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Abstract: We apply a recently developed formulation of the generalized Hilbert transform to the processing of tab-
ulated and finite-bandwidth frequency responses. A causality-constrained interpolation procedure is introduced, with
the aim of reconstructing missing samples in the data, like e.g. the DC point, via a sound numerical procedure that does
not compromise the self-consistency and the causality of the entire dataset.

1 Introduction and motivations

It is widely recognized that modeling and simulation of electrical interconnect parts of modern electronic systems is
a very challenging task, which in several cases still lacks of appropriate solutions. Both academic and industry research
in this field is very active, aiming at characterization, modeling, and simulation methods allowing to deal with the
everincreasing system complexity at chip, package, and board level.

Electrical interconnects are linear structures. Therefore, a frequency-domain characterization is highly desirable.
Such characterization can be obtained via full-wave electromagnetic simulation or direct measurement. In both cases,
the result is a set of frequency samples over a finite bandwidth for some transfer matrix (scattering, impedance, or
admittance) of the structure. Practically any EDA or CAD tool uses this frequency-domain characterization for subse-
quent modeling steps, including time-domain conversion ormacromodeling for handling nonlinear terminations.

Very often the available frequency samples are affected by the presence of missing data points. A typical case is
the missing DC (zero-frequency) point in VNA measurements or in simulation results obtained by frequency-domain
tools. This issue may be very critical, since the zero-frequency point controls the DC steady state of the electrical
solution, which is of paramount importance in any system design. Therefore, this problem is usually circumvented
by applying suitable interpolation/extrapolation schemes in order to ”fill the gaps” in the data. Linear or spline-based
schemes are very common. However, the employment of such schemes for data recovery introduces some degree of
arbitrarity in the computed samples, and it may be difficult to otbain an estimate for the error that is thus introduced
in the structure characterization. In [1], we show that accuracy is not even the most important aspect. In fact, when
some frequency points are affected by such errors, the overall frequency response may be inconsistent and flawed by
causality violations. This has a dramatic impact, since non-causal data are also non-passive and will very likely induce
a failure when attempting subsequent modeling or macromodeling steps. An illustrative example is reported in [1].

In this work, we provide a solution for this problem. We applythe generalized Hilbert transform to the design of a
causality-constrained interpolation scheme. The main algorithm is based on a robust numerical procedure and allows to
estimate the missing data points by explicitly enforcing the causality of the resulting dataset. We show that the proposed
scheme produces far more accurate samples than common basicinterpolation schemes. In addition, the guarantee of
causality allows blind and safe application of standard modeling or macromodeling techniques. This applies to both
lumped and distributed interconnect structures.

The paper is organized as follows. Section 2 reviews the generalized Hilbert transform and outlines a robust numeri-
cal procedure for its evaluation. Section 3 details the proposed causal interpolation algorithm. Finally, some application
examples are presented in Section 4.

2 Generalized Hilbert transform

We consider a generic linear system with input-output behavior described by

y(t) = h(t) ∗ x(t)
F
−→ Y (jω) = H(jω)X(jω) (1)

with x(t), y(t), andh(t) being respectively the input, output and impulse response,observed in time-domain. Capital
quantities denote their Fourier transforms, withH(jω) being the system frequency response. Throughout this work,
the real and imaginary parts ofH(jω) will be denoted asU(ω) andV (ω), respectively. Without loss of generality, we
restrict our attention to a scalarH(jω), i.e. to single-input single-output systems. However, theproposed methodology
can be extended to multiport systems by considering each element of the matrixH(jω) separately.
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Figure 1: Left: truncation error boundTn(ω) for n = 4, 8, and 12 subtraction points. Right:Re {S21} (solid line) for
a transmission line (L=5.2 nH/cm,C=1.1 pF/cm,R=1.3Ω/cm,G=0, lengthl=1 cm) and its numerical reconstruction
(dash-dot line) obtained with (5). The shaded area accountsfor the errors associated with the computation of (5).

A strong relationship between the real and imaginary partsU(ω) andV (ω) of any frequency response is established
by the causality principle, which states that in every physical system the output reaction cannot precede in time its
cause, i.e. the input variation. It is well known in fact thatU(ω) andV (ω) are related by Kramers-Krönig dispersion
relations [2] or, equivalently, by the Hilbert transform [3]

U(ω) =
1

π
−

∫

V (ω′)
dω′

ω − ω′
, V (ω) = −

1

π
−

∫

U(ω′)
dω′

ω − ω′
. (2)

The integrals are defined according to Cauchy’s principal value and throughout the paper are supposed to extend from
−∞ to +∞, unless differently noted. These relations are fully equivalent to causality and can be exploited, e.g., to
verify the causality of a given frequency response or to reconstruct the real part from the imaginary one and viceversa.

The effectiveness of the above procedures is limited in practice because frequency data obtained either via mea-
surement or simulation consist of a set of discrete points

H(jωk) , k = −K, . . . , +K , ω±K = ±Ωmax (3)

spanning a limited frequency bandwidth[−Ωmax, Ωmax], negative frequencies being known from basic spectrum sym-
metries. The numerical computation of (2) is therefore affected by two sources of inaccuracy, one being related to
the discrete nature of the data (discretization error), andthe other to the unavoidable restriction of the integrals tothe
available bandwidth (truncation error). To overcome theseissues, a robust and accurate method to compute dispersion
relations has been introduced in [1, 4]. The technique is based on a generalized formulation of the Hilbert transform,
which is reported below for the real part only, with a similarrelation holding forV (ω),

U(ω) = LU (ω) +

∏n
q=1

(ω − ω̄q)

π
−

∫

V (ω′) − LV (ω′)
∏n

q=1
(ω′ − ω̄q)

dω′

ω − ω′
, LX(ω) =

n
∑

q=1

X(ω̄q)
n

∏

p=1

p6=q

ω − ω̄p

ω̄q − ω̄p
. (4)

In this expression, known in physics asdispersion relation with subtractions [2], the points{ω̄q}
n
q=1 are calledsub-

traction points; LU (ω) andLV (ω) are the Lagrange interpolation polynomials, based on thesepoints, forU(ω) and
V (ω) respectively. Equation (4) can be obtained if (2) is appliedto U(ω) andV (ω) diminished by their Lagrange
interpolation polynomials, and then divided by

∏n
q=1

(ω − ω̄q) (boxed quantity). This division is the key advantage
of the generalized Hilbert transform, because it strongly reduces the importance of the missing high-frequency data
H(jω) for |ω| > Ωmax.

Application of (4) to tabulated data (3) leads to an approximate numerical reconstruction of the frequency response
real part

Û(ω) = LU (ω) +

∏n
q=1

(ω − ω̄q)

π
−

∫ +Ωmax

−Ωmax

V (ω′) − LV (ω′)
∏n

q=1
(ω′ − ω̄q)

dω′

ω − ω′
, (5)

which is affected by both discretization and truncation errors. In [1, 4] two worst-case bounds for these errors (denoted
here asD̃(ω) andTn(ω), respectively) are derived. We report as an example the maximum truncation error for the
scattering parameters of a passive structure

Tn(ω) =
1

π

n
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, (6)



0 0.5 1 1.5 2 2.5 3
x 10

9

0

0.1

0.2

0.3

0.4

Frequency [Hz]

R
e{

S
11

}

 

 

0 0.5 1 1.5 2 2.5 3
x 10

9

−0.2

−0.1

0

0.1

Im
{S

11
}

Causal
True
Spline
Disp. Rel.

0 0.2 0.4 0.6 0.8 1

10
−4

10
−3

10
−2

10
−1

10
0

Minimum frequency available [GHz]

R
ec

on
st

ru
ct

io
n 

er
ro

r 
(m

ax
)

 

 

Spline
Disp. Rel.

Figure 2: Left: trueS11 (solid line), its reconstruction with spline interpolation (dash-dot lines), and with dispersion
relations (dashed lines). The shaded area represents the bounds on the real part imposed by the dispersion relations.
Right: maximum reconstruction error for conventional (dash-dot line) and proposed scheme (dashed line).

showing its behavior in Figure 1 (left) forn = 4, 8, and 12 subtractions. The rapid decrease of the truncation error for
increasingn visible in the plot has an important consequence: with the proposed generalized dispersion relations (5),
the numerical error due to the intrinsic bandwidth limitation can be arbitrarily reduced by choosing an appropriate
numbern of subtraction points.

Since the maximum uncertainty that affects (5) has been estimated as|Û(ω)−U(ω)| ≤ Tn(ω)+D̃(ω), an error bar
accounting for the numerical resolution of the computationcan be associated tôU(ω). Its importance is demonstrated
in Figure 1 (right), where the real partU(ω) of theS21 scattering coefficient for a transmission line is depicted,together
with Û(ω) obtained by applying (5). The frequency data have been supposed known only up to 10 GHz. Since the
transmission line is a causal system, we expect dispersion relations to be satisfied, i.e. thatÛ(ω) matchesU(ω): this
would not be evident from Figure 1, unless one considers the uncertainty associated tôU(ω), represented in the graph
by the shaded area that surrounds the dash-dot line. The dataset is concluded to be causal since the true response
U(ω) is uniformly within the uncertainty bounds. Further details on the robust computation of dispersion relations
can be found in [1, 4], where they are used for causality verification purposes; in the next section, their application for
frequency data reconstruction is discussed.

3 Causality-constrained interpolation

We consider a tabulated frequency response as in (3) for which data are missing for|ω| < Ωmin. Our aim is to
recover the missing samples with the maximum achievable accuracy. The standard approach to this problem resorts
to conventional interpolation procedures (i.e. splines):the real and imaginary parts are interpolated separately in
[−Ωmin, Ωmin] in order to compute a reconstructed responseHR(jω) = UR(ω)+jVR(ω) that extends the givenH(jω)
to the entire bandwidth[−Ωmax, Ωmax]. Two main drawbacks affect this procedure: low accuracy andnon-causality of
the reconstruction, as illustrated by the following example. TheS11 scattering parameter of the same transmission line
in Fig. 1 (now with lengthl=5 cm) has been computed from 0.4 up to 10 GHz. Then, spline interpolation has been used
to reconstruct the frequency response forf < 0.4 GHz. The result is depicted in the left panel of Figure 2 (dash-dot
lines), together with the true frequency response (solid lines). The reconstruction nearf = 0 is very inaccurate and
non-causal. In fact, application of the causality check tool introduced in [1, 4] clearly highlights this causality violation,
since the reconstructed real part is outside the bounds (shaded area) imposed by the dispersion relations.

To overcome these issues, we propose the following methodology, which combines interpolation methods with
dispersion relations. First, the imaginary part of (3) is interpolated in[−Ωmin, Ωmin] to computeVR(ω) using a con-
ventional (e.g., spline) method. The imaginary part is preferred to the real part because its value forf = 0 is vanishing,
owing to spectrum symmetries. Therefore, an additional point can be used in the interpolation, improving the over-
all accuracy of the method. Then, the dispersion relation (5) is applied toVR(ω) in order to recover the real part
ÛR(ω). Since the reconstructed responseHR(jω) = ÛR(ω) + jVR(ω) satisfies dispersion relations by construction,
the causality of the result is always guaranteed. The superior accuracy of the proposed technique is now demonstrated.

We applied the reconstruction procedure to the same transmission line example above. The result of the proposed
reconstruction scheme is depicted by dashed lines in Figure2 (left). It is clear that the accuracy of the points below
0.4 GHz is far better than what is achievable with a standard interpolation. Moreover, the reconstruction is uniformly
within the bounds imposed by dispersion relations, hence itis causal. The right panel of Figure 2 compares the deviation
between interpolated and true response for both conventional and proposed causality-constrained schemes, as a function
of Ωmin. The advantage of using dispersion relations is evident, since accuracy is improved by approximately one order
of magnitude.
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Figure 3: Left:Re {S21} of a measured 50 cm PCB interconnect. Middle: zoom on the low frequencies, comparing
standard spline (dash-dot line) and causality-constrained (continuous line) reconstruction. Right: time-domain solution
(obtained via inverse FFT) excited by a periodic pulse train, showing the DC shift between the two reconstruction
methods.

We discuss now the placement of subtractionsω̄q. Since truncation error is very small near subtraction points (see
equation (6)), it is convenient to place them close to the bandwidth of interest[−Ωmin, Ωmin]. However, a minimum
distance between subtractions has to be respected, in orderto avoid an increased discretization error due to the ex-
cessive proximity of singularities in (5). Obviously, subtractions cannot be placed inside[−Ωmin, Ωmin] where the
real partU(ω) is not yet known, because its valuesU(ω̄q) are required in (5) to computeLU (ω). According to these
considerations, we adopted the following rule

{ω̄q}
n
q=1 = {±Ωmin(1 + α),±Ωmin(1 + α)2, . . . ,±Ωmin(1 + α)n/2} for n even,

which provides a good compromise whenα = 0.2 ÷ 0.3. The number of subtractionsn is chosen using (6) in
order to guarantee a truncation errorTn(ω) smaller than a predefined threshold forω ∈ [−Ωmin, Ωmin]. Finally, we
remark that the proposed causality-constrained interpolation scheme can be adapted with obvious modifications to the
reconstruction of missing data intervals centered at any frequency, and not necessarily atf = 0.

4 Application examples

We consider now an application example. A single stripline routed over 50 cm on a PCB was measured from
50 MHz up to 40 GHz (courtesy of C. Schuster, IBM). The measured data account also for the discontinuities induced
by the signal launches. The left panel of Fig. 3 depicts the real part of the insertion lossS21, showing the significant
phase rotations due to the length of the interconnect link. Both the standard (spline) and the proposed causality-
constrained interpolation schemes were applied to computean estimate of the missing DC point. The results are
compared in the middle panel of Fig. 3, where an enlarged scale is used for the frequency axis. Due to the rather coarse
sampling frequency, the two DC point estimates are quite different. Therefore, a dramatic impact on the transient
solution of the link is expected.

In order to provide an unbiased check for the accuracy of the computed DC points (we do not have a reference point
to compare with), we devised the following numerical test. The transient response of the interconnect was computed
starting from the two different interpolated datasets. A repeated pulse with pattern01111111111000000000, bit
time Tb = 1 ns and rise timeτr = 130 ps was applied, and the transient response was computed via inverse FFT.
Special care was taken to avoid aliasing effects by smoothing the rise/fall edges of the input pulse. Also, ideal 50Ω
driver and receiver impedances were used. The results are compared in the right panel of Fig. 3. The transient solution
computed using the causality-constrained dataset has a baseline DC solution around 0 V, as expected. Conversely, the
spline-based dataset results in a DC shift, which can be quantified in about -60 mV. This simple example clearly points
out that simplistic solutions to the pre- or post-processing of data may have a quite significant impact on subsequent
modeling and simulation steps. Therefore, particular careshould be taken in data conditioning, with particular emphasis
on fundamental properties such as causality and passivity.
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