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Abstract: We argue that certain apparently consistent low-energy effective field theories

described by local, Lorentz-invariant Lagrangians, secretly exhibit macroscopic non-locality

and cannot be embedded in any UV theory whose S-matrix satisfies canonical analyticity

constraints. The obstruction involves the signs of a set of leading irrelevant operators,

which must be strictly positive to ensure UV analyticity. An IR manifestation of this

restriction is that the “wrong” signs lead to superluminal fluctuations around non-trivial

backgrounds, making it impossible to define local, causal evolution, and implying a surpris-

ing IR breakdown of the effective theory. Such effective theories can not arise in quantum

field theories or weakly coupled string theories, whose S-matrices satisfy the usual analyt-

icity properties. This conclusion applies to the DGP brane-world model modifying gravity

in the IR, giving a simple explanation for the difficulty of embedding this model into con-

trolled stringy backgrounds, and to models of electroweak symmetry breaking that predict

negative anomalous quartic couplings for the W and Z. Conversely, any experimental sup-

port for the DGP model, or measured negative signs for anomalous quartic gauge boson

couplings at future accelerators, would constitute direct evidence for the existence of su-

perluminality and macroscopic non-locality unlike anything previously seen in physics, and

almost incidentally falsify both local quantum field theory and perturbative string theory.
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1. Introduction

Can every low-energy effective theory be UV completed into a full theory? To a string

theorist in 1985, the answer to this question would have been a resounding “no.” The hope

was that the consistency conditions on a full theory of quantum gravity would be so strong

as to more or less uniquely single out the standard model coupled to GR as the unique

low-energy effective theory, and that the infinite number of other possible effective theories

simply couldn’t be extended to a full theory. In support of this view, the early study of

perturbative heterotic strings yielded many constraints on the properties of the low-energy

theory invisible to the effective field theorist. For instance, the rank of the gauge group

was restricted to be smaller than 22.

With the discovery of D-branes and the duality revolution, these constraints appear to

have evaporated, leaving us with a continuous infinity of consistent supersymmetric theories

coupled to gravity and very likely a huge discretum of non-supersymmetric vacua [1]. If

the low-energy theory describing our universe is not unique but merely one point in a vast
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landscape of vacua of the underlying theory, then the properties of our vacuum — such as

the values of the dimensionless couplings of the standard model — are unlikely to be tied

to the structure of the fundamental theory in any direct way, reducing the detailed study of

its particle-physical properties to a problem of only parochial interest. This situation is not

without its consolations. With a vast landscape of vacua, seemingly intractable fine-tuning

puzzles such as the cosmological constant problem [2], and perhaps even the hierarchy

problem [3], can be solved by being demoted from fundamental questions to environmental

ones, suggesting new models for particle physics [4].

Given these developments, it is worth asking again: can every effective field theory

be UV completed? The evidence for an enormous landscape of vacua in string theory

certainly encourages this point of view — if even the consistency conditions on quantum

gravity leave room for huge numbers of consistent theories, surely any consistent model

can be embedded somewhere in the landscape. Much of the activity in model-building in

the last five years has implicitly taken this point of view, constructing interesting theories

purely from the bottom-up with no obvious embedding into any microscopic theory. This

has been particularly true in the context of attempts to modify gravity in the infrared,

including most notably the Dvali-Gabadadze-Porrati model [5] and more recent ideas on

Higgs phases of gravity [6 – 8].

In this note, we wish to argue that the pendulum has swung too far in the “anything

goes” direction. Using simple and familiar arguments, we will show that some apparently

perfectly sensible low-enegy effective field theories governed by local, Lorentz-invariant La-

grangians, are secretly non-local, do not admit any Lorentz-invariant notion of causality,

and are incompatible with a microscopic S-matrix satisfying the usual analyticity condi-

tions. The consistency condition we identify is that the signs of certain higher-dimensional

operators in any non-trivial effective theory must all be strictly positive. The inconsistency

of theories which violate this positivity condition has both UV and IR avatars.

The IR face of the problem is that, for the “wrong” sign of these operators, small fluc-

tuations around translationally invariant backgrounds propagate superluminally, making

it impossible to define a Lorentz-invariant time-ordering of events. Moreover, in general

backgrounds, the equation of motion can degenerate on macroscopic scales to a non-local

constraint equation whose solutions are UV-dominated. Thus, while these theories are local

in the sense that the field equations derive from a strictly local Lagrangian, and Lorentz-

invariant in the sense that Lorentz transforms of solutions to the field equations are again

solutions, the macroscopic IR physics of this theory is neither Lorentz-invariant nor local.

The UV face of the problem is also easy to discern: assuming that UV scattering

amplitudes satisfy the usual analyticity conditions, dispersion relations and unitarity im-

mediately imply a host of constraints on low energy amplitudes. One particular such

constraint is that that the leading low energy forward scattering amplitude must be non-

negative, yielding the same positivity condition on the higher-derivative interactions as the

superluminality constraint. Of course the fact that analyticity and unitarity imply posi-

tivity constraints is very well known, and the connection of analyticity to causality is an

ancient one.

We will focus on models in which the UV cutoff is far beneath the (four-dimensional)
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Planck scale, so gravity in unimportant, though we will also make some comments about

gravitational theories. Our work thus complements the intrinsically gravitational limita-

tions on effective field theories recently discussed in [9, 10].

Of course, local quantum field theories have a Lorentz-invariant notion of causality and

satisfy the usual S-matrix axioms, so any effective field theory which violates our positivity

conditions cannot be UV completed into a local QFT. Significantly, since weakly coupled

string amplitudes satisfy the same analyticity properties as amplitudes in local quantum

field theories— indeed, the Veneziano amplitude arose from S-matrix theory— the same

argument applies to weakly coupled strings. Thus, while string theory is certainly non-

local in many crucial ways, the effective field theories arising from string theory are in this

precise sense just as local as those deriving from local quantum field theory, and satisfy

the same positivity constraints.

Positivity thus provides a tool for identifying what physics can and cannot arise in the

landscape. Perhaps surprisingly, the tool is a powerful one. For example, it is easy to check

that the DGP model violates positivity, providing a simple explanation for why this model

has so far resisted an embedding in controlled weakly coupled string backgrounds. Similarly,

certain 4-derivative terms in the chiral Lagrangian are constrained to be positive, implying

for example that the electroweak chiral Lagrangian cannot be UV completed unless the

anomalous quartic gauge boson couplings are positive.

The flipside of this argument is that any experimental evidence of a violation of these

positivity constraints would signal a crisis for the usual rules of macroscopic locality, causal-

ity and analyticity, and, almost incidentally, falsify perturbative string theory. For exam-

ple, the DGP model makes precise predictions for deviations in the moon’s orbit that

will be checked by laser lunar ranging experiments [11]. If these deviations are seen and

other pieces of experimental evidence supporting the DGP effective theory are gathered,

we would also have evidence for parametrically fast superluminal signal propagation and

macroscopic violation of locality, as well as a non-analytic S-matrix, unlike anything pre-

viously seen in physics. The same conclusion holds if future colliders indicate evidence

for negative anomalous quartic gauge boson couplings. Experimental evidence for either of

these theories would therefore clearly disprove some of our fundamental assumptions about

physics.

2. Examples

Let’s begin with some examples of the apparently consistent low-energy effective theories

we will constrain. Of course we should be precise about what we mean by a consistent

effective theory — loosely it should have stable vacuum, no anomalies and so on, but most

precisely, a consistent effective field theory is just one that produces an exactly unitary

S-matrix for particle scattering at energies beneath some scale Λ.

Consider the theory of a single U(1) gauge field. The leading interactions in this theory

are irrelevant operators,

L = −1

4
FµνFµν +

c1

Λ4
(FµνFµν)2 +

c2

Λ4
(Fµν F̃µν)2 + . . . , (2.1)
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with Λ some mass scale and c1,2 dimensionless coefficients. As another example, consider a

massless scalar field π with a shift symmetry π → π+const. Again the leading interactions

are irrelevant,

L = ∂µπ∂µπ +
c3

Λ4
(∂µπ∂µπ)2 + . . . (2.2)

As far as an effective field theorist is concerned, the coefficients c1,2,3 are completely

arbitrary numbers. Whatever the ci are, they can give the leading amplitudes in an exactly

unitary S-matrix at energies far beneath Λ. Of course the theories are non-renormalizable

so an infinite tower of higher operators must be included, nonetheless there is a systematic

expansion for the scattering amplitudes in powers of (E/Λ) which is unitary to all orders in

this ratio. However, we claim that in any UV completion which respects the usual axioms

of S-matrix theory, the ci are forced to be positive

ci > 0 . (2.3)

It is easy to check that indeed these coefficients are positive in all familiar UV com-

pletions of these models. For instance, the Euler-Heisenberg Lagrangian for QED, arising

from integrating out electrons at 1-loop, indeed generates c1,2 > 0. Analogously, we can

identify π as a Goldstone boson in a linear sigma model, where π and a Higgs field h are

united into a complex scalar field Φ,

Φ = (v + h)eiπ/v , (2.4)

with a potential V (|Φ|) = λ(|Φ|2 − v2)2. The action for π, h at tree-level is

L =
(

1 +
h

v

)2
(∂π)2 + (∂h)2 − M2

hh2 − . . . (2.5)

Integrating out h at tree-level yields the quartic term

Leff =
λ

M4
h

(∂π)4 + . . . (2.6)

which has the claimed positive sign.

Another example involves the fluctuations of a brane in an extra dimension, given by

a field y(x) with the effective lagrangian

L = −f4
√

1 − (∂y)2 = f4
[

− 1 +
(∂y)2

2
+

(∂y)4

8
+ . . .

]

. (2.7)

Again we find the correct sign. Related to this, the Born-Infeld action for a U(1) gauge

field localized to a D-brane also gives the correct sign for all F 4 terms.

There are also other simple 1-loop checks. For example, imagine coupling N fermions

to Φ in our UV linear sigma model; for sufficietly large N , 1-loop effects can dominate over

the tree terms coming from integrating out the Higgs. For instance, consider integrating

out a higgsed fermion. Grouping two Weyl fermions ψ,ψc with charges ±1 into a Dirac

spinor Ψ, the effective Lagrangian is

Ψ̄
[

iγµ

(

∂µ + i
∂µπ

v
γ5

)

− MΨ

]

Ψ . (2.8)
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At 1-loop, we generate an effective quartic interaction

Leff =
1

48π2v4
(∂π)4 + . . . , (2.9)

resulting again in a positive leading irrelevant operator.

Note that the positivity constraints we are talking about are not directly related to

other familiar positivity constraints that follow from vacuum stability. We know for in-

stance that kinetic terms are forced to be positive, and that m2φ2 and λφ4 couplings must

also be positive. In all these cases, the “wrong” signs are associated with a clear instability

already visible in the low-energy theory. Related to this, the euclidean path integrals for

such theories are not well-defined, having non-positive-definite euclidean actions.

By contrast, the “wrong” sign for the leading derivative interactions (such as the (∂π)4

terms above) are not associated with any energetic instabilities in the low-energy vacuum:

the correct sign of the kinetic terms guarantee that all gradient energies are positive, with

the terms proportional to the ci giving only small corrections within the effective theory.

Indeed, even if the leading irrelevant operators — the only ones to which our constraints

apply — have the “wrong” sign, higher order terms can ensure the positivity of energy (at

least classically), e.g. higher powers of (∂π)2. Related to this, the euclidean path integrals

in theories with “wrong” signs do not exhibit any obvious pathologies. Of course this non-

renormalizable theory must be treated using the standard ideas of effective field theory, but

the healthy euclidean formulation at least perturbatively guarantees a unitary low-energy

S-matrix when we continue back to Minkowski space.

3. Signs and superluminality

If models with the “wrong” signs have stable, Lorentz-invariant vacuua with perfectly

sensible and unitary perturbative S-matrices, why don’t they arise as the low-energy limit

of any familiar UV-complete theories? As we will see, while the trivial vacua of such

theories are well-behaved, the speed of fluctuations around non-trivial backgrounds depend

critically on these signs, with the “wrong” signs leading to superluminal propagation in

generic backgrounds. This in turn leads to familiar conflicts with causality and locality

which are not present in any microscopically local quantum field or perturbative string

theory. Exactly how this conflict arises turns out to be an illuminating question.

Let’s begin by establishing the connection between positivity-violating irrelevant lead-

ing interactions and superluminality in non-trivial backgrounds. Suppose we expand the

effective theory around some non-trivial translationally invariant solution of the field equa-

tions. As long as the background field is sufficiently small, the effective field theory remains

valid. Translational invariance ensures that small fluctuations satisfy a simple dispersion

relation, ω2 = v2(k̂) |~k|2, with the velocity v(k̂) determined by the higher-dimension oper-

ators in the lagrangian. The crucial insight is that whether fluctuations travel slower or

faster than light depends entirely on the signs of the leading irrelevant interactions.

Let’s see how this works in an explicit example. Consider our Goldstone model ex-

panded around the solution ∂µπ0 = Cµ, where Cµ is a constant vector. The linearized
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equation of motion for fluctuations ϕ ≡ π − π0 around this background is

[

ηµν + 4
c3

Λ4
CµCν + . . .

]

∂µ∂νϕ = 0 . (3.1)

Within the regime of validity of the effective theory, CµCµ ¿ Λ4, all higher dimension

interactions are negligible - all that matters is the leading interaction, c3. Expanding in

plane waves, this reads

kµkµ + 4
c3

Λ4
(C · k)2 = 0 . (3.2)

Since (C · k)2 ≥ 0, the absence of superluminal excitations requires that the coefficient c3 is

positive.

The case of the electromagnetic field is slightly more involved — the speed of fluctu-

ations around non-trivial backgrounds now depends on both momentum and polarization

εµ, and thus on both of the leading interactions in the Lagrangian,

kµkµ + 32
c1

Λ4
(Fµνkµεν)

2 + 32
c2

Λ4
(F̃µνkµεν)

2 = 0 , (3.3)

but the conclusion is completely analogous: there exist no superluminal excitations iff the

coefficients c1,2 are both positive. Note that these conclusions hold independently of the

particular background field one turns on. Note too that even when the shift in the speed

of propagation is very small, v − 1 ∼ C2

Λ4 ¿ 1, it can easily be measured in the low-energy

effective theory by allowing signals to propagate over large distances. It is interesting to

note that in the case of open strings on D-branes, which are governed by a BI Lagrangian

of the form (1), the speed of propagation in the presence of a background fieldstrength

(F + B) 6= 0 can be computed exactly in terms of the so-called ”open string metric” and

is always slower than the speed of light — which is to say, this appearance of the BI

Lagrangian in string theory satisfies positivity, with c1,2 > 0.

At this point all the problems usually associated with superluminality — the ability to

send signals back in time, closed timelike curves, etc.—rear their heads. On the other hand,

such effects are appearing within a theory governed by a local Lorentz-invariant lagrangian,

a hyperbolic equation of motion and a perfectly stable vacuum. It is thus instructive to

work through the physical consequences of this kind of superluminality and understand

exactly when and why these theories run into trouble.

3.1 The trouble with Lorentz invariance

That the effective Lagrangian is Lorentz-invariance ensures that Lorentz transforms of

solutions to the field equations are again solutions to the field equations. It does not,

however, ensure that all inertial frames are on an even footing. Consider for example the

equation of motion for fluctuations ϕ around translationally-invariant backgrounds of our

Goldstone model,

∂2
t ϕ − v2∂2

i ϕ = 0 ,

where v2 ' 1 − 4c3
Λ4 C2 is the velocity of propagation. This has oscillatory solutions prop-

agating in all directions, e.g. ϕ = f(x ± vt). Upon boosting in, say, the x̂ direction, the
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equation of motion becomes

(1 − v2β2) ∂2
t ϕ + 2β(1 − v2) ∂t∂xϕ − (v2 − β2) ∂2

xϕ − v2 ∂2
⊥ϕ = 0 .

whose solutions, e.g. ϕ = f(x ± v−β
1∓vβ t), are the Lorentz boost of the original solutions. So

far so good. However, if v2 > 1, there exists a frame (β = 1/v) in which the coefficient

of ∂2
t ϕ vanishes, ϕ propagates instantaneously and the equation of motion becomes a non-

dynamical constraint. In this frame it is simply impossible to set up an initial value problem

to evolve the field from Cauchy slice to Cauchy slice.1 When β > 1/v, the equation of

motion is again perfectly dynamical and can certainly be integrated — however, oscillatory

solutions to these equations move only in the positive x direction, while modes in other

directions may be exponentially growing or decaying. What’s going on? How is it possible

that what looks like a stable system in one frame looks horribly unstable in another?

The point is that what look like perfectly natural initial conditions for a superlumi-

nal mode in one frame look like horribly fine-tuned conditions in another. Indeed, the

time-ordering of events connected by propagating fluctuations is not Lorentz-invariant.

Observers in relative motion will thus disagree rather dramatically about what constitutes

a sensible set of initial conditions to propagate with their equations of motion — initial

conditions that to one observer look like turning on a localized source at some unremarkable

point in spacetime will appear to the other as a bewildering array of fluctuations incident

from past infinity which conspire miraculously to annihilate what the original observer

wanted to call the localized source. Said differently, the retarded Green function in one

frame is a mixture of advanced and retarded Green functions in another frame. Fixing

initial conditions on past infinity thus explicitly breaks Lorentz-invariance. In order for

the theory to be predictive, we must choose a frame in which to define retarded Green

functions. In sufficiently well-behaved backgrouds, there is a particularly natural choice of

frame, that in which such conspiracies do not appear.

Returning to our question of stability vs instability, consider a solution in the highly

boosted frame in which we turn on a localized source for one of the unstable excitations. A

Lorentz boost unambiguously maps this to a solution in the stable unboosted frame. The

crucial point is that the resulting configuration does not look like a small fluctuation sourced

by a local source — indeed, these are explicitly stable according to the equation of motion —

but rather involves turning on initial conditions at a fixed time which vary exponentially

in space, along the slice. These do not represent instabilities in any usual sense; they

simply represent initial conditions which we would normally rule out as unphysical. By

the same token, a localized fluctuation which remains everywhere bounded and oscillatory

in the original frame transforms into a miraculous conspiracy in the initial conditions that

prevents the apparently unstable mode from turning on and growing. Crucially, this never

1Notice that we are dealing with tiny superluminal shifts in the dispersion relation, so we need huge

boost velocities to observe these effects, requiring both π̇ and ∇π to be of order Λ; however, since the

Lorentz invariant combination ∂µπ∂µπ remains tiny, the description of the system in terms of the effective

theory remains valid for all observers, ensuring that these effects obtain well within the domain of validity

of effective field theory.
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B
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B
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A A

Figure 1: Bubbles of non-trivial vacua, π = Cµxµ, in our Goldstone model with c3 < 0. (a)

In the rest frame of the bubble, Cµ = (C, 0, 0, 0). The solid lines denote the causal cone inside of

which small fluctuations are constrained to propagate. (b) The same system in a boosted frame

in which the bubble moves with a large velocity in the positive x′ direction. For sufficiently large

boosts, the causal cone dips below horizontal, and small fluctuations are only seen to propagate to

the left with a different temporal ordering than in the unboosted frame.

happens in theories with null or timelike propagation, in which Lorentz transformations

carry sensible initial conditions to sensible initial conditions.

It is enlightening to run through the above logic in translationally non-invariant back-

grounds. Consider again the Goldstone model with “wrong” sign, c3 < 0, and imagine

building, by suitable arrangement of sources, a finite-sized bubble of ∂µπ = Cµ condensate

localized in space and time. Let’s begin in the rest frame of the condensate, in which

Cµ = (C, 0, 0, 0). Outside the bubble, in the trivial π = 0 vacuum, fluctuations of π satisfy

the massless wave equation and propagate along null rays. Inside, however, fluctuations

move with velocity v2 ' 1 − 4c3
Λ4 C2 and thus propagate not along the light cone but along

a “causal” cone defined by the effective metric Gµν = ηµν +4 c3
Λ4 ∂µπ∂νπ. When c3 < 0, this

cone is broader than the light cone and fluctuations propagate ever so slightly superlumi-

nally (see figure 1a). However, since fluctuations always propagate forward in time, setting

up and solving the Cauchy problem in this background is still no problem.

As above, when c3 < 0 it is possible for the coefficient of the ∂2
t ϕ term in the equation

of motion of a rapidly moving observer to vanish (see figure 1b). Inside the bubble the

coefficient of ∂2
t ϕ in the equation of motion is negative, while outside it is positive —

somewhere along the boundary of the bubble, then, the coefficient must pass through zero,

at which point the equation of motion becomes again a constraint. Thus, in any frame in

which the causal cone deep inside the bubble dips below the horizontal, the bubble has a

closed shell on which evolution from timeslice to timeslice cannot be prescribed by local

hamiltonian flow. This in fact helps explain the peculiar phenomena seen by this boosted

observer. Consider the sequence of events depicted in figure 1. An observer in the rest

frame of the bubble sends a superluminal fluctuation from a point, A, deep inside the

bubble to a point, B, on the boundary at which the wave exits the bubble, proceeding

– 8 –
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y
x

t

Figure 2: Two finite bubbles moving with large opposite velocities in the x direction and sep-

arated by a finite distance in the y direction. The open cones indicate the local causal cones of

π-fluctuations, and the red line the closed trajectory of a series of small fluctuations along these

cones. Such closed time-like trajectories make it clear that no notion of causality or locality survives

in a theory which violates positivity.

at the speed of light to a distant point, C. In a highly boosted frame, the sequence of

events will have B happening before A or C. How is this possible? The resolution is that

the coefficient of ∂2
t ϕ vanishes at B, so the evolution of ϕ at B can’t be predicted from

local measurements; instead, a constraint requires the spontaneous appearance of two ϕ

excitation just inside and outside the bubble, which then continue forwards in time to A

and C.

This is not something with which we are familiar, and makes it seem unlikely any

Lorentz invariant S-matrix exists within such theories. Indeed, the existence of a pref-

ered class of frames — those in which the field equations do not degenerate to constraint

equations — suggests that the Lorentz invariance of the classical Lagrangian is physically

irrelevant, and raises doubts about the possibility of embedding such effective theories

in UV-complete theories which respect microscopic Lorentz invariance and locality. No-

tice that systems with superluminal propagation are in this sense somewhat analogous to

Lorentz invariant field theories with ghosts, of which no sense can be made unless Lorentz-

invariance is explicitly broken. This is because boost-invariance makes the rate of decay

of the vacuum by ghost emission formally infinite — only if Lorentz-invariance is not a

symmetry of the theory can the decay rate be made finite. In such systems, however,

Lorentz-invariance can only arise as an accidental symmetry.

3.2 Global problems with causality

In the simple system of a single bubble in otherwise empty space, there always exists
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families of inertial frames in which causality is meaningfully defined. In particular, the co-

moving rest frame of the bubble defines a time slicing in this ‘good’ class, so we can simply

declare that evolution is to be prescribed in the rest frame of the bubble and translated

into other frames by boosting with the spontaneously broken Lorentz generators. Forward

evolution in time in highly boosted frames may look bizarre to a boosted inertial observer,

but it is unambiguous. However, there are always backgrounds in which no global rest

frame exists — for example, two bubbles of π condensate flying past each other at high

velocity and finite impact parameter, as in figure 2 — so it is far from obvious whether

there is any good notion of causal ordering in these theories.

It is useful to treat this problem with the aid of some formalism. Consider again the

wave equation for small fluctuations around a non-trivial background in the Goldstone

system,

Gµν∂µ∂νϕ = 0 , Gµν = ηµν +
4c3

Λ4
∂µπ∂νπ . (3.4)

This equation suggests a natural inverse-metric Gµν with which to define ϕ “lightcones” and

time-evolution.2 The metric Gµν is indeed what determines the light cone structure within

the blobs in figure 1. Now that we have a metric, we can apply the methodology of General

Relativity to determine whether causality is meaningfully defined over our spacetime [13].

A first requirement is that the spacetime be time orientable, meaning that there should

exist a globally defined and non-degenerate timelike vector, tµ. To see that this is the case,

note that Gµν is

Gµν = ηµν − 4c3

Λ4
∂µπ∂νπ + . . . (3.5)

where the dots stand for terms that can be neglected when ∂µπ∂µπ/Λ4 ¿ 1 and the

effective field theory surely makes sense. Then, for c3 < 0, we have G00 > 1 and therefore

the vector tµ = (1, 0, 0, 0) is globally defined, non-degenrate and time-like. The vector tµ

defines at each space-time point the direction of time flow. Future directed timelike curves

xµ(σ) are those defined by

ẋµtνGµν > 0 ẋµẋνGµν > 0 . (3.6)

The second condition for causality to hold is that there be no closed (future directed)

timelike curves (CTCs). In the presence of CTCs, the t coordinate is not globally defined

— it is multiply valued — and time evolution again becomes a constrained, non-local

problem, and causality is lost.

The Goldstone and the Euler-Heisemberg systems are both time orientable, at least

for backgrounds within the domain of validity of the effective field theory description.

Moreover, for simple backgrounds like the single bubble of figure 1 it is also evident that

there are no CTCs, so that a sensible, although not Lorentz invariant, notion of causality

exists. However, in both systems, there exist other backgrounds in which the effective

2Strictly speaking the interpretation of Gµν as an effective metric holds only in the geometric optics

limit in which the wavelengths are short enough with respect to the distance over which Gµν itself varies.

Anyway, if a pathology arises already in this limit, and we shall see that it does, we do not need to worry

about the case of long wavelengths.
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metric Gµν does admit CTCs, and time evolution can not be locally defined but must

satisfy globally constraints.

In our Goldstone system, a simple such offending background is given by two super-

luminal bubbles flying rapidly past each other, as shown in figure 1. Note that a head

on collision between the two bubbles in the same plane would certainly take us out of the

regime of validity of the effective theory, with (∂π)2 becoming large in the overlap region.

But it is easy to check that a small separation in a transverse direction — the y direction

in the figure — is enough to ensure that (∂π)2 can remain parametrically small everywhere

in the background, and thus within the effective theory. Note that these pathologies only

occur in backgrounds where (∂µπ)2 passes through zero and goes negative — as long as

(∂µπ)2 > 0, we can always use π to define a single-valued time-like coordinate.

Another particularly nice example of such closed timelike trajectories involves the

propagation of light in a non-trivial background of our “wrong”-signed Euler-Heisenberg

system in eq. (2.1). Consider a homogenous, static electromagnetic field with | ~E| = | ~B|
and ~E · ~B = 0, such as might be found deep inside a cylindrical capacitor coaxial with

a current-carrying solenoid, as depicted in figure 3. Photons in this background moving

orthogonal to the field, ~k ∝ ~E × ~B, and polarized along ~E, move with velocity

v =
1 − c1

32
Λ4 | ~E|2

1 + c1
32
Λ4 | ~E|2

in the direction parallel to the current and v = 1 in the other. If c1 < 0, photons in

this system propagate superluminally. Moreover, as c1
32
Λ4 | ~E|2 → −1, the velocity of small

fluctuations diverges as their kinetic term vanishes: this is the critical value of E for which

the light cone of the effective metric at each point becomes tangent to the constant time

slices of an observer at rest with respect to the solenoid. Finally, for c1
32
Λ4 | ~E|2 < −1 the

forward light cone for the effective metric overlaps with the past of the static observer.

In particular the cylinder’s angular direction is at each point within the forward effective

light cone, so that a circle between the cylindrical plates at fixed Lorentz time represents

a CTC for the effective metric! Note that this configuration remains entirely within the

effective theory, for while ~E, ~B ∼ Λ2, all local Lorentz invariants are small — indeed they

are fine-tuned to vanish. Furthermore, the small fluctuations needed to probe these CTCs

remain within the effective regime as long as their wavelengths remain large compared to

Λ−1. As in the Goldstone example, violations of positivity lead to superluminality and

macroscopic violations of causality.

Note that we have been tacitly working with a single positivity-violating field. The

situation is just as bad, and in some sense rather worse, if we include additional fields. In

particular, we have relied heavily on the existence, for every configuration within the regime

of validity of the effective theory, of a locally comoving frame in which the condensate is at

rest, i.e. a frame in which all superluminal fluctuations propagate strictly forward in the

local time-like coordinate. If we have two superluminal fields, this is generically impossible.

Notice that attempting to define a global notion of causality, and a corresponding local

Hamiltonian flow, by working in a non-inertial frame — i.e. by working with the metric G

in our intrisically flat spacetime — runs into problems when the non-inertial metric admits
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Figure 3: The field between the plates of a charged capacitor coaxial with a current-carrying

solenoid is of the form ~E = A
r
r̂ and ~B = Bẑ. When c1 < 0, small fluctuations at fixed r propagate

superluminally. For sufficiently large fieldstrengths, but still within the regime of validity of the

effective field theory, the “causal cone” of small fluctuations dips below horizontal, allowing for

purely spacelike evolution all the way around the capacitor at fixed t, a dramatic violation of

locality and causality.

CTCs, since the affine parameter cannot be globally defined, so evolution is a globally con-

strained problem. Now, in GR, with asymptotically flat space, CTC’s do not arise as long

as the energy momentum tensor satisfies the null energy condition, i.e. if the matter action

satisfies certain restrictions. It is a remarkable fact that if the matter dynamics do not fea-

ture either instabilities or superluminal modes then the energy momentum tensor satisfies

the null energy condition [12]. Conversely, as soon as superluminal modes are allowed, the

null energy condition is lost, even in the absence of instabilities within the matter dynam-

ics [12], and CTC’s can in principle appear with respect to the gravitational metric gµν as

well. Therefore, whether gravity is dynamical or not, superluminal propagation generally

leads to a global breakdown of causality.

Another well-known energy condition closely related to superluminality is the dominant

energy condition. It states that Tµνtν should a be future directed time-like vector for any

future directed time-like tµ, i.e., there should be no energy-momentum flow outside the

light-cone for any observer. This condition is trivially violated by a negative cosmological

constant, as well as negative tension objects such as orientifold planes in string theory. To

make it meaningful one must assume that the vacuum contribution is subtracted from Tµν .

In this form the dominant energy condition follows from the absence of superluminality for

a large class of systems. For instance, the sound velocity in a fluid is given by dp/dρ, and the

dominant energy condition p < ρ follows from the absence of superluminality dp/dρ < 1.

For a single derivatively coupled scalar field the absence of superluminality for a general
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background requires the lagrangian to be a convex function of X ≡ (∂µπ)2, L′′(X) ≥ 0.

This is not the same as the dominant energy condition, which requires L′(X)·X−L(X) > 0.

For small fluctuations around the trivial background with X = 0, these conditions agree,

but for a general background, the absence of superluminality is a stronger condition. Thus

the absence of superluminality is a more direct and fundamental requirement than the

dominant energy condition.

3.3 The fate of fate

What have we learned about physics in a Lorentz invariant theory which allows superlumi-

nal propagation only around non-trivial backgrounds? First, there is no Lorentz-invariant

notion of causality. Second, for observers in relative motion, disagreements about time or-

dering can be traced to sharp violations of locality; in sufficiently simple backgrounds, both

of these complications can be avoided by a judicious choice of frame in which evolution is

everywhere local and causal. Third, in more general backgrounds, attempting to foliate

spacetime into (perhaps non-inertial) constant-time slices is obstructed by the existence

of closed time-like trajectories, so that time-evolution can never be locally defined but is

always globally constrained.

Does this mean that effective theories which violate positivity are impossible to realize

in nature? Not necessarily. Rather, since positivity-violating effective Lagrangians can in

principle be reconstructed from experiments in completely sensible backgrounds, e.g. by

measuring low-energy scattering amplitudes in well-behaved backgrounds, these phenom-

ena can be interpreted as signaling the breakdown of the effective theory in pathological

backgrounds. This is a novel constraint on effective field theories, which are normally

thought to be self-consistent as long as all local Lorentz-invariants remain below a UV

cutoff, so that UV-sensitive higher-dimension operators in the Lagrangian remain negligi-

ble — instead, these effective theories break down in the IR when local Lorentz-invariants

get sufficiently small. An underlying theory could complete the IR physics in two dis-

tinct ways. One possibility is that the theory simply does not admit backgrounds where

local Lorentz invariants can get arbitrarlily small — for instance, if the action contains

terms with inverse powers of (∂π)2. This means that even the vacuum must spontaneously

break Lorentz invariance, though local physics need not be violated. Another possibility

is that the underlying theory is fundamentally non-local and capable of manifesting this

non-locality at arbitrarily large scales, while remaining Lorentz invariant. In both cases,

positivity provides an IR obstruction to a purely UV completion of such effective theories.

Of course, no known well-defined theories, e.g. local quantum field theories or perturbative

string theories, realize such macroscopic non-locality, so positivity provides an obstruction

to embedding these effective field theories into quantum field or string theory. Any ex-

perimental observation of a violation of positivity would thus provide spectacular evidence

that one of our most fundamental assumptions about Nature — macroscopic locality — is

simply wrong.

– 13 –



J
H
E
P
1
0
(
2
0
0
6
)
0
1
4

Figure 4: Propagation of a small fluctuation around a background represented as a sequence of

scattering events.

4. Analyticity and positivity constraints

Interestingly, the UV origins of the IR pathologies we have found are visible already at

the level of 2 → 2 scattering amplitudes: with the wrong signs, these amplitudes fail to

satisfy the standard analyticity axioms of S-matrix theory. To see why the UV properties

of 2 → 2 scattering are relevant to superluminal propagation, it is illuminating to interpret

the propagation of a fluctuation on top of a background as a scattering process. The effect

we have described corresponds to the re-summation of all tree-level graphs depicted in

figure 4. That the leading vertex is a derivative interaction implies a theoretical uncertainty

of order 1/Λ on the position of the interaction, or equivalently on the position at which

our fluctuation emerges after having interacted with the background. This is because the

derivative involves knowing the field at two arbitrarily close points, but the closest we can

take two points in the effective theory is a distance of order 1/Λ—the exact position is

fixed by the microscopic UV theory. In a typical collision, any advance or retardation

due to physics on scales smaller than the cutoff is thus unmeasurable in the low-energy

effective theory. However, during propagation in a translationally-invariant background,

many scattering events take place, each contributing the same super- or sub- luminal

shift. Over large distances and after many scatterings, these small shifts add up to give

a macroscopic time advance or delay that can be measured in the effective theory. This

consideration makes it clear that the presence/absence of superluminal excitations is a UV

question: it depends on the signs of non-renormalizable operators precisely because these

interactions cannot be extrapolated down to arbitrarily short scales.

In a local quantum field theory, the subluminality of the speed of small fluctuations

around translationally invariant backgrounds follows straightforwardly from the fact that

local operators commute outside the lightcone. Recall that, in a free field theory, while

〈vac|T (φ(x)φ(y))|vac〉 is the Feynman propagator, 〈vac|[φ(x), φ(y)]|vac〉 determines the

retarded and advanced Green’s functions as

〈vac |[φ(x), φ(y)]| vac〉 = Dret(x − y) − Dadv(x − y) . (4.1)

Therefore, the vanishing of the commutator as an operator statement,

[φ(x), φ(y)] = 0 if (x − y)2 < 0 , (4.2)

implies that Dret(x − y) vanishes outside the lightcone.

Exactly the same logic holds in the interacting theory. The scalar particles are interpo-

lated by some operator O(x) in the full theory. The Fourier transform of 〈vac|O(x)O(y)|vac〉
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has a delta function singularity on the mass shell in momentum space, and the pole struc-

ture is such that 〈vac| [O(x), O(y)] |vac〉 is interpreted as Dret(x− y)−Dadv(x− y), so that

Dret(x−y) vanishes outside the lightcone since the operator [O(x), O(y)] does. But exactly

the same conclusion follows for any translationally invariant background |B〉 of the theory.

Indeed,

〈B |[O(x), O(y)]|B〉 ≡ DB
ret(x − y) − DB

adv(x − y) , (4.3)

where DB(x − y) represents the propagator for small fluctuations about the background

|B〉. Thus again, DB
ret(x − y) vanishes outside the lightcone.

This argument may appear too quick — after all, our effective field theories with the

wrong signs for the higher-dimension operators are local quantum field theories — what

goes wrong with the commutator argument? The problem is precisely in the UV singular-

ities associated with their only being effective theories. Due to the derivative interactions,

the operator commutators aquire UV singular terms proportional to derivatives of delta

functions localized on the light-cone. These serve to fuzz-out the light cone on scales com-

parable to 1/Λ. Indeed, this is nothing but an operator translation of the argument at the

end of last section, explaining how superluminality can arise as a result of a sequence of

collisions with the background field. So it is crucial in the above argument that we are

dealing with a UV complete theory, with no UV divergent terms localized on the lightcone

in the commutators.

The commutator argument is convenient when we have the luxury of an off-shell formu-

lation as in local quantum field theories. But what happens if the UV theory is not a local

quantum field theory, for instance if it is a perturbative string theory? The only observable

in string theory is the S-matrix. It is therefore desirable to see whether the positivity

constraints we are discussing follow more generally from properties of the S-matrix.

Indeed, how is causality encoded in the S-matrix? After all, when we only have

access to the asymptotic states, it is not completely clear how we would know whether the

interactions giving rise to scattering are causal or not. This was a vexing question to S-

matrix theorists, who wanted to build causality directly into the axioms of S-matrix theory.

In the end, there was no physically transparent way of implementing causality; instead,

all the physical consequences of microcausality were seen to follow from the assumption

that the S-matrix as a function of kinematic invariants is a real boundary value of an

analytic function with cuts (and poles associated with exactly stable particles) as dictated

by unitarity. Of course it is unsurprising that microlocality should be encoded in analyticity

properties — the textbook explanation for the absence of superluminal propagation in

mediums like glass relies on the analytic properties of the index of refraction n(ω) in the

complex frequency plane.

As we will show momentarily, the positivity constraints on the interactions in the

effective theories we have been discussing follow directly from the dispersion relation and

the assumed analyticity properties of the S-matrix. As such, our conclusions apply equally

well to perturbative string theories, where the S-matrix satisfies all the usual properties

— unsurprisingly, as the Veneziano amplitude arose in the framework of S-matrix theory.

It is of course elementary and long-understood that analyticity and dispersion relations
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Figure 5: Analytic structure of the forward 2 → 2 scattering amplitude at tree level, in the theory

of a Goldstone boson UV completed into a linear sigma model with Higgs mass M2

h . The poles

arise from tree-level Higgs exchange

often imply positivity constraints (though since such arguments are a little old-fashioned

we will review them here in detail)—what is not well appreciated is that these positivity

conditions can serve as a powerful constraint on interesting effective field theories.

As a warm-up, let us understand why the coefficient of (∂π)4 came out positive in

two of our explicit examples— integrating out the Higgs at tree-level or fermions at 1-

loop. At lowest order in the couplings the relevant diagrams are those depicted in figure 5

and 6. Let’s consider the amplitude for 2 → 2 scattering, M(s, t). At leading order and at

low-energies, M is

M(s, t) =
c3

Λ4
(s2 + t2 + u2) + . . . , (4.4)

where u = −s− t. Of course this amplitude violates unitarity at energies far above Λ, and

the theory needs a UV completion.

Consider first the case where the theory is UV completed into a linear sigma model;

the full amplitude at tree level is instead

M(s, t) =
λ

M2
h

[ −s2

s − M2
h

+
−t2

t − M2
h

+
−u2

u − M2
h

]

, (4.5)

and of course as s, t → ∞, M(s, t) → const. Let’s further look at the amplitude in the

forward direction, as t → 0, and define A(s) = M(s, t → 0); note by crossing symmetry

A(s) = A(−s). The analytic structure of this amplitude in the complex s plane is shown

in figure 6. Now consider the contour integral around the contour shown in the figure

I =

∮

γ

ds

2πi

A(s)

s3
. (4.6)

In the full theory, this amplitude has poles at s = ±M2
h from the s and u channel Higgs

exchange. A(s) is bounded by a constant at infinity — more generally, as long as A(s) is

bounded by |A(s)| < |s|2 at infinity, I = 0. On the other hand, I is equal to the sum of the
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Figure 6: Analytic structure of the forward 2 → 2 scattering amplitude at tree level, with

the Goldstone couplings arising from integrating out a Fermion at 1-loop. The cuts starting at

s = ±4M2

Ψ
correspond to Ψ pair production.

residues of A(s)/s3 at its poles. Since A(s)/s3 = (c3/Λ
4) s−1 near the origin, there will be

a contribution from a pole at the origin, as well as from the poles at s = ±M2
h . Thus,

0 = I =
c3

Λ4
+ 2

resA(s = M2
h)

(M2
h)3

(4.7)

where the factor of 2 accounts for the pole at s = −M2
h since A(s) is even in s. In the

simple example at hand the residue of A at s = M2
h is manifestly negative from eq. (4.5),

and so c3 must be positive. However for the purpose of the future discussion it is useful to

trace how positivity of c3 arises more generally from unitarity. Indeed, as s → M2
h ,

A(s) → res[A(s = M2
h)]

s − M2
h + iε

⇒ ImA(s) = −πδ(s − M2
h) res[A(s = M2

h)] . (4.8)

Since by the optical theorem ImA(s) = s σ(s) where σ(s) is the total cross section for ππ

scattering, we have
c3

Λ4
=

2

π

∫

ds
sσ(s)

s3
(4.9)

which is manifestly positive since the cross section σ(s) is positive.

What about the case with the fermions integrated out at 1-loop? In this case, the

analytic structure is shown in figure 7. There is a cut beginning at s = ±4M2
Ψ corresponding

to Ψ pair production, and extending to ±∞. Now consider again the contour integral I

around the curve shown in the figure. Again, since A falls off sufficiently rapidly at infinity,

I vanishes. As before, there is a contribution to I from the pole at the origin, together

with 2 ×1/(2πi)× the integral of the discontinuity across the cut disc[A(s)]/s3. By the

optical theorem this is again related to the total cross section for ππ scattering, and we are

led to the identical expression for c3 as above.

Of course this is not an accident. In fact the difference between the analytic structures

of these amplitudes is completely an artefact of the lowest-order approximation. Let’s
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Figure 7: General analytic structure of the forward 2 → 2 scattering amplitude. Poles associated

with narrow resonances are reached by going under the cut to the second sheet.

consider the Higgs theory at 1 loop. The amplitude will now have a cut going all the way

to the origin — the discontinuity across the cut reflecting the (tree-level) low-energy ππ

scattering cross section. The low energy cross section grows and becomes largest in the

neighborhood of the Higgs resonance near s = M2
h . At 1-loop, we see the non-zero Higgs

width Γ. As the physical region for s is reached from above (as per the iε presecription),

the resonance is seen since the amplitude takes the usual Breit-Wigner form ∝ (s − M2
h +

iMhΓh)−1. There is however no pole on the first or physical sheet in the complex s plane

— the expected pole at s = M2
h − iMhΓh is reached by continuing the amplitude under the

cut to the second sheet. Of course the presence of the resonance is visible on the physical

sheet — by a big bump in the discontinuity across the cut in the vicinity of s = M2
h . This

analytic structure is exhibited in figure 8. Of course the analytic structure is the same for

the full amplitude at all orders, and the Ψ theory as well. In fact, this is the usual general

structure of the forward scattering amplitude — analytic everywhere in the complex plane,

except for cuts on the real axis (and poles associated with exactly stable particles). Narrow

resonances appear as poles on the second sheet.

Note that analyticity fixes c3 to be strictly positive for an interacting theory, rather

than merely non-negative, as was motivated by the IR arguments of section 3. Here, and

in general, the constraints coming from UV analyticity are stronger than those observable

in the effective field theory in the IR.

It is instructive to explicity see how perturbative string theory satisfies the usual ana-

lyticity and positivity requirements. We can also see explicitly that an analogous argument

also holds for perturbative string amplitudes. Let’s consider the amplitude for gauge boson

scattering in type I string theory in 10D. At lowest order in gs, this only involves open

strings, and furthermore if we restrict the external gauge bosons to the Cartan subalgebra,

the amplitude does not have any contributions from massless gauge boson exchnage. The
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scattering amplitude for gauge bosons with external polarizations e1,...,4 in 10 dimensions

has the form [14]

M(s, t) = gs K(ei)

[

Γ(−s)Γ(−u)

Γ(1 − s − u)
+

Γ(−t)Γ(−u)

Γ(1 − t − u)
+

Γ(−s)Γ(−t)

Γ(1 − s − t)

]

, (4.10)

where we are using α′ = 1 units and K is given by

K = −1

4
(s t e1 · e4 e2 · e3 + perm) +

1

2
(s e1 · k4 e3 · k2 e2 · e4 + perm) . (4.11)

If we take t → 0 and choose e3,4 = e1,2 in order to look at the forward amplitude relevant

for the optical theorem, we find

M(s, t → 0) → s tan πs . (4.12)

This function is indeed well-behaved in the complex plane at infinity, and is in fact bounded

by |M(s, t → 0)| < |s| away from the real axis. Thus the same arguments apply, and the

coefficient of s2 in the forward amplitude is guaranteed to be strictly positive.

Our arguments are clearly general. Other than standard analyticity properties, all

that was needed was that the forward amplitude be bounded by |s|2 at large |s|. In fact,

under very general assumptions, unitarity forces the high-energy amplitude in the forward

limit to be bounded by the famous Froissart bound [15, 16] M(s) < s ln2 s, as follows. As

s → ∞ with t fixed, the total cross section is dominated by the exchange of soft particles

at large impact parameter, so we can use the eikonal approximation to get

M(s, t = −q2
⊥) ' −2i s

∫

d2b eiq⊥·b
(

e2iδ(b,s) − 1
)

. (4.13)

Now as long as there is a mass gap, the phase shift should fall off exponentially with

impact parameter, δ ∼ e−mbf(s). Locality then suggests f(s) to grow no faster than a

power law, f(s) ∼ sα, with α determined by the spin of the intermediate particles (e.g. for

a single spin-J particle, α = J − 1). The forward amplitude is thus dominated by events

with δ = sαe−bm of order 1, i.e. impact parameters beneath b < m−1 ln s, bounding the

amplitude as M(s) < s ln2 s. So long as there is a mass gap, which can often be achieved by

a mild IR deformation of the theory, a violation of the Froissart bound implies a dramatic

and abnormal behavior of the theory in the UV, with amplitudes that grow faster than

any power of s. It thus makes sense to study the low energy implications of a normal UV

behavior which satisfies the Froissart bound.

Let us finally give the general complete argument for positivity. For simplicity, we

restrict our attention to a general scalar field theory with a shift symmetry π → π + const.

The leading form of the low-energy effective Lagrangian is of the form

L = (∂π)2 + a
(∂π)2¤π

Λ3
+ c

(∂π)4

Λ4
+ . . . (4.14)

Note that there is a cubic interaction term — we have not assumed a π → −π symmetry

— which might arise in a CP violating theory for which π is the Goldstone. As we will
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discuss in the next section, the brane-bending mode of the DGP model is described by

precisely this cubic interaction.

The claim is that c must be strictly positive. More precisely, we will find a positivity

constraints on the forward scattering amplitude A(s) = M(s, t → 0). The argument is

virtually identical to the one used in the above examples, with two additional technical

subtleties. First, it is well-known that the Froissart bound can be violated by the exchange

of massless particles, such as gauge bosons and gravitons, so we might worry that it will

not hold for the scattering of our massless π’s, which would allow amplitudes to grow

too rapidly at infinity for contours to be closed. Secondly, and relatedly, while all the

non-analytic behavior of the lowest order amplitudes of our examples was associated with

UV-completion physics, the exact amplitudes have additional cuts in the complex s-plane

associated to pair-production of massless particles; in the absence of a gap, these cuts

extend all the way to s = 0.

To ensure that cuts from the exchange of massless π particles do not modify the

conclusion of positivity, we need to regulate the theory in the IR by giving a small mass

m to the π particles (see figure 8). This also ensures that the Froissart bound is satisfied.

The 2 → 2 scattering amplitude M(s, t, u) is still symmetric in s, t, and u; however, we

now have u = 4m2 − (s + t), so that the forward amplitude A(s) = M(s, 0, 4m2 − s) is

even around the point s = 2m2, and the s-channel and u-channel cuts associated to π pair

production extend on the real axis from 4m2 to +∞ and from 0 to −∞, respectively (thin

cuts in the figure). If the trilinear vertex a is non-zero, there is an additional contribution

to the 2 → 2 scattering amplitude coming from single π exchange, leading to additional

low-energy poles at the π mass. However, given the large number of derivatives involved

in the leading interactions, the residues of these IR poles scale like a positive power of m,

and go to zero in the massless limit. Consequently, these poles disappear in the massless

theory: in particular there is no divergence of the amplitude in the forward (t → 0) limit.

This is just a consequence of the fact that, despite the presence of massless particles, the

amplitude is dominated by short-distance interactions.

In the forward limit, then, the s-channel and u-channel low-energy poles are located

at s = m2 and at s = 3m2 (gray poles in the figure), and the cuts starting from 0 to −∞
and 4m2 to +∞.

Since we have modified the theory in the deep IR by adding a mass term, we no longer

want to probe the s → 0 limit of A(s), instead, we will probe the behavior of A(s) for s

near an intermediate scale M2 with m2 ¿ M2 ¿ Λ2. We will do this by considering the

contour integral

I =

∮

γ

ds

2πi

A(s)

(s − M2)3
(4.15)

Note that M2 is effectively acting as an “RG scale”; since A(s) becomes non-analytic as

we approach the real axis, this is not a convenient place to probe the amplitude, so instead

we will not put M2 near the real axis but will instead consider Re(M2) ∼ Im(M2).

Now, I is given by the sum of the residues coming from the pole at s = M2, together

with the poles near s = m2, 3m2. Since A(s) is bounded by the Froissart bound, once

again contribution to the integral from infinity can be neglected. The contribution from
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Figure 8: Analytic structure of the forward 2 → 2 scattering amplitude in the regularized massive

theory

the discontinuity across the cuts is determined by the total cross section as before. We

thus have

1

2
A′′(s = M2) +

∑

s∗=m2,3m2

resA(s = s∗)

(s∗ − M2)3
=

1

π

∫

cuts
ds

sσ(s)

(s − M2)3
(4.16)

Because of the derivative interactions, the second term above is suppressed by powers of

m2/Λ2. Also, since at energies beneath Λ, σ(s) grows at least as fast as s2/Λ6, for M2 ¿ Λ2

we have that

∫

cuts
ds

sσ(s)

(s − M2)3
= 2

∫

cut at s>0
ds

sσ(s)

s3
+ corrections of order powers of

M2

Λ2
(4.17)

Thus we conclude that

A′′(s = M2) =
4

π

∫

ds
sσ(s)

s3
+ O

(

M2,m2

Λ2

)

(4.18)

= positive up to power suppressed corrections (4.19)

So, said precisely, the forward amplitude A(s) away from the real axis, and for m2 ¿ s ¿
Λ2, is an analytic function in the complex plane. Its power expansion around any point

s0 in this region must begin with a term of the form (s − s0)
2 with a strictly positive

coefficient.

This is all we can say in complete generality. However, in theories where in addition

to the dimensionful scale Λ there is a dimensionless weak coupling factor g so that M(s, t)

has an expansion in g, we can say more. Such theories include, for instance, weakly coupled

linear sigma model completions of non-linear sigma models, where Λ corresponds to the

Higgs mass and g is the perturbative quartic coupling in the UV theory, or perturbative
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string theories, where Λ is the string scale Ms and g is the string coupling gs. For s ¿ Λ2,

the tree amplitude in this theory is of the form

Atree(s) = g

∞
∑

n=1

cn

( s2

Λ4

)n
(4.20)

Note that low-energy cuts, which are absent at leading order in g, appear at order g2

precisely as needed for 1-loop unitarity. Thus, by considering the contour integral

In =

∮

γ

ds

2πi

A(s)

s2n+1
(4.21)

and running through the same argument (and now ignoring the contributions from low-

energy cuts which don’t exist at this order in g) we conclude

cn > 0 (4.22)

Therefore, in a weakly coupled theory, there are an infinite number of constraints on the

effective theory: the leading (in weak coupling g) amplitude in the forward direction has

an expansion as a polynomial in s2 with all positive coefficients. For example, the forward

scattering amplitude in the Goldstone model is

M(s, t → 0) = λ

(

s2

M4
h

+
s4

M8
h

+
s6

M12
h

+ . . .

)

, (4.23)

while the amplitude for gauge boson scattering in 10D type I string theory is

M(s, t → 0) = gs

(

πs2 +
π3

3
s4 +

2π5

15
s6 + . . .

)

, (4.24)

both of which of course have all positive coefficients.

5. The DGP model

The DGP model is an extremely interesting brane-world model which modifies gravity at

large distances. In addition to gravity in a 5D bulk, there is a 4D brane localized at an

orbifold fixed point with a large Einstein-Hilbert term localized on this boundary, with an

action of the form

S = 2M2
4

∫

brane
d4x

√−gR(4) + 2M3
5

∫

bulk
d4xdy

√
−GR(5) , (5.1)

with M4 À M5. The large M2
4 term quasi-localizes a 4D graviton to the brane up to

distances of order rc ∼ M2
4 /M3

5 ≡ 1/m, and at larger distances gravity on the brane

reverts to being 5 dimensional.

Naively, this model makes sense as an effective field theory up to the lower of the two

Planck scales M5. However, as in the case of massive gravity [17], there is in fact a lower

scale

Λ ∼ M2
5

M4
(5.2)
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at which a single 4D scalar degree of freedom π(x)—loosely the “brane-bending” mode

— becomes strongly coupled [18]. The classical action for this mode can be isolated by

taking a decoupling limit as M4,M5 → ∞, keeping Λ fixed. In this limit both four and five

dimensional gravity are decoupled and rc → ∞ so the physics is purely four-dimensional,

leading to the effective action [18]

L = 3(∂π)2 − (∂π)2¤π

Λ3
. (5.3)

The unusual normalization of the kinetic term is for later convenience. Note that the

Lagrangian is derivatively coupled as expected for a brane-bending mode, and that the

π → −π reflection symmetry is broken since the boundary is an orbifold fixed point.

All the interesting phenomenology of the DGP model — including the “self-accelerating”

solution (which is actually plagued by ghosts, as confirmed by a direct 5D calculation in

ref. [19]) as well as the modification to the lunar orbit — actually follows from this non-

linear classical Lagrangian with the scalar coupled to the trace of the energy momentum

tensor for matter fields as (T µ
µ/M4)π [20]. Indeed, the non-linear properties of this theory

are what allow it to be experimentally viable, at least classically.

Now, for realistic parameters, the scale Λ corresponds to Λ−1 ∼ 103 km. If, at quantum

level, all operators of the form

(∂π)2N

Λ4N−4
+ . . . (5.4)

are generated, then, despite the interesting features of the classical theory, the correct

quantum theory would lose all predictivity at distances beneath 103 km [18]. It is therefore

interesting to consider loop corrections in this theory, as was initiated in [18], where it was

shown that the tree-level cubic term is not renormalized. In [20], it was shown that at loop

level only operators of the form (∂2π)N are generated, and with additional assumptions

about the structure of the UV theory, [20] argued that the healthy classical non-linear

properties of the theory survive quantum-mechanically.

These results all follow from the fact that the form of the Lagrangian is preserved by

a constant shift in the first derivative of π,

∂µπ → ∂µπ + cµ . (5.5)

Naively this suggest that any term in the Lagragian should involve at least two derivatives

on every π—however the variation of the cubic term in eq. (5.3) under this transformation

is a total derivative, and therefore vanishes once integrated. The same holds for the kinetic

term, (∂π)2.

This symmetry is nothing but 5D Galilean invariance. The position of the brane along

the fifth dimension ybrane(x) is (in some gauge) related to the canonically normalized π(x)

by ybrane = 1
mM4

π. The model enjoys of course full 5D Lorentz invariance, but in the

decoupling limit in which π is the only relevant mode,

M5,M4 → ∞ , Λ = const , (5.6)
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Figure 9: Lowest order scattering amplitude in the DGP model.

the brane becomes flatter and flatter, the ‘velocity’ ∂µybrane goes to zero and a 5D Lorentz

transformation acts on ybrane as a Galilean transformation. This symmetry forces the

Lagrangian to take the form

L = 3(∂π)2 − 1

Λ3
¤π(∂π)2 + O

(

∂m(∂2π)n
)

, (5.7)

that is all further interactions involve at least two derivatives on any π.3

Indeed, the absence of the (∂π)2N terms is the only thing making this effective theory

special in any sense. After all, a generic UV theory yielding a U(1) Goldstone boson π,

which violates CP (and hence the π → −π symmetry), would have the same leading cubic

interaction, which is the lowest order derivative coupling for a scalar. The only thing

that can distinguish the DGP scalar Lagrangian from a generic Goldstone theory is the

presence of the Galilean symmetry and the associated absence of (∂π)2N type terms in the

Lagrangian. And again, it is the absence of such (∂π)2N terms in the effective action that

gives it a chance for non-linear health and experimental viability.

However, precisely this property of the theory makes it impossible to UV complete

into a UV theory with usual analyticity conditions on the S-matrix. As we saw in the last

section, the coefficient of the (∂π)4 term, which gives rise to an s2 term in the forward

amplitude, must be strictly positive. Instead, in the DGP model, this operator is forced

to vanish by the Galilean symmetry. The amplitude for π π scattering has a tree-level

exchange contribution from the DGP term (see figure 9) as well as contributions from the

higher order term, but they all begin at order s3

M(s, t) =
s3 + t3 + u3

Λ6
+ O(s4, t4, u4) (5.8)

In the forward limit t → 0, this amplitude vanishes; and in particular the piece proportional

to s2 vanishes identically. of course there will be some forward amplitude at even higher

orders, but these will involve even more suppression by powers of Λ and there will be no

s2 piece. We conclude that it is impossible to complete an effective theory for a scalar

3Of course it is possible to make field redefinitions to eliminate the cubic interaction term, but the theory

is not free, the tree-level 2 → 2 scattering amplitude is non-zero. The field redefinition π = φ −
1

3Λ3 (∂φ)2

eliminates the DGP term but generates quartic terms of the form 1

Λ6 (∂φ)2(∂µ∂νφ)2, as needed to reproduce

the 2 → 2 amplitude. However, the cubic form of the action is most convenient — first, because it makes

the Galilean symmetry simply manifest, and second, because the coupling to matter is simple: a linear

coupling of the form πT/M4 to the trace of the energy momentum tensor T .
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Figure 10: The speed of radially moving fluctuations in a Schwarzschild-like solution in DGP.

with a shift symmetry of the form ∂µπ → ∂µπ + cµ into a UV theory with the usual

analyticity properties for the S-matrix. Again, this includes any local quantum field theory

or perturbative string theory. Conversely, any experimental indication for the validity of

the DGP model can then be taken as the direct observation of something that is not local

QFT or string theory.

Associated with this, it is easy to see that signals about non-trivial π backgrounds can

travel superluminally. It is trivial to see that this is possible — the leading interaction term

is cubic, and therefore around a background, the modification of the speed of propagation

for small fluctuations is linear in the background field and can therefore have any sign.

And indeed simple physical backgrounds allow superluminal propagation. π is sourced by

T , the trace of the stress energy tensor. In the presence of a compact spherical object of

mass M∗, π develops a radial background π0(r). The gradient of this solution is [20]

π′
0(r) =

3Λ3

4r

[

√

r4 + 1
18π R3

V r − r2

]

, (5.9)

where RV = 1/Λ (M∗/M4)
1/3 is the so-called Vainshtein radius of the source. In such a

Schwarzschild-like solution the quadratic action for the fluctuation ϕ is [20]

Lϕ =

[

3+
2

Λ3

(

π′′
0 +

2π′
0

r

)]

ϕ̇2−
[

3+
4

Λ3

π′
0

r

]

(∂rϕ)2−
[

3+
2

Λ3

(

π′′
0 +

π′
0

r

)]

(∂Ωϕ)2 , (5.10)

where (∂Ωϕ)2 is the angular part of (~∇ϕ)2. The speed c2
rad of a fluctuation moving along

the radial direction is given by the ratio between the coefficient of (∂rϕ)2 and that of ϕ̇2

in the equation above; on the solution eq. (5.9) c2
rad is larger than 1 for any r!

A plot of c2
rad versus r is given in figure 10: it starts from 4/3 at r = 0, reaches a

maximum of 3/2 at r ∼ RV and asymptotes to 1 (from above!) for r → ∞. This is an

O(1) deviation from the speed of light in an enormous region of space; for instance for

the Sun, RV is ∼ 1020 cm. Clearly highly boosted observers can observe parametrically
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fast propagation, and indeed if they boost too much they can observe the peculiar time-

reversed sequence of events. It is also easy to find spatially homogeneous and isotropic

background configurations for which even observers at rest can observe parametrically fast

signal propagation.

Having found superluminal propagation, we run into the same paradoxes as we dis-

cussed in section 2. For instance two blobs of π field boosted towards each other in the x

direction with a small separation in y give rise to the same closed timelike curve problems

as in the two boosted blob Goldstone examples. However, while there we assumed the

presence of suitable sources that could give rise to our paradoxical field configuration, here

we expect something more. Since the simple Schwarzschild-like solution we just described

features superluminal propagation, a closed timelike curve should appear in the π field

actually sourced by two masses boosted towards each other. This is not easy to check:

a quick estimate shows that in order to close the closed timelike curve the two masses

must pass so close to each other that, even if their Vainshtein regions do not overlap, the

presence of one mass induces sizable non-linearities close to the other, and vice versa. In

other words, the full solution is not just the linear superposition of two Schwarzschild-like

solutions — new non-linear anisotropic corrections must be taken into account. It would

be interesting to further investigate such a configuration and understand whether a closed

timelike curve really arises.

It is instructive to contrast this with what happens for a generic Goldstone theory,

where the leading interaction is still the same cubic term, but we also have the (∂π)4 terms.

In the presence of a generic background field π0(x) this interaction gives a contribution to

the quadratic Lagrangian for the fluctuations which is linear in the background,

δL =
2

Λ3
(∂µ∂νπ0 − ηµν¤π0) ∂µϕ∂νϕ . (5.11)

If we turn on a background with constant second derivatives, then the field equation

for the fluctuation ϕ is exactly of the form eq. (3.1), with CµCν replaced by ∂µ∂νπ0.

Exactly as in the DGP analysis, it appears that superluminal signals are possible since

∂µ∂νπ0 has no a priori positivity property. However the (∂π)4 term saves the day. We can

certainly set up in some region a background with constant ∂2π0 and negligible ∂π0, so

that the effect of the cubic dominates over that of (∂π)4; but this region cannot be larger

than L ∼
√

Λ/∂2π0, since ∂π0 grows linearly with x for constant ∂2π0, and after a while

the (∂π)4 term starts dominating the kinetic Lagrangian of the fluctuations. Once this

happens, if the coefficient of (∂π)4 is positive there are no superluminal excitations.

The correction to the propagation speed inside the region where the cubic dominates

is δc ∼ ∂2π0/Λ
3, so the maximum time advance/delay we can measure for a fluctuation

traveling all across the ‘superluminal region’ is

δtmax ∼ Lδc ∼ ∂2π
1/2
0

Λ5/2
. (5.12)

Now, we would normally require ∂2π0 ¿ Λ3 in order for the effective theory to make sense.

In such a case we immediately get δtmax ¿ 1/Λ, too small a time interval to be measured
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inside the effective theory. However [20] argued that in a theory like eq. (5.3) consistent

assumptions about the UV physics can be made to extend the regime of validity of the

effective theory to much larger background fields and to much shorter length scales. In

particular, in the presence of a strong background field ∂2π0 À Λ3 the effective cutoff

scale is raised from Λ to Λ̃ ∼
√

∂2π0/Λ. In this case too the superluminal time advance

is unmeasurably small: the size of the region in which the effect of the cubic dominates

over the quartic is of order of the UV effective cutoff, L ∼
√

Λ/∂2π0 ∼ Λ̃−1. In both cases

the quartic saves the day. Thus, not only does the coefficient of the (∂π)4 term have to be

positive, it must be set by the same scale as the coefficient of the cubic term, a conclusion

we could have also reached from the dispersion relation arguments of the previous section.

We have uncovered a subtle inconsistency of the DGP model. As a classical theory,

it has well-defined, two-derivative, Lorentz invariant equations of motion; this property

underlies the healthy non-linear behavior of the theory and distinguishes it from more

brutal modifications of gravity, such as the theory of a massive graviton. However, just as

in the simple scalar field theory examples studied in the previous sections, which also have

Lorentz invariant two-derivative equations of motion, the theory suffers from a lack of a

Lorentz-invariant notion of causality, which is in turn related to a violation of the usual

analyticity properties of scattering amplitudes.

Of course, even in brane models respecting the usual UV locality properties, there

are DGP terms induced on the brane. What we have shown is that we can not have a

decoupling limit with M4/M5 → ∞ holding M2
5 /M4 fixed. This suggests that there is a

limit of M4/M5 in any sensibly causal theory — it would be interesting to investigate these

questions from the geometrical perspective of the five dimensional theory in more detail.

There is also an interesting connection between our constraint on the DGP model

and the “weak gravity” conjecture of [9]. Both situations involve trying to make some

interaction much weaker than bulk gravity — in DGP it is the 4D Gravity on the brane,

taking M4 À M5, while in [9], it is the attempt to keep MPl and the cutoff of the theory

fixed, but send 1/g2
4 → ∞. We have seen that a simple physical principle — requiring

subluminal signal propagation — prohibits the DGP limit. Similarly, it appears that other

general physical principles — such as the absence of global symmetries in quantum gravity

— block taking the weak coupling limit. In both cases, there are obstacles to making any

interaction physically weaker than bulk gravity.

6. Positivity in the chiral lagrangian

There are similar positivity conditions in more familiar effective field theories in particle

physics. Consider for instance the SU(2) chiral Lagrangian, parametrized by the unitary

field U = eiπaσa

,

L = f2 tr(∂µU †∂µU) + L4

[

tr(∂µU †∂µU)
]2

+ L5

[

tr(∂µU †∂νU)
]2

+ · · · (6.1)

There is a solution of the equations of motion with π pointing in a specifc isospin direction

which we can take to be σ3, of the form

π3(x) = cµxµ (6.2)
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We can look at the small fluctuations of both π3 as well as π± around this background. It

is then easy to check that in order for both π3 and π± to propagate subluminally we must

have

L4,5 > 0 (6.3)

In our previous Abelian examples, the 4-derivative terms were the leading irrelevant inter-

actions in the theory, and so did not have any logarithmic scale dependence. On the other

hand, L4,5 are logarithmically scale dependent; so the positivity constraint is then actually

a constraint on the running couplings at energies parametrically smaller than Λ ∼ 4πf .

Indeed, we can imagine turning on a background where ∂µπ3 is approximately constant

over a length scale R much larger than the cutoff scale; in order to avoid superluminality

we should demand that that running L4,5 evaluated near this scale are positive. Of course,

the log running of L4,5 induced off the lowest-order 2-derivative term pushes L4,5 positive,

and so in a theory without a weak-coupling expansion, L4,5 at low-energies are dominated

by the log running contribution and there is no interesting constraint on the UV physics.

However in theories with a weak coupling g, the matching contribution to L4,5 at the scale Λ

will dominate over the log-running contribution down to energies of order Λe−1/g2

, and we

can independently identify the matching contribution to L4,5 from the high-energy physics

from the low-energy running contribution, and hence the positivity bound is a non-trivial

constraint.

Naturally, the existence of these sorts of positivity constraints following from dispersion

theory are very well known, though not said very explicitly; our present example was

discussed (though perhaps not widely recognized) in the literature long ago [24].

Of course the pion chiral Lagrangian follows from QCD which is a local quantum field

theory, so these conditions must neccessarily be satisfied. The situation is perhaps more

interesting for the electroweak chiral Lagrangian governing the dynamics of the longitudi-

nal components of the W/Z bosons. While it is most likely, given precision electroweak

constraints, that the UV completion involves Higgses and a linear sigma model, there may

also be more exotic possibilities, including in the extreme case a low fundamental scale close

to the electroweak scale. This physics should manifest itself through the higher-dimension

operators in the effective Lagrangian, and assuming custodial SU(2) is a good approximate

symmetry, the constraint on the electroweak chiral Lagrangian is the same L4,5 > 0 (with

the derivatives covariantized for the SU(2)×U(1) gauge symmetry ∂µ → Dµ). These oper-

ators are not associated with the well-known constraints of precision electroweak physics—

instead, in unitary gauge U = 1, they represent anomalous quartic couplings for the W/Z,

which must be positive.

7. Examples from string theory

7.1 Little string theory

As we have seen, UV theories which are local or, what is the same, satisfy the usual analyt-

icity properties of S-matrix theory, give rise to effective theories with positivity constraints
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on certain leading irrelevant interactions that forbid superluminality and macroscopic non-

locality. If we experimentally measure such interactions and find that they are zero or

negative, then we have direct evidence for a fundamentally non-local theory. But if we also

happen to know some of these operators theoretically, on other grounds, we can use them

as a locality test for the UV completion.

The prime candidate for such a test is of course M -theory, which does not have a weakly

coupled description, and is thought by many to be fundamentally non-local. However, as

we saw in the last section, in gravitational theories, there is no well-defined way to extract

information about higher-dimension operators from superluminality constraints, since the

notion of the correct metric to use for the GR lightcone can be modified by higher-dimension

operators, while just gravity already bends all signals inside the underlying Minkowski

lightcone. Associated with this, gravitational amplitudes are dominated by long-distance

graviton exchange in the forward direction, with t-channel poles, and the dispersion relation

arguments can’t be used.

However, we can certainly study non-gravitational UV completions of higher-dimen-

sional gauge theories, especially supersymmetric ones. In five dimensions, maximally su-

persymmetric Yang-Mills theories are UV completed into the six dimensional (2, 0) su-

perconformal theory, which although mysterious is still a local CFT. On the other hand,

6D super-Yang Mills is UV completed into the 6D little string theory, which is a non-

gravitational string theory with string tension set by the 6D Yang-Mills coupling but no

small dimensionless coupling. This is another candidate for a “non-local” theory. This is-

sue can be probed if we can determine the coefficient of the F 4 operators in the low-energy

SYM theory — if any of them have the “wrong” sign, this would prove that the LST is

dramatically non-local.

Some of these F 4 terms have in fact been determined by a variety of methods. For

instance, the U(N) theory has a Coulomb branch where it is Higgsed to U(1)N , and far

out along the Coulomb branch, where the W ’s are much heavier than the little string scale,

the F 4 coupling between the U(1)’s have been computed [21]. They are all positive. This

is perhaps not surprising, since they are related by dualities to F 4 coefficients in weakly

coupled theories where the signs are determined. Thus, if LST is really non-local, the

non-locality did not put in an appearance in the F 4 terms.

7.2 Non-commutative theories

Probably the best studied example of the Lorentz-violating system in string theory is a

stack of parallel D-branes in flat space-time with constant non-zero value of antisymmetric

tensor field Bµν along the brane world-volume. It is instructive to see how superluminality

constraints work in this case. In the presence of non-zero Bµν open string modes localized

on D-branes propagate in the effective metric Gµν related to the closed string metric ηµν

in the following way [22],

Gµν = ηµν − (2πα′)2BµλBλ
ν . (7.1)

The metric Gµν is a direct analogue of the effective metric discussed in section 3.2, so we

expect its causal cone to be contained in the light cone of the Minkowski metric. To check
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this let us pick up an arbitrary light-like vector nµ = (1, ni) and calculate its norm with

respect to the open string metric Gµν . One finds

nµGµνnν = −(Ei − niEjn
j − Bijn

j)2

where Ei = B0i. Consequently, nµ is either space-like or null with respect to the open string

metric, implying that its causal cone is indeed contained in the usual light cone. Note that

this conclusion holds not only for small values of Bµν , but in the presence of strong field as

well. For the background of the electric type one should of course require that the electric

field is smaller than the critical value when metric Gµν changes its singature. Physically

at this point vacuum becomes unstable towards pair production of massive charged string

modes.

In the limit of large magnetic field the propagation velocity of open modes vanishes

as compared to the speed of closed modes. In this limit closed strings decouple from

open modes and dynamics of the open sector is described by the non-commutative field

theory. At the classical level this theory exhibits approximate Lorentz-invariance (with

open string metric playing the role of the Lorentz metric) which is broken by the higher-

dimensional operators proportional to the non-commutativity parameter. Interestingly,

these theories allow soliton solutions which can propagate faster than the speed of “light”

as defined by the open string metric Gµν [23]. This fact however, neither contradicts to our

superluminality constraints nor leads to any problems with causality because these solitons

still propagate inside light cone of the closed string metric which is the true Lorentz metric

of the underlying theory.

8. Gravity

So far, we have been discussing non-gravitational theories. In a theory with gravity, there is

a natural UV cutoff scale of order MPl, and it is natural to ask whether there are constraints

on 1/MPl suppressed operators from our considerations.

It is easy to see that there can’t be any straightforward analog of our superluminality

constraints in GR. The reason is that in a gravitational theory, it is natural to define

the light-cone by gµν . The effect of any higher dimension operator on the GR lightcone

can then completely be absorbed into a redefinition of the metric by 1/MPl suppressed

operators. There is also no analog of our arguments using the vanishing of commutators

of local operators outside the light-cone. There are no local gauge invariant operators in

gravity — one of the reasons the only observable in a quantum theory of gravity in flat

space is the S-matrix.

However, we might take another track. For weak enough gravitational fields we can cer-

tainly think of General Relativity as a Lorentz invariant theory of a spin-2 field interacting

with matter fields in Minkowski space. The underlying Minkowski space has a metric ηµν

and a well defined light-cone, which we shall refer to as the “Minkowski light-cone”. On the

other hand a classical gravitational field defines a new light-cone, the cone of null geodesics

of the full metric gµν irradiating from a point; we call this the “gravity light-cone”. In

the weak field approximation we are considering, the fact that massless particles propagate
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along the gravity light-cone takes into account the interaction of these particles with the

background gravitational field. This is very similar to what we have been discussing so

far, the propagation of signals in a Lorentz-violating background field. Indeed we can ask

whether it is possible to turn on a gravitational field such that the Minkowski light-cone

lies inside the gravity one, so that massless excitations, interacting with the background

gravitational field, can actually travel outside the underlying Minkowski light-cone.

At first this seems to be trivially possible, since the effect the gravitational field has

on the dispersion relation of a massless particle is linear in the background field itself, and

as such it has no a priori definite sign. In fact in the geometric optics limit the dispersion

relation is simply the statement that the particle wave-vector kµ is null with respect to the

full metric gµν = ηµν + hµν ,

(ηµν − hµν) kµkν = 0 . (8.1)

If hµν is not a negative-definite matrix, then there exists a kµ obeying the above equation

that is time-like with respect to the underlying Minkowski metric, which means that the

particle can travel outside the Minkowski light-cone. For instance a plane gravitational

wave has a non negative-definite hµν .

However we must wonder how we actually set up the background gravitational field.

For solving Einstein’s equations we need to fix the gauge. Since we want to preserve Lorentz

invariance, we choose De Donder gauge, ∂µ(hµν − 1
2 hηµν) = 0. Einstein’s equations then

read

¤(hµν − 1
2 hηµν) = −16πGTµν , (8.2)

where Tµν is the sources’ stress-energy tensor. Outside the sources we can further constrain

the gauge by setting h = 0. The retarded gravitational field ouside the sources is therefore

hµν(t,x) = −4G

∫

d3r
1

r
Tµν(t − r,x + r) . (8.3)

Now it is clear that hµν kµkν can be made positive only if Tµν kµkν is negative somewhere,

but this is in contradiction with the Null Energy Condition. Notice that a violation of

the Null Energy Condition under very broad assumptions leads either to instabilities at

arbitrarily short time-scales or to superluminal propagation in the matter sector [12]. The

negativity of hµν physically means that even if gravitational waves are present, the contri-

bution of the static Newtonian potential to hµν due to the very same sources that emitted

the gravitational waves is always larger than the oscillatory one, and negative definite.4

We are therefore led to the conclusion that, in the weak field approximation we are

in, it is impossible to set up a gravitational field such that null geodesics move outside the

underlying Minkowski light-cone. Gravity ‘bends’ all null trajectories inside the Minkowski

light-cone. This conclusion was also reached a number of years ago in [25].

This is a satisfying result. However, it also makes it impossible to constrain higher-

dimension operators using superluminality arguments — since the Einstein action already

4At first this seems to contradict the usual fact that far from the source the wave field decays slower

than the static one. This is indeed true at the level of field-strenghts, but the potentials themselves both

decay like 1/r.
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pushed signals inside the Minkowski light-cone, higher-order operators can’t change this

conclusion regardless of their sign.

The difficulty of bounding higher-dimension operators suppressed by MPl is also ap-

parent in discussing 2 → 2 scattering amplitudes. From our previous experience, it is

evident that there are positivity constraints on 2 → 2 scattering in the forward direc-

tion t → 0. However, in a gravitational theory, already at tree-level, massless 1-graviton

exchange dominates the 2 → 2 scattering amplitude as t → 0,

M(s, t) ∼ GN
s2

t
, (8.4)

so again, the effect of any higher order operators are swamped by the lowest order massless

1-graviton exchange which dramatically violated the Froissart bound.

In the context of a UV theory with a weak-coupling factor, however, there is some

hope. For instance, consider weakly coupled string theory, and consider the amplitude for

massless closed string mode scattering. The lowest order tree amplitude has a contribution

from graviton exchange, as well as from the tower of Regge states. We can isolate the

contribution from Regge states simply by subtracting the tree-level graviton exchange

diagram. The resulting subtracted amplitude then has a well-behaved limit as t → 0. On

the other hand, the Regge behavior of the full amplitude as s → ∞ for fixed t tells us

that the amplitude behaves as sα(t)/t at large s, and therefore, upon subtracting the tree-

level graviton contribution that removes the t-channel pole, the amplitude is polynomially

bounded in the complex s plane. Thus, we should expect that as t → 0 the leading

amplitude is of the form

M(s, t) → GN
s2

t
+ polynomial in s2 with all positive coefficients , (8.5)

which again implies an infinite number of constraints on the coefficients of higher-dimension

operators in the theory.

Let us see how this works explicitly for the scattering of NS-NS bosons of type II

strings in 10 dimensions. The full scattering amplitude is of the form

M(s, t, u) = −g2
s

4
K

Γ(−1
4s)Γ(−1

4t)Γ(−1
4u)

Γ(1 + 1
4s)Γ(1 + 1

4t)Γ(1 + 1
4u)

(8.6)

where once again K is a factor depending on external polarizations; for our purposes it is

only important that as t → 0, K ∼ s4. The amplitude can be expanded as

M = Mgrav + MRegge , (8.7)

where

Mgrav = −64K

s t u
(8.8)

is the tree-level graviton contribution, while MRegge is by definition the contribution to the

tree-level amplitude from the heavy Regge modes. Of course MRegge has a good behavior

as t → 0, and it is easy to check that it is indeed polynomially bounded at infinity; in fact
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it is bounded by |s|4 at large s. From our general argument, all the terms beginning with

s4 are guaranteed to be positive, and indeed

MRegge(s, t → 0) = −ψ2(1) s4 +
−ψ4(1)

192
s6 +

−ψ6(1)

92160
s8 + . . . (8.9)

where all the polygamma functions ψn(1) are negative.

Thus, while we can’t say anything in general about higher-order operators in gravi-

tational theories, there is a simple diagnostic for whether certain gravitational amplitudes

do not come from a weakly coupled string theory — if the short-distance contribution to

the amplitide is a polynomial in s2 with any negative coefficients, it can’t come from a

perturbative closed string model.

9. Discussion

We have shown that certain apparently consistent effective field theories described by local,

Lorentz-invariant Lagrangians are secretely non-local. The low-energy manifestation of this

lurking non-locality is the possibility of superluminal signal propagation around coherent

background fields. This creates a tension between causality and Lorentz-invariance: in such

theories no Lorentz-invariant notion of causality or locality exists. The high-energy face of

this tension is that such theories can not be UV completed into full theories that satisfy

the usual axioms of S-matrix theory, specifically the analyticity conditions that encode

locality. Both local quantum field theories and string theories satisfy these properties, so

we have provided a simple diagnostic for theories that can not be embedded into local

QFT’s and string theory.

In effective theories where the particle content or symmetries force the leading inter-

actions to be irrelevant operators, completely standard dispersion-relation arguments force

positivity conditions in these interactions. In terms of the scattering amplitude, the co-

efficient of the leading s2 term in the forward amplitude must be strictly positive. This

requirement precisely guarantees the absence of superluminal excitations around coherent

backgrounds. In weakly coupled theories, there is the stronger constraint that the leading

amplitude is a power series in s2 with all positive coefficients.

Our analysis applies to the DGP model — specifically the four-dimensional effective

theory for the “brane-bending” mode π that is all that is left in a decoupling limit sending

M4,M5 → ∞ keeping Λ = M2
5 /M4 fixed. This scalar theory is controlled by a nice

symmetry — interpreted as Galilean invariance in the underlying 5D theory, under which

∂µπ → ∂µπ + cµ. This symmetry forces the coefficient of the leading operator giving rise

to an amplitude proportional to s2 to vanish, in contradiction to the strict positivity of

this coefficient in any UV local theory. Associated with this, signals about consistent π

backgrounds can propagate parametrically faster than light.

Similar considerations apply to the chiral Lagrangian, where the coefficient of some of

the 4-derivative terms are forced to be positive. In the electroweak chiral Lagrangian, these

turn into anomalous W/Z quartic gauge couplings in unitary gauge. Thus, UV locality

implies that such anomalous couplings are necessarily positive.

– 33 –



J
H
E
P
1
0
(
2
0
0
6
)
0
1
4

All of our considerations in this paper have concerned Lorentz-invariant theories with a

Lorentz-invariant ground state. It is the presence of the asymptotic Minkowski space that

allows us to get into paradoxes involving highly boosted bubbles. While our arguments do

not directly apply to theories in which the vacuum spontaneously breaks Lorentz invariance,

such as Higgs phases of gravity [6 – 8] or the models studied in [12], it would be interesting

to ask whether there are any analogous constraints to those we have discussed.

The UV face of the positivity constraints we have described are of course implicitly

well-known in dispersion theory. In the context of the chiral Lagrangian, precisely the

positivity constraints we describe have been discussed for instance in [24]. However, the

directness with which these important signs pinpoint effective theories that can or can not

arise from local UV theories, and the connection with superluminality and the breakdown

of macroscopic locality, has not been appreciated. For instance, any experimental support

for the DGP model, or negative signs for anomalous quartic gauge boson couplings, can

be taken as a direct indication of the existence of macroscopically non-local physics unlike

anything ever seen in physics, either in quantum field theory or weakly coupled string

theory. Experimental tests of positivity then provide a powerful probe into the validity of

some of our most firmly held assumptions about fundamental physics.

Note that our results are quite likely to have interesting connections to the physics

of horizons. For example, in theories violating positivity, a Rindler observer immersed in

the translationally invariant superluminal background can see behind the nominal Rindler

horizon to see all of Minkowski space. Similarly, it should be possible to see behind black

hole and cosmological horizons by tossing superluminal bubbles at them, which runs afoul

of all the usual rules about horizons and their thermodynamic properties. Another concrete

link between positivity and black-hole physics was developed in [9]. It would be interesting

to further explore such connections.

Similarly, it would be interesting to apply positivity to various models under con-

sideration to identify which can be embedded in local UV theories, and which are in

fact fundamentally non-local. Obvious candidates are various beyond-the-standard-models

with leading derivative interactions, as well as the host of interesting varying speed-of-light

models of interest in cosmology, many of which very likely run afoul of positivity.

More generally, we have studied only one very simple constraint on the low-energy

effective field theory of a local, Lorentz-invariant UV-complete Quantum Field Theory

deriving from the analyticity of the UV S-matrix, namely, positivity of forward 2 → 2

bosonic scattering amplitudes. For example, it would be interesting to identify constraints

deriving from higher scattering amplitudes, amplitudes involving fermions, gravitational

amplitudes, etc. It would also be interesting to identify other properties of UV-complete

models above and beyond simple analyticity of the S-matrix — do they lead to interesting

constraints on which effective field theories may be UV completed, and if so, what is the IR

pathology of a theory which runs afoul of such a constraint? It seems possible that there

are many more constraints on just which effective theories may be consistently embedded

in UV-complete theories, and, in particular, string theory.
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