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Abstract: We apply a recently developed formulation of the generdlidébert transform to the processing of tab-
ulated and finite-bandwidth frequency responses. A caysadnstrained interpolation procedure is introducedhwi
the aim of reconstructing missing samples in the data, ligetee DC point, via a sound numerical procedure that does
not compromise the self-consistency and the causalityeoétttire dataset.

1 Introduction and motivations

Itis widely recognized that modeling and simulation of #fieal interconnect parts of modern electronic systems is
a very challenging task, which in several cases still ladkgppropriate solutions. Both academic and industry resear
in this field is very active, aiming at characterization, raliy, and simulation methods allowing to deal with the
everincreasing system complexity at chip, package, andibeeel.

Electrical interconnects are linear structures. Thersfarfrequency-domain characterization is highly desirabl
Such characterization can be obtained via full-wave edataignetic simulation or direct measurement. In both cases,
the result is a set of frequency samples over a finite bantvfidtsome transfer matrix (scattering, impedance, or
admittance) of the structure. Practically any EDA or CADIteges this frequency-domain characterization for subse-
quent modeling steps, including time-domain conversiomacromodeling for handling nonlinear terminations.

Very often the available frequency samples are affectedhbyptesence of missing data points. A typical case is
the missing DC (zero-frequency) point in VNA measurements gimulation results obtained by frequency-domain
tools. This issue may be very critical, since the zero-feguy point controls the DC steady state of the electrical
solution, which is of paramount importance in any systemgiesTherefore, this problem is usually circumvented
by applying suitable interpolation/extrapolation scherimeorder to "fill the gaps” in the data. Linear or spline-bése
schemes are very common. However, the employment of suamsshfor data recovery introduces some degree of
arbitrarity in the computed samples, and it may be difficnlotbain an estimate for the error that is thus introduced
in the structure characterization. In [1], we show that agcy is not even the most important aspect. In fact, when
some frequency points are affected by such errors, the bfteguency response may be inconsistent and flawed by
causality violations. This has a dramatic impact, since-caunsal data are also non-passive and will very likely irduc
a failure when attempting subsequent modeling or macrofimgggteps. An illustrative example is reported in [1].

In this work, we provide a solution for this problem. We apitig generalized Hilbert transform to the design of a
causality-constrained interpolation scheme. The maioréhgm is based on a robust numerical procedure and allows to
estimate the missing data points by explicitly enforcirgy¢husality of the resulting dataset. We show that the pexpos
scheme produces far more accurate samples than commoriridegiolation schemes. In addition, the guarantee of
causality allows blind and safe application of standard @tiod or macromodeling techniques. This applies to both
lumped and distributed interconnect structures.

The paper is organized as follows. Section 2 reviews thergépned Hilbert transform and outlines a robust numeri-
cal procedure for its evaluation. Section 3 details the psep causal interpolation algorithm. Finally, some ajpidn
examples are presented in Section 4.

2 Generalized Hilbert transform

We consider a generic linear system with input-output bemalescribed by
y(t) = h(t) * 2(t) = Y (jw) = H(jw) X (jw) 1)

with z(t), y(t), andh(t) being respectively the input, output and impulse respastsgerved in time-domain. Capital
quantities denote their Fourier transforms, wilfjw) being the system frequency response. Throughout this work,
the real and imaginary parts &f (jw) will be denoted a¥/ (w) andV (w), respectively. Without loss of generality, we
restrict our attention to a scal&f(jw), i.e. to single-input single-output systems. Howevergtaosed methodology
can be extended to multiport systems by considering eaahegleof the matri¥ (jw) separately.
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Figure 1: Left: truncation error bouritl,(w) for n = 4, 8, and 12 subtraction points. RigfRe {52} (solid line) for
a transmission line {.=5.2 nH/cm,C=1.1 pF/cm,R=1.3Q/cm, G=0, length/=1 cm) and its numerical reconstruction
(dash-dot line) obtained with (5). The shaded area accdontie errors associated with the computation of (5).

A strong relationship between the real and imaginary ga(ts) andV (w) of any frequency response is established
by the causality principle, which states that in every ptgissystem the output reaction cannot precede in time its
cause, i.e. the input variation. It is well known in fact th&tw) andV (w) are related by Kramers-Krdnig dispersion
relations [2] or, equivalently, by the Hilbert transfornj [3

v = {2, v = -2 uw)

s w—w ™

dw’

w—w

(2)

The integrals are defined according to Cauchy’s principlaleszand throughout the paper are supposed to extend from
—oo to +o0, unless differently noted. These relations are fully eglgint to causality and can be exploited, e.g., to
verify the causality of a given frequency response or tomstroict the real part from the imaginary one and viceversa.

The effectiveness of the above procedures is limited intfp@because frequency data obtained either via mea-
surement or simulation consist of a set of discrete points

H(jwk), kZ—K,...,-ﬁ-K, Wk = T max (3)

spanning a limited frequency bandwidth(2,,,.x, Qmax], Negative frequencies being known from basic spectrum sym-
metries. The numerical computation of (2) is thereforec#d by two sources of inaccuracy, one being related to
the discrete nature of the data (discretization error),thedther to the unavoidable restriction of the integralthto
available bandwidth (truncation error). To overcome thgsees, a robust and accurate method to compute dispersion
relations has been introduced in [1, 4]. The technique isdbas a generalized formulation of the Hilbert transform,
which is reported below for the real part only, with a similetation holding for/’ (w),

U = Lyt + D20 [V L)) b ZX DI
e

In this expression, known in physics digpersion relation with subtractions [2], the points{w, };_, are calledsub-
traction points; £y (w) and Ly (w) are the Lagrange interpolation polynomials, based on tbesﬁs forU(w) and
V(w) respectively. Equation (4) can be obtained if (2) is appt®d (w) andV (w) diminished by their Lagrange
interpolation polynomials, and then divided ﬂ/:f:l(w — @,) (boxed quantity). This division is the key advantage
of the generalized Hilbert transform, because it strongfuces the importance of the missing high-frequency data
H(jw) for |w| > Qmax-

Application of (4) to tabulated data (3) leads to an appr@tamumerical reconstruction of the frequency response
real part

(5)
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which is affected by both discretization and truncatiomesr In [1, 4] two worst-case bounds for these errors (dehote
here asD(w) andT, (w), respectively) are derived. We report as an example themmanitruncation error for the
scattering parameters of a passive structure
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Figure 2: Left: trueS;; (solid line), its reconstruction with spline interpolati¢gdash-dot lines), and with dispersion
relations (dashed lines). The shaded area represents dineldon the real part imposed by the dispersion relations.
Right: maximum reconstruction error for conventional (daset line) and proposed scheme (dashed line).

showing its behavior in Figure 1 (left) for = 4, 8, and 12 subtractions. The rapid decrease of the trumcatior for
increasingn visible in the plot has an important consequence: with tloppsed generalized dispersion relations (5),
the numerical error due to the intrinsic bandwidth limiatican be arbitrarily reduced by choosing an appropriate
numbern of subtraction points.

Since the maximum uncertainty that affects (5) has beemagtl asU (w) — U (w)| < T}, (w) 4+ D(w), an error bar
accounting for the numerical resolution of the computatian be associated ﬁr}(w). Its importance is demonstrated
in Figure 1 (right), where the real pdrt(w) of the S2; scattering coefficient for a transmission line is depictedether
with U(w) obtained by applying (5). The frequency data have been sgapknown only up to 10 GHz. Since the
transmission line is a causal system, we expect disperslatians to be satisfied, i.e. th&{w) matched/(w): this
would not be evident from Figure 1, unless one considersiicentiainty associated {6(w), represented in the graph
by the shaded area that surrounds the dash-dot line. Thsetldaconcluded to be causal since the true response
U(w) is uniformly within the uncertainty bounds. Further detah the robust computation of dispersion relations
can be found in [1, 4], where they are used for causality watifon purposes; in the next section, their application for
frequency data reconstruction is discussed.

3 Causality-constrained interpolation

We consider a tabulated frequency response as in (3) forwdata are missing fow| < Qpin. Our aim is to
recover the missing samples with the maximum achievableracg. The standard approach to this problem resorts
to conventional interpolation procedures (i.e. splingbe real and imaginary parts are interpolated separately in
[—min, 2min| in Order to compute a reconstructed respafiggjw) = Ur(w)+7Vr(w) that extends the giveH (jw)
to the entire bandwidth-Qax, Qmax]. TWO main drawbacks affect this procedure: low accuracyremdcausality of
the reconstruction, as illustrated by the following exagnflheS;, scattering parameter of the same transmission line
in Fig. 1 (now with lengti=5 cm) has been computed from 0.4 up to 10 GHz. Then, splieedalation has been used
to reconstruct the frequency response fox. 0.4 GHz. The result is depicted in the left panel of Figure 2 (dash-do
lines), together with the true frequency response (safiddj. The reconstruction neAr= 0 is very inaccurate and
non-causal. In fact, application of the causality checkitttooduced in [1, 4] clearly highlights this causality \ation,
since the reconstructed real part is outside the boundd€sharea) imposed by the dispersion relations.

To overcome these issues, we propose the following metbggloivhich combines interpolation methods with
dispersion relations. First, the imaginary part of (3) ieipolated iM—Quyin, Qmin] t0 cOMputeVz(w) using a con-
ventional (e.g., spline) method. The imaginary part isg@mefd to the real part because its valueffet 0 is vanishing,
owing to spectrum symmetries. Therefore, an additionahtpcan be used in the interpolation, improving the over-
all accuracy of the method. Then, the dispersion relatigng®pplied toVz(w) in order to recover the real part
Ur(w). Since the reconstructed respotigg(jw) = Ur(w) + jVr(w) satisfies dispersion relations by construction,
the causality of the result is always guaranteed. The sup&ecuracy of the proposed technique is now demonstrated.

We applied the reconstruction procedure to the same trasgmiline example above. The result of the proposed
reconstruction scheme is depicted by dashed lines in F@ieft). It is clear that the accuracy of the points below
0.4 GHz is far better than what is achievable with a standaetpolation. Moreover, the reconstruction is uniformly
within the bounds imposed by dispersion relations, herisedusal. The right panel of Figure 2 compares the deviation
between interpolated and true response for both conveaitimil proposed causality-constrained schemes, as adancti
of Quin. The advantage of using dispersion relations is evidemtesaccuracy is improved by approximately one order
of magnitude.
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Figure 3: Left:Re {S2; } of a measured 50 cm PCB interconnect. Middle: zoom on the teguiencies, comparing
standard spline (dash-dot line) and causality-constdgioentinuous line) reconstruction. Right: time-domailuson
(obtained via inverse FFT) excited by a periodic pulse tralowing the DC shift between the two reconstruction
methods.

We discuss now the placement of subtractiopsSince truncation error is very small near subtraction {sojsee
equation (6)), it is convenient to place them close to thediédith of interes{—Q,,in, Qmin]. However, a minimum
distance between subtractions has to be respected, in tordeoid an increased discretization error due to the ex-
cessive proximity of singularities in (5). Obviously, stdsttions cannot be placed insifeQmin, Qmin] Where the
real partU (w) is not yet known, because its valug$w,) are required in (5) to computéy (w). According to these
considerations, we adopted the following rule

{@g}g=1 = {£min(1 + @), £Qmin (1 + a)?, . E Qi (L + a)"/?} for n even,

which provides a good compromise when= 0.2 = 0.3. The number of subtractions is chosen using (6) in
order to guarantee a truncation erfoy(w) smaller than a predefined threshold orc [—Qmin, Qmin]. Finally, we
remark that the proposed causality-constrained intetipolacheme can be adapted with obvious modifications to the
reconstruction of missing data intervals centered at aayuiency, and not necessarilyfat 0.

4 Application examples

We consider now an application example. A single striplioeted over 50 cm on a PCB was measured from
50 MHz up to 40 GHz (courtesy of C. Schuster, IBM). The meas$dega account also for the discontinuities induced
by the signal launches. The left panel of Fig. 3 depicts tla¢ part of the insertion losS»;, showing the significant
phase rotations due to the length of the interconnect linkthBhe standard (spline) and the proposed causality-
constrained interpolation schemes were applied to comgutestimate of the missing DC point. The results are
compared in the middle panel of Fig. 3, where an enlarge@ $salsed for the frequency axis. Due to the rather coarse
sampling frequency, the two DC point estimates are quiterdint. Therefore, a dramatic impact on the transient
solution of the link is expected.

In order to provide an unbiased check for the accuracy ofthgputed DC points (we do not have a reference point
to compare with), we devised the following numerical teste Transient response of the interconnect was computed
starting from the two different interpolated datasets. peaed pulse with pattei1111111111000000000, bit
time T, = 1 ns and rise time,, = 130 ps was applied, and the transient response was computedveiesée FFT.
Special care was taken to avoid aliasing effects by smogtthia rise/fall edges of the input pulse. Also, ideal{30
driver and receiver impedances were used. The results arpared in the right panel of Fig. 3. The transient solution
computed using the causality-constrained dataset haslin®mB®C solution around 0 V, as expected. Conversely, the
spline-based dataset results in a DC shift, which can betifiealin about -60 mV. This simple example clearly points
out that simplistic solutions to the pre- or post-procegsifidata may have a quite significant impact on subsequent
modeling and simulation steps. Therefore, particular shoeild be taken in data conditioning, with particular engiha
on fundamental properties such as causality and passivity.
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