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1 Introduction

The detection of gravitational waves from black hole mergers has opened a new window into
the nature of gravitational interactions. In particular, the possibility to study gravity in the
strong field regime for the first time has motivated a surge of interest in field theories that
allow for black hole solutions different from the ones predicted by General Relativity (GR).

In the absence of a compelling guiding principle, the intrinsic complexity of the merger
process has encouraged the study of simple models where deviations from GR could be
order one. This is the case of scalar-tensor theories featuring the lowest-dimensional non-
minimal couplings of a scalar field to gravity, capable of sourcing detectable scalar hair
around black holes: a massless (shift-symmetric) scalar coupled to the Gauss-Bonnet (GB)
invariant [1, 2] or to the Chern-Simons (CS) term, a.k.a. Pontryagin invariant, [3],

S =
∫
d4x
√
−g

(
M2

Pl
2 R− 1

2(∇µφ)2 +MPlαφR2
GB +MPlα̃φRµνρσR̃

µνρσ

)
, (1.1)

where R2
GB ≡ RµνρσRµνρσ − 4RµνRµν + R2 and R̃µνρσ = 1

2ε
µναβR ρσ

αβ . α and α̃ are the
length-scales (squared) parametrizing the strength of the non-minimal scalar couplings. For
shift-symmetric scalar theories a no-hair theorem [4] basically selects these two interactions
as the only ones leading to black hole hair [5]. See [6] for other types of hair in black hole
geometries.
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While very interesting from the phenomenological point of view, it is crucial to under-
stand how much one can learn about the fundamental properties of gravity via the study of
these models in the context of gravitational wave observations. To answer this important
question, the very first step is to assess the consistency of such extensions of GR with what
we already know: that GR provides a good description of gravitational interactions down
to µm scales [7] and, at the most basic level, that the principles of unitarity, locality, and
causality hold there.

Based on simple causality arguments we will find that the cutoff of the effective field
theory (EFT) in eq. (1.1) is bounded from above as Λ . 1/|α̂|1/2, where α̂ = α+ iα̃. Since
the effects beyond GR (BGR), associated with the scalar hair of black holes, are observable
when |α̂|/r2

s = O(1), where rs is the Schwarzschild radius, we find that for phenomeno-
logical applications, i.e. for black holes of astrophysical size, Λ . 1/ km. Therefore, the
observability of black holes with scalar hair comes at the high price of a very limited regime
of validity of these models. In fact, we will argue that the observation of O(|α̂|/ km2) non-
standard effects due to the scalar hair of astrophysical black holes is likely at odds with
standard gravity at distances shorter than |α̂|1/2, or, from a more dramatic perspective, it
would point to the violation of fundamental principles below that scale.

Our causality bound is a generalization of the well-known fact that effective field
theories exhibiting non-minimal 3-graviton or 2-photon plus 1-graviton interactions, if ex-
trapolated beyond their regime of validity, display time advances when in a gravitational
background, in conflict with causality [8, 9]. In section 2 we show that the scalar-graviton
mixing induced by the non-minimal couplings in eq. (1.1) leads as well to a macroscopic vi-
olation of causality unless Λ . 1/|α̂|1/2, in which case the time advance is never observable
within the EFT regime of validity. Based on this bound as well as those found in [9], along
with the theoretical constraints on gravitational EFTs recently derived using dispersion
relations [10, 11], we will extract generic lessons on the power counting of gravitational
EFT operators, of relevance for gravitational wave science.

While our bound renders the EFT in eq. (1.1) at the verge of its regime of validity
for the physical systems of interest, there is a small range of scales where it could remain
interesting. What are the effects one can expect from such a low cutoff? In section 3.1
we investigate this question by means of dispersion relations, which connect observables
at low energies, i.e. EFT coefficients, with the high-energy dynamics that underlies them,
on the basis of the unitarity, locality and causality of the scattering amplitudes. Due to
the weakness of the non-minimal gravitational interactions compared to GR, as enforced
by causality, we find that our one-loop positivity conditions are not powerful enough to
extract a robust answer. Nevertheless, given that setting |α̂| ∼ 1/Λ2, so as to maximize
the BGR effects within the EFT regime, fixes the power counting of the EFT, we are able
to identify in section 3.2 the leading higher-dimensional operators that should generically
(yet not generally) become large. The reader not interested in the more formal discussion
of gravitational positivity bounds is invited to directly go to this latter subsection, which
is the starting point of our phenomenological analysis.

In section 4 we explore the phenomenological consequences of the additional EFT
operators. The main generic lesson we extract is that it would be of great significance
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to extend the black hole solutions and numerical studies of their merger, obtained so far
in the literature for the scalar-GB and dynamical-CS gravity theories (α̃ = 0 and α = 0
respectively), to include these operators. This conclusion holds insofar there exist a UV
completion in which gravity remains well described by GR at scales lower than |α̂|1/2 ∼ km,
an important caveat that we chose to be agnostic about and leave for future investigation.
We present our outlook and conclusions in section 5.

In appendix A we discuss how our arguments could be extended to place theoretical
constraints on the idea of spontaneous scalarization around black holes [12, 13].

2 Time advance bounds

In this section we compute the time delay that the two graviton polarizations and the
massless scalar experience when scattering against a very heavy (classical) gravitational
source in the eikonal regime, following [9, 14] to include the effects of the non-minimal
couplings in eq. (1.1). These interactions lead to a non-diagonal transition amplitude
between graviton and scalar, such that one of the propagation eigenmodes travels faster
than what is allowed by the causal structure of the asymptotic spacetime, thus violating
asymptotic causality [15]. This is analogous to the case of gravitons and photons discussed
in [9, 14], where non-minimal gravitational 3-point interactions, encoded by the operators
RµνρσR

ρσ
αβR

αβµν and FµνFρσRµνρσ, give rise to a mixing between the two graviton or the
two photon helicities, respectively, and which results in a net macroscopic time advance
for one of the propagating eigenmodes.1 Since this happens for scattering at sufficiently
small impact parameters, avoiding causality violation sets an upper bound on the cutoff of
the EFT, Λ, where dynamics that is not captured by the EFT must become relevant. For
recent works discussing the notion of causality in the gravitational context, we point the
reader to e.g. [17–22].

Let us then consider the scattering of graviton and scalar with an spectator of mass m,
within the so-called eikonal limit, s� t, where s is the center of mass energy of the collision
and t = −|~q|2 ≡ q2, where ~q is the exchanged momentum. We take the spectator to be
very heavy and nearly at rest, acting as a gravitational source against which the massless
probe particle, of energy ω, scatters. In such a kinematical configuration, m� ω � q, the
leading contribution to the gravitational amplitude for rsω > 1, with rs = m/(4πM2

Pl) the
Schwarzschild radius of the target, is obtained after summing over ladder diagrams from
single graviton exchange, see figure 1. The S-matrix takes an exponential form, S = eiδ(ω,b),
where

δ(ω,~b) = 1
4mω

∫
dD−2q

(2π)D−2 e
i~q·~bM(ω, ~q) , (2.1)

is the eikonal phase shift and ~b the impact parameter [23, 24]. As we show below, the
phase shift is in general a matrix in helicity space, from which, after diagonalization, one
can extract the classical time delay for the propagation eigenmodes simply as ∆t = ∂ωδ.2

1Similar ideas have been considered for quadratic gravity in [16].
2One could consider as well, as done in [9], the sub-planckian scattering against a coherent state of a

large number N � 4πM2
Pl/s of relativistic particles, a.k.a. shock waves.
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Let us briefly go over the time delay for a probe particle minimally coupled to gravity,
that is the Shapiro time delay. The tree-level amplitude is helicity-preserving and universal,

MGR
tree '

1
M2

Pl

(2mω)2

q2 . (2.2)

We can compute the associated phase shift by performing the integral eq. (2.1) in D − 2
dimensions, where D = 4− 2ε is used as a regularization,

δGR = mω

4πM2
Pl

Γ
(
D − 4

2

) 1
b(D−4)/2 = 2ωrs

(
− 1

2ε −
γE
2 − log b

)
+O(ε) , (2.3)

where b ≡ |~b|. Subtracting the time delay measured at a reference impact parameter b0 � b,
we obtain the result,

∆tGR = 2rs log(b0/b) . (2.4)

This is the Shapiro time delay for a signal travelling at an impact parameter b from a
source with Schwarzschild radius rs, as measured by an observer at an impact parameter
b0 � b.

Within GR, the leading corrections to the phase shift are of order rs/b, associated to
amplitude terms in momentum space of order q/ω, arising from the eikonal expansion as
well as non-linear gravitational interactions [25]. Note that when these corrections become
large, that is when rs ∼ b, the deflection angle of the probe, θ = −ω−1∂bδ, is no longer
small. Let us point out as well that as long as rsω > 1, the Shapiro time delay is larger than
the quantum-mechanical uncertainty associated with the probe wave, i.e. ∆tGR > 1/ω.

2.1 Non-minimal scalar-tensor trilinear interactions

The (pseudo)scalar-graviton 3-point interactions associated with the φR2
GB and φRR̃ oper-

ators in eq. (1.1) give rise to an eikonal phase shift that is not diagonal with respect to the
helicity of the probe particle. This, along with the energy dependence of the interaction,
results in time advances at energies where the EFT is still weakly coupled.

In order to compute the phase shift, we consider 4-point scattering amplitudes associ-
ated with tree-level graviton exchange between a scalar or graviton and a heavy spectator,
which we take to be a scalar, S, without loss of generality. The corresponding Feynman
diagrams are shown in figure 1.

Using spinor-helicity variables and taking all the particles (with complex momenta) as
incoming, the relevant 3-point amplitudes read as follows:

MGB/CS
1φ2h++3h++ = 2α̂

MPl
[23]4 , MGB/CS

1φ2h−−3h−− = 2α̂∗

MPl
〈23〉4 , (2.5)

where we recall that α̂ = α+ iα̃ and that α̂ = 0 and α = 0 correspond to the scalar Gauss-
Bonnet and dynamical Chern-Simons gravity theories, respectively. In the center of mass
frame, we parametrize the spinors for the external gravitons in the regime m� ω � q as

– 4 –



J
H
E
P
0
8
(
2
0
2
2
)
1
5
7

Figure 1. Leading tree-level diagrams for the eikonal scattering of graviton and scalar against a
heavy target. Wiggly lines represent gravitons, dashed lines the massless scalar, and double lines
the massive source. The square vertex corresponds to the φRR helicity-changing interaction.

in [14]

3] ' i
√

2|~p|
(
− q1−iq2

4|~p|
1

)
, 〈3 ' i

√
2|~p|

(
−q1 + iq2

4|~p| , 1
)
, (2.6)

4] '
√

2|~p|
(

q1−iq2
4|~p|
1

)
, 〈4 '

√
2|~p|

(
q1 + iq2

4|~p| , 1
)
,

where ~p = |~p|ẑ, |~p| =
√
ω2 − ~q 2/4, is the momentum of the probe, orthogonal to the

exchanged momentum ~q with components q1, q2. With these, we find the 4-point scattering
amplitudes

MGB/CS
1S2S3h++4φ =MGB/CS

1S2S3φ4h++ ' −
2α̂
M2

Pl

(q1 + iq2)2

q2 (2mω)2 , (2.7)

MGB/CS
1S2S3h−−4φ =MGB/CS

1S2S3φ4h−− ' −
2α̂∗

M2
Pl

(q1 − iq2)2

q2 (2mω)2 .

Defining b± = (b1 ± ib2)/2, we have ~b · ~q = b+(q1 − iq2) + b−(q1 + iq2), and as before the
eikonal phase shift matrix is obtained by taking the impact-parameter transform of the
amplitudes,

δ
GB/CS
1S2S3h++4φ = δ

GB/CS
1S2S3φ4h++ = −2ωrs

α̂

b2−
, (2.8)

δ
GB/CS
1S2S3h−−4φ = δ

GB/CS
1S2S3φ4h−− = −2ωrs

α̂∗

b2+
.

These helicity-changing contributions add up to the helicity-preserving ones from minimal
coupling, to yield the phase shift matrix

δGR+GB/CS ' 2ωrs

D 0 A

0 D A∗

A∗ A D

 , (2.9)

with rows (h++, h−− , φ) and

D = − 1
2ε −

γE
2 − log b , A = − α̂

b2−
. (2.10)
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After diagonalizing, we find the eigenvalues

δ0 = 2ωrs
(
− 1

2ε −
γE
2 − log b

)
, δ± = 2ωrs

(
− 1

2ε −
γE
2 − log b±

√
2 |α̂|
b2

)
, (2.11)

where the first corresponds to a pure graviton state, while the other two to a scalar-graviton
mixed state. The time delay that the latter propagating eigenmodes acquire are

∆t± = 2rs
(

log b0
b
±
√

2 |α̂|
b2

)
. (2.12)

At small enough impact parameters, ∆t− becomes negative, that is a time advance, sig-
nalling a potential violation of causality. Phrased in another way, for a given impact pa-
rameter there is a time advance if the GB/CS coefficient is large enough, |α̂| & b2 log(b0/b).
To avoid acausality at low energies, the EFT computation must therefore break down at
distances such that this condition cannot be satisfied.3 This implies the GB/CS coupling
is parametrically bounded by the cutoff of the EFT as

|α̂| . log(b0Λ)
Λ2 . (2.13)

Several comments are in order. For the violation of causality to potentially be resolv-
able and thus become problematic, the time advance should be larger than the quantum
uncertainty of the wave-packet, |∆t−| > 1/ω. For impact parameters where the BGR
contribution is assumed to dominate, this condition reads4

|∆t−| ∼ rs
|α̂|
b2

>
1
ω
, (2.14)

which for impact parameters down to the minimum cutoff length implied by eq. (2.13),
i.e. b ∼ |α̂|1/2 (neglecting the log), just requires rsω > 1. Equivalently, eq. (2.14) defines an
impact parameter below which the would-be time advance is resolvable, br = (rsω|α̂|)1/2.
This is larger than the minimum cutoff length within the EFT regime of validity, i.e. br >
|α̂|1/2, as long as rsω > 1. Therefore, even if potentially resolvable, as long as eq. (2.13) is
satisfied there is never an actual time advance. Alternatively, one could also argue that the
time advance is actually not resolvable at b ∼ |α̂|1/2 because the UV completion precludes
rsω > 1, which in practice means a cutoff such that ω . Λ . 1/rs. In this case, the
condition |∆t−| < 1/ω for ω ∼ Λ and b ∼ rs ∼ 1/Λ implies Λ . |α̂|1/2, just like in
eq. (2.13) up to O(1) factors, which in any case we are oblivious about.

The bound eq. (2.13) depends on the logarithm of an unspecified scale b0 � b, because
of the infrared (IR) divergent nature of gravity in four dimensions. While the identification
of IR-finite scattering observables in gravity remains an open and interesting problem (see

3That is, at a distance 1/Λ > b∗, where the largest impact parameter at which a time advance is found,
b∗, is given by |α̂| ∼ b2

∗ log(b0/b∗). Note that the dynamics needed to restore causality on time scales of
order b∗ should only involve momentum transfers q∗ ∼ 1/b∗, meaning that new physics must appear at
scales 1/b∗ or smaller, a priori regardless of ω and rs.

4This condition can also be interpreted as the one for which the beyond-GR contribution to the time
delay is resolvable on its own.
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e.g. [26] for a recent attempt in the context of causality constraints), we do not regard this
divergence as a serious drawback that invalidates our bounds. In fact, note that even if
we consider an IR scale of the order of the size of the observable universe, we merely find
log(Λ/H0) ∼ 50.

Finally, let us point out that Λ . |α̂|−1/2 implies that the EFT description must
break down at energies much lower than the strong coupling scale associated with the
GB/CS interactions. Indeed, the scale where the trilinear scalar-tensor coupling becomes
large, indicated by e.g. the 4-graviton amplitude mediated by the scalar becoming strong,
M∼ (α̂/MPl)2E6 ∼ 1, is

Λα =
(
MPl
|α̂|

)1/3
, (2.15)

much larger than the actual cutoff of the EFT, unless |α̂| ∼ 1/M2
Pl.

2.2 Causality bounds on power counting

In this section we reinterpret the causality constraints in terms of bounds on the power
counting of gravitational EFTs. With this aim, let us consider the generic form of a scalar
theory coupled to gravity, in which the heavy degrees of freedom, of mass Λ or higher
(i.e. Λ is the EFT cutoff), have been integrated out

L = 1
2M̂

2
PlR+ Λ4

g2 L
(0)
(∇µ

Λ ,
ζRµνρσ

Λ2 ,
gφ

Λ

)
+ . . . . (2.16)

In the spirit of naive dimensional analysis (NDA) each covariant derivative ∇µ is weighted
by 1/Λ, and each (scalar) field φ by g/Λ. The coupling g parametrizes the strength with
which the heavy states couple to the light degrees of freedom, with g ∼ 4π the usual
non-perturbative coupling limit. Note that instead of considering the Riemann tensor,
Rµνρσ ∼ ∂µ∂νhρσ, simply as a two-derivative object thus weighted by 1/Λ2, we introduce
a dimensionless parameter ζ to allow for the possibility that gravitational interactions
beyond GR’s minimal coupling are enhanced w.r.t. standard NDA.5 We will elaborate on
such a generalized power counting below. Each φ interaction comes with a decay constant
f , identified with (or defined as)

f = Λ
g
. (2.17)

At this point we can already distinguish the two interesting scenarios, for which it is
enough to consider the standard power counting ζ = 1 and to realize that the EH action
receives a contribution from both terms in eq. (2.16). When M̂2

Pl � f2, the EH action
is dominated by the first term and the effective Planck scale is MPl ∼ M̂Pl. Gravity is
external to the ultraviolet (UV) dynamics giving rise to L(0), a.k.a. “elementary”. Instead,
when M̂2

Pl � f2, we have MPl ∼ f and the heavy dynamics constitutes a bona fide
UV completion of gravity. Phrasing it in terms of the coupling g, the minimum coupling
g ∼ Λ/MPl corresponds to the “composite” limit of gravity. This is the case of string theory

5As usual we work with a dimensionless graviton field, whose interactions are eventually weighted by
1/MPl once its kinetic term is canonically normalized, following the normalization of the Einstein-Hilbert
(EH) term.
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(or more generally, potential tree-level UV completions with infinitely many higher-spins
particles, see e.g. [9, 27]), where Λ ∼Ms the string scale, as well as of loop-level completions
based on a large number of species, N ∼ (4πMPl/Λ)2, where g ∼ 4π/

√
N [28, 29]. Note

that in this limit one finds the largest coefficients for gravitational EFT operators with
none or a single matter field, since they scale as 1/g2 or 1/g respectively. The fact that
g & Λ/MPl is reminiscent of the weak gravity conjecture [30].

In terms of scattering amplitudes, the two scenarios are distinguished by the maximal
size of e.g. 2-to-2 graviton processes within the EFT regime of validity, i.e. E . Λ. From
minimal coupling we have MGR ∼ (E/MPl)2 . (Λ/MPl)2. Instead, an effective operator
like R 3

µνρσ leads to an amplitudeMBGR
(ζ=1) ∼ E6/(g2Λ2M4

Pl) . f2Λ2/M4
Pl, smaller than GR

except in the limit MPl ∼ f , in which case the two amplitudes are of the same size at
the cutoff. The same analysis can be reproduced if instead of amplitudes one considers
other (classical) gravitational observables and distances, rather than energies, within EFT
control, i.e. r & 1/Λ.

For the generalized power counting ζ > 1, the discussion is very much analogous,
except for the important difference that now the BGR effects can become larger than the
GR prediction for energies well described by the EFT. The composite case corresponds
to M̂2

Pl � ζf2, for which we have MPl ∼
√
ζf . Therefore, ζ � (MPl/f)2 corresponds to

the case where gravity is external to the UV dynamics. Elementary or composite, we find
that non-standard gravitational interactions, in the form of R3

µνρσ, give rise to enhanced
4-graviton amplitudes

MBGR
1h2h3h4h ∼ ζ

3 E
6f2

Λ4M4
Pl
. ζ3 Λ2f2

M4
Pl
.

Λ2M2
Pl

f4 =
(
gMPl
f

)2
, (2.18)

where the first inequality follows from E . Λ and the second from ζ . (MPl/f)2. Note that
for ζ & (MPl/f)2/3 the amplitude is larger than in GR, and it becomes non-perturbatively
strong, i.e. M ∼ (4π)2, for EFT cutoffs well below the maximal gravity cutoff given
by 4πMPl. As we discuss in the following, it is precisely this possibility that causality
constraints forbid.6

Let us start by recalling that each specific UV theory within the class of theories
described in the IR by eq. (2.16) comes with O(1) factors not captured by the power
counting. Even more importantly, the presence of symmetries can enforce some EFT
operators to have vanishing coefficients, for instance if φ is Nambu-Goldstone boson with a
shift symmetry φ→ φ+ c (as the scalar field that concerns us in this work), any potential
term for φ vanishes. However, beyond the well-known selection rules from symmetries,
there are further requirements that an EFT must satisfy if it is to be consistent with the

6It is perhaps instructive to compare with EFTs for spin-1 (abelian or non-abelian) gauge fields,

L = 1
4ê2F

2
µν + Λ4

g2 L
(0)
(
Dµ
Λ ,

ζFµν
Λ2 ,

gφ

Λ

)
,

with the elementary and composite limits given respectively by ê� g/ζ (and effective gauge coupling e ∼ ê)
and ê � g/ζ (e ∼ g/ζ). As discussed in [31], in the strongly coupled gauge field scenario ζ ∼ g/e & 1 one
finds 4-point amplitudes (from e.g. F 4

µν operators)M∼ g2(E/Λ)4, which can be larger than the amplitude
from minimal coupling,M∼ e2, for energies within the EFT.

– 8 –
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fundamental principles of unitarity, locality, and causality (and if it is to arise from UV
dynamics that abides by such principles). Indeed, it was found in [9] that causality, in
the form of absence of a (resolvable) time advance, leads to a constraint on the size of
corrections to the cubic graviton coupling, arising from an operator α3M

2
PlR

3
µνρσ, given by

α3 . 1/Λ4. In terms of the power counting eq. (2.16), α3 ∼ ζ3/(gMPlΛ)2, such a bound
implies ζ . (MPl/f)2/3, precisely such that the BGR effects never get to dominate over
GR, see below eq. (2.18). This conclusion seems to be generic. The similar bound we
have derived in section 2.1 on the GB/CS non-minimal coupling of gravitons to a scalar,
|α̂| . 1/Λ2, when interpreted in terms of our power counting, |α̂| ∼ ζ2/(gMPlΛ), implies
ζ . (MPl/f)1/2. Once again, this forbids the 4-graviton amplitude mediated by the scalar
from getting larger than in GR if restricted to energies within the EFT, E . Λ,

MGB/CS
1h++2h++3h−−4h−− ∼ |α̂|

2 E
6

M2
Pl
.

Λ2

M2
Pl
. (2.19)

It is illuminating to realize that in the case of a standard power counting ζ = 1, these
causality constraints robustly imply that g & Λ/MPl (or equivalently f . MPl), as we
expected from the simple NDA considerations on the elementary vs composite nature of
gravity. In turn, if one is interested in genuine UV completions of gravity, i.e. g ∼ Λ/MPl,
these bounds imply that ζ . 1 and therefore that the EFTs in which non-minimal inter-
actions are enhanced beyond standard NDA have no gravitational completions consistent
with fundamental principles.

2.2.1 Bounds from dispersion relations

This conclusion is reinforced by recent progress on the derivation of theoretical constraints
on gravitational EFTs that go beyond causality violation in classical observables and there-
fore beyond corrections to cubic gravitational interactions [10, 11, 26, 32–41]. Such bounds
are instead obtained via dispersion relations [42], which connect the coefficients of the EFT
operators to the dynamics of their UV completions. These UV/IR relations, which we will
review in some detail in section 3.1, are very powerful because of their generality, relying
only on the basic assumptions of unitarity, locality and causality (encoded as the analyt-
icity, crossing symmetry and boundedness of the scattering amplitudes).7 Of particular
relevance for the physics of black holes are the results of [10], which derived a lower bound
on α4M

2
PlR

4
µνρσ given by α4 & α2

3Λ2 (recall α3M
2
PlR

3
µνρσ), and of [11], which derived the

upper bound α4 . 1/Λ6. Both constraints restrict the BGR contribution to gravitational
observables to be smaller than the prediction of GR. In fact, we should stress that if similar
bounds were to be derived on non-standard higher-point amplitudes (with n > 5 gravi-
tons) from Rnµνρσ operators, we would be led to the conclusion that the power counting
in eq. (2.16) with ζ > 1 is inconsistent altogether, i.e. regardless of f and not only for
f ∼ MPl. While this seems like a plausible expectation, a robust derivation of theoretical
constraints on higher-point amplitudes remains an open problem at the time of writing
this work (see e.g. [44] for recent progress in this direction). If indeed ζ > 1 is forbidden by

7The link between dispersion relations and causality, expressed as the absence of superluminal propaga-
tion, was pointed out in [43], and its connection with time delay has been recently discussed in [11, 37].
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fundamental principles, we would come to the sensible conclusion that in a gravitational
EFT the largest effects for a fixed cutoff are found when f ∼ MPl, therefore when gravi-
tational interactions should dramatically change above Λ. We will provide further insight
into this fact in section 5.

Before concluding this section, let us make some additional comments on the impli-
cations of the causality bounds on the phenomenology of black holes beyond GR. The
constraint α4 . 1/Λ6 [11] places modifications of GR due to quartic terms in the curvature
on the same footing as those due to cubic terms. This means that there is no strong reason
to discard the effects of R3

µνρσ operators, leading in the derivative expansion, while keeping
those of R4

µνρσ [45–47].
The constraint we have obtained in section 2.1 on BGR scalar-tensor cubic couplings

have also been recently derived in [11] via dispersion relations. In this regard, it is important
to point out that even though our bound is robust up to O(1) factors, contrary to the more
precise (yet still IR divergent) one from dispersion relations, we believe our derivation is
very valuable because it comes from a simple physical setup in which causality violation is
a classical, macroscopic effect, therefore it does not rely on a priori stronger assumptions
on the analyticity and polynomial boundedness of scattering amplitudes associated with
causality.

NDA expectations are also confirmed by dispersion relations involving operators with
extra derivatives acting on the curvature, for instance of the form

α5M
2
PlR

2
µνρσ(∇ηRµνρσ)2, α6M

2
Pl(∇ηRµνρσ)4, (2.20)

which contribute to 4-graviton amplitudes asM∼ αJE2J [10, 11, 41]. In particular, there
are an infinite number of linear constraints on the EFT coefficients that take the form of
two-sided bounds such as

− α4 6 α5Λ2 6 α4 and 0 6 α6Λ4 6 α4 , (2.21)

and similar bounds for higher J , respectively odd or even.
Their interpretation in terms of a power counting is clear, subleading operators in the

derivative expansion ∇/Λ cannot be enhanced over the leading ones.
In our discussion we have focussed on cubic and quartic operators built out of the

Riemann tensor, with no mention of terms quadratic in the curvature. This is because
R 2
µνρσ operators do not contribute to graviton scattering amplitudes, given that the GB

term R2
GB is a topological invariant (in D = 4) and because field redefinitions can be

performed to eliminate any EFT operator built out of R and Rµν in favour of matter terms
(T and Tµν), therefore giving rise to amplitudes involving φ fields. For this reason, one
might find it more convenient (although not necessary) to use a basis of EFT operators
directly linked to scattering amplitudes, such as the one systematically constructed in [48].
In this respect, note that the relevant object giving rise to processes with gravitons on-
shell is the Weyl tensor, Cµνρσ = Rµνρσ − (gµ[ρRσ]ν − gν[ρRσ]µ) + 1

3gµ[ρgσ]νR. This means
that the relevant parts of the GB/CS operators in eq. (1.1) are MPlαφCµνρσC

µνρσ and
MPlα̃ φCµνρσC̃

µνρσ. These are also the terms behind the scalar hair of black holes, since
black holes are Ricci-flat gravitational solutions (R,Rµν = 0) at zeroth order in α, α̃.
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Finally, causality bounds on pure scalar operators are also relevant for the physics of
hairy black holes, in particular

1
4c2(∇µφ)4 , (2.22)

i.e. the leading operator in the derivative expansion. Several recent works on dispersion
relations that incorporate gravity have argued that c2 & −1/(Λ2M2

Pl) (and likewise for
the equivalent operator F 4

µν in a theory of photons) [26, 33, 35, 36, 38, 49], bound that
becomes a standard positivity constraint, c2 > 0 [43], when gravity decouples, MPl → ∞.
In particular, [38] has shown via dispersion relations at finite impact parameter that this
is indeed the case up to a log(b0Λ), as in eq. (2.13). Furthermore, the upper bound
c2 . (4π)2/Λ4 has been derived using similar techniques [50, 51]. These constraints on c2
can be easily understood in terms of the power counting in eq. (2.16). Since c2 ∼ g2/Λ4, the
upper and lower bounds correspond, respectively, to the maximum coupling in the spirit of
NDA, g . 4π, and to the minimum coupling in a gravitational theory, g & Λ/MPl (recall
that power counting estimates are insensitive to the sign of the operators’ coefficient).

3 Signs of UV completion

In the previous section we have argued that gravitational EFTs where black holes have
scalar hair, eq. (1.1), must have a cutoff Λ . |α̂|−1/2. In terms of the power counting
eq. (2.16) with ζ = 1, the maximum cutoff of these theories corresponds to the minimum
NDA coupling g ∼ Λ/MPl, while EFTs with a larger coupling, or equivalently f < MPl,
must have a lower cutoff for the same value of |α̂|.

In this section we try to infer from an EFT point of view what additional low-energy
effects are associated with a generic UV completion at the scale Λ, in particular one that
is unitary, local and causal. We focus on the leading corrections in the derivative and field
expansion [48], restricted to CP even operators

∆S =
∫
d4x
√
−g

[
M2

Pl

(
α3I + α4C2 + α′4C̃2

)
+ c2

4 (∇µφ)4 + d1
2 C(∇µφ)2

]
, (3.1)

where C = RµνρσR
µνρσ, C̃ = RµνρσR̃

µνρσ and I = R ρσ
µν RµναβRαβρσ. Note that the last

operator is equivalent, by the leading-order scalar equation of motion, to the cubic Galileon
term (∇φ)2�φ. We first investigate the constraints on the coefficients above that arise from
dispersion relations at one loop, which take the form of lower bounds that depend on |α̂|.8

Precisely because of the upper bound |α̂| . 1/Λ2, we find that such dispersion relations are
in fact dominated by standard gravitational contributions, rendering the constraints on the
operators in eq. (3.1) inapplicable and phenomenologically irrelevant. We therefore leave
aside general bounds and turn to generic expectations based on power counting. We show
how typical UV completions of the scalar-GB or dynamical-CS theories likely give rise to
higher-curvature terms of the same parametric size, i.e. αΛ2 ∼ α3Λ4 ∼ α4Λ6, if these arise
at the same loop order.

8There are no constraints of this form from dispersion relations at tree level. This is in contrast with
the lower bound α4 & α2

3Λ2 [10].
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3.1 Beyond positivity constraints

There exists an extensive literature on dispersion relations, in particular on non-
gravitational theories, with many new results and applications found in recent years. We
refer the reader to e.g. [37, 43, 52–58] and references therein for many of the details we
will not present here. Dispersion relations are typically constructed by evaluating a 2-to-2
scattering amplitudeM(s, t) over a closed circular contour in the complex s-plane,9

Σn(s, t) = 1
2πi

∮
Γs
ds′

M(s′, t)(
s′ + t

2
)n+1 . (3.2)

Let us start with the scattering of the GB/CS scalar φ at low energies, s� Λ2, neglecting
for the time being GR’s minimal gravitational coupling. The 4-scalar EFT interaction in
eq. (3.1) leads to an amplitude,

M∆S
1φ2φ3φ4φ(s, t) = c2

2 (s2 + t2 + u2) , (3.3)

which grows like s2 for fixed t. Therefore, considering a small contour Γ0 around s′ = −t/2,
the integral of the twice-subtracted amplitude, i.e. n = 2 in eq. (3.2), yields Σ2(0, t) = c2
At this point, unitarity and causality allow one to deform the contour away from the origin
(for 0 6 t 6 4m2) in a controlled way. First, they imply thatM(s, t) is analytic everywhere
except in the real axis, where one finds singularities in the form of simple poles and branch
cuts. The former correspond to particles exchanged at tree level going on shell, which in the
case at hand belong only to the UV completion, either in the s-channel at s > Λ2 or in the
u-channel s 6 −Λ2− t. The branch cuts are associated with logarithms arising from loops
and correspond to multi-particle production. Besides the loops of heavy states at and above
the cutoff, there is an s-channel branch cut starting at s = 4m2 from (one) loop diagrams
of the IR degrees of freedom, and its s ↔ u crossing symmetric counterpart. Because of
real analyticity, M∗(s, t) = M(s∗, t), these discontinuities are proportional to ImM(s, t),
which is positive for elastic scattering around t = 0. In particular, for the zeroth-order
term in an expansion around the forward limit, the optical theorem fixes ImM(s, 0) =
s
√

1− 4m2/s σT(s), where σT is the total cross section from 1 2→ everything. In addition,
unitarity and causality in theories with a mass gap imply that amplitudes are polynomially
bounded asM(s, t)/s2 → 0 for |s| → ∞ as a result of the Froissart-Jin-Martin bound. Even
though here we are interested in theories with a massless graviton, it has been argued from
different perspectives that a growth smaller than s2 holds as well with dynamical gravity,
see e.g. [9, 37, 38, 59, 60]. Note then that when this is the case, the integral eq. (3.2) over
a contour Γ∞ at |s| → ∞ vanishes for n > 2, i.e. Σn>2(∞, t) = 0. A dispersion relation is
then finally derived by using Cauchy’s theorem to deform the original contour Γ0 to Γ∞,
leaving Σn as an integral over the aforementioned singularities. In the forward limit t = 0

9In a slight abuse of notation, we denote the amplitude as a function of the s = −(p1 + p2)2 and
t = −(p1 + p3)2 Mandelstam variables as M, like in section 2 where instead was a function of ω and ~q.
Besides, we work with all momenta incoming and recall u = −(p1 + p4)2 = −s− t+ 4m2, where m is now
the mass of the scattered states, that we will eventually take to zero.
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of 4-scalar scattering, one then finds for n = 2

c2 =
∑

X

2
π

∫ ∞
0

ds

s2 σ1φ2φ→X(s) > 0 . (w/o GR’s minimal coupling) (3.4)

This positivity constraint can be improved by noticing that, while the cross sections for
production of the heavy states associated with the UV completion are by construction not
computable within the EFT, those for production of the low-energy states are, as long as we
restrict them to energies s 6 Λ2 [54, 61–64]. Since we are neglecting the minimal coupling
of gravitons, the process with the largest cross section in the scalar EFT eq. (1.1) is the
production of a pair of gravitons via the GB/CS coupling. The corresponding amplitude is

MGB/CS
1φ2φ3h++4h−− =

(2|α̂|
MPl

)2
〈4|1|3]4

(1
t

+ 1
u

)
. (3.5)

Explicitly including this contribution in the twice-subtracted dispersion relation eq. (3.4),
we arrive at

c2 >
2
π

∫ Λ2

0

ds

s2 σ
GB/CS
φφ→h−−h++ = 1

60π2

(
|α̂|Λ2

MPl

)4

. (w/o GR’s minimal coupling) (3.6)

If one could ignore GR’s contributions to the dispersion relation, as we have done this
far, such a beyond-positivity bound would imply that the GB/CS scalar-tensor theories in
eq. (1.1) are inconsistent with unitarity and causality unless they are supplemented with
the (∇φ)4 operator. In particular, note that the larger the regime of validity of the EFT,
i.e. the larger the cutoff Λ, the larger its coefficient c2 would have to be.10 However, ne-
glecting GR’s interactions would require in practice the existence of a consistent decoupling
limit in which MPl →∞ yet the lower bound on c2 remains non-zero. Expressing eq. (3.6)
in terms of the strong coupling scale eq. (2.15), c2 & 1

16π2 (Λ/Λα)8Λ−4
α , this would require

keeping Λα as well as Λ fixed. However, precisely because of the causality bound we derived
in section 2, Λ . 1/|α̂|1/2 for log(b0Λ) ∼ 1 (or equivalently Λ . (Λ3

α/MPl)1/2), such a limit
is not possible: if MPl →∞, then either Λα →∞ or Λ→ 0, rendering the EFT invalid. In
fact, even if one saturates the upper bound on |α̂|, the beyond-positivity contribution to c2
in eq. (3.6) is only as large as a quantum correction in GR at one loop, i.e. c2 & 1

16π2M
−4
Pl .

We can explicitly check that one cannot ignore GR’s minimal coupling if the upper
bound Λ . 1/|α̂|1/2 holds by retaking the steps above keeping t 6= 0 and with the low-
energy contour now enclosing the graviton pole, at s = 0 and s = −t (u = 0), of the
4-scalar amplitude in GR,

MGR
1φ2φ3φ4φ = − 1

2M2
Pl

(
t2 + u2

s
+ s2 + u2

t
+ t2 + s2

u

)
. (3.7)

10In section 4 we discuss the effects of the leading additional operators in eq. (3.1) on black holes with
scalar hair. From that analysis one can arrive at the conclusion that for astrophysical black holes where
rs ∼ |α̂|1/2 ∼ km, the effects of (∇φ)4 with c2 fixed by eq. (3.6) would become O(1), thus as important as
the GB/CS term, for Λ & µm−1, precisely of the same order as the smallest scales where gravity has been
experimentally tested [7] and at least up to which one would want any BGR theory to hold.
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Note that the forward limit is ill-defined because of the graviton t-channel exchange. The
n = 2 dispersion relation then reads

− 1
M2

Plt
+ c2 + β

(t)
2 log t

t0
+O(t) = 2

π

∫ ∞
0

ds
ImM(s′, t)(
s+ t

2
)3 . (3.8)

We have included the one-loop UV divergence of the s2 term of the 4-scalar amplitude
arising from t-channel cuts, with β-function given by β(t)

2 = +(13/160π2)M−4
Pl . This is of

the same loop order as the r.h.s. of eq. (3.6). Indeed, as discussed in [58], the beyond-
positivity contributions to the dispersion relation are equivalent to including the running
of the coefficients of the EFT in the forward limit, associated with the UV divergences
from s- and u-channel cuts. These cuts and the corresponding gravitational β-functions
can be easily computed following the on-shell amplitude techniques presented in [65]. The
O(t) term in eq. (3.8) encodes the subleading terms in the forward limit, arising from
e.g. higher-order EFT operators in the derivative expansion. For instance, the first such
correction comes from the Galileon-like term (∇φ)2(∇∇φ)2, which gives rise to an stu term
in the amplitude. Most importantly, as advanced at the end of section 2.2, the 1/t term
in eq. (3.8) precludes setting a positive lower bound on c2 as the one in eq. (3.6), unless
the beyond-positivity contributions are larger than −(M2

Plt)−1 & (MPlΛ)−2 [38]. As we
discussed above, this is not the case because of the causality bound |α̂| . 1/Λ2.

While it might naively seem from the discussion above that the main obstruction for the
derivation of meaningful beyond-positivity bounds in gravitational EFTs is the t-channel
graviton pole, the real reason for their ineffectiveness is the fact that BGR amplitudes larger
than in GR are not consistent with causality. To show this, let us consider a dispersion
relation for the 4-graviton amplitude with two positive and two negative helicities.11 The
amplitude in GR plus the leading BGR correction in the energy expansion from eq. (3.1)
is given by

MGR+∆S
1h++2h−−3h−−4h++ (s, t) = 〈23〉4[14]4

M2
Pl

f(s, t) , f(s, t) = 1
stu

+ 8(α4 + α′4) . (3.9)

Similarly to the scalar case, one can construct dispersion relations from the contour integral
(see e.g. [10, 11, 32, 37] for more details)

1
2πi

∮
Γs
ds′

f(s′, t)(
s′ + t

2
)n+1 . (3.10)

In particular, for n = 0 one arrives at

8(α4 + α′4)
M2

Pl
+ γ4

Λ2t
log −t

µ2 +O(t) > 2
π

∫ Λ2

0

ds

s4 σ
GB/CS
h++h−−→φφ, h−−h++ ∼

1
16π2

( |α̂|Λ
MPl

)4
. (3.11)

On the r.h.s. we have explicitly included the beyond-positivity contribution from a scalar
as well as a graviton loop via the GB/CS coupling, computed in a dispersive way from the

11Dispersion relations for a different choice of graviton helicities lead to constraints on the coefficients of
other higher-dimensional operators, see e.g. [11].
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corresponding cross sections. The corresponding amplitudes are given by eq. (3.5) and by

MGB/CS
1h++2h−−3h++4h−− = −

(2|α̂|
MPl

)2 〈24〉4[13]4

t
, (3.12)

which proceeds via scalar exchange. While there is no contribution from tree-level graviton
exchange in eq. (3.11), further forward limit singularities are generated at one loop in GR,
with γ4 ∼ +(1/16π2)M−4

Pl [10]. Therefore, since the time-delay constraint |α̂| . 1/Λ2 sets
an upper bound on the r.h.s. . 1

16π2 (ΛMPl)−4, the beyond-positivity contribution is no
larger than the one of GR, rendering the former immaterial to bound the quartic curvature
operators.

In summary, because causality demands that gravitational amplitudes within the EFT
domain are dominated by GR, loop corrections from BGR interactions never lead to robust
lower bounds on the coefficients of the EFT.

3.2 Power counting expectations

The results of the previous section can be understood in terms of NDA, when the power
counting rules in eq. (2.16) are extended to include the possibility that EFT operators can
be generated at one-loop order,

L = 1
2M̂

2
PlR+ Λ4

g2

[
L(0)

(∇µ
Λ ,

Rµνρσ
Λ2 ,

gφ

Λ

)
+ g2

(4π)2L
(1)
(∇µ

Λ ,
Rµνρσ

Λ2 ,
gφ

Λ

)
+ · · ·

]
. (3.13)

This is because beyond-positivity contributions correspond to loop corrections within the
EFT [37, 58, 65]. The one-loop NDA estimate for the (∇φ)4 operator is (c2)(1) ∼ 1

16π2 g
4Λ−4,

which for g ∼ Λ/MPl matches the maximal value of the r.h.s. of eq. (3.6), i.e. for |α̂| ∼
1/Λ2. Likewise, we can estimate the beyond-positivity contributions to quartic curvatures
operators from L(1) in eq. (3.13), (α4)(1)/M2

Pl ∼ 1
16π2 (ΛMPl)−4, which coincides with the

r.h.s. of eq. (3.11) for the maximum value of the GB/CS coupling.
This discussion brings us to the important realization that, from the EFT standpoint,

for UV completions where both the scalar-GB/CS term in eq. (1.1) and the operators
in eq. (3.1) are generated at the same (tree-level) order, one should expect much larger
coefficients for the latter than what discussed above. To see this, let us simply fix the power
counting from the GB/CS term, assuming the maximal regime of validity of the EFT,
|α̂| ∼ 1/Λ2 (a requirement, rather than a choice, if one is interested in phenomenological
applications, see section 4). From L(0) in eq. (3.13), this sets g ∼ 1/|α̂|ΛMPl ∼ Λ/MPl,
corresponding to a bona-fide UV completion of gravity, as discussed in section 2.2. Then,
generic EFTs will feature

α(α̃) ∼ 1
Λ2 , α3 ∼

1
Λ4 , α4, α

′
4 ∼

1
Λ6 , c2 ∼

1
Λ2M2

Pl
, d1 ∼

1
Λ4 , (3.14)

for the coefficients of the operators in eq. (3.1).
In the next section we investigate the phenomenological consequences of these estimates

for the physics of black holes with scalar hair.
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4 Phenomenological implications

In this section we discuss the main implications on the phenomenology of black holes of the
upper bound on the GB/CS coupling |α̂| . 1/Λ2, along with the implications associated
with the additional EFT corrections that are expected from saturating such a bound,
eq. (3.14). Our focus is on astrophysical black holes, in particular those detectable by
LIGO-Virgo, which have sizes of a few solar masses, corresponding to Schwarzschild radii
rs & 10 km.

We will discuss separately the scalar-GB and dynamical-CS gravity theories, reviewing
in each case their imprints on the physics of black holes as well as the current experimental
bounds on the couplings α and α̃, respectively.

4.1 Black holes in scalar-GB gravity

From a perturbative point of view, one can argue that the metric of a hairy black hole
still displays a horizon, characterized by a linear zero of the metric, much like in the
Schwarzschild and Kerr cases. The effects due to the BGR dynamics rapidly vanish far
away from the horizon (r = rs), following the fall-off of the GB invariant, which sources
both the scalar hair and the deviations from GR in the metric.

More in detail, in the static and spherically symmetric case, we have the metric

ds2 = −h(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin2 θdϕ2) , (4.1)

with
h(r), f(r) ∼

(
1− rs

r

)
for r ∼ rs . (4.2)

At leading order in the dimensionless expansion parameter α/r2, the GB invariant is the
one of the Schwarzschild solution,

R2
GB ≡ RµνρσRµνρσ − 4RµνRµν +R2 ∼ r2

s

r6 . (4.3)

The scalar equation of motion reads

�φ = MPlαR2
GB ∼

M2
Pl

Λ3
α

r2
s

r6 , (4.4)

where in the last step we have traded the GB coupling α for the strong coupling scale
Λα, given in eq. (2.15) (α̃ = 0). The scalar field profile is then completely determined
by requiring that invariant quantities built out of it do not diverge for r ≥ rs [66]. At
asymptotically large distances, r → ∞, the solution behaves as φ(r) ∼ 1/r. In addition,
let us note that the largest value of the scalar radial derivative is estimated as,

φ′ .
M2

Pl
(Λαrs)3 . (4.5)

A first bound on the GB coupling comes from the requirement of the existence of real
solutions for the scalar profile. In the simple EFT eq. (1.1), this condition requires that
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α2 < r4
s/192 [2]. The constraint is however dependent on additional EFT corrections from

eq. (3.1) [67].
In order to estimate the impact of the scalar-GB operator on the background geometry,

we can compute its ratio to GR, that is to M2
PlR where R =

√
RµνρσRµνρσ is the typical

curvature. Evaluating both terms on the background given by the Schwarzschild metric,
R ∼ rs/r3, and the scalar solution from eq. (4.4), one finds [67]

ε0(r) = MPlαφR2
GB

M2
PlR

∼
(
α

r2

)2
. (4.6)

Turning to perturbations, let us start by noting that the theory eq. (1.1) has no scalar
self-interactions. Therefore, there is simply no possible screening effect associated to clas-
sical non-linearities. On the other hand, there is no direct coupling between the scalar
field and matter, therefore no screening mechanism is required to have agreement with
fifth-force constraints (if the theory is valid at the scales of those experiments).

Instead, the scalar-GB term gives rise to a kinetic mixing between scalar and graviton
(the same leading to the causality bound of section 2.1), schematically of the form

MPlαφR2
GB ⊃ εmix(r) ∂φ∂h , (4.7)

where we are taking the fluctuations to be canonically normalized. This effect will be
important when the mixing

εmix(r) ∼ αrs
r3 , (4.8)

becomes of order one. Note that the two estimators of the BGR effects are related to each
other, namely

ε0 ∼
(
r

rs
εmix

)2
. (4.9)

In this scenario, a sizeable deviation of the quasi-normal mode (QNM) spectrum from the
GR prediction is expected, strongly affecting the waveform during the ringdown phase of
a merger.

Finally, let us turn to the phenomenology of a binary system of hairy black holes, each
sourcing its own scalar profile as discussed before. The dynamical nature of the system
implies that, just as it happens with gravitational waves, there will also be scalar wave
emission. However, the latter is now dipolar instead of quadrupolar, therefore being much
less suppressed than the former. This opens a new channel of power loss during the merger,
which accelerates the rate of change in the orbital period. The effect accumulates during
the inspiral phase, potentially producing an observable dephasing between the measured
waveform and the one predicted by GR. To date, the absence of any observed effect of
this type constitutes the most stringent experimental bound on the size of the scalar-GB
coupling, α . (1.2 km)2 [68]. In terms of the strong coupling scale, this translates into Λα &
1012 km−1. Let us add that such a bound strictly applies only to scalar-GB gravity with
all other EFT corrections, in particular those in eq. (3.1), neglected or irrelevantly small.

Considering a typical LIGO/Virgo black hole, with rs ∼ 10 km, the above bound
implies that the kinetic mixing is constrained to be εmix . 10−2. Furthermore, according to
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eq. (4.9) the effect on the background geometry is significantly suppressed, ε0 . 10−4. This
conclusion justifies neglecting deviations from Schwarzschild background as we assumed
initially.

4.2 EFT implications on scalar-GB black holes

The fact that the BGR effects on hairy black holes are relatively small, below the 10 %
level, could have been anticipated from the requirement that the scalar-GB theory should
be able to properly describe the black holes of interest. Indeed, as derived in section 2.1,
causality sets an upper bound on the GB coupling and therefore on the size of the observable
corrections relative to GR, which we denote generically with ε(r) — one instance being
εmix in eq. (4.8). The BGR effects are largest near the horizon,

ε(rs) ∼
α

r2
s

. (Λrs)−2 , (4.10)

where the inequality follows from causality, eq. (2.13) (with log(b0Λ) ∼ 1 and α̃ = 0).
Usefulness of the EFT requires a hierarchy between the cutoff and the relevant scales of the
system. A sensible demand on the EFT is therefore that the black hole falls within the EFT
regime of validity at least down to its Schwarzschild radius.12 Therefore, BGR corrections
can never become large, i.e. ε(rs)� 1. Furthermore, taking the current experimental upper
bound on α as benchmark, the causality bound implies a very low maximal cutoff,

Λ . (1 km)−1 , (4.11)

certainly much smaller than the strong coupling scale Λα & (10−12 km)−1.
Let us discuss now the additional BGR effects that could be expected from the UV

completion in the form of higher-dimensional operators with coefficients fixed to eq. (3.14),
where let us recall that such NDA estimates correspond to the maximal cutoff Λ ∼ α−1/2 ∼
(1 km)−1.

The operators in eq. (3.1) give rise to modifications of the geometry. We can estimate
such modifications as in eq. (4.6) for the scalar-GB term, which we recall scales as ε0(r) ∼
(α/r2)2 ∼ (Λr)−4. Similarly, we find

α3I
R
∼ r2

s

r2 (Λr)−4 ,
α4C2

R
∼ r3

s

r3 (Λr)−6 ,
c2(∇φ)4

M2
PlR

∼ r5

r5
s

(Λr)−10 ,
d1C(∇φ)2

M2
PlR

∼ r

rs
(Λr)−8 .

(4.12)
While deviations introduced by the scalar-GB term are the largest, operators cubic in the
Riemann tensor can become as important near the horizon. The deviations introduced by
the rest of operators are subleading, being higher order in (Λrs)−1, as expected from the
derivative expansion and eq. (4.5). In addition, the operators built out of the scalar give
rise to modifications of the scalar field profile, which we can estimate as

c2(∇φ)4

(∇φ)2 ∼
r2

r2
s

(Λr)−6 ,
d1C(∇φ)2

(∇φ)2 ∼ r2
s

r2 (Λr)−4 . (4.13)

12As a matter of fact, one would like a gravitational EFT to be valid at least up to the scales where
gravity has been experimentally tested, that is a cutoff Λ & µm−1 [7]. One is forced to give up on such
a requirement if the scalar-GB theory is to be phenomenologically interesting for astrophysical black holes
(see however the discussion in section 5).
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Given the upper bound eq. (4.11), we conclude that the operators in eq. (3.1) should induce
corrections on the metric and scalar of up to 0.01 % near the horizon of black holes with
rs ∼ 10 km.

There are many other interesting signatures associated with the operators that we
expect to be present in the scalar-GB EFT. The phenomenology of cubic and quartic
curvature operators have been discussed in [69–73] and [45–47, 73], respectively. Besides
modifications of the Schwarzschild (and Kerr) geometries, these include deviations from
GR at the leading order in QNMs, quadrupole moments, non-vanishing Love numbers, and
corrections to the gravitational-wave signals at relatively high post-Newtonian (PN) order.
Since such corrections start at order (Λr)−4 . 10−4, they will not be easy to probe with
the sensitivity of current experiments.

Operators involving the scalar field have received less attention in the literature.
The impact of the cubic Galileon operator, which we have rewritten in eq. (3.1) as
d1R

2
µνρσ(∇ηφ)2, has been discussed in [67]. Along with the operator c2(∇µφ)4, these EFT

terms introduce modifications e.g. in the scalar and gravitational wave spectrum, as well
as in the QNMs, predicted by the pure scalar-GB theory eq. (1.1), although a priori sub-
leading due to the suppression by higher powers of (Λr)−2 � 1. In particular, note that
potential screening effects are not likely to be significant.

Let us recall once again that these conclusions appear to be a robust consequence of
causality. Nevertheless, quantitative predictions for the gravitational observables, which
typically require performing costly numerical simulations, are still interesting, if only to
experimentally test the fundamental principles behind these expectations.

4.3 Black holes in dynamical-CS gravity

The pseudo-scalar-CS term in eq. (1.1) (with α = 0) gives rise to a phenomenology of black
holes similar to that discussed in the previous section, although with a few important
differences. First, the Pontryagin invariant, RµνρσR̃µνρσ, vanishes in the Schwarzschild
geometry, while it is non-zero for the Kerr geometry. Therefore, one needs to consider
rotating black holes in order to have a non-vanishing scalar hair. To simplify the analysis,
we follow [3] and treat the spin parameter of the black hole, a/rs, perturbatively. We
also work in an expansion in α̃/r2

s since, similar to discussion for scalar-GB black holes in
section 4.2, this is a consequence of causality, α̃ . 1/Λ2, along with the requirement that
the black holes of interest fall within the regime of validity of the EFT, i.e. (Λrs)−2 � 1.

At leading order, the equation of motion for the pseudo-scalar φ is given by

�φ = MPlα̃RµνρσR̃
µνρσ ∼ M2

Pl
Λ3
α̃

r2
s

r6
a

r
cos θ , (4.14)

where in the last step we have traded the CS coupling α̃ for the strong coupling scale Λα̃,
given in eq. (2.15) (α = 0 and changed subscript to avoid confusion). Subleading terms in
the spin parameter scale as (a/rs)3. From the solution to this equation (see e.g. [3]), we
can compute the scalar radial derivative, which roughly satisfies

φ′ .
M2

Pl
(Λα̃rs)3

a

rs
. (4.15)
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Similarly to scalar-GB case, there is an approximate relation between corrections to the
Kerr geometry, ε0, and the kinetic mixing between pseudo-scalar and graviton, εmix, given
by

ε0(r) ∼
(
a

rs
εmix(r)

)2
. (4.16)

A second difference w.r.t. the scalar-GB case is the nature of the most stringent ex-
perimental bounds on the CS coupling. Since the scalar background sourced around an
isolated (spinning) black hole is dipolar, the emission of scalar waves from a black hole bi-
nary system starts from a quadrupole moment. Therefore, energy loss via scalar emission
is further suppressed in the PN expansion compared to the scalar-GB case, such that no
constraint can be derived on α̃ given current sensitivities [74].

The strongest bound to date on the pseudo-scalar-CS coupling comes from independent
measurements of the tidal deformability and of the moment of inertia in neutron stars [75].
The comparison between these measurements and the values predicted in dynamical-CS
gravity yields the bound α̃ . (8 km)2. Note this is weaker than the most stringent bound
on the scalar-GB coupling, α . (1.2 km)2 by one order of magnitude. Nevertheless, if the
pseudo-scalar-CS EFT is to be able to describe black holes with sizes down to rs ∼ 10 km
(recall that the smallest black holes display the largest BGR effects, which in any case
cannot become O(1)) with at least 10 % accuracy, it seems wise to consider a different
benchmark for the coupling α̃. Maximal testability compatible with causality then suggests
to take α̃ ∼ 1/Λ2 ∼ (3 km)2.

In this case, the kinetic mixing between pseudo-scalar and graviton can induce stronger
deviations in the QNM spectrum w.r.t. to GR [76–78], of order εmix . (α̃/r2

s) ∼ 10−1 for
black holes with rs ∼ 10 km.

The discussion of the implications of the additional operators in eq. (3.1), present in
generic UV completions of pseudo-scalar-CS theory, largely parallels that of section 4.2 and
we do not repeat it here. Nevertheless, we wish to point out that to date much less work
has been devoted to the study of these EFT effects for rotating black holes, see e.g. [71, 72].

Before closing the section, let us point out one last difference between the scalar-GB
and dynamical-CS theories. While the scalar-GB operator leads to equations of motion
of at most second order in (time) derivatives, the dynamical-CS operator gives rise to
higher-derivative terms. These in principle could spoil the quantum stability of the theory.
Considering perturbations of rotating black holes with pseudo-scalar-CS hair, for instance
during the inspiral phase of a merger,13 higher derivatives will become important at a mass
scale M−1

g ∼ α̃φ̇0/MPl, being φ̇0 ∼ ωφ0 . φ0/rs the time derivative of the axionic field
evaluated on the background. We can estimate this scale, at least in some appropriate
regime, using the solution of eq. (4.14), finding

Mg ∼
1
a

(
r2
s

α̃

)2

. (4.17)

Since causality requires Λ . α̃−1/2, we find that the ghost’s mass is above the EFT cutoff.
13This system allows us to consider non-vanishing time derivatives of the scalar background, which can

lead to ghosts instabilities.
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5 Summary and outlook

Gravitational wave science can potentially test deviations from General Relativity. While
the EFT framework gives the best organizing principle to characterize physics beyond GR,
the complexity of black hole merger events suggests that the theory space should first be
reduced as much as possible before comparing data with predictions coming from different
EFTs. A powerful and robust set of constraints on the space of consistent EFTs comes
from the unitarity and causality of the (unknown) UV completion.

In this paper, we used causality arguments to derive phenomenologically interesting
bounds on theories that, at low energies, comprise the graviton and a shift-symmetric
scalar field. The presence of a coupling between the scalar and the Gauss-Bonnet or the
Chern-Simons operators leads to black hole hair. If the couplings α and α̃, in the notation
of eq. (1.1), are large enough, |α̂| ∼ r2

s , hair can be measured in astrophysical black holes.
The first consequence that we derived imposing the absence of a (resolvable) time advance is
that the cutoff of the EFT cannot be parametrically larger than |α̂|−1/2, i.e. 1/ km for solar
mass BHs. This has implications for the structure of all the higher-dimensional operators
in the theory. One could attempt to draw robust lower bounds on their coefficients using
positivity constraints obtained via dispersion relations. However, the weakness of non-
minimal gravitational interactions compared to GR, enforced by causality, implies that
lower bounds from one-loop dispersion relations are phenomenologically irrelevant.

On the other hand, for such a low cutoff Λ ∼ 1/ km, we used general power counting
arguments to show that if both the scalar-GB/CS term and other operators are generated
at the same (tree-level) order, the latter will also give sizable contributions in black hole
dynamics.

The result that the UV cutoff of a phenomenologically interesting and causal EFT
describing gravity must be lower than km−1 should not be considered only as a source
of potentially large corrections to the effective description of astrophysical black holes.
Instead, we should demand that this result is reconciled with our experimental knowledge
of gravity. As a matter of fact, to date gravity has been probed in table-top experiments
down to the scales of tens of microns in length, showing good agreement with Newtonian
theory [7]. In light of this, one should at least prefer, if not demand, that GR is extended
using a theory valid down to the µm, in such a way to describe the same observations as
GR does.

In the scenarios studied above, being the cutoff at a much lower scale than µm−1,
one needs to trust that the UV completion that gives rise either to the scalar-GB or to
the dynamical-CS EFTs, does indeed reproduce the Newtonian potential at microscopic
lengths. Similarly to what was argued in [45, 47] for quartic curvature terms, this might
be the case of a “soft” UV completion that resolves the irrelevant operators in the EFT in
such a way that interactions stop growing with the energy.

In addition to this requirement, we need the UV completion to contribute to the time
delay in such a way that causality is preserved, in particular given the negative contributions
(i.e. the time advance) from the low-energy operators.
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This requirement is a substantial obstacle for both the scalar-GB and dynamical-CS
EFTs.14 Indeed, since the sizes of both the scalar-GB and of the axion-CS operators are
chosen in such a way to follow the tree-level NDA, it appears difficult for loop-level effects
in the UV physics to restore causality, unless the number of species scales as (4π/g)2 ∼
(4πMPl/Λ)2 [28, 29]. On the other hand, as it was argued in [9, 27], in order for causality
to be restored by tree-level exchanges in the UV, one must introduce an infinite tower
of higher-spin particles having a mass of order M ∼ km−1. In both these cases, the
description of gravity below the km would be very different from what we know.

In light of this, there seem to be two reasonable attitudes. The first is to resign to the
idea that both scalar-GB and pseudo-scalar-CS interactions cannot lead to testable modifi-
cations of GR. The second is trying to understand if there exists a UV completion of these
models that restores causality without clashing with our knowledge of gravity at small dis-
tances. In any case, the detection of black hole hair would be revolutionary, telling us there
is something fundamentally unexpected and so far unknown about gravitational dynamics.
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A Gauss-Bonnet scalarization

For scalar-tensor theories with no scalar shift-symmetry, one can consider non-linear cou-
plings between φ and the GB invariant. Let us focus on the leading Z2-symmetric (φ→ −φ)
term in a field and derivative expansion,

SGBization =
∫
d4x
√
−g

(
M2

Pl
2 R− 1

2(∇µφ)2 + λφ2R2
GB

)
, (A.1)

where λ has dimensions of a length square. The sign of λ determines whether φ = 0
is a stable solution or not around a gravitational source like a (static or spinning) black
hole [79]. Spontaneous scalarization, i.e. a non-trivial scalar profile, generically develops
for |λ|/r2

s & 1, with λ > 0 provided the GB invariant is positive.15

From simple little group (helicity) selection rules, one can derive the 4-point interaction
of two scalars and two gravitons associated with the non-minimal coupling to GB,

MGBization
1φ2φ3h++4h++ = 4λ

M2
Pl

[34]4 , MGBization
1φ2φ3h−−4h−− = 4λ

M2
Pl
〈34〉4 . (A.2)

14As a matter of fact, consistency with unitarity and causality is an obstacle as well for any BGR
deformation of phenomenological relevance above the µm, in particular if it involves higher-order terms in
the curvature [11].

15This is the case e.g. on a static black hole background or away from the horizon on a rotating black
hole background.
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Note that this is associated with an inelastic φh++ → φh−− scattering amplitude, that
vanishes in the forward limit t→ 0,

MGBization
1φ2h++→3φ4h−− = 4λ

M2
Pl
t2e4iθ , (A.3)

where θ is just a phase (for physical momenta [ij]∗ = 〈ij〉 = √sijeiθ, with s13 = t).
While a dispersion relation for λ from the 2-scalar-2-graviton amplitude can be derived

along the lines of section 3.1, the inelasticity of the amplitude precludes the derivation of a
positivity bound λ > 0. One can actually come up with a simple (yet partial) tree-level UV
completion that shows that the sign of λ is not fixed. This involves an additional massive
scalar field Φ,

SUV
GBization =

∫
d4x
√
−g
(1

2M
2
PlR−

1
2(∇µφ)2− 1

2(∇µΦ)2− 1
2m

2
ΦΦ2+MPlαΦΦR2

GB+gΦΦφ2
)
.

(A.4)
One can see that upon integrating out the massive scalar, one obtains

λ = MPlαΦgΦ
m2

Φ
, (A.5)

with no definite sign, since e.g. αΦ can consistently be positive or negative. In addition, from
this example one can infer that the size of λ is likely to be theoretically bounded. Indeed,
since eq. (A.4) is itself an effective action, from the generic EFT perspective presented in
section 2.2, the trilinear coupling is of order gΦ ∼ gΛ while αφ ∼ 1/(gMPlΛ), where Λ is
the cutoff and g a coupling. The mass of the heavy scalar can be at most of the order of
the cutoff, i.e. mΦ ∼ Λ, and should itself be identified with the cutoff of eq. (A.1). We are
then led to the conjecture that the quadratic scalar-GB coupling should not be much larger
than λ ∼ 1/Λ2 given the causality bound on αΦ. Following similar arguments, one can
start with the effective interaction λφ2R2

GB and give the scalar a vacuum expectation value,
which within the EFT can be at most 〈φ〉 ∼ Λ/g . MPl. This gives rise to the scalar-GB
term in eq. (1.1) with MPlα ∼ λ〈φ〉, which for λ . 1/Λ2 is consistent with the causality
bound we derived in section 2.1. Note that, at the end of the day, these arguments are just
refined versions of the statement that, from the gravitational power counting discussed in
section 2.2, we expect λ ∼ ζ2/Λ2 . 1/Λ2 for ζ . 1. However, in this case one cannot
reinterpret such expectation as a consequence of the requirement that the BGR amplitude,
eq. (A.2), should not become larger than GR’s within the EFT, since the latter vanishes
at tree level (and at one loop) [65].

Besides, one can construct a dispersion relation for the 4-scalar amplitude along the
lines of section 3.1. In this case, the beyond positivity bound corresponding to eq. (A.1) is
associated with a cross section for φφ→ h±±h±± which, similar to eq. (3.6), leads to c2 &

1
16π2λ

2(Λ/MPl)4. If indeed λ . 1/Λ2 regardless of the UV completion as long as this is uni-
tary and causal, then the lower bound on c2 is in fact inapplicable due to the graviton pole.

Finally, from the phenomenological point of view, scalarization of black holes turns
out to be a dubious phenomenon, given that λ/r2

s . (Λrs)−2 . 1 if the EFT is to describe
the black holes down to their horizon. However, let us recall that, differently from the
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cases discussed in the main text, for the theory of GB-scalarization we have not found
solid evidence that causality forces the BGR effects to be subleading.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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References

[1] T.P. Sotiriou and S.-Y. Zhou, Black hole hair in generalized scalar-tensor gravity, Phys. Rev.
Lett. 112 (2014) 251102 [arXiv:1312.3622] [INSPIRE].

[2] T.P. Sotiriou and S.-Y. Zhou, Black hole hair in generalized scalar-tensor gravity: an explicit
example, Phys. Rev. D 90 (2014) 124063 [arXiv:1408.1698] [INSPIRE].

[3] N. Yunes and F. Pretorius, Dynamical Chern-Simons modified gravity. I. Spinning black
holes in the slow-rotation approximation, Phys. Rev. D 79 (2009) 084043 [arXiv:0902.4669]
[INSPIRE].

[4] L. Hui and A. Nicolis, No-hair theorem for the Galileon, Phys. Rev. Lett. 110 (2013) 241104
[arXiv:1202.1296] [INSPIRE].

[5] P. Creminelli, N. Loayza, F. Serra, E. Trincherini and L.G. Trombetta, Hairy black-holes in
shift-symmetric theories, JHEP 08 (2020) 045 [arXiv:2004.02893] [INSPIRE].

[6] C.A.R. Herdeiro and E. Radu, Asymptotically flat black holes with scalar hair: a review, Int.
J. Mod. Phys. D 24 (2015) 1542014 [arXiv:1504.08209] [INSPIRE].

[7] J.G. Lee, E.G. Adelberger, T.S. Cook, S.M. Fleischer and B.R. Heckel, New test of the
gravitational 1/r2 law at separations down to 52µm, Phys. Rev. Lett. 124 (2020) 101101
[arXiv:2002.11761] [INSPIRE].

[8] I.T. Drummond and S.J. Hathrell, QED vacuum polarization in a background gravitational
field and its effect on the velocity of photons, Phys. Rev. D 22 (1980) 343 [INSPIRE].

[9] X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on
corrections to the graviton three-point coupling, JHEP 02 (2016) 020 [arXiv:1407.5597]
[INSPIRE].

[10] Z. Bern, D. Kosmopoulos and A. Zhiboedov, Gravitational effective field theory islands,
low-spin dominance, and the four-graviton amplitude, J. Phys. A 54 (2021) 344002
[arXiv:2103.12728] [INSPIRE].

[11] S. Caron-Huot, Y.-Z. Li, J. Parra-Martinez and D. Simmons-Duffin, Causality constraints on
corrections to Einstein gravity, arXiv:2201.06602 [INSPIRE].

[12] H.O. Silva, J. Sakstein, L. Gualtieri, T.P. Sotiriou and E. Berti, Spontaneous scalarization of
black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett. 120 (2018)
131104 [arXiv:1711.02080] [INSPIRE].

[13] C.F.B. Macedo, J. Sakstein, E. Berti, L. Gualtieri, H.O. Silva and T.P. Sotiriou,
Self-interactions and spontaneous black hole scalarization, Phys. Rev. D 99 (2019) 104041
[arXiv:1903.06784] [INSPIRE].

– 24 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.112.251102
https://doi.org/10.1103/PhysRevLett.112.251102
https://arxiv.org/abs/1312.3622
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.3622
https://doi.org/10.1103/PhysRevD.90.124063
https://arxiv.org/abs/1408.1698
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.1698
https://doi.org/10.1103/PhysRevD.79.084043
https://arxiv.org/abs/0902.4669
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0902.4669
https://doi.org/10.1103/PhysRevLett.110.241104
https://arxiv.org/abs/1202.1296
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1202.1296
https://doi.org/10.1007/JHEP08(2020)045
https://arxiv.org/abs/2004.02893
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.02893
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1142/S0218271815420146
https://arxiv.org/abs/1504.08209
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.08209
https://doi.org/10.1103/PhysRevLett.124.101101
https://arxiv.org/abs/2002.11761
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.11761
https://doi.org/10.1103/PhysRevD.22.343
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD22%2C343%22
https://doi.org/10.1007/JHEP02(2016)020
https://arxiv.org/abs/1407.5597
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.5597
https://doi.org/10.1088/1751-8121/ac0e51
https://arxiv.org/abs/2103.12728
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.12728
https://arxiv.org/abs/2201.06602
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2201.06602
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevLett.120.131104
https://arxiv.org/abs/1711.02080
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.02080
https://doi.org/10.1103/PhysRevD.99.104041
https://arxiv.org/abs/1903.06784
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.06784


J
H
E
P
0
8
(
2
0
2
2
)
1
5
7

[14] M. Accettulli Huber, A. Brandhuber, S. De Angelis and G. Travaglini, Eikonal phase matrix,
deflection angle and time delay in effective field theories of gravity, Phys. Rev. D 102 (2020)
046014 [arXiv:2006.02375] [INSPIRE].

[15] S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class.
Quant. Grav. 17 (2000) 4999 [gr-qc/0007021] [INSPIRE].

[16] J.D. Edelstein, R. Ghosh, A. Laddha and S. Sarkar, Causality constraints in quadratic
gravity, JHEP 09 (2021) 150 [arXiv:2107.07424] [INSPIRE].

[17] G. Goon and K. Hinterbichler, Superluminality, black holes and EFT, JHEP 02 (2017) 134
[arXiv:1609.00723] [INSPIRE].

[18] C. de Rham and A.J. Tolley, Speed of gravity, Phys. Rev. D 101 (2020) 063518
[arXiv:1909.00881] [INSPIRE].

[19] C. de Rham and A.J. Tolley, Causality in curved spacetimes: the speed of light and gravity,
Phys. Rev. D 102 (2020) 084048 [arXiv:2007.01847] [INSPIRE].

[20] B. Bellazzini, G. Isabella, M. Lewandowski and F. Sgarlata, Gravitational causality and the
self-stress of photons, JHEP 05 (2022) 154 [arXiv:2108.05896] [INSPIRE].

[21] C.Y.R. Chen, C. de Rham, A. Margalit and A.J. Tolley, A cautionary case of casual
causality, JHEP 03 (2022) 025 [arXiv:2112.05031] [INSPIRE].

[22] C. de Rham, A.J. Tolley and J. Zhang, Causality constraints on gravitational effective field
theories, Phys. Rev. Lett. 128 (2022) 131102 [arXiv:2112.05054] [INSPIRE].

[23] D. Amati, M. Ciafaloni and G. Veneziano, Planckian scattering beyond the semiclassical
approximation, Phys. Lett. B 289 (1992) 87 [INSPIRE].

[24] D.N. Kabat and M. Ortiz, Eikonal quantum gravity and Planckian scattering, Nucl. Phys. B
388 (1992) 570 [hep-th/9203082] [INSPIRE].

[25] R. Akhoury, R. Saotome and G. Sterman, High energy scattering in perturbative quantum
gravity at next to leading power, Phys. Rev. D 103 (2021) 064036 [arXiv:1308.5204]
[INSPIRE].

[26] B. Bellazzini, M. Lewandowski and J. Serra, Positivity of amplitudes, weak gravity conjecture,
and modified gravity, Phys. Rev. Lett. 123 (2019) 251103 [arXiv:1902.03250] [INSPIRE].

[27] M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov, Shocks, superconvergence,
and a stringy equivalence principle, JHEP 11 (2020) 096 [arXiv:1904.05905] [INSPIRE].

[28] G. Veneziano, Large N bounds on, and compositeness limit of, gauge and gravitational
interactions, JHEP 06 (2002) 051 [hep-th/0110129] [INSPIRE].

[29] G. Dvali, Black holes and large N species solution to the hierarchy problem, Fortsch. Phys.
58 (2010) 528 [arXiv:0706.2050] [INSPIRE].

[30] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and
gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

[31] D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of strong coupling for LHC searches,
JHEP 11 (2016) 141 [arXiv:1603.03064] [INSPIRE].

[32] B. Bellazzini, C. Cheung and G.N. Remmen, Quantum gravity constraints from unitarity and
analyticity, Phys. Rev. D 93 (2016) 064076 [arXiv:1509.00851] [INSPIRE].

– 25 –

https://doi.org/10.1103/PhysRevD.102.046014
https://doi.org/10.1103/PhysRevD.102.046014
https://arxiv.org/abs/2006.02375
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.02375
https://doi.org/10.1088/0264-9381/17/24/305
https://doi.org/10.1088/0264-9381/17/24/305
https://arxiv.org/abs/gr-qc/0007021
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0007021
https://doi.org/10.1007/JHEP09(2021)150
https://arxiv.org/abs/2107.07424
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.07424
https://doi.org/10.1007/JHEP02(2017)134
https://arxiv.org/abs/1609.00723
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.00723
https://doi.org/10.1103/PhysRevD.101.063518
https://arxiv.org/abs/1909.00881
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.00881
https://doi.org/10.1103/PhysRevD.102.084048
https://arxiv.org/abs/2007.01847
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.01847
https://doi.org/10.1007/JHEP05(2022)154
https://arxiv.org/abs/2108.05896
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.05896
https://doi.org/10.1007/JHEP03(2022)025
https://arxiv.org/abs/2112.05031
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.05031
https://doi.org/10.1103/PhysRevLett.128.131102
https://arxiv.org/abs/2112.05054
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.05054
https://doi.org/10.1016/0370-2693(92)91366-H
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB289%2C87%22
https://doi.org/10.1016/0550-3213(92)90627-N
https://doi.org/10.1016/0550-3213(92)90627-N
https://arxiv.org/abs/hep-th/9203082
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9203082
https://doi.org/10.1103/PhysRevD.103.064036
https://arxiv.org/abs/1308.5204
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.5204
https://doi.org/10.1103/PhysRevLett.123.251103
https://arxiv.org/abs/1902.03250
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.03250
https://doi.org/10.1007/JHEP11(2020)096
https://arxiv.org/abs/1904.05905
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.05905
https://doi.org/10.1088/1126-6708/2002/06/051
https://arxiv.org/abs/hep-th/0110129
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0110129
https://doi.org/10.1002/prop.201000009
https://doi.org/10.1002/prop.201000009
https://arxiv.org/abs/0706.2050
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0706.2050
https://doi.org/10.1088/1126-6708/2007/06/060
https://arxiv.org/abs/hep-th/0601001
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0601001
https://doi.org/10.1007/JHEP11(2016)141
https://arxiv.org/abs/1603.03064
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.03064
https://doi.org/10.1103/PhysRevD.93.064076
https://arxiv.org/abs/1509.00851
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.00851


J
H
E
P
0
8
(
2
0
2
2
)
1
5
7

[33] Y. Hamada, T. Noumi and G. Shiu, Weak gravity conjecture from unitarity and causality,
Phys. Rev. Lett. 123 (2019) 051601 [arXiv:1810.03637] [INSPIRE].

[34] S.D. Chowdhury, A. Gadde, T. Gopalka, I. Halder, L. Janagal and S. Minwalla, Classifying
and constraining local four photon and four graviton S-matrices, JHEP 02 (2020) 114
[arXiv:1910.14392] [INSPIRE].

[35] J. Tokuda, K. Aoki and S. Hirano, Gravitational positivity bounds, JHEP 11 (2020) 054
[arXiv:2007.15009] [INSPIRE].

[36] L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, QED positivity bounds, Phys. Rev. D 103
(2021) 125020 [arXiv:2012.05798] [INSPIRE].

[37] N. Arkani-Hamed, T.-C. Huang and Y.-T. Huang, The EFT-hedron, JHEP 05 (2021) 259
[arXiv:2012.15849] [INSPIRE].

[38] S. Caron-Huot, D. Mazac, L. Rastelli and D. Simmons-Duffin, Sharp boundaries for the
swampland, JHEP 07 (2021) 110 [arXiv:2102.08951] [INSPIRE].

[39] N. Arkani-Hamed, Y.-T. Huang, J.-Y. Liu and G.N. Remmen, Causality, unitarity, and the
weak gravity conjecture, JHEP 03 (2022) 083 [arXiv:2109.13937] [INSPIRE].

[40] S.D. Chowdhury, K. Ghosh, P. Haldar, P. Raman and A. Sinha, Crossing symmetric
spinning S-matrix bootstrap: EFT bounds, arXiv:2112.11755 [INSPIRE].

[41] L.-Y. Chiang, Y.-T. Huang, W. Li, L. Rodina and H.-C. Weng, (Non)-projective bounds on
gravitational EFT, arXiv:2201.07177 [INSPIRE].

[42] M. Gell-Mann, M.L. Goldberger and W.E. Thirring, Use of causality conditions in quantum
theory, Phys. Rev. 95 (1954) 1612 [INSPIRE].

[43] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity
and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

[44] V. Chandrasekaran, G.N. Remmen and A. Shahbazi-Moghaddam, Higher-point positivity,
JHEP 11 (2018) 015 [arXiv:1804.03153] [INSPIRE].

[45] S. Endlich, V. Gorbenko, J. Huang and L. Senatore, An effective formalism for testing
extensions to general relativity with gravitational waves, JHEP 09 (2017) 122
[arXiv:1704.01590] [INSPIRE].

[46] V. Cardoso, M. Kimura, A. Maselli and L. Senatore, Black holes in an effective field theory
extension of general relativity, Phys. Rev. Lett. 121 (2018) 251105 [arXiv:1808.08962]
[INSPIRE].

[47] N. Sennett, R. Brito, A. Buonanno, V. Gorbenko and L. Senatore, Gravitational-wave
constraints on an effective field-theory extension of general relativity, Phys. Rev. D 102
(2020) 044056 [arXiv:1912.09917] [INSPIRE].

[48] M. Ruhdorfer, J. Serra and A. Weiler, Effective field theory of gravity to all orders, JHEP 05
(2020) 083 [arXiv:1908.08050] [INSPIRE].

[49] J. Henriksson, B. McPeak, F. Russo and A. Vichi, Bounding violations of the weak gravity
conjecture, arXiv:2203.08164 [INSPIRE].

[50] S. Caron-Huot and V. Van Duong, Extremal effective field theories, JHEP 05 (2021) 280
[arXiv:2011.02957] [INSPIRE].

[51] Z.-Z. Du, C. Zhang and S.-Y. Zhou, Triple crossing positivity bounds for multi-field theories,
JHEP 12 (2021) 115 [arXiv:2111.01169] [INSPIRE].

– 26 –

https://doi.org/10.1103/PhysRevLett.123.051601
https://arxiv.org/abs/1810.03637
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.03637
https://doi.org/10.1007/JHEP02(2020)114
https://arxiv.org/abs/1910.14392
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.14392
https://doi.org/10.1007/JHEP11(2020)054
https://arxiv.org/abs/2007.15009
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.15009
https://doi.org/10.1103/PhysRevD.103.125020
https://doi.org/10.1103/PhysRevD.103.125020
https://arxiv.org/abs/2012.05798
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.05798
https://doi.org/10.1007/JHEP05(2021)259
https://arxiv.org/abs/2012.15849
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.15849
https://doi.org/10.1007/JHEP07(2021)110
https://arxiv.org/abs/2102.08951
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.08951
https://doi.org/10.1007/JHEP03(2022)083
https://arxiv.org/abs/2109.13937
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.13937
https://arxiv.org/abs/2112.11755
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.11755
https://arxiv.org/abs/2201.07177
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2201.07177
https://doi.org/10.1103/PhysRev.95.1612
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C95%2C1612%22
https://doi.org/10.1088/1126-6708/2006/10/014
https://arxiv.org/abs/hep-th/0602178
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0602178
https://doi.org/10.1007/JHEP11(2018)015
https://arxiv.org/abs/1804.03153
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.03153
https://doi.org/10.1007/JHEP09(2017)122
https://arxiv.org/abs/1704.01590
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.01590
https://doi.org/10.1103/PhysRevLett.121.251105
https://arxiv.org/abs/1808.08962
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.08962
https://doi.org/10.1103/PhysRevD.102.044056
https://doi.org/10.1103/PhysRevD.102.044056
https://arxiv.org/abs/1912.09917
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.09917
https://doi.org/10.1007/JHEP05(2020)083
https://doi.org/10.1007/JHEP05(2020)083
https://arxiv.org/abs/1908.08050
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.08050
https://arxiv.org/abs/2203.08164
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.08164
https://doi.org/10.1007/JHEP05(2021)280
https://arxiv.org/abs/2011.02957
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.02957
https://doi.org/10.1007/JHEP12(2021)115
https://arxiv.org/abs/2111.01169
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2111.01169


J
H
E
P
0
8
(
2
0
2
2
)
1
5
7

[52] L. Vecchi, Causal versus analytic constraints on anomalous quartic gauge couplings, JHEP
11 (2007) 054 [arXiv:0704.1900] [INSPIRE].

[53] B. Bellazzini, L. Martucci and R. Torre, Symmetries, sum rules and constraints on effective
field theories, JHEP 09 (2014) 100 [arXiv:1405.2960] [INSPIRE].

[54] B. Bellazzini, Softness and amplitudes’ positivity for spinning particles, JHEP 02 (2017) 034
[arXiv:1605.06111] [INSPIRE].

[55] C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for scalar field
theories, Phys. Rev. D 96 (2017) 081702 [arXiv:1702.06134] [INSPIRE].

[56] C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, UV complete me: positivity bounds for
particles with spin, JHEP 03 (2018) 011 [arXiv:1706.02712] [INSPIRE].

[57] A.J. Tolley, Z.-Y. Wang and S.-Y. Zhou, New positivity bounds from full crossing symmetry,
JHEP 05 (2021) 255 [arXiv:2011.02400] [INSPIRE].

[58] B. Bellazzini, J. Elias Miró, R. Rattazzi, M. Riembau and F. Riva, Positive moments for
scattering amplitudes, Phys. Rev. D 104 (2021) 036006 [arXiv:2011.00037] [INSPIRE].

[59] D. Chandorkar, S.D. Chowdhury, S. Kundu and S. Minwalla, Bounds on Regge growth of flat
space scattering from bounds on chaos, JHEP 05 (2021) 143 [arXiv:2102.03122] [INSPIRE].

[60] K. Häring and A. Zhiboedov, Gravitational Regge bounds, arXiv:2202.08280 [INSPIRE].

[61] A. Nicolis, R. Rattazzi and E. Trincherini, Energy’s and amplitudes’ positivity, JHEP 05
(2010) 095 [Erratum ibid. 11 (2011) 128] [arXiv:0912.4258] [INSPIRE].

[62] C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Massive Galileon positivity bounds,
JHEP 09 (2017) 072 [arXiv:1702.08577] [INSPIRE].

[63] B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond positivity bounds and the fate of
massive gravity, Phys. Rev. Lett. 120 (2018) 161101 [arXiv:1710.02539] [INSPIRE].

[64] C. de Rham, S. Melville and A.J. Tolley, Improved positivity bounds and massive gravity,
JHEP 04 (2018) 083 [arXiv:1710.09611] [INSPIRE].

[65] P. Baratella, D. Haslehner, M. Ruhdorfer, J. Serra and A. Weiler, RG of GR from on-shell
amplitudes, JHEP 03 (2022) 156 [arXiv:2109.06191] [INSPIRE].

[66] S. Mignemi and N.R. Stewart, Charged black holes in effective string theory, Phys. Rev. D 47
(1993) 5259 [hep-th/9212146] [INSPIRE].

[67] J. Noller, L. Santoni, E. Trincherini and L.G. Trombetta, Black hole ringdown as a probe for
dark energy, Phys. Rev. D 101 (2020) 084049 [arXiv:1911.11671] [INSPIRE].

[68] Z. Lyu, N. Jiang and K. Yagi, Constraints on Einstein-dilation-Gauss-Bonnet gravity from
black hole-neutron star gravitational wave events, Phys. Rev. D 105 (2022) 064001
[arXiv:2201.02543] [INSPIRE].

[69] C. de Rham, J. Francfort and J. Zhang, Black hole gravitational waves in the effective field
theory of gravity, Phys. Rev. D 102 (2020) 024079 [arXiv:2005.13923] [INSPIRE].

[70] M. Accettulli Huber, A. Brandhuber, S. De Angelis and G. Travaglini, From amplitudes to
gravitational radiation with cubic interactions and tidal effects, Phys. Rev. D 103 (2021)
045015 [arXiv:2012.06548] [INSPIRE].

[71] P.A. Cano and A. Ruipérez, Leading higher-derivative corrections to Kerr geometry, JHEP
05 (2019) 189 [Erratum ibid. 03 (2020) 187] [arXiv:1901.01315] [INSPIRE].

– 27 –

https://doi.org/10.1088/1126-6708/2007/11/054
https://doi.org/10.1088/1126-6708/2007/11/054
https://arxiv.org/abs/0704.1900
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0704.1900
https://doi.org/10.1007/JHEP09(2014)100
https://arxiv.org/abs/1405.2960
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.2960
https://doi.org/10.1007/JHEP02(2017)034
https://arxiv.org/abs/1605.06111
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.06111
https://doi.org/10.1103/PhysRevD.96.081702
https://arxiv.org/abs/1702.06134
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.06134
https://doi.org/10.1007/JHEP03(2018)011
https://arxiv.org/abs/1706.02712
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.02712
https://doi.org/10.1007/JHEP05(2021)255
https://arxiv.org/abs/2011.02400
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.02400
https://doi.org/10.1103/PhysRevD.104.036006
https://arxiv.org/abs/2011.00037
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.00037
https://doi.org/10.1007/JHEP05(2021)143
https://arxiv.org/abs/2102.03122
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.03122
https://arxiv.org/abs/2202.08280
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2202.08280
https://doi.org/10.1007/JHEP05(2010)095
https://doi.org/10.1007/JHEP05(2010)095
https://arxiv.org/abs/0912.4258
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.4258
https://doi.org/10.1007/JHEP09(2017)072
https://arxiv.org/abs/1702.08577
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.08577
https://doi.org/10.1103/PhysRevLett.120.161101
https://arxiv.org/abs/1710.02539
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.02539
https://doi.org/10.1007/JHEP04(2018)083
https://arxiv.org/abs/1710.09611
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.09611
https://doi.org/10.1007/JHEP03(2022)156
https://arxiv.org/abs/2109.06191
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.06191
https://doi.org/10.1103/PhysRevD.47.5259
https://doi.org/10.1103/PhysRevD.47.5259
https://arxiv.org/abs/hep-th/9212146
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9212146
https://doi.org/10.1103/PhysRevD.101.084049
https://arxiv.org/abs/1911.11671
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.11671
https://doi.org/10.1103/PhysRevD.105.064001
https://arxiv.org/abs/2201.02543
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2201.02543
https://doi.org/10.1103/PhysRevD.102.024079
https://arxiv.org/abs/2005.13923
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.13923
https://doi.org/10.1103/PhysRevD.103.045015
https://doi.org/10.1103/PhysRevD.103.045015
https://arxiv.org/abs/2012.06548
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.06548
https://doi.org/10.1007/JHEP05(2019)189
https://doi.org/10.1007/JHEP05(2019)189
https://arxiv.org/abs/1901.01315
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.01315


J
H
E
P
0
8
(
2
0
2
2
)
1
5
7

[72] P.A. Cano, K. Fransen, T. Hertog and S. Maenaut, Gravitational ringing of rotating black
holes in higher-derivative gravity, Phys. Rev. D 105 (2022) 024064 [arXiv:2110.11378]
[INSPIRE].

[73] H.O. Silva, A. Ghosh and A. Buonanno, Black-hole ringdown as a probe of higher-curvature
gravity theories, arXiv:2205.05132 [INSPIRE].

[74] R. Nair, S. Perkins, H.O. Silva and N. Yunes, Fundamental physics implications for
higher-curvature theories from binary black hole signals in the LIGO-Virgo catalog GWTC-1,
Phys. Rev. Lett. 123 (2019) 191101 [arXiv:1905.00870] [INSPIRE].

[75] H.O. Silva, A.M. Holgado, A. Cárdenas-Avendaño and N. Yunes, Astrophysical and
theoretical physics implications from multimessenger neutron star observations, Phys. Rev.
Lett. 126 (2021) 181101 [arXiv:2004.01253] [INSPIRE].

[76] P.A. Cano, K. Fransen and T. Hertog, Ringing of rotating black holes in higher-derivative
gravity, Phys. Rev. D 102 (2020) 044047 [arXiv:2005.03671] [INSPIRE].

[77] P. Wagle, N. Yunes and H.O. Silva, Quasinormal modes of slowly-rotating black holes in
dynamical Chern-Simons gravity, Phys. Rev. D 105 (2022) 124003 [arXiv:2103.09913]
[INSPIRE].

[78] M. Srivastava, Y. Chen and S. Shankaranarayanan, Analytical computation of quasinormal
modes of slowly rotating black holes in dynamical Chern-Simons gravity, Phys. Rev. D 104
(2021) 064034 [arXiv:2106.06209] [INSPIRE].

[79] A. Dima, E. Barausse, N. Franchini and T.P. Sotiriou, Spin-induced black hole spontaneous
scalarization, Phys. Rev. Lett. 125 (2020) 231101 [arXiv:2006.03095] [INSPIRE].

– 28 –

https://doi.org/10.1103/PhysRevD.105.024064
https://arxiv.org/abs/2110.11378
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.11378
https://arxiv.org/abs/2205.05132
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2205.05132
https://doi.org/10.1103/PhysRevLett.123.191101
https://arxiv.org/abs/1905.00870
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.00870
https://doi.org/10.1103/PhysRevLett.126.181101
https://doi.org/10.1103/PhysRevLett.126.181101
https://arxiv.org/abs/2004.01253
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.01253
https://doi.org/10.1103/PhysRevD.102.044047
https://arxiv.org/abs/2005.03671
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.03671
https://doi.org/10.1103/PhysRevD.105.124003
https://arxiv.org/abs/2103.09913
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.09913
https://doi.org/10.1103/PhysRevD.104.064034
https://doi.org/10.1103/PhysRevD.104.064034
https://arxiv.org/abs/2106.06209
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.06209
https://doi.org/10.1103/PhysRevLett.125.231101
https://arxiv.org/abs/2006.03095
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.03095

	Introduction
	Time advance bounds
	Non-minimal scalar-tensor trilinear interactions
	Causality bounds on power counting
	Bounds from dispersion relations


	Signs of UV completion
	Beyond positivity constraints
	Power counting expectations

	Phenomenological implications
	Black holes in scalar-GB gravity
	EFT implications on scalar-GB black holes
	Black holes in dynamical-CS gravity

	Summary and outlook
	Gauss-Bonnet scalarization

