, and some obesity traits affect disease risk differently in men and women.

This has potential implications for public health strategies and indicates that sex-specific

preventative measures may be needed.

Introduction

It is increasingly evident that obesity negatively impacts human health and the prevalence of

obesity is increasing world-wide [1]. Both overall obesity (body mass index (BMI)>30 kg/m2)

and fat distribution (waist-hip-ratio (WHR)>1.0 in men and>0.85 in women indicative of

abdominal fat accumulation) have been linked to cardiometabolic diseases and death in obser-

vational studies [2–5]. Previous studies have found causal relationships between higher BMI

andWHR adjusted for BMI (WHRadjBMI) and type 2 diabetes (T2D) and coronary artery

disease (CAD), using a limited number of previously known obesity-associated single nucleo-

tide polymorphisms (SNPs) [6–11]. However, sex-specific relationships are largely unexplored

as is the the role that obesity traits play in the leading causes of death beyond these cardiometa-

bolic diseases.

Obesity traits are known to differ between women and men; regional obesity prevalence

rates often vary between the sexes [12,13], women have higher SNP-based heritability for

WHR [14], and>90% of WHRadjBMI-associated SNPs that show evidence of sexual dimor-

phism have larger effect sizes in women than men [14]. It has been suggested that fat distribu-

tion related traits might be more strongly associated with cardiometabolic outcomes in

women, although many previous studies are inconclusive [15–19]. Only a few studies have

investigated sex differences in the effect of genetic risk for obesity-related traits on disease risk

[6,9,11] and have mostly been restricted to waist-related traits and T2D and CAD, using a lim-

ited number of analyses and/or SNPs, but without finding evidence of differences in disease

risk between men and women [6,9,11].

Expanding to a larger set of robustly associated SNPs may identify previously undetected

sexual heterogeneity in obesity-related disease risk. A sex difference in the effect of obesity

traits on major causes of death could signify that the disease burden arising from obesity may
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be differential in women and men, allowing prioritizing of public health resources and poten-

tially, sex-specific preventative strategies. We therefore investigated the extent to which obesity

traits causally impact the risk of the major global causes of death, and whether relationships

with disease are differential between women and men, exploiting recent advances in discovery

of obesity-associated SNPs [14].

Methods

Overview of methods

Sex-specific genetic risk scores (GRSs) were constructed and evaluated for BMI, WHR, and

WHRadjBMI using genome-wide significant (P<5×10−9) SNPs from a recent genome-wide

association study (GWAS) in the Genetic Investigation of ANthropometric Traits (GIANT)

[20,21] and UK Biobank [14,22]. These were then investigated for associations with diseases

and risk factors in the UK Biobank using regression in a sex-stratified manner. Obesity GRS-

outcome combinations that surpassed the multiple testing correction threshold were then ana-

lysed with Mendelian randomization (MR) to compute formal causal estimates, and sexual

heterogeneity was assessed. In addition, we performed 2-sample MR for outcomes for which

we only had access to summary-level data. We also performed sensitivity analyses to explore

the robustness of our findings. For an overview of the methods see Fig 1.

The UK Biobank

The UK Biobank is a prospective UK-based cohort study, with 488,377 genotyped individuals

aged 40–69 when recruited [22]. UK Biobank has a Research Tissue Bank approval (Research

Fig 1. Overview of methods. BMI, body mass index; CLD, chronic liver disease; COPD, chronic obstructive pulmonary disease;
DBP, diastolic blood pressure; GRS, genetic risk score; MAGIC, Meta-Analyses of Glucose and Insulin-related traits Consortium;
MR, Mendelian randomization; NAFLD, non-alcoholic fatty liver disease; PC, principal component; SBP, systolic blood pressure;
T1D, type 1 diabetes; T2D, type 2 diabetes; WHR, waist-hip ratio; WHRadjBMI, waist-hip ratio adjusted for body mass index.

https://doi.org/10.1371/journal.pgen.1008405.g001
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Ethics Committee reference 16/NW/0274, this study’s application ID 11867), and all partici-

pants gave informed consent.

Genotyping, primary genotype quality control, and imputation were performed by the UK

Biobank, described in detail elsewhere [23]. Briefly, the UK Biobank samples were genotyped

using one of two different arrays, the UK biobank BiLEVE array or the UK biobank array [23].

The genotype data were then imputed using the HRC reference panel [24] or a merged refer-

ence panel consisting of UK10K [25] and 1000 Genomes phase 3 [26], with preference given

to the HRC reference panel [23]. The imputed genotype data in BGEN v1.2 format were con-

verted into hard calls (--hard-call-threshold 0.1) using PLINK v2.00aLM [14,27,28]. We then

performed post-imputation quality control [14,27]. Only SNPs with imputation info score

>0.3, minor allele frequency�0.01%, and Hardy-Weinberg equilibrium exact test threshold

P�1×10−6 were kept. In addition, SNPs with a missing call rate>0.05 and non-biallelic SNPs

were excluded (for details see S1 Text).

General sample quality control was performed (for details see S1 Text) and samples of non-

European ancestry excluded, resulting in a final sample size of up to 423,507 individuals. Par-

ticipant characteristics are in Table A in S1 Text.

Instruments

We evaluated several approaches to construct sex-specific GRSs for BMI, WHR, and

WHRadjBMI (Fig A-B in S1 Text). The approach with the highest ranges of trait variance

explained and F-statistics for the relevant obesity trait, and with no demonstrable heteroge-

neity between men and women, was selected as the main model. In this model, GRSs were

constructed by combining the primary (“index”) genome-wide significant (P<5×10−9) SNPs

in the men, women, or combined-sexes analyses in the largest GWAS available with sex-spe-

cific European summary statistics, a meta-analysis of GIANT [20,21] and the UK Biobank

(Fig 2, S1 Text and S1 Table) [14,22]. Primary SNPs were identified in the original GWAS

[14] by proximal and joint conditional analysis using GCTA in associated loci. Associated

loci were established around top SNPs associated with the obesity trait P<5×10−9, and

included all SNPs associated with the obesity trait P<0.05, within ±5 Mb of the top SNPs,

and in linkage disequlibrium (LD; r2>0.05) with the top SNP; overlapping loci were merged

[14].

We then kept the SNP with the lowest combined-sexes P-value within each 1 Mb sliding

window to limit correlation between SNPs discovered in different sex-strata in each obesity

trait. We excluded non-biallelic SNPs (N = 2), SNPs that failed quality control (N = 3), and

one SNP per pair with long-distance linkage disequilibrium (r2>0.05, N = 2) (S1 Text). For the

combined-sexes analyses, SNPs were weighted using estimates from the combined-sexes Euro-

pean meta-analyzed GWASs. For the men- and women-only analyses, SNPs were weighted by

their sex-specific European estimates. All SNPs were orientated so that the effect allele corre-

sponded to a higher level of the investigated obesity trait. Genetic risk scores were then com-

puted using PLINK v1.90b3 (--score, with sum option) [28].

Exposures: Obesity traits

Baseline measurements were used for BMI, WHR, andWHRadjBMI. They were then stan-

dardized by rank inverse normal transformation of the residuals after regression of the trait on

baseline age, age2, assessment centre, and, if applicable, sex. This was done separately in the

men and women only analyses, but jointly in the combined analyses, after any sample quality

exclusions (S1 Text). For WHRadjBMI we also adjusted for BMI.
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Outcomes: Diseases

We investigated associations between the three obesity traits (BMI, WHR, andWHRadjBMI)

with all non-communicable diseases on the World Health Organization’s (WHO) list of lead-

ing mortality causes world-wide and in high-income countries [29]; CAD, stroke (including

ischemic, hemorrhagic, and of any cause), chronic obstructive pulmonary disease (COPD),

dementia, lung cancer, T2D and type 1 diabetes (T1D), colorectal cancer, renal failure

Fig 2. SNP- and weight selection flowchart with number of SNPs for each obesity trait. SNPs were selected by combining the
primary (“index”) variants associated with the obesity traits P<5×10−9 in a meta-analysis of GIANT and UK Biobank [14,22]. All
SNPs were weighted by their sex-specific European estimates for the men- and women-specific analyses, and by the combined-sexes
European estimates for the combined-sexes analyses, using estimates from the original genome-wide association study. BMI, body
mass index; SNP, single nucleotide polymorphism; WHR, waist-hip-ratio; WHRadjBMI, waist-hip-ratio adjusted for body mass
index.

https://doi.org/10.1371/journal.pgen.1008405.g002
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(including acute, chronic and of any cause) and breast cancer in women (Table B in S1 Text).

In addition, we included infertility, non-alcoholic fatty liver disease (NAFLD) and chronic

liver disease (CLD) as they have previously been linked to obesity and represent important and

increasing burdens of disease [30–36]. For T2D and T1D, we drew case definitions from a vali-

dated algorithm for prevalent T2D and T1D (using “probable” and “possible” cases) and those

the algorithm denoted as “diabetes unlikely” were used as controls [37]. For CAD, we used the

same case and control definitions as a large GWAS [38]. Case and control criteria for the other

disease outcomes were defined using self-reported data, data from an interview with a trained

nurse, and hospital health outcome codes (also including death and cancer registry) in discus-

sion between two licensed medical practitioners (Table B in S1 Text). For CAD, acute renal

failure, chronic renal failure, stroke of any cause, ischemic stroke and hemorrhagic stroke,

exclusions for certain codes were also made in the control groups after defining the case

groups. All available information was used to decide on case and control status (except for dia-

betes), including information collected after the baseline assessment (including repeat assess-

ments and hospital health outcome codes).

Outcomes: Risk factors

To assess the relationship of obesity traits with risk factors that might mediate the disease asso-

ciations, we also investigated associations between the obesity traits and the cardiometabolic

risk factors systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting glucose (FG),

fasting insulin (FI), and smoking status.

The mean of the baseline measurements was used for SBP and DBP. Fifteen mmHg to SBP

and 10 mmHg to DBP were added if blood pressure lowering medications were used (defined

as self-reported use of such in data-fields 6153 and 6177), as in previous blood pressure

GWASs and as suggested in simulation studies [39,40]. We then standardized the blood pres-

sure traits by rank inverse normal transformation of the residuals after regression of the trait

on baseline age, age2, assessment centre, and, if applicable, sex. This was done separately in the

men and women only analyses, but jointly in the combined analyses, after any sample quality

exclusions (S1 Text).

Smoking status was defined as self-report of being a current or previous smoker or having

smoked or currently smoking (most days or occasionally; any code 1 or 2 in any of the data

fields 1239, 1249, and 20116 for the baseline assessment).

Sex-specific summary-level data for plasma FG (in mmol/L, untransformed, corrected to

plasma levels using a correction factor of 1.13 if measured in whole blood in the original

GWAS) and serum FI (in pmol/L, ln-transformed) were kindly provided by the Meta-Analyses

of Glucose and Insulin-related traits Consortium (MAGIC) investigators and can be down-

loaded from https://www.magicinvestigators.org/downloads/ [41]. SNPs in chromosome:posi-

tion format were converted to rsIDs using the file All_20150605.vcf.gz from the National

Center for Biotechnology Information (NCBI) [42] (available at ftp://ftp.ncbi.nih.gov/snp/

organisms/archive/human_9606_b144_GRCh37p13/VCF/). All SNPs were then updated to

dbSNP build 151 using the file RsMergeArch.bcp.gz, also from the NCBI [42] (available at

ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606/database/organism_data/).

Statistical analyses: Evaluation of instruments

The GRSs were first assessed if they were robustly associated with their respective obesity traits

by computing trait variance explained and the F-statistics using linear regression (Table C

in S1 Text). Adjustments were made for array type and 10 PCs, as we had previously adjusted

for age, age2, assessment centre, and if applicable sex and BMI, in the rank inverse normal
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transformation of the obesity traits. Sexual heterogeneity was assessed using Cochran’s Q

test [43], with the Phet-threshold set at<0.002 (= 0.05/21) for 21 male-female instrument

comparisons.

Statistical analyses: Primary association testing

We then explored the associations of the sex-specific GRSs with diseases and risk factors avail-

able in the UK Biobank to see if there were any indications of a causal relationship between the

obesity traits and the outcomes [44]. Logistic regression was used for disease outcomes and

smoking status and linear regression was used for SBP and DBP. Adjustments were made for

baseline age, age2, array type, assessment centre, 10 principal components, and sex if applica-

ble, for all traits when in clinical units and for binary outcomes, and array and 10 principal

components if rank inverse normal transformed (where adjustment for age, age2, assessment

centre, and if applicable sex had already been performed in the rank inverse normal transfor-

mation of the residuals).

Associations between the sex-specific GRSs with outcome traits that surpassed our P-value

thresholds were taken forward for MR to more formally quantify the effect of the obesity trait

on the outcome. For the obesity trait-disease analyses, the P-value threshold was set at<0.001

(= 0.05/51) for 51 obesity trait-disease combinations investigated in the study. For the obesity

trait-risk factor analyses, the P-value threshold was set at<0.003 (= 0.05/15), for the total of 15

obesity trait-risk factor combinations investigated in the study (as we also assessed fasting glu-

cose and fasting insulin using summary data). If a combined-sexes regression analysis identi-

fied evidence against the null hypothesis it was taken forward for MR; if a regression analysis

identified evidence against the null hypothesis in either men or women, MR was performed in

both the men and women-only stratified analyses so sexual heterogeneity could be assessed.

Since we conducted the MR analyses both with and without adjusting for smoking status, we

conducted MRs for all obesity traits with smoking status for completeness.

Statistical analyses: Secondary computation of MR estimates

Individual-level MR was performed using theWald method, with the instrumental variable esti-

mate being the ratio between the computed betas for the outcome and risk factor regressed sep-

arately on each GRS [45]. In this step, logistic regression was used for binary outcomes using

the log(odds ratio(OR)) in the ratio and linear regression used for continuous outcomes. For

the binary outcomes, MR regressions of the obesity traits on the GRSs were performed only

including the controls for each outcome. Standard errors were adjusted to take the uncertainty

in both regressions into account by using the first two terms of the delta method [44,46,47].

Adjustments were made for baseline age, age2, array type, assessment centre, 10 principal

components, and sex if applicable, for all traits when in clinical units and for binary outcomes,

and array and 10 principal components if rank inverse normal transformed (where adjustment

for age, age2, assessment centre, and if applicable sex had already been performed in the rank

inverse normal transformation of the residuals).

For the obesity trait-disease analyses, the P-value threshold was set at<0.001 (= 0.05/51)

for the total of 51 obesity trait-disease combinations investigated in the study. For the obesity

trait-risk factor analyses, the P-value threshold was set at<0.003 (= 0.05/15), for the total of 15

obesity trait-risk factor combinations investigated in the study.

Statistical analyses: 2-sample Mendelian randomization

We performed 2-sample summary-level MRs for the potential risk factors FG and FI directly,

as we only had summary-level data for these traits. The main estimates were computed using
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the inverse-variance weighted (IVW) method. We then computed MR-Egger and weighted

median estimates as a sensitivity analysis [48–51]. The P-value threshold was set at<0.003 (=

0.05/15) for the total of 15 obesity trait-risk factor combinations investigated in the study

(including individual-level MRs for DBP, SBP, and smoking status).

Statistical analyses: Assessment of sexual heterogeneity

Sexual heterogeneity between male and female estimates from the regressions and the MRs

was assessed using P-values from Cochran’s Q test [43]. To facilitate comparisons between

the obesity traits and sex-strata, MR estimates were computed per 1 standard deviation (SD)

higher obesity trait. The Phet-threshold for obesity trait-disease analyses was set at<0.001 (=

0.05/48) for 48 male-female estimates comparisons, since breast cancer was investigated in

women only. For the obesity trait-risk factor analyses, the Phet-threshold was set at<0.003 (=

0.05/15) for the 15 male-female estimates comparisons.

Sensitivity analyses

We performed several sensitivity analyses to ascertain robustness; we conducted (a) analyses

adjusting for smoking status and (b) analyses restricted to those of genetically confirmed Brit-

ish ancestry only (S1 Text). We also (c) evaluated the robustness of the MR findings by com-

paring different weighting strategies, including use of unweighted and externally weighted

(using weights from the GIANT 2015 studies [20,21]) GRSs, and (d) investigated for pleiotropy

and performed more pleiotropy-robust sensitivity analyses [50,51] (S1 Text). We also (e) per-

formed logistic regressions using the same number of cases and controls in men and women

for the disease outcomes and (f) conducted analyses using stricter T2D and T1D case defini-

tions (S1 Text). In addition, we (g) recomputed the MR estimates for the obesity trait-disease

combinations with evidence of sexual heterogeneity using additional SNP-selection and

weighting approaches (S1 Text).

Software

The diabetes case and control definition scripts were kindly provided by the authors to ‘Algo-

rithms for the Capture and Adjudication of Prevalent and Incident Diabetes in UK Biobank’

[37]. The other code and GRSs related to this project will be available at https://github.com/

lindgrengroup/causal.relationships.between.obesity.and.leading.causes.of.death.in.men.and.

women. The genotype data was handled using PLINK v2.00aLM and PLINK v1.90b3 [28] (S1

Text). Further data handling was performed in Python 3.5.2 [52] using the packages “pandas”

[53] and “numpy” [54], R version 3.4.3 [55] and the package “dplyr” [56], bash version 4.1.2(2)

[57] and awk [58]. Statistical analyses and plots were performed using R version 3.4.3 [55] and

packages “ggplot2” [59], “mada” [60], “dplyr” [56], “gridExtra” [61], “lattice” [62], “grid” [55],

“grDevices” [55], “ggpubr” [63], and “MendelianRandomization” [48].

Results

Evaluation of genetic risk scores

The three GRSs included 565 SNPs for BMI, 324 for WHR and 337 for WHRadjBMI. Trait

variance explained varied between 2.5–7.1% and the F-statistic between 4,921–26,466, depend-

ing on trait and sex-stratum (Table C in S1 Text).
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Primary association testing: Disease outcomes and risk factors

We first assessed the associations of the GRSs with diseases and risk factors using linear or

logistic regression (Table D-F and Fig C in S1 Text). Obesity GRSs were associated with diabe-

tes, CAD, COPD, lung cancer, stroke (of any cause and ischemic), renal failure, liver diseases,

as well as blood pressure traits (Table D-F and Fig C in S1 Text). Several instruments also

associated with smoking status and with higher estimate magnitudes in men than in women

for both BMI andWHR (BMI: Phet = 2.2×10−4; WHR: Phet = 8.0×10−14; WHRadjBMI Phet =

0.008) (Table E in S1 Text). The GRS-outcome (diseases and risk factors) associations that sur-

passed correction for multiple testing were taken forward for MR to compute formal estimates

of effect–if surpassed in one sex only, both men and women-only stratified analyses were con-

ducted so that sexual heterogeneity could be assessed.

No obesity GRS showed evidence for association in any sex-strata for colorectal cancer,

breast cancer (investigated in women only), dementia, hemorrhagic stroke, and infertility, and

these endpoints were therefore not taken forward for computation of formal MR estimates

(Table F and Fig C in S1 Text).

Mendelian randomization of obesity with disease outcomes: All individuals

Obesity traits were causally implicated with diseases that represent the major causes of death

(Figs 3 and 4). All measures of obesity were strongly causally related to risk of CAD OR rang-

ing from 1.39 for WHRadjBMI to 1.74 for WHR in the combined analyses per 1-SD higher

obesity trait). For stroke, both BMI andWHR conferred higher risk (ORs 1.40 and 1.34,

respectively). Strong effects were seen for all obesity traits with T2D (OR range 2.10 to 3.62)

and BMI also associated with risk of T1D (OR 1.68), with highly similar results using stricter

diabetes type criteria (S1 Text). Obesity traits increased the risk of kidney disease, including

both acute (ORs 1.55 for WHR and 1.81 for BMI) and chronic (ORs 1.72 for WHR and 1.81

for BMI) renal failure. Strong effects were also seen for risk of NAFLD (OR range 1.60–2.89)

and CLD (ORs 1.64 for BMI and 1.85 for WHR).

Measures of obesity also causally impacted on risks of COPD (OR 1.66 for BMI and 1.45 for

WHR) and lung cancer (BMI OR 1.33). As several GRSs had associated with smoking status,

we repeated the individual-level MRs adjusting for smoking status to assess potential media-

tion. Whereas most obesity-disease associations were largely similar, adjusting for smoking

status resulted in diminished magnitudes of effect for COPD and lung cancer, suggesting

potential mediation (Table G in S1 Text).

Sensitivity analyses, including restricting to those of genetically confirmed British ancestry

only, use of different weighting strategies, analyses using more pleiotropy-robust methods,

using the same number of cases and controls in men and women, and use of more stringent

diabetes case definitions supported the main findings (Tables H,I and Fig D-F in S1 Text).

Mendelian randomization of obesity with disease outcomes: Sex-stratified
analyses

Five out of the 24 obesity trait-disease associations differed between women and men (Fig 3).

The effect of BMI on T2D risk was higher in women than men, with strong evidence for sexual

heterogeneity (women: OR 3.77; 95% CI 3.38–4.20, P = 1.7×10−128; men: OR 2.79; 95% CI

2.58–3.03, P = 5.7×10−135, per 1-SD higher BMI, Phet = 1.4×10−5). This sexual heterogeneity

could also be observed in sensitivity analyses where the number of cases in women and men

was similar (Phet = 5.6×10−6) (Table I in S1 Text) and when performing the analysis using stric-

ter T2D diagnosis criteria (Phet = 3.5×10−5) (S1 Text).
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Fig 3. Causal effects of obesity traits on disease outcomes, overall and stratified by sex. Endpoints that showed an
association with obesity GRSs were taken forward for Mendelian randomization, with estimates reported as odds ratio (95%
CI) per 1-SD higher obesity trait. Filled diamonds indicate that the P-value for the obesity trait to disease endpoint surpasses
our threshold for multiple testing; empty diamonds indicate that the P-value does not surpass this threshold (Bonferroni-
adjusted P-value-threshold set at<0.001 (= 0.05/51) for 51 obesity trait-disease outcome combinations in the study). � denotes
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The estimate for the effect of higher WHR on COPD risk was greater in men than in

women (men: OR 1.89; 95% CI 1.62–2.19, P = 6.6×10−17; and women: OR 1.22; 95% CI 1.10–

1.36, P = 2.1×10−4, per 1-SD higher BMI, Phet = 3.7×10−6). Similarly, higher WHR was also

associated with a greater risk of being a smoker in men than in women (Phet = 2.2×10−14)

(Table J in S1 Text). Despite this, the effect estimates for the effect of WHR on COPD risk

remained higher in men after adjusting for smoking (Phet = 8.8×10−5) (Table G in S1 Text).

There was also evidence of higher WHR increasing the risk of renal failure more in men

than in women (Phet = 3.6×10−4). This sexual heterogeneity may originate from a risk differ-

ence in the effect of WHR on chronic renal failure, as men had higher risk estimates than

that the P-value for heterogeneity (from Cochran’s Q test) surpasses our threshold for multiple testing; Phet-threshold set at
<0.001 (= 0.05/48) for 48 male-female comparisons in the study (fewer since breast cancer analyses were performed in women
only). Green diamond, combined-sexes estimates; orange diamond, male estimates; purple diamond, female estimates; BMI,
body mass index; CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease; NAFLD, non-alcoholic fatty
liver disease; SD standard deviation; WHR, waist-hip-ratio; WHRadjBMI, waist-hip-ratio adjusted for body mass index.

https://doi.org/10.1371/journal.pgen.1008405.g003

Fig 4. Overview of the sex-specific effect magnitudes and strengths of association of obesity traits on leading causes of death.
Leading causes of death defined as non-communicable diseases on the WHO top 10 lists of causes of death, globally and in high-
income countries, with additional separate analyses for subclasses of stroke, diabetes, and renal disease. No obesity trait (BMI, WHR,
or WHRadjBMI) genetic risk score associated with dementia, colorectal cancer, breast cancer (investigated in women only) or
hemorrhagic stroke–these are not shown on the plot (for the regression results see Table F in S1 Text). (A) Total number of deaths
globally, in 1,000 deaths, as estimated by theWHO for 2016 [64], stratified by sex. For diabetes, estimates for annual number of
deaths are for type 1 and type 2 diabetes combined. (B) Obesity trait-disease combinations taken forward for Mendelian
randomization showed with circles. Mendelian randomization associations with P-values surpassing our threshold in yellow to red
fill depending on P-value (-log10 P-value), white fill indicates a P-value not surpassing our threshold. The size of the circles
corresponds to the magnitude of the odds ratio estimate for the Mendelian randomization estimate. Estimates and P-values from the
MR analyses of the obesity traits with the disease outcomes using the sex-specific estimates approach. BMI, body mass index; P, P-
value; WHR, waist-hip-ratio; WHRadjBMI, waist-hip-ratio adjusted for body mass index; WHO,World Health Organization.

https://doi.org/10.1371/journal.pgen.1008405.g004
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women in that analysis (Phet = 1.0×10−4, with a similar sexual heterogeneity seen in the effect

of WHRadjBMI). A 1-SD higher WHR was also associated with higher magnitudes of risk for

acute renal failure in men than women, although the Phet-value did not pass our Phet-threshold

(men: OR 1.86; 95% CI 1.48–2.35, P = 1.3×10−7; women: OR 1.24; 95% CI 1.00–1.54, P = 0.04,

Phet = 0.01).

Sensitivity analyses using different GRS weighting strategies strongly supported sex-differ-

ences in the effect of BMI on T2D andWHR on chronic renal failure and COPD, but only

weakly supported a sex-difference in the effect of WHR on renal failure of any cause (Fig D,E

and G-I in S1 Text).

Potential mechanisms

To identify associations of obesity markers with risk factors that could mediate the disease

risks, we assessed the relationship of obesity traits with blood pressure (SBP, DBP), glycemic

traits (FG, FI), and smoking status (Figs 5 and 6, Tables J-N in S1 Text). All obesity traits caus-

ally increased SBP, DBP, FG and FI (Fig 5). The increase in DBP arising from elevated BMI

was greater in women than men (Phet = 5.2×10−5).

We computed MR estimates for smoking status in all sex-strata for completeness, since we

performed MRs adjusted for smoking status as a sensitivity analysis. BMI andWHR both asso-

ciated with higher risk of being a smoker, with the effect magnitudes being larger in men than

women (BMI Phet = 8.4×10−4; WHR Phet = 2.2×10−14) (Fig 6). WHRadjBMI was only associ-

ated with smoking status in men.

Discussion

Our work shows that obesity is causally implicated in the etiology of two thirds of the globally

leading causes of death from non-communicable diseases [29]. Furthermore, we identify that

for some diseases, obesity conveys altered magnitudes of risk in men and women. Such sexual

dimorphism could be observed in the effects of BMI on T2D and waist-related traits on COPD

and renal failure. These findings have potential implications for public health policy.

Diabetes

Obesity traits were causally related to higher risk of T2D, in keeping with previous studies

[6–11,19,65]. We could not detect a sex difference in risk of T2D from higher WHR or

WHRadjBMI. Even though some observational studies have suggested that WHRmay be a

stronger predictor of T2D risk in women than in men [18,19], studies investigating the effect

on T2D risk from genetic predisposition to higher WHRadjBMI have not found evidence of

sexual heterogeneity [6,9,11]. In contrast, we found that BMI conferred a higher T2D risk in

women than in men. Whereas men tend to be diagnosed with T2D at lower BMI than women

[66], there may be a stronger association between increase of BMI and T2D risk in women

than in men [15,18,65,67–70]. Whether this reflects a stronger causal effect of BMI on T2D

risk in women has hitherto been unknown. There was no evidence for sexual heterogeneity of

the causal effect of BMI on potential glycemic trait risk mediators (FG and FI). There have

been indications of higher BMI being observationally associated with lower insulin sensitivity

more in men than in women, but this observed sex-difference may not reflect a causal pathway

or we are not capturing it by our glycemic measurements [71–73]. We also found evidence of

BMI causally increasing risk of T1D. Previous observational [74] and MR [75] studies have

implicated childhood BMI in risk of T1D. As SNPs associated with adult BMI have also been

found to affect childhood BMI [75,76], our results may reflect the consequences of childhood
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Fig 5. Causal effects of obesity traits on continuous risk factors, overall and stratified by sex. The obesity-risk factor
combinations brought forward for Mendelian randomization. Estimates in plasma mmol/L levels for FG, serum pmol/L levels (ln-
transformed) for FI and SD-units for SBP and DBP, per 1-SD higher obesity trait. Filled diamonds indicate that the P-value for the
obesity trait to risk factor endpoint surpasses our threshold for multiple testing; empty diamonds indicate that the P-value does not
surpass this threshold (Bonferroni-adjusted P-value-threshold set at<0.003 (= 0.05/15) for 15 obesity trait-risk factor combinations
in the study). � denotes that the P-value for heterogeneity (from Cochran’s Q test) surpasses our threshold for multiple testing; Phet-
threshold set at<0.003 (= 0.05/15). Green diamond, combined-sexes estimates; orange diamond, male estimates; purple diamond,
female estimates; BMI, body mass index; DBP, diastolic blood pressure; FG, fasting glucose; FI, fasting insulin; SBP, systolic blood
pressure; WHR, waist-hip-ratio; WHRadjBMI, waist-hip-ratio adjusted for body mass index.

https://doi.org/10.1371/journal.pgen.1008405.g005

Fig 6. Causal effects of obesity traits on having been or being a smoker, overall and stratified by sex. Estimates given in odds
ratio (95% CI) per 1-SD higher obesity trait. Filled diamonds indicate that the P-value for the obesity trait to disease endpoint
surpasses our threshold for multiple testing; empty diamonds indicate that the P-value does not surpass this threshold (Bonferroni-
adjusted P-value-threshold set at<0.003 (= 0.05/15) for 15 obesity trait-risk factor combinations in the study). � denotes that the P-
value for heterogeneity (from Cochran’s Q test) surpasses our threshold for multiple testing; Phet-threshold set at<0.003 (= 0.05/15).
Green diamond, combined-sexes estimates; orange diamond, male estimates; purple diamond, female estimates; BMI, body mass
index; SD standard deviation; WHR, waist-hip-ratio; WHRadjBMI, waist-hip-ratio adjusted for body mass index.

https://doi.org/10.1371/journal.pgen.1008405.g006
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BMI on T1D rather than adult BMI. The results were robust to use of stricter diabetes case def-

inition criteria, minimizing risk of erroneous findings due to misclassification of diabetes type.

Cardiovascular disease

All obesity traits increased risk of CAD in both sexes, with no difference detected in the

magnitude of effect between women and men. The associations with risk of CAD in men and

women combined are consistent with previous studies [4,6–8,10,11,15,17]. While observa-

tional studies have indicated that waist-related traits may be more strongly associated with

cardiovascular disease in women than men, they have not been conclusive [15,17,77,78]. How-

ever, a recent study [11] investigated the effect of higher WHRadjBMI, lower gluteofemoral fat

distribution, and higher abdominal fat distribution, proxied by genetic variants, on CAD and

T2D risk and found no evidence that relationships differed between men and women, similar

to our findings. BMI andWHR have previously been observationally associated with risk of

stroke [79–81] and a previous MR study found a causal effect of BMI on ischemic stroke [82].

However, some studies have foundWHR to be an epidemiological risk factor for stroke in

men only [79,80]. Our results confirm BMI as a causal risk factor for stroke (and particulary

ischaemic stroke) in both men and women. In women, the effects of WHR were directionally

consistent with harm, but the estimates were imprecise, probably reflecting insufficient power

in the sex-stratified analysis.

Lung disease

BMI andWHR increased the risk of COPD and BMI increased the risk of lung cancer; a likely

common mechanism is smoking. BMI has previously been implicated in the aetiology of

COPD, but is not an established epidemiological risk factor [7,83–85]. Obesity may directly

contribute to COPD as its diagnosis is partly based on spirometry values, and obesity is associ-

ated with lower lung function [85,86]. Higher BMI also increased risk of lung cancer in our

study, similar to a previous MR study [87]. Observational studies tend to identify associations

between smoking and lower body weight, but whereas smoking lowers body weight, higher

BMI is associated with increased smoking [87–90]. We found associations between particularly

BMI andWHR with smoking propensity. To assess mediation, we therefore conducted analy-

ses adjusting for smoking status. This attenuated the associations between the obesity markers

and risks of COPD and lung cancer, providing some evidence that smoking may lie on the

causal pathway between obesity and lung disease. This diminution does not discredit the valid-

ity of the MR analyses unadjusted for smoking provided that the obesity instruments only

affect smoking propensity through altered obesity [91]. Rather, they suggest that higher BMI

impacts on disease beyond the immediate physiological effects of obesity: by altering human

behavior (i.e. increased smoking, possibly motivated as a weight loss strategy [92,93]) and this

increased propensity to smoking has additional, far-reaching, deleterious effects on human

health, as evidenced by the higher risks of serious lung disease. Higher WHR was associated

with greater risks of both COPD and being a smoker in men than in women. Whilst the sex

difference in the effect of WHR on COPD persisted after adjustment for smoking status, we

cannot rule out that WHR has a higher effect on COPD in men than women through its effect

on smoking propensity, but that our smoking phenotype does not fully capture the life-long

effects of smoking in men as compared to women.

Kidney disease

Our results also provide further evidence for a causal role of obesity traits in both acute and

chronic renal disease—previous MR studies assessing these relationships have not been
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conclusive [6,7,94–96]. Obesity may affect chronic renal disease through a number of mecha-

nisms, including structural changes in the kidney, higher blood pressure and through higher

risks of mediating diseases, such as T2D [96–99]. We found central fat distribution (as mea-

sured byWHR andWHRadjBMI) to have higher effects on chronic renal failure in men

than in women, with evidence of sexual heterogeneity, but the reason for this sex difference is

unclear.

Liver disease

Obesity traits associated with increased risk of NAFLD and CLD (important and emerging

causes of chronic disease and mortality [32–35]), with the effect of obesity on CLD possibly

mediated by NAFLD [33]. A previous MR study found BMI to increase hepatic triglyceride

content [100]. Our study confirms a role of both general obesity and central fat distribution in

NAFLD and CLD using an MR design. This strengthens evidence of a causal effect and, given

that the prevalence of NAFLD is on the rise (with an estimated one billion people affected

globally [101]), emphasizes the potential of an increased burden of CLD as a consequence of

global obesity [1,32–35].

Other diseases

No obesity GRS showed evidence of association in any sex-strata for colorectal cancer, demen-

tia, hemorrhagic stroke, breast cancer (investigated in women only) and infertility. Whereas

this may be due to obesity traits not having an effect on these diseases, there are also other

potential explanations. For example, previous observational studies have indicated that higher

BMI may be protective in premenopausal breast cancer but harmful in postmenopausal breast

cancer [102,103]. It is thus possible that opposing effect directions of BMI on breast cancer

risk depending on menopausal state counteract each other in our study. For some diseases,

it may be that we have too few cases to detect an association. For example, previous MR

studies found evidence in support of a causal role of BMI with risk of colorectal cancer but

used larger sample sizes [104,105], meaning that our findings may be false negatives due to

inadequate statistical power: we also had relatively few cases for dementia, hemorrhagic stroke,

and infertility.

Strengths and limitations

Genetic instruments should only affect the outcome through the risk factor of interest and not

through any confounders [106,107]. We performed sensitivity analyses (MR-Egger, weighted-

median based methods) more robust to such bias, which supported the main findings [50,51].

If instruments are weakly associated with their respective traits, it can introduce bias in MR

studies [108]. We therefore only used instruments strongly associated with their respective

risk factor, and performed sensitivity analyses using a variety of SNP-selection and weighting

approaches, including unweighted and externally weighted scores, which also supported the

main results [44,108,109]. These sensitivity analyses and the strict P-value threshold to denote

evidence in support of the presence of sexual heterogeneity should also lessen the risk of the

observed sex-differences being due to winner’s curse, although such bias cannot be completely

ruled out.

Recent studies have also indicated that there may be slight population stratification in both

GIANT and UK Biobank, although such bias is likely to be minor [110,111]. Our study was

restricted to individuals of Europeans ancestry; limiting our analyses to those of British ances-

try only, yielded near-identical results. Associations between the obesity traits and outcomes

may differ in other ancestries.
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It is possible that our genetic instrument for WHRadjBMI might show features of collider

bias whereby SNPs included in the GRS associate with both higher WHR and lower BMI lead-

ing to potentially spurious findings [112]. We note that a recent GWAS [14] evaluated the

potential for collider bias in the WHRadjBMI GWAS and found limited evidence for such,

although the GRS was associated with higher WHR and lower BMI. The directional consis-

tency of associations betweenWHR andWHRadjBMI and disease endpoints in our analysis

suggests that collider bias is unlikely to represent a major source of error in this study.

Most MR studies to date have weighted instruments for the exposure by estimates derived

from analyses in which women and men were combined and thus investigated the average

causal effect of both sexes. However, this may obscure causal effects that differ between

women and men, and can, in addition, cause less precise estimates [109] or an over/underesti-

mation of the effect of the instrument on the exposure in each sex. Our results indicate that

weighting SNPs by their sex-specific estimates improves instrument strength and precision

compared to using weights derived in a combined-sexes sample. While the work we perform

makes important inroads into the development of sex-specific Mendelian randomization

approaches, we recognize that, for example, imbalances in the proportion of women and men

in included studies, differential availability of summary-level sex-stratified GWAS data and

the potential for biases to operate differentially between women and men pose additional com-

plexities in deciphering underlying causal effects.

Conclusion

Our results implicate obesity in the etiology of the leading causes of death globally, including

CAD, stroke, type 2 and 1 diabetes, COPD, lung cancer and renal failure, as well as NAFLD

and CLD. This increased risk arising from obesity differs between men and women for T2D,

renal failure and COPD. Our findings emphasize the importance of improved preventative

measures and treatment of obesity-related disorders and implies that women and men may

experience different disease sequelae from obesity, with potential implications for provision of

health services and public health policy.
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