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Nanopore sequencing is promising because of its long read length and high speed. During

sequencing, a strand of DNA/RNA passes through a biological nanopore, which causes

the current in the pore to fluctuate. During basecalling, context-dependent current

measurements are translated into the base sequence of the DNA/RNA strand.

Accurate and fast basecalling is vital for downstream analyses such as genome

assembly and detecting single-nucleotide polymorphisms and genomic structural

variants. However, owing to the various changes in DNA/RNA molecules, noise during

sequencing, and limitations of basecalling methods, accurate basecalling remains a

challenge. In this paper, we propose Causalcall, which uses an end-to-end temporal

convolution-based deep learning model for accurate and fast nanopore basecalling.

Developed on a temporal convolutional network (TCN) and a connectionist temporal

classification decoder, Causalcall directly identifies base sequences of varying lengths

from current measurements in long time series. In contrast to the basecalling models using

recurrent neural networks (RNNs), the convolution-based model of Causalcall can speed

up basecalling by matrix computation. Experiments on multiple species have

demonstrated the great potential of the TCN-based model to improve basecalling

accuracy and speed when compared to an RNN-based model. Besides, experiments

on genome assembly indicate the util ity of Causalcall in reference-based

genome assembly.

Keywords: nanopore sequencing, basecalling, deep neural network, temporal convolution, performance

comparison, assembly

INTRODUCTION

Nanopore sequencing is a novel third-generation sequencing technology (Leggett and Clark, 2017),
focusing on high-throughput, single-molecule, real-time, long-read, and direct DNA/RNA
sequencing. It has rapidly developed in recent years and is used in research in a range of
biological fields, such as bacterial/viral/plant/human genome assembly and DNA methylation
detection (Loman et al., 2015; Quick et al., 2016; Xiao et al., 2017; Michael et al., 2018; Jain et al.,
2018; Xiao et al., 2018; Liu et al., 2019). The principle of nanopore sequencing is illustrated in
Figure 1. The term “nanopore” refers to a nanoscale pore in the sequencer (MinION/GridION/
PromethION) with an ionic current passing through it. During sequencing, the sequencer measures
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changes in current as the DNA/RNA strands pass through the
nanopores. A nanopore can hold k nucleotides (k-mer)
simultaneously. For example, k equals 5 for the pore version
R9.4. Thus, the current changes indicate the k-mers that pass
through the nanopores. Such current measurements can be used
to identify the base sequences of the DNA/RNA strands.

Basecalling is a fundamental and pivotal step in nanopore
sequencing technology. The basecaller is designed to identify the
base sequences based on the raw current measurements. The
development of basecallers can be roughly divided into two
stages. Metrichor and Nanocall (David et al., 2016) are
representative basecallers from the first stage, which adopt
hidden Markov model (HMM)-based methods. Both of them
first convert current measurements to events (with each event
corresponding to the movement of a k-mer through the pore, as
shown in Figure 1). Then, they implement an HMM and a
Viterbi decoding algorithm to model the event space and further
decode the base sequence. Metrichor is the first basecaller
provided by Oxford Nanopore Technologies (ONT), and it
works in the cloud. Nanocall is a third-party and open-source
basecaller. It works offline but only works on data with signal
measurements produced under pore version R7.3. In the second
stage of basecaller development deep learning-based approaches
became popular for basecalling. An example of these is
Deepnano (Boža et al., 2017), which uses a bidirectional
recurrent neural network (RNN) to model statistical
characterizations of events and then predict base sequences. It
outperforms Metrichor for the R7.3 platform and demonstrates
the potential of RNN in basecalling. Similar implementations are
also adopted by official basecallers including Nanonet and
Albacore (before v2.0.1). BasecRAWller (Stoiber and Brown,
2017) uses two unidirectional RNNs: one for event boundary
prediction and the other for decoding events to a base sequence.
In recent research, the efficacy of event-based analyses has been
questioned as it heavily relies on the event space. While in

practice, it is difficult to precisely convert current
measurements to events Chiron (Teng et al., 2018) is an event-
free basecaller that directly translates current measurements into
a base sequence. It introduces an end-to-end neural network
model that combines a convolutional neural network (CNN), an
RNN, and a connectionist temporal classification (CTC) decoder
(Graves et al., 2006). Wavenano (Wang et al., 2018) adopts the
bidirectional WaveNets (Van Den Oord et al., 2016) to predict a
5-mer label and a move label for each current measurement
simultaneously. Based on the segmented 5-mer label sequences, it
decodes the final base sequence using Viterbi decoding
algorithm. The official basecallers have also been rapidly
updated. Albacore (starting from v2.0.1) also uses an event-free
strategy and runs on a CPU. Guppy is similar to Albacore, but
benefits from the GPU acceleration. Scrappie is open-source and
is used to explore new basecalling approaches. With the release of
the latest pore version R10, ONT released Flappie. Flappie uses a
flip-flop algorithm to distinguish consecutively repeated bases,
which greatly decreases base deletions in homopolymers. Then,
Guppy also implements the flip-flop algorithm in the basecalling
model. However, the official basecallers (like Albacore and
Guppy) are closed-source, which limits our insights into their
basecalling methods.

As described above, most recent basecallers, with the
exception of Wavenano, use RNN-based models to identify
the base sequence based on current measurements. With the
recurrent structures, RNN can properly model the time-series
data in basecalling. However, in these recurrent structures, the
computation of one time point must wait for the result of the
former time point. This restricts the speed of RNN-based
basecallers like Chiron, when dealing with ultra-long
sequencing reads. It also causes difficulty for the RNN-based
models in terms of performing parallel computing. A recent
study on TCN (Bai et al., 2018) showed that specific convolution
architectures perform well in sequence modeling tasks and

FIGURE 1 | Principle of nanopore sequencing. Biological nanopores are built into an artificial membrane. In the case of DNA, double-stranded DNA is unzipped by a

motor protein before passing through the pore. During sequencing, the sequencer measures current changes at a constant frequency with the movement of a DNA

strand and stores current measurements in fast5 files. Ideally, current measurements can be divided into events by red dashed lines, according to the movement of

k-mers.
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outperform ordinary RNN in terms of accuracy and execution
speed on tasks such as machine translation and audio synthesis.
Based on the dilated causal convolution introduced by
WaveNets, TCN exhibits extensive receptive fields and thus
can properly deal with the long-range temporal dependences
required for basecalling. Moreover, the convolution operation is
performed on the matrix. This operation not only can accelerate
the process of basecalling but also is convenient to perform
parallel computing. The advantages outlined above indicate the
potential of TCN in accurate and fast basecalling.

In this paper, we present Causalcall, which uses an end-to-
end TCN-based model for nanopore basecalling. Causalcall is
event-free and designed in the manner of sequence labeling.
Therefore, it does not rely on precise label of each current
measurement in training. During basecalling, Causalcall
direct ly identifies base segments from the current
measurements by using the TCN-based model, and assembles
the resulting base segments to generate the final base sequence.
Different from the RNN-based model of Chiron, the proposed
TCN-based model is much simpler and more efficient. The main
contributions of this paper can be summarized as follows:

• We modified the original architecture of TCN and combined
it with a CTC decoder. The proposed model could properly
model the sequential features of the long-range current
measurements and identify the base sequences of varying
lengths from the high-dimensional feature space.

• We showed the potential of the TCN-based model in
improving the accuracy and speed of basecalling, when
compared to the RNN-based model. Experiments on samples
lambda phage, Escherichia coli, Klebsiella pneumoniae, and
human showed that Causalcall achieves higher accuracy and
is nearly three times faster than RNN-based Chiron.

We hope this work provides a platform for a TCN-based
nanopore basecalling playground on which new ideas
can flourish.

MATERIALS AND METHODS

Data Preparation
The training set consists of MinION DNA sequencing reads
from lambda phage, E. coli, and human. The lambda phage and
E. coli datasets are released by Chiron (Teng et al., 2018). The
DNA strands of lambda phage and E. coli are sequenced on FLO-
MIN106 (pore version R9.4) flow cells using a modified version
of the SQK-LSK108 protocol. The reference genome of lambda
phage comes from the National Center for Biotechnology
Information (NCBI), sequence version NC_001416.1. The
reference genome of E. coli is assembled by base sequences of
E. coli samples sequenced by Illumina MiSeq. The human dataset
is a subset of human genomic DNA sequencing data released by
Nanopore WGS Consortium (Jain et al., 2018). DNA from the
GM12878 human cell line is sequenced on FLO-MIN106 flow
cells using the SQK-LSK108 protocol. Benefiting from direct

sequencing, epigenetic modifications (Zhang et al., 2016) of
DNA (e.g., DNA methylation) are preserved. We only selected
some of the sequencing data of chromosome 19 for training.
GRCh38 with decoys in 1,000 genomes is used as the human
reference genome.

To effectively train the network, sequencing data are labeled
in the workflow of basecalling, re-squiggle, and segmentation.
First, a basecaller is used to identify the base sequence of the
sequencing read. Then, the re-squiggle process is performed,
involving two steps. In the first step, a base sequence is mapped
to the reference genome to obtain the correct sequence. In the
second step, the correct sequence is mapped back to the current
measurements. By re-squiggling, the alignments between the
current boundaries (similar to events) and the actual shifted
bases are obtained when a single strand of DNA passes through a
pore one base at a time. Finally, the current measurements are
divided into segments with a fixed length (T = 512). Within the
segment, the label sequence is composed of the shifted bases
corresponding to the boundaries. Some imprecise alignments
between the bases and the current measurements are acceptable
due to the sequence-to-sequence learning strategy. In this study,
sequencing reads of lambda phage, E. coli, and human are
basecalled by Albacore v2.3.3 and re-squiggled by Tombo v1.5.
To balance the performance of the model, the mixed training set
is formed with 13,172 reads from lambda phage, 16,822 reads
from E. coli, and 13,008 reads from human. The total size of the
labeled training data is 86 GB. Additionally, a validation set is
used to verify the state of the model during training. This
validation set is formed by an additional 10% of reads for each
species in the training set.

To comprehensively evaluate the performance of Causalcall,
four testing sets are prepared. These testing sets contain
sequencing data of lambda phage, E. coli, human, and
K. pneumoniae separately. The lambda phage and E. coli

datasets contain 5,000 sequencing reads that are randomly
selected from the sequencing data described above. These reads
are not used for training or validating the model. The human
dataset contains 5,000 sequencing reads of human genomic DNA
from the Nanopore WGS Consortium, which are randomly
selected from the seventh part of the sequencing data of
chromosome 13. Sequencing data of K. pneumoniae are
selected from the benchmarking datasets of a study that aimed
to compare the performance of basecallers (Wick et al., 2019).
The DNA of K. pneumoniae (which contains Dcm-methylation
and no plasmids) is sequenced on FLO-MIN106 flow cells using
the SQK-LSK108 protocol. It is also sequenced using Illumina
HiSeq to generate an accurately assembled genome, which acts as
the reference genome of K. pneumoniae. We used the dataset of
K. pneumoniae INF042 as a testing set. It contains the entire
sequencing data of the K. pneumoniae strain INF042
chromosome (11,278 sequencing reads). As reads of
K. pneumoniae are not used for training the model, they are
used to evaluate the generalization performance of the model.
With a sequencing depth of over 100× on average, they are also
used to evaluate the assembly accuracy of base sequences from
different basecallers.
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Basecalling Workflow
The entire workflow of Causalcall is straightforward, without
conversion of current measurements to events. The data pre-
processing and post-processing are similar to those of Chiron.
However, Causalcall is much simpler and faster by using a more
effective end-to-end neural network model. The model is mainly
developed on a modified TCN. Thus, it can process all current
measurements in a long time series simultaneously. As noise
during sequencing typically appears as outliers in the current
signal, Causalcall first standardizes the raw current
measurements Xraw using median absolute deviation (MAD).
The standardization formula is defined as:

X =
c(Xraw −median(Xraw))

median(jXraw −median(Xraw)j)

where c is a constant.
Figure 2 illustrates a simplified workflow for identifying the

base sequence of one sequencing read. To improve speed, current
measurements are first divided into segments of length T (T =
512), using a sliding window with a step size of d (d = T/4). Then,
the segments are stacked in sequence and passed to the model in
batches. While passing through the model, current
measurements of a segment are modeled using a modified
TCN and then mapped to probability distributions, which
indicate the probabilities of each base appearing at each time
point. At the end of the model, the CTC decoder identifies the
base sequence corresponding to the segment based on the
probability distributions. Finally, Causalcall assembles base
sequences of segments from the same sequencing read by
overlaps and outputs the assembled sequence.

Architecture of the TCN-Based Model
As the rate of DNA movement is unstable and slower than the
rate of current sampling, the base sequences may differ in length
and be much shorter than the segments of current
measurements. Thus, the main task of the model is to
transform the segments of current measurements with fixed
length T into base sequences with non-uniform length M (0 <
M < T). In this study, F denotes the model and the
transformation is written as Y = F (X), where X=[x1, x2,⋅⋅⋅,

xT], xi∈R and Y=[y1, y2,⋅⋅⋅,yM], yj ∈ A, G, C, T,M < T. X denotes a
segment of current measurements with T time points. Y denotes
a sequence of M bases. During training, X and Y are sampled
from the training set D = {(X 1,Y 1), (X 2, Y 2),…}. Causalcall uses
an end-to-end deep neural network model to learn the
transformation from X to Y directly. The overall architecture
and further details of the model are illustrated in Figure 3A. The
model primarily consists of a modified TCN and a CTC decoder.
The modified TCN models sequential features from the current
measurements and maps them to probability distributions of
bases appearing at each time point. Then, the CTC decoder
implements a beam search algorithm to identify the most likely
base sequence from the probability distributions.

The modified TCN is formed of five stacked residual blocks
(Figure 3B) and two fully connected (FC) layers, which is
different from the original TCN (Bai et al., 2018). The main
idea in TCN architecture can be simplified to stacking dilated
causal convolution layers of the same length. This scheme is
illustrated in Figure 3C. For a given input signal sequence X =
[x1, x2,…xT] and a filter f:{0,…, k − 1} ! R, the dilated causal
convolution operation (C) on the ith point of X is written as:

C(xi) = o
k−1

a=0

f (a) � xi−a�d

where d is the dilation factor and k is the filter size. The output of
a dilated causal convolution layer is represented by H = C (X).
For the first layer, X denotes the input current measurements,
whereas for a higher layer, it denotes the output of the former
layer. Dilation factor d increases exponentially by 2 and the index
is the number of layers.

Rather than simply stacking layers, the TCN stacks residual
blocks to form a deeper architecture. We modified the original
residual block (see Figure 3B). Each block contains two stacked
dilated causal convolution layers. The two stacked layers have the
same filter size (k), dilation factor (d), and number of filters (n).
Weight normalization (Salimans and Kingma, 2016) is applied to
each dilated causal convolution layer, followed by a gated linear
unit (Dauphin et al., 2017) as the activation function. The
formula of the gated linear unit is H ⊗ s (H), where ⊗ means
pointwise multiplication. The gated linear unit allows the model

FIGURE 2 | The simplified workflow of identifying the base sequence of one sequencing read. In the probability matrix, each row corresponds to a time point at the

segment of current measurements. Each column corresponds to one type of base.
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to select which features are relevant for predicting the correct
bases. Then, a residual connection is applied to the activated
output of the second convolution layer and the input of the
block, followed by a ReLU activation function. For the fifth block,
the receptive field of convolution is 32. It is sufficient to cover the
current measurements that are related to the base shifted out of
the pore. The stacked residual blocks act as a feature extractor to
map current measurements to feature space. As the causal
convolution is implemented in the time dimension, the
extracted features indicate the correlation of the current
measurements at different time points. Subsequently, two FC
layers follow the last residual block and a softmax function is
added at the end. The FC layers are used to fuse features from
different channels. Then, a softmax function transforms the
output of the last FC layer into a matrix of probabilities, in
which each row indicates the probabilities of bases appearing at
that time point.

CTC (Graves et al., 2006) is a popular approach for end-to-
end sequence learning tasks. During training, it is a loss function
that enables the model to directly learn the mapping from the
input sequences to target sequences. It views the output of the
modified TCN as the probability distributions over all possible
base sequences conditioned on the input segment of the current
measurements. Then, a loss function is computed based on the
probability distributions. Given input segment X = [x1, x2,…xT]
and label sequence Y = [y1, y2,…, yM], W denotes the
transformation of the modified TCN. The output of the
modified TCN is written as [O1, O2,…, OT] = W ([x1, x2, …,

xT]), where Ot is a vector of length 5 that indicates the probability
of each symbol (A, G, C, T, blank) appearing at time point t.
Blank denotes a symbol introduced by CTC. It acts as a separator
to separate adjacent bases in label sequence and will not appear
in the output sequence. The probability of label Y conditioned on
X is defined as:

P(Y jX) = o
s∈B−1(Y)

P(sjX),  P(sjX) = P
T

t=1
O
st
t ,   ∀ s ∈ Y 0

where s=[s1, s2, ⋅⋅⋅,sT], st∈{A, G, C, T, blank} denotes the sequence
of possible symbols conditioned on X. Ost

t is a value output by the
modified TCN at time point t, which indicates the probability of
symbol st appearing at time point t. Yꞌ is a set of all possible
symbol sequences (s) with length T. Additionally, B denotes a
many-to-one mapping function that first merges the
consecutively repeated symbols and then removes all blanks
in s. Thus, the possible symbol sequences can be mapped to a
shorter base sequence. The model is trained with the goal of
optimizing loss function Lctc = − logP(Y|X). The Adam
optimizer with an initial learning rate of 0.004 is used to
optimize the loss.

During testing, based on the premise of CTC, a beam search
or greedy search algorithm is implemented to identify the most
likely base sequence directly. In the greedy search algorithm,
symbols with the highest probability are selected at each time
point to form a symbol sequence. Then, the symbol sequence is

FIGURE 3 | (A) Overall architecture of the TCN-based model. The modified TCN is formed by five stacked residual blocks with filter size k = 3, number of filters n =

256, and dilation factors d = 1, 2, 4, 8, 16. The output channels of the first FC layer and second FC layer are 128 and 5, respectively. The weights in the network are

initialized with no bias. (B) Architecture of a residual block. A 1×1 convolution is implemented if the input and output of the residual block have different dimensions.

Zl denotes the output of block l. (C) Dilated causal convolution network with two hidden layers. As each layer has the same length as the input layer, the convolution

stride equals one. The receptive field of the convolution is computed as (k − 1)d, which means that higher layers can cover longer current segments.
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transformed into a base sequence according to the many-to-one
mapping [e.g., Y = B (s) = B([A, A,−, −,G, −,C]) = [A, G, C], −
denotes blank]. The beam search algorithm is based on a similar
idea, but it maintains multiple sequences during decoding. The
sequence with the highest score will be the final base sequence.

Training
We train Causalcall on the mixed training set. To prevent
overfitting, the model is evaluated every 10 iterations of training
on a separate validation set. Before training, the current
measurements are standardized using MAD and are divided into
segments with a fixed length (as described in the Data Preparation
section). The segments are fed into the model in batches. We use a
segment length of 512 and a batch size of 256. During training, the
training set and validation set are shuffled after each epoch. The
learning rate is stepped down as the number of iterations increases.
The entiremodel is trained on anNVIDIA 1080ti GPUwith 12GB
memory, and it takes nearly 3 days to converge.

Metrics for Basecalling Evaluation
To evaluate the performance of basecallers, we mapped
basecalling results to the reference genome. First, the base
sequences from different basecallers are mapped to the
reference genome using minimap2 (Li, 2018) with the
parameter map-ont. Mapping results are stored in SAM files
and analyzed by a japsa

1

error analysis tool (jsa.hts.errorAnalysis)
to assess the identity rate and error rates, including insertions,
deletions, and mismatches, of each mapping. Identity indicates
correct alignments between the base sequence and the reference
genome. The identity rate is computed as number of  matched bases

number of   bases in reference.
It is a metric for the accuracy of basecalling. The insertion rate,
deletion rate, and mismatch rate are computed as the numbers of
inserted bases, deleted bases, and mismatched bases divided by
the number of bases in the reference genome, respectively.
Mismatch indicates incorrect alignments. Deletion/insertion
indicates that a base deletion/insertion occurs in the base
sequence relative to the reference genome. They are metrics for
basecalling errors. We also computed the total error rate by
summing up rates of insertions, deletions, and mismatches. In
addition, the speed of basecalling is also an important metric to
evaluate the performance of basecallers. The speed is calculated
by the number of outputted bases divided by the running time.
Higher values of identity rate and speed reflect better
performance, while for the other metrics, lower values are better.

Genome Assembly and Error Analysis
We also used the quality of the assembled genome to evaluate
reads from different basecallers. In this study, base sequences of
K. pneumoniae are assembled using the assembly pipeline
introduced by Rebaler (Wick et al., 2019). The samples of
K. pneumoniae contain no plasmids and the sequencing depth
is over 100× on average, making them easier to assemble. The
assembly pipeline contains two main steps. First, based on the
mapping results of minimap2, the matched parts in the reference
genome are replaced with read sequences to generate a draft

assembled genome. Second, the draft assembled genome is
polished with 10 rounds of Racon (Vaser et al., 2017). The
pipeline ensures that the assembled genome and the reference
genome are similar in size. For efficient mapping, the assembled
genome is first segmented into 10 kbp pieces. Then, these pieces
are mapped to the reference genome using minimap2 with the
parameter ax asm. The rates of identity, deletion, insertion, and
mismatch are determined from the mapping results using japsa.
The homopolymer and methylation of DNA are two common
factors that may cause base deletion and base substitution (Wei
et al., 2017. Taking into account their effects, mapping errors of
the assembled genomes are further classified into six types in the
context of the reference genome. Based on the assembled
genomes of K. pneumoniae, the error analysis method
described in Rebaler is implemented. Pieces of the assembled
genome are mapped to the reference genome using the nucmer

command of MUMmer v4.0.0 (Kurtz et al., 2004). Then, the
delta-filter command and the show-snps command are used to
detect single-nucleotide polymorphism (SNP). Based on the
results of mapping and SNP detection, errors are classified into
homopolymer deletion, homopolymer insertion, Dcm error,
insertion, deletion, and substitution. Homopolymer insertion
and homopolymer deletion represent insertion and deletion
errors, respectively, that occur in regions of homopolymers
with more than two bases. Dcm error represents errors that
occur in Dcm-methylation motifs (CCTGG or CCAGG). Errors
not in the former three categories are classified as ordinary
deletion, insertion, or substitution.

RESULTS

Benchmark Methods and Experimental
Details
In this study, we evaluate the performance of Causalcall, Chiron
v0.4.2, Flappie v1.1.0, and Guppy v3.1.5. As Causalcall and Chiron
arebothdevelopedonTensorFlowusingPythonand runonaGPU,
we focusoncomparing them.Foraneffective comparison,Chiron is
retrained with default parameters on the mixed training set and it
takes 2.5 days to converge. The retrained model is called DNAre,
and the default model of Chiron is called DNAde. Flappie and
Guppy are state-of-the-art official basecallers. The two official
basecallers are trained with non-public datasets that are different
from ours. Alternatively, the official basecallers are used as
references in performance comparison. To demonstrate the effect
of training data, Chiron is run with a default model and a retrained
model, respectively. Flappie is run with 20 CPU threads. Guppy,
Chiron, and Causalcall are run on anNVIDIA 1080ti GPUwith 12
GB memory. As for the basecalling parameters, Causalcall uses a
segment length of 512, batch size of 256, and sliding window stride
of 118. The other basecallers are run with the default parameters.

Evaluation Results of Basecallers
The results of evaluating the four basecallers on the four testing
sets are summarized in Table 1. Compared with Chiron,
Causalcall achieves a higher identity rate and a lower error rate
on the four species. In terms of three mapping errors, Causalcall1 japsa toolkit:https://github.com/mdcao/japsa.
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has lower insertion and mismatch rates. In particular, Causalcall
has the lowest insertion rate on phage and human. These results
show that Causalcall effectively learned the base-related patterns
hidden in the current measurements. Furthermore, they indicate
that the TCN-based model of Causalcall has greater potential for
improving the accuracy of basecalling than the RNN-based
model of Chiron. Regarding the speed of basecalling,
Causalcall reaches 7,000 bases per second on average, which is
nearly three times faster than Chiron. This improvement in
speed indicates that the TCN-based model indeed speeds up
basecalling, resulting from the matrix computation of dilated
causal convolution. In addition, Causalcall adopts longer
segments of current measurements with lower overlap ratio
compared with Chiron. This also contributes to the
improvement in speed. As we mentioned in the previous
section, the training data of Guppy and Flappie are not
publicly available. It is thus difficult to say whether the training
data or their RNN-based models contribute to the good
performance. However, we observed that the training data
indeed have a significant impact on the performance of
basecallers. As shown in Table 1, Chiron (DNAre) achieves a
1.78% higher identity rate and a 1.85% lower error rate than
Chiron (DNAde) on average, which corroborates the effect of the
training data. Flappie is programmed with C language and
accelerated by multiple threads of a CPU. The speed of Flappie
depends on the number of threads and the state of the CPU. As
such, the speed could fluctuate greatly. Experimental results
show that Causalcall is as fast as Flappie that with 20 CPU
threads. Guppy is a developed software in binary version. We do
not know its inner software engineering technologies used for
acceleration, as it is not open source. Guppy works much faster
than Causalcall at present, but Causalcall can be further
accelerated by reprogramming with C language and integrating

with acceleration technologies such as parallel computing. The
results above demonstrate that the TCN-based model of
Causalcall could improve the accuracy and speed of basecalling.

Mapping errors of base sequences are related not only to
errors caused by basecalling methods but also to errors caused by
the nanopore device and modification or mutation of DNA. In
this paper, we assume that the mapping errors in common
among different basecallers are more likely to be caused by the
nanopore device or DNA samples, whereas others are more likely
to be caused by the basecalling methods. Accordingly, we
analyzed the overlaps of mapping errors of different
basecallers. For each basecaller, we computed the proportion of
common mapping errors relative to total mapping errors. The
mapping errors are divided into three types: insertion, deletion,
and mismatch. For example, as for one sequencing read in the
testing set, if the resulting base sequences from the four
basecallers have base insertions at the same site on the
reference genome, this site is determined to have a common
insertion error. Similarly, common deletion and common
mismatch errors are counted in this manner. For each
basecaller, the proportion of common errors (insertion,
deletion, or mismatch) is computed as the number of common
errors divided by the number of total errors of that basecaller.
The results of the error overlap analysis are shown in Figure 4. A
higher proportion of common errors indicates the better
performance of the basecaller. Causalcall achieves higher
common error proportions than Chiron on all species. This
indicates the better performance of Causalcall than Chiron as
there are fewer errors introduced by itself during basecalling.
Further, it demonstrates that the TCN-based model could
properly model current measurements under the sequence-to-
sequence learning strategy. Similar to the previous paragraph, the
results of Flappie and Guppy act as references. Additionally, we

TABLE 1 | Performance of Causalcall, Chiron v0.4.2 (DNAde), Chiron v0.4.2 (DNAre), Guppy v3.1.5, and Flappie v1.1.0 on the four testing sets.

Species Basecaller Deletion (%) Insertion (%) Mismatch (%) Identity (%) Error (%) Speed (bps)

Lambda phage Causalcall 6.48 1.84 4.30 89.21 12.62 7385

Chiron (DNAde) 8.20 2.27 5.77 86.03 16.24 2568

Chiron (DNAre) 6.86 2.22 4.71 88.43 13.79 2721

Guppy 4.60 2.02 3.00 92.40 9.62 379883

Flappie 5.01 2.28 3.50 91.50 10.79 9398

E. coli Causalcall 5.95 2.07 4.57 89.48 12.59 7172

Chiron (DNAde) 7.07 2.47 6.04 86.89 15.58 2485

Chiron (DNAre) 5.91 2.34 4.65 89.44 12.90 2761

Guppy 4.06 1.97 3.02 92.92 9.05 363389

Flappie 4.60 2.28 3.60 91.79 10.48 6678

Human Causalcall 8.06 2.27 5.06 86.88 15.39 6548

Chiron (DNAde) 8.49 2.92 5.41 86.10 16.82 2045

Chiron (DNAre) 7.76 2.98 5.56 86.68 16.30 1992

Guppy 4.78 2.46 2.86 92.35 10.10 349665

Flappie 5.33 2.67 3.35 91.32 11.35 7212

K. pneumoniae Causalcall 5.58 4.82 6.29 88.12 16.69 6657

Chiron (DNAde) 5.70 6.41 7.92 86.38 20.03 2540

Chiron (DNAre) 5.13 6.26 6.9 87.98 18.29 2446

Guppy 4.10 4.16 4.49 91.41 12.75 305153

Flappie 5.06 4.26 5.42 89.52 14.74 6400

1Chiron (DNAde) and Chiron (DNAre) represent the default and the retrained Chiron, respectively.

Identify rate of the mapping is the metric for basecalling accuracy [the higher the better, identify rate = 1 – (deletion rate + mismatch rate)]. Error rate is calculated by summing the rates of

deletion, insertion, and mismatch (the lower the better).
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observed that the common error proportions of lambda phage,
E. coli, and human are higher than that of K. pneumoniae. The
main reason for this is that Causalcall and Chiron have learned
feature distributions of current measurements about these three
species. This indicates that the multi-species training data could
help to improve the accuracy of basecalling.

Effects of Basecallers on the Quality of
Genome Assembly
Sequences of long nanopore reads have been shown to play a
significant role in high-quality genome assembly. We analyze the
effects of base sequences from different basecallers on the
qualities of mapping of the assembled genome to the reference
genome. We assemble the base sequences of K. pneumoniae by
first generating a draft assembled genome based on the
alignments of the base sequences to the reference genome.
Then, we polish the draft assembled genome with 10 rounds of
Racon (see the Materials and Methods section). To assess the
quality of the assembled genome, we use minimap2 to map
pieces of the assembled genome to the reference genome. Based
on the mapping results, we count the rates of identity, deletion,
insertion, and mismatch, which act as assessment metrics.

Mapping qualities of the assembled genomes corresponding
to different basecallers are shown in Table 2. The assembled
genome of Causalcall shows high quality with an identity rate of
99.81%, which is much higher than those of Chiron (DNAde)
and Flappie. The assembled genome of Causalcall also has a
0.04% lower error rate than that of Chiron (DNAre), although it
has a 0.04% lower identity rate. In addition, the assembled
genome of Causalcall has the lowest insertion and mismatch
rates among the five assembled genomes. The main reason for
this is that most of the insertion and mismatch errors in base
sequences of Causalcall have been corrected by Racon in the
process of polishing. These results further indicate the high
utility of Causalcall in reference-based genome assembly.

Considering the effects of homopolymers and Dcm-
methylation, we further analyzed six assembly errors of the
assembled genomes. For precise mapping at the genome level
and SNP detection at the base level, we used the commands of
MUMmer v4.0.0 (see the Materials and Methods section). Based
on the results of mapping and SNP detection, errors are classified
into homopolymer deletion, homopolymer insertion, Dcm error,
insertion, deletion, and substitution. The six error rates are
additional metrics to evaluate basecallers.

FIGURE 4 | Proportion of common mapping errors relative to total mapping errors for base sequences from each basecaller.

TABLE 2 | Mapping qualities of the assembled genomes of K. pneumoniae corresponding to different basecallers. Error rate is calculated as that in Table 1.

Basecaller Deletion (%) Insertion (%) Mismatch (%) Identity (%) Error (%)

Causalcall 0.17 0.01 0.02 99.81 0.20

Chiron (DNAde) 0.09 0.28 0.27 99.64 0.64

Chiron (DNAre) 0.10 0.09 0.05 99.85 0.24

Guppy 0.09 0.01 0.03 99.88 0.13

Flappie 0.21 0.01 0.10 99.69 0.32
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Figure 5 illustrates the assembly error rates of base sequences
from different basecallers. The assembled genome of Causalcall
achieves the second lowest assembly error rate in total, among
the five assembled genomes. Compared with Chiron, the
assembled genome of Causalcall has lower rates on all
assembly errors, except for homopolymer deletion.
Homopolymer deletion is the most common assembly error of
Causalcall and Flappie. The main reason for this is that it is
difficult for Racon to correct errors in long homopolymers. It is
worth noting that the assembled genome of Causalcall has the
lowest error rate in Dcm-methylation, which is the main type of
assembly error of Guppy and Flappie. This superior result
indicates that Causalcall has exploited representative features
of DNA methylation from the training data, resulting in a better
ability to correctly identify bases from the current measurements
of methylated DNA.

DISCUSSION

We proposed Causalcall for nanopore basecalling. It uses a TCN-
based model to directly identify base sequences from current
measurements in high speed. The core component of TCN is the
dilated causal convolution introduced by WaveNet. As described
in a recent publication, Wavenano uses bidirectional WaveNets
for basecalling in the manner of classification. It relies on the
precise labeling of each current measurement in training data.
However, it is difficult to precisely label each current
measurement, resulting from the noise in the current signal
and uneven flow of DNA. Causalcall is designed in a manner of
sequence labeling. Therefore, it does not rely on precise label of

each current measurement in training. The TCN is tailored to
combine with a CTC decoder to properly deal with long-range
temporal dependencies of current measurements and non-
uniform lengths of base sequences. As a result, the proposed
model can directly identify base sequences of varying lengths
from the segments of current measurements in long time series.
The CTC decoder helps to realize sequence-to-sequence
learning. A gated linear unit is added to help the model select
important features. These designs mitigate the impact of
imprecise alignments between current measurements to
reference bases during labeling of the training data. Moreover,
they promote the performance of the network in modeling
current measurements.

Trained on a mixed training set, Causalcall shows better
performance on samples of multiple species than Chiron.
Among the three types of mapping errors, base deletions are
the most common errors for the four basecallers. Such deletions
are mainly caused by long-term and non-fluctuating current
signals of homopolymers. To properly deal with this problem,
Guppy and Flappie take a flip-flop algorithm to distinguish the
repeated bases of homopolymers. Following this idea, we could
modify the label sequence of training data by marking
consecutively repeated bases with two states and retraining the
TCN-based model. This could be a way of decreasing the
deletion rate. We will verify this idea in future work.

CONCLUSION

We proposed Causalcall, which uses an end-to-end TCN-based
model for accurate and fast nanopore basecalling. The TCN-

FIGURE 5 | Assembly error rates of different basecallers on K. pneumoniae, classified by type. Errors of mapping the assembled genome to the reference genome

are classified into six types. Homopolymer insertion/deletion (Homo-ins/Homo-del) represents errors that occur in homopolymers with more than two bases. Dcm

error (Dcm-err) represents errors that occur in Dcm-methylation motifs (CCTGG/CCAGG). Deletion (Del), insertion (Ins), and substitution (Sub) are ordinary error

types. Each type of error rate is computed as the number of errors in the category divided by the length of the reference sequence.
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based model is well designed based on a modified TCN and a
CTC decoder. Thus, it could efficiently identify base sequences of
different lengths from the current measurements in long time
series. Different from the ordinary RNN-based models, the TCN-
based model could speed up basecalling by matrix computation.
The highly parallelizable architecture allows the model to be
further accelerated by technologies such as parallel computing.
Trained with a mixed training set, Causalcall shows good
performance on samples of trained as well as untrained
species. Compared with the RNN-based Chiron, Causalcall
achieves higher identity rates, lower error rates, and nearly
three times higher speed on the four testing sets. Such
improvements in performance demonstrate that the TCN-
based model has great potential in improving basecalling
accuracy and speed. Additionally, the assembled genome of
Causalcall shows high quality with the lowest error rate in
Dcm-methylation motifs. It demonstrates the high utility of
Causalcall in reference-based genome assembly. It also
indicates the ability of the TCN-based model to identify bases
from the current measurements of methylated DNA.
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