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1 Introduction

Einstein’s theory of general relativity (GR) has been extraordinarily successful since its
inception over a century ago. Nevertheless, modifications to GR are often discussed in
relation to various puzzles, such as the nature of dark energy and dark matter, see [1–3] for
reviews. An important class of modifications add higher-derivative terms to the equations
of motion, which lead to physical effects which grow at short distances. Such corrections,
handily classified in [4], arise naturally in string theory, and presumably in any UV-complete
theory of quantum gravity.

In this paper, we consider 2 → 2 scattering of gravitons and ask a simple question:
assuming that graviton scattering respects causality at all energies, by how much can the
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low-energy amplitude differ from the predictions of general relativity? A well-known result
by [5, 6] shows any Lorentz-invariant theory of massless spin-2 particles must reproduce
general relativity at large distances. Our goal will be to bound the corrections to this limit,
assuming that relativistic causality (as we understand it) holds.

Our answer will depend on the spectrum of the theory. Let us describe our setup and
assumptions. At low energies, we assume there exists a massless graviton, together with a
finite number of fields of spin ≤ 2, which can be described by an effective field theory (EFT).
Schematically, the low-energy effective action encodes modifications to Einstein gravity:

S = 1
16πG

∫
d4x
√
g
(
R+ gR(3)Riem3 + gR(4)Riem4 + . . .

)
+ Smatter , (1.1)

where Riemn denotes (possibly non-unique) contractions of products of n Riemann tensors.
An important idea is that the sizes of the Wilson coefficients gR(3) , gR(4) , . . . are con-

strained by causality, that is, the notion that signals cannot travel faster than light. For
example in [7] it was observed by Camanho-Edelstein-Maldacena-Zhiboedov (CEMZ) that
in the presence of gR(3) , the two polarization modes of the graviton would move at different
velocities in certain backgrounds, and inevitably one of them moves faster than “light”. By
considering a setup with large enough black holes and mirrors, this effect could lead to
closed timelike curves, with ensuing grandparent-type paradoxes; the conclusion is that a
classical theory with gR(3) 6= 0 is inconsistent.1 Ref. [7] further pointed out that paradoxes
can be avoided at the quantum level if the graviton couples to higher-spin states. Denoting
the mass of the lightest higher-spin state (spin 4 or higher) by M , this led to a parametric
bound: |gR(3) | ∼< 1

M4 .
Our main goal in this paper will be to quantitatively bound higher-derivative corrections

in (1.1) in terms of the mass M of higher-spin states. This mass M provides a UV-cutoff
scale for the low-energy EFT in (1.1). We will assume a large hierarchy between the Plank
scale and this cutoff

M2 �M2
pl , (1.2)

or, equivalently, GM2 � 1, so that gravity is weakly-interacting below the cutoff. Our
methods will test causality of graviton scattering with arbitrary center-of-mass energies,
although physically the most important region for us will be near the cutoff M .

The notion of causality is subtle in gravitational EFTs because there is no globally
well-defined lightcone in nontrivial backgrounds. As discussed recently in [10, 11], one
should contrast “asymptotic causality,” which exploits a fixed causal structure at large
distances, with “infrared causality” which compares local time delays between species [11].
We will use asymptotic causality, but crucially, imposed at all energy scales and not only
within the EFT regime. This leads to sharp mathematical statements involving crossing
symmetry, analyticity, and Regge boundedness of scattering amplitudes [12]. Many works
have examined how these conditions constrain EFTs and their UV completions, see e.g. [13–
37] and references therein. In particular, these conditions give rise to dispersion relations
that relate high and low energies. In some cases, dispersion relations can be interpreted as

1A related effect is that the classical initial-value problem is generically ill-posed when higher-derivative
terms dominate [8, 9].
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expressing the commutativity of coincident shockwaves [38]. Initially, the use of dispersion
relations in gravitational EFTs was hindered by divergences related to the forward limit of
the low-energy graviton amplitude. These technical issues were recently partially overcome
in [15] by studying dispersion relations in impact parameter space; hence our renewed
interest in this problem.

There is a natural motivation to study scattering events which have center-of-mass
energies above the “cutoff” M . In any scenario where a higher-derivative correction to GR
might be observed in an astrophysical or other large-distance process, the suppression scale
would have to be very low, M � 1 TeV = (2 × 10−19m)−1: energies above such a cutoff
are routinely probed at colliders. However, collider experiments have not yet reported any
higher-spin particles of the type suggested above. Is it at all possible to modify GR in a
way that simultaneously: (1) satisfies collider constraints, (2) is relevant at large scales, and
(3) respects causality as we understand it?

In this paper we take a modest step toward answering this question, by quantitatively
relating higher-derivative corrections to the mass M of higher-spin states, using methods
from [15]. Our main results will be that dimensionless ratios, of the schematic form gR(3)M4

or gR(4)M6, are bounded by order-unity constants, times an infrared logarithmic divergence
log(M/mIR). Alternatively, given a measurement of such couplings, we constrain the mass
M of new states and their couplings to gravitons. The task of bounding their couplings to
Standard Model fields, as well as and potential collider signals, is left to future work.

The operational definition of “gravity” in this paper is a force which grows linearly with
energy at high speeds, corresponding in particle physics language to exchange of a spin-2
particle. We stress that static long-range forces, which could come from direct interactions
between matter and light spin-0 or spin-1 particles (also sometimes called fifth forces), are
unconstrained by our arguments.

The infrared logarithmic divergence in our bounds is related to the divergence of
the eikonal phase in four dimensions. In the context of scalar scattering in AdS/CFT,
this logarithmic divergence gets regulated by the AdS curvature scale, yielding rigorous,
finite bounds proportional to logMRAdS [39]. We expect the same mechanism to apply
to graviton scattering as well. Thus, our bounds can be interpreted as finite bounds on
gravitational Wilson coefficients in AdS4. The key feature of our bounds is the absence
of power-law infrared divergences; eventually, we hope that infrared logarithms can be
removed by studying suitable IR finite observables. In our view, an incredibly conservative
assumption would be to replace mIR with the Hubble scale, which for M ∼ 1 TeV, multiplies
our bounds by a factor of only logM/mIR ∼ 100. Note that this would still strongly rule
out a modification of GR that simultaneously satisfies (1), (2), and (3) above.

This paper is organized as follows. In section 2, we state our assumed axioms encoding
causality of graviton scattering, review dispersive sum rules, and some of their known
implications, notably positivity bounds from forward limits. In section 3, we review the
impact parameter approach of [15] and provide example positive functionals which prove
upper bounds on gravitational EFT coefficients. We explain why the bounds are only
weakly affected by possible light matter fields. We then describe our numerical strategy to
systematically search for optimal bounds, and how CEMZ-like bounds are automatically
included. In section 4, we report the bounds obtained with this method and comment on
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their relations with known theories. In a more conjectural part 4.5 we speculate about the
possibility of modifications associated with a low scale M . We summarize in section 5. In
appendix A, we review partial waves for graviton scattering amplitudes. In appendix B we
present graviton amplitudes from light exchanges of spin-0 and spin-2 particles. Finally, we
record our numerical set-ups in appendix C.

2 Review: dispersive sum rules

In this section, we describe our key physical assumptions and tools: effective field theory
at low energies (section 2.1), unitarity (section 2.2), causality (section 2.3), and Kramers-
Kronig-type dispersion relations and some of their consequences (section 2.4). Most of this
material is standard, except perhaps for our discussion of Regge boundedness in section 2.3,
using compact-support wavefunctions.

Let us first briefly motivate our assumptions, before we state them technically.
By unitarity, we mean that initial and final states of scattering processes are elements

of positive-definite Hilbert spaces, whose norms are conserved by time evolution. This repre-
sents the idea that the probabilities of all possible events are positive and add up to one. The
reason we assume this is obvious: we wouldn’t know how to interpret negative probabilities.

By causality, we refer to the notion that “signals can’t travel faster than light”. We
assume causality because of its tremendous explanatory power and past successes: by
forbidding instantaneous action at a distance, it qualitatively explains why electromagnetic
and gravitational waves must exist, why forces in nature are mediated by particles, why
antiparticles exist, how their interactions are quantitatively related [40], and so much
more. Abandoning causality without a good replacement principle seems akin to opening
Pandora’s box.2

There is an interesting interplay between unitarity and causality, as displayed by
quantum fields with wrong-sign kinetic terms, sometimes called “ghosts”. In one quantization,
positive-frequency modes propagate forward in time but have negative norms. In an
alternative quantization choice, norms are fine but positive-frequency modes propagate
backward in time. Lee and Wick famously proposed that the ensuing acausality could be
made unobservably small if one treats backward-moving modes as resonances which decay to
normal forward-moving modes [41], as is indeed seen at low orders in perturbation theory [42,
43]. A problem is that, as soon as interactions with normal matter are included, negative-
frequency modes make the vacuum unstable against resonant particle production. This
instability can be nicely discussed in connection with a classical theorem by Ostrogradsky [44];
it seems incompatible with a long-lived Universe [45].3

2If one were not worried about instantaneous action at a distance, any many-body Hamiltonian such as

H =
∑
i

~pi
2

2mi
+
∑
i<j

Vij

with potential Vij = −Gmimj

|~xi−~xj |
, or others, would trivially define a “quantum theory of gravity”.

3As was pointed out with much deference to the original authors, the Lee-Wick prescription is ambiguous
and “an additional prescription would be needed to completely define the theory” [46]. In our view, the
Lee-Wick idea fails to address the vacuum stability issue for the simple reason that the timescales in the
relevant vacuum diagram are shorter than the decay time of Lee-Wick quanta.
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In short, we assume unitarity and causality because we see no alternatives. It is possible
that Nature does not conform to these principles as we understand them, but resulting
bounds can be viewed as tests of these principles.

2.1 Helicity amplitudes and low-energy EFT

Four-dimensional gravitons possess two helicity states. A complete set of independent
amplitudes for graviton-graviton scattering is

M(1+2−3−4+) = 〈23〉4[14]4 f(s, u) , (2.1)

M(1+2+3+4−) = ([12][13]〈14〉)4 g(s, u) , (2.2)

M(1+2+3+4+) = [12]2[34]2
〈12〉2〈34〉2 h(s, u) , (2.3)

and permutations thereof. At tree-level in Einstein’s theory, only the maximal-helicity-
violating (MHV) amplitude f(s, u) is nonvanishing, and a large fraction of our results will
be derived by studying only this amplitude. Here, we use spinor-helicity variables (see [47])
and we have introduced the Mandelstam invariants

s = −(p1 + p2)2 , t = −(p2 + p3)2 , u = −(p1 + p3)2 , (2.4)

with s+ t+ u = 0. The functions f(s, u), g(s, u), and h(s, u) are analytic in the upper-half
plane with Im s > 0, and crossing symmetric:

f(s, u) = f(u, s) , g(s, u) = g(t, s) = g(u, t) , h(s, u) = h(t, s) = h(u, t) . (2.5)

Other helicity amplitudes may be obtained by complex conjugation and Schwarz reflection,
for example the −−−+ amplitude is g(s, u) = (g(s∗, u∗))∗.

At low energies, we assume a spectrum comprising massless gravitons together with
possible light particles of spin ≤ 2. These can be described by an effective field theory
(EFT) of the generic form (1.1), with higher derivative terms encoding modifications to
Einstein gravity generated by physics above the EFT cutoff M . We assume M � Mpl
and thus neglect loops within the EFT. States with spin greater than two are genuinely
gravitational, and assumed to have mass above the cutoff, m > M .

By contrast, particles of spin two or less and mass m` � M can be interpreted as
additional states in the Standard Model of particle physics and its extensions, or states
arising from Kaluza-Klein reduction of massless gravity in higher-dimensions. Angular
momentum conservation forbids the decay of a state of half-integer or odd spin to a pair of
gravitons, so only matter fields of spins 0 and 2 can affect graviton scattering at tree level.
We will refer to both as “matter”, even though this nomenclature is slightly unconventional
for spin 2 fields.

The best way to enumerate EFT couplings is to list how they modify graviton scattering
amplitudes. On-shell three-particle vertices are determined by Lorentz invariance up to
overall parameters

M(1+, 2+, 3−) =
√

8πG [12]6
[13]2[23]2 , M(1+, 2+, 3+) = ĝ3

2
√

8πG([12][13][23])2 . (2.6)
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Figure 1. 2-to-2 scattering amplitudes of gravitons within the low-energy effective theory. We
include at tree-level both the graviton exchange and (higher-derivative) contact diagrams, as well
as exchanges of possible light spin-0 and spin-2 particles. Other spins are forbidden by angular
momentum conservation.

The tree-level four-particle amplitudes (2.3) may then be written in terms of exchange
diagrams, plus a sum of contact interactions, which are simply polynomials with the
symmetry (2.5):

flow(s, u) =8πG
stu

+ 2πGsu
t
|ĝ3|2 + g4 + g5t+ g6 t

2 − g′6 su+ . . .+ fmatter(s, u)

+O(loops) , (2.7a)

glow(s, u) = 4πG
stu

ĝ3 + 1
2 ĝ
′′
6 + . . .+ gmatter(s, u) +O(loops) , (2.7b)

hlow(s, u) = 40πGĝ3stu+ 1
2 ĝ4(s2 + t2 + u2)2 + 2ĝ5stu(s2 + t2 + u2)

+ ĝ6(s2 + t2 + u2)3 + ĝ′6s
2t2u2 + . . .+ hmatter(s, u) +O(loops) , (2.7c)

where hatted couplings are complex (the real and imaginary part representing parity-even
and parity-odd couplings, respectively). The subscript “low” emphasizes that this expansion
is used only for |s| < M2. The signs on the first line have been chosen so that our couplings
relate simply to those in [48].4 The matter contributions fmatter(s, u), gmatter(s, u), and
hmatter(s, u) are recorded in appendix B.

It is straightforward to write down Lagrangians that give rise to the above amplitudes.
Before doing so, it is important to note that Lagrangian densities are only defined modulo
field redefinitions (which change contact interactions by equation of motions) and total
derivatives. In particular, any higher-derivative term involving the Ricci tensor Rµν or scalar
R is removable, so only powers of the Riemann curvature Rµνσρ must be kept.5 Furthermore,
numerous identities relate various contractions of Riemann tensors and derivatives. This is
the reason why we do not include R2: R2-terms can be recast into the Gauss-Bonnet term,
which is topological in d = 4. In contrast, the amplitudes (2.7) are unambiguous.

4The conversion is simply:

{g4, g5, g6, g
′
6}here = {a0, a1, a2,0, a2,1}there.

In our notation the subscript always denotes half the number of derivatives in the contact interaction.
5It is well-known for example that f(R) gravity is equivalent to standard Einstein gravity minimally

coupled to a scalar field with a specific potential. From our perspective, f(R) gravity thus does not constitute
a higher-derivative correction to Einstein’s gravity. Instead, it is a specific choice of matter sector.

– 6 –



J
H
E
P
0
5
(
2
0
2
3
)
1
2
2

With this being said, it is straightforward to list a minimal set of irreducible higher-
dimension operators and map them to the amplitudes (2.7) by computing the resulting
tree-level amplitudes. For example, the parity-even sector of cubic gravity contains 10
different operators, but field redefinitions and various identities leave us with only one
independent operators [49]. Up to dimension eight, our effective action is

S = 1
16πG

∫
d4x
√
−g
[
R− 1

3!
(
α3R

(3) + α̃3R̃
(3)
)

+ 1
4
(
α4(R(2))2 + α′4(R̃(2))2 + 2α̃4R

(2)R̃(2)
)

+ . . .

]
+ Smatter ,

(2.8)

where we defined

R(2) =RµνρσR
µνρσ , R̃(2) =RµνρσR̃

µνρσ , R̃µνρσ ≡ 1
2εµν

αβRαβρσ ,

R(3) =Rµν
ρσRρσ

αβRαβ
µν , R̃(3) =Rµν

ρσRρσ
αβR̃αβ

µν .

(2.9)
It is then straightforward to expand gµν = ηµν+

√
32πGhµν and apply the standard Feynman

techniques to evaluate scattering amplitudes and compare with eqs. (2.7):

ĝ3 = α3 + iα̃3, g4 = 8πG(α4 + α′4) , ĝ4 = 8πG(α4 − α′4 + iα̃4) . (2.10)

Note that we absorbed a factor of 8πG in three-point couplings but not in four-point
couplings.

2.2 High energies: partial waves and unitarity

We will assume that graviton scattering remains sensible even at center-of-mass energies
that exceed the EFT cutoff M (where the parametrization (2.7) no longer applies). Our
minimal assumptions are that the amplitude remains causal (that is, analytic) and unitary,
and that the spectrum is relativistic so that it can be organized in terms of mass, m2, and
spin, J .

In other words, the amplitude admits a partial wave expansion of the form [50]

M(1h12h23h34h4) = 16π
∑
J

(2J + 1) a{h}J (s) dJh12,h34

(
1 + 2t

s

)
. (2.11)

Here, dJα,β(x) are the well-known Wigner-D functions, which are explicitly written in
appendix A, and hij = hi − hj . The partial wave coefficients, a{h}J (s), encode all dynamical
information. Without boost invariance, partial waves would be more complicated, but study
of causality constraints has been initiated in [51, 52].

Unitarity of the S-matrix S = 1 + iM imposes crucial positivity properties on the
“absorptive part” of the amplitude, through the familiar relation: i(M†−M) =M†M. The
matrix structure will be important and is in contrast to the scalar case studied in [13–19].
In terms of partial waves,

i
[(
a−h4,−h3,−h2,−h1
J (s)

)∗
− ah1,h2,h3,h4

J (s)
]

=
∑
X

(
a−h3,−h4→X
J (s)

)∗
ah1,h2→X
J (s) , (2.12)
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where X runs over intermediate states. The right-hand-side is a positive semi-definite
matrix. To capture its positive properties we adopt an abbreviated notation from [53] and
omit the X sum, writing the right-hand-side simply as 2(c−h4,−h3)∗ch1h2 . Specializing to
the MHV amplitude, we have

Im a+−+−
J (s) = |c+−

J,s |
2, Im a++−−

J (s) = |c++
J,s |

2 , (2.13)

where c+−
J,s is real. In particular, the quantities in (2.13) are positive.6 Note this would not

be so for the permutation a+−−+
J = (−1)Ja+−+−

J . Partial waves admit two-sided bounds,
which follow from applying the same argument to the unitary matrix −S = 1 + i(2i−M).
In particular, we have7

0 ≤ Im a+−+−
J (s) ≤ 1, and 0 ≤ Im a++−−

J (s) ≤ 2 . (2.14)

Positivity of the spectral density is key for establishing bounds on the low-energy EFT
Wilson coefficients [13–18].

Explicitly, the MHV amplitude f(s, u) has distinct discontinuities in the s- and
t- channels:

s = m2 > 0 : Im f(m2,−p2) = 16π
m8

∑
J≥4

(2J + 1)|c+−
J,m2 |2 d̃J4,4

(
1− 2p2

m2

)
, (2.15a)

t = m2 > 0 : Im f(−p2, p2 −m2) = 16π
m8

∑
J≥0
even

(2J + 1)|c++
J,m2 |2d̃J0,0

(
1− 2p2

m2

)
, (2.15b)

where d̃Jα,β are Wigner-D functions with stripped helicity factors, see appendix A for more
details. The overall m−8 originates from the prefactor in (2.3).

For other helicity configurations, we have similar relations, except that the “imaginary
part” gets replaced by the discontinuity Ĩm a ≡ [a(s + i0) − a(s − i0)]/(2i), and the
right-hand-sides are now complex numbers:

Ĩm a+++−
J (s) = c++

J,s c
+−
J,s , Ĩm a++++

J (s) = (c++
J,s )2 . (2.16)

The corresponding partial wave expansions are

Ĩm g(m2,−p2)
∣∣∣
s=m2

= 16π
m12

∑
J≥4
even

(2J + 1)c++
J,s c

+−
J,s d̃

J
4,0

(
1− 2p2

m2

)
, (2.17)

Ĩm h(m2,−p2)
∣∣∣
s=m2

= 16π
∑
J≥0
even

(2J + 1)(c++
J,s )2 d̃J0,0

(
1− 2p2

m2

)
. (2.18)

6Even though c+−
J,s is real, we nonetheless write the absolute value sign |c+−

J,s |
2 throughout to emphasize

that its square is positive.
7In more detail: in the even spin sector, there are three incoming states for the helicities |h1h2〉: namely

|+ +〉, |−−〉, and 1√
2 (|+−〉+ |−+〉). The corresponding diagonal elements of the S-matrix are 1 + ia−−++,

1+ia++−−, and 1+2ia+−+−. In the odd-spin sector, the S-matrix is a 1×1 matrix with element 1+2ia+−+−.
By unitarity, each of these diagonal elements must have real part in [−1, 1], which leads to (2.14).
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2.3 Regge boundedness and all that

Low and high energies are related by Kramers-Kronig-type dispersion relations. It will be
crucial that we can predict beforehand which dispersion relations converge.

Typically one assumes a Froissart-Martin-like bound at fixed momentum transfer and
large complex energies:

lim
|s|→∞

M/s2 → 0 at fixed t < 0 (not what we’ll assume) . (2.19)

For example, in tree-level string theory,M∼ s2+α′t < s2. However the validity of this bound
is not generally established in an abstract theory of quantum gravity. Martin’s original
proof of the Froissart-Martin bound in axiomatic field theory [54] does not apply to gravity,
due to the absence of a mass gap. For holographic theories it has been argued that the
behavior (2.19) holds for physical kinematics as a consequence of the chaos bound [55, 56].

The constraint we will use is in fact weaker than (2.19): we will only assume that it
holds after integrating in t against suitable wavefunctions. We also assume analyticity in
the upper-half s-plane, at least for s large, as well as sub-exponential growth for |s| → ∞,
as described more precisely below. This is equivalent to assuming that the unsmeared
amplitude satisfies dispersion relations with a finite number of subtractions, which is a weak
form of UV locality.

The difficulty with (2.19) is a physical one and not merely technical: to bound amplitudes
at large complex energies, one must generally combine analyticity with some boundedness
property on the real axis, as we do shortly. The difficulty is that analyticity holds at
fixed momentum, while boundedness holds at fixed impact-parameter; these two spaces are
related by a Fourier transform which is not easy to control. Namely, it is not straightforward
to estimate large-impact-parameter contributions in the absence of a mass gap or of
an explicit model of the dynamics. Thankfully, large-impact-parameter physics however
seems immaterial for bounding EFT couplings at the scale M . The intuition, stressed
in [14, 16], is that EFT parameters at the scale M satisfy sum rules saturated by impact
parameters b ∼M−1.

Let us explain how we sidestep (2.19) by adapting a recent method from [39], which
showed that the conclusions from flat space sum rules apply to quantum gravity in AdS
(defined as a CFT with large but finite central charges and single-trace gap). The method
is simple: we integrate scattering amplitudes against wavepackets that have finite support
in momentum space and decay rapidly at large impact parameters b. Formally, for a
wavefunction Ψ(p), we define the smeared amplitude:

MΨ(s̃) =
∫ M

0
dpΨ(p)M

(
s̃+ 1

2p
2,−p2

)
. (2.20)

It is apparent that for |s̃| > 1
2M

2, all amplitudes on the right-hand-side are in the physical
region where the partial wave expansion (2.11) applies. (The offset of s by 1

2p
2 is not essential

but ensures that s↔ u crossing symmetry is simply reflection of s̃.) Furthermore, thanks
to compactness of the integral, MΨ(s̃) inherits the analyticity properties of the original
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amplitude: our fundamental assumption is that a crossing path exists which connects the
two points s̃ = ±1

2M
2, and that the amplitude is analytic outside of that arc.

Fast decay in b requires Ψ(p) to be smooth and to vanish rapidly enough at the
endpoints; the precise condition is detailed below (see (3.16)). The upshot is that if the
decay sets in at some b > b∗, then the spin sum in (2.11) is effectively limited to J ≤

√
sb∗.

Since individual aJ are bounded (see (2.14)), one trivially gets the bound

|MΨ(s)| ≤ s× constant (|s| > 1
2M

2, real) . (2.21)

We thus have an analytic function which is bounded on the real axis. Unless this func-
tion grows exponentially at complex energies (which would imply blatant time advances
when Fourier transformed to the time domain, a behavior which was not seen in theo-
ries of quantum gravity in AdS realized by unitary CFTs [39]), it must be bounded in
all complex directions by a version of the maximum principle called Phragmén-Lindelöf
principle (see [55]):

|MΨ(s)| ≤ |s| × constant (complex s outside s ∼M2 arc) . (2.22)

The results presented in this paper rely only on the above properties of smeared amplitudes
MΨ, and not on (2.19). It is intriguing that this reasoning produces an exponent in (2.22)
that is formally stronger than that in (2.19): |MΨ/s| bounded versus |MΨ/s

2| → 0. The
extra power will not be exploited in the present paper, but it would be interesting to see if
it has any implications. We will only use that lim|s|→∞ |MΨ(s)|/|s|2 = 0, which is easily
implied by (2.22) and is strictly weaker than (2.19).8

To be fully explicit, since smearing is technically involved, in this paper we will only
use smeared amplitudes when strictly required by the t → 0 singularities of amplitudes.
For higher-subtracted dispersion relations, that do not suffer from a graviton pole, we will
effectively use an assumption similar to (2.19), namely |M/s4| → 0 for t < 0, as detailed in
section 3.4. This is similar to the assumption made in ref. [48].9

Now that our mathematical assumptions (analyticity and boundedness) have been
stated precisely, we would like to explain why we believe these are conservative and physically
relevant notions directly related to causality and unitarity. Analyticity is related to the
notion that “signals cannot move faster than light” in the context of signals that are waves.
For example for vacuum two-point functions in quantum field theory, well-known arguments
show that the vanishing of spacelike commutators requires the existence of antiparticles. This
happens because waves components of different frequencies can only interfere destructively
in the spacelike region if they are related to each other in a very specific way, namely by an
analytic continuation in the upper-half energy plane, which relates positive and negative
frequencies. The same interpretation applies to Kramers-Kronig dispersion relations.

8After the first arXiv version of this article appeared, the paper [57] analyzed the high-energy behavior of
smeared amplitudes and independently confirmed (2.22) for a suitable class of smearing functions in d ≥ 5
where there are no infrared divergences.

9Note that the spin-2 dispersion relations that we use are nonperturbative statements that need not be
satisfied order-by-order, for example by the individual one-loop diagrams studied in [48].
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We interpret S-matrix dispersion relations in a similar way: for (asymptotic) mea-
surements at space-like separated points A and B to commute (in the presence of other
particles), the amplitude for a particle moving from A to B must be related, by analytic
continuation, to that for an antiparticle moving the other way. In this way, causality is
entwined with analyticity and crossing symmetry [58]. While we find this picture intuitive
and compelling, we should note that analyticity is nontrivial to prove mathematically even
in quantum field theory (for recent discussions see [59, 60]). In quantum gravity, of course,
no axioms are established and rigorous proofs are impossible. That our assumptions are
compatible with gravity is nonetheless supported by the recent work [39], which showed
that well-established CFT axioms imply that graviton scattering in AdS space satisfies
dispersion relations.

The implications of (2.22) depend on the helicity of scattered particles. Recalling that
for physical kinematics 〈ij〉 = ±[ij]∗, and

|〈12〉| = |〈34〉| =
√
|s| , |〈23〉| = |〈14〉| =

√
|t| , |〈13〉| = |〈24〉| =

√
|u| , (2.23)

we find that for the component amplitudes f , g and h from (2.3), the condition (2.22) yields:

lim
|s|→∞

f(s,−p2) ≤ Cs−3 , lim
|s|→∞

f(s, p2 − s) ≤ Cs ,

lim
|s|→∞

g(s,−p2) ≤ Cs−3 , lim
|s|→∞

h(s,−p2) ≤ Cs , (after smearing in p) . (2.24)

The first line gives respectively the fixed-u and fixed-t Regge limits of the MHV amplitude.
Notice that certain limits enjoy improved behavior ∼ s−3: when amplitudes are normalized
so that contact interactions are polynomial (see eq. (2.7)), they vanish in some high-energy
limits. This phenomenon is known as superconvergence and is the main reason why we will
find stronger constraints on graviton contact interactions than for scalars.10

Superconvergence is also related to the observation of [62] that a very limited number
of graviton contact interactions obey (or more precisely, saturate) the classical bound (2.19).
Although it is simpler to prove, the bound (2.22) is stronger and is not satisfied by any
individual graviton contact interaction.

2.4 Dispersive sum rules

We are now ready to write dispersive sum rules for the amplitudes f(s, u), g(s, u), and
h(s, u). We begin with the MHV amplitude f . From the behavior (2.24), we get two types
of constraints: from fixed-u and fixed-t. For fixed-u we can separate f into combinations

10In general, superconvergence occurs in scattering of particles of spins J1 and J2 whenever J1 +J2−1 > J0,
where J0 is the Regge intercept of the theory, see e.g. [38, 61]. The bound (2.22) amounts to J0 ≤ 1 but all
we ultimately use in this paper is J0 < 2.
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that are even/odd under s↔t and obtain the following basis of sum rules, for integer k:

B
(1)
k (p2) =

∮
∞

ds

4πi
2s− p2

[s(s− p2)] k−2
2

[
f(s,−p2) + f(p2 − s,−p2)

]
= 0 (k ≥ 2 even) ,

(2.25a)

B
(1)
k (p2) =

∮
∞

ds

4πi
1

[s(s− p2)] k−3
2

[
− f(s,−p2) + f(p2 − s,−p2)

]
= 0 (k ≥ 3 odd) ,

(2.25b)

where the integrals are along a large circle at infinity. We additionally have three fixed-t
dispersion relations, which also integrate to zero for k ≥ 2 even:

{
B

(2)
k ,B

(3)
k ,B

(4)
k

}
(p2) =

∮
∞

ds

4πi(2s−p
2)
{

f(s,p2−s)
[s(s−p2)] k+2

2
,
g(s,p2−s)

[s(s−p2)] k−2
2
,
h(s,p2−s)

[s(s−p2)] k+2
2

}
.

(2.26)

To avoid confusion between different channels, we always write the fixed momentum transfer
as p. These sum rules become strictly valid after the p-dependence is integrated against
appropriate wavepackets as in eq. (2.20). In the limit |s| → ∞ the subtractions only give
an inverse power of s, so the convergence of the smeared sum rules in eqs. (2.25)–(2.26)
directly follows from that of the amplitudes in eq. (2.24).

The subscript k indicates the Regge spin of a sum rule. This concept is closely related,
but distinct, from the “number of subtractions” or power of 1/s inserted to improve high-
energy convergence. For example, B(1)

2 has fewer subtractions than B
(2)
2 (and is even

“anti-subtracted” since it has no denominator!), yet they possess the same convergence
properties. The nomenclature is motivated by the fact that exchange of a single t-channel
particle of spin J yields an amplitude that grows likeM∼ sJ : we say that a sum rule has
spin k if it converges on exchanges with J < k (and marginally diverges on spin k).

Regge spin is more important than subtraction-counting because the Regge growth (2.22)
translates into the simple convergence criterion k > 1. This is the same criterion as
convergence of the Froissart-Gribov formula which extracts partial waves of spin J > 1,
or of the analogous Lorentzian inversion formula [63–65] which extracts CFT data for
spin J > 1.

Sum rules are obtained by deforming the contour towards the real axis but avoiding
the low-energy region: the contour in figure 2 relates low-energy data at the scale M and
heavy data above M :

−B(i)
k (p2)

∣∣∣
low

= B
(i)
k (p2)

∣∣∣
high

(2.27)∮ u=M2

s=M2

ds

4πi (· · · ) =
∫ ∞
M2

ds

π
Im (· · · ) . (2.28)

Note that the s and u channel cuts contribute identically due to symmetry of eqs. (2.25),
so we included only the right cut. (The contour on the left is in reality the union of upper
and lower half-circles, separated by the branch cut of the amplitude.)
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−t

s

0 M2

−M2 − t
−→

−t M2

s

0

−M2 − t

Figure 2. Contour deformation which gives rise to sum rules eq. (2.27). The final contour relates
low-energy EFT data along the arcs to heavy discontinuities along the branch cuts.

Let us focus on the first sum rule for simplicity. At tree-level we find only two residues,
from s = 0 and u = 0, which contribute the same amount:

−B(1)
k (p2)

∣∣∣
low

= Res
s=0

(
2s− p2

[s(s− p2)] k−2
2

[
f(s,−p2) + f(p2 − s,−p2)

])
(tree-level) . (2.29)

Substituting in the low-energy amplitude (2.7a), only the exchange graphs contribute
for k = 2, 3:

−B(1)
2 (p2)

∣∣∣
low

= 16πG
p2 + 2πG|ĝ3|2p6 +O(matter and loops), (2.30a)

−B(1)
3 (p2)

∣∣∣
low

= −2πG|ĝ3|2p4 +O(matter and loops) . (2.30b)

The absence of contact term contributions is a hallmark of superconvergent sum rules.
Examples that probe contact interactions include:

−B(1)
4 (p2)

∣∣∣
low

= 2g4 + (4πG|ĝ3|2 + g5)p2 + (g6 + g′6)p4 + . . . , (2.31a)

−B(1)
5 (p2)

∣∣∣
low

= g5 + (g6 − g′6)p2 + . . . , (2.31b)

−B(2)
2 (p2)

∣∣∣
low

= 2πG|ĝ3|2
1
p2 + g′6 + . . . . (2.31c)

A salient feature is that the same couplings appear in multiple sum rules: this reflects
crossing symmetry. Another feature is the appearance of the cubic self-coupling in B(1)

4 : this
is due to the rapid growth with t of the t-channel exchange diagram with derivatives. This
rapid energy growth at zero impact parameter will turn out to be a powerful mechanism to
bound ĝ3, as was proposed in section 7 of [62]; this mechanism is distinct from the spin-2
growth at large impact parameter that was exploited by CEMZ [7].

At high energies s ≥ M2, the amplitudes are beyond our knowledge. We can never-
theless evaluate the contribution to the dispersive sum rule, by inserting the partial wave
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decomposition and using eq. (2.15) for even k:

B
(1)
k (p2)

∣∣∣
high

=
〈

(2m2 − p2)
|c++
J,m2 |2 d̃J0,0(x) + |c+−

J,m2 |2 d̃J4,4(x)

mk+4(m2 − p2) k−2
2

〉
(k ≥ 2 even) , (2.32)

where x = 1− 2p2

m2 and for later convenience we define the heavy densities C and (dimen-
sionless) averages11

Bk(p2)
∣∣∣
high

=
〈
Ck,−p2 [m2, J ]

〉
= 16

∑
J

(2J + 1)
∫ ∞
M2

dm2

m2 Ck,−p2 [m2, J ] . (2.33)

The remaining four sum rules are:

B
(1)
k (p2)

∣∣∣
high

=
〈
|c++

J,m2 |2 d̃J
0,0(x)−|c+−

J,m2 |2 d̃J
4,4(x)

mk+3(m2−p2) k−3
2

〉
(k≥ 3 odd), (2.34a)

{
B

(2)
k ,B

(3)
k ,B

(4)
k

}
(p2)

∣∣∣
high

=〈
(2m2−p2)

{
(−1)J |c+−

J,m2 |2 d̃J
4,−4(x)

mk+8(m2−p2) k+2
2

,
c++

J,m2c
+−
J,m2 d̃J

4,0(x)
mk+8(m2−p2) k−2

2
,

(c++
J,m2)2 d̃J

0,0(x)
mk(m2−p2) k+2

2

}〉
(k≥ 2 even) .

(2.34b)

In summary, the constraints of analyticity and unitarity used in this paper are embodied
in the relation (2.27), which connects EFT couplings (eqs. (2.30)–(2.31)) to heavy averages
like (2.32) that involve a positive measure.

2.5 Review of simple bounds from forward limits

Let us explore the above sum rules. Evidently, the spin-2 sum rules (2.30) diverge in the
forward limit p→ 0. This is the famous “graviton pole” problem, whose resolution using
smeared sum rules will be described in the next section. However, higher-spin sum rules
have smooth limits which have been extensively studied.

For the spin-4 sum rule, the forward limit of (2.31a) and (2.32) yields simply [66, 67]:

g4 =
〈
|c++
J,m2 |2 + |c+−

J,m2 |2

m8

〉
≥ 0 . (2.35)

Similarly, taking the forward limit of the same-helicity amplitude (B(4) sum rule) we get

ĝ4 =
〈(c++

J,m2)2

m8

〉
, (2.36)

where we recall that the complex couplings ĝ4 and c++
J,m2 combine parity even and odd parts.

Comparison yields the obvious bound

|ĝ4| ≤ g4 . (2.37)
11To avoid unnecessary clutter, we set undefined coefficients to zero, ie. c+− = 0 when J < 4 and c++ = 0

when J is odd.
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In particular this implies the two positivity constraints [66, 67]: α4, α
′
4 ≥ 0, in the La-

grangian (2.8) and (2.10).
As stressed before, forward limits can be dangerous. Should we trust these bounds?
From the present perspective, one can argue that the answer is: yes, as long as the

size of g4 is much larger than the loop effects which cause the danger at loop level. Let
us estimate this in detail. The one-loop amplitude diverges in the forward limit p → 0
like M ∼ iπG

2s3

p2 log p2. This divergence can be avoided simply by replacing the limit
with evaluation at a small scale p ∼ p∗ � M . (This will spoil positivity at large b = 2J

m ,
but if we assume that this region is controlled by known low-energy-computable eikonal
physics, positivity should not be crucial there.) The bound (2.35) becomes schematically
(up to logarithms)

g4 ≥ −
G2

M2p2
∗

including loops . (2.38)

On the other hand, as discussed in the next section, in the presence of spin-4 particles
at the scale M the expected size is g4 ∼ G

M6 � G2

M4 . By choosing appropriately p∗, it is easy
to make the loop corrections negligible in comparison:

G2

M2p2
∗
� G

M6 ⇒ M2

Mpl
� p∗ �M . (2.39)

This can be satisfied since we assume that the EFT cutoff is parametrically below the
Planck scale. A similar argument was described in [67].

By the same token we can trust the Taylor expansion around the forward limit of other
sum rules with spin k ≥ 3. For k = 5 we find

g5 =
〈
|c++
J,m2 |2 − |c+−

J,m2 |2

m10

〉
, (2.40)

from which the two-sided bound −g4 ≤ g5M
2 ≤ g4 readily follows (again up to loop

corrections). From the forward limit of B(1)
6 , we have

g6 =
〈
|c++
J,m2 |2 + |c+−

J,m2 |2

m12

〉
⇒ 0 ≤ g6 ≤

g4
M4 . (2.41)

We get additional sum rules of the same scaling dimensions by considering also forward
limit derivatives of k = 4 and k = 5 sum rules:

g′6 =
〈 1
m12

(
J |c++

J,m2 |2 − (J − 22)|c+−
J,m2 |2

)〉
, (2.42a)

0 =
〈 1
m12

(
J (J − 6)|c++

J,m2 |2 + (J 2 − 50J + 596)|c+−
J,m2 |2

)〉
, (2.42b)

where J = J(J + 1). The novelty is the presence of a “null constraint”, that is, a sum rule
with vanishing low-energy contribution. By taking linear combinations of (2.41) and (2.42)
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that maintain the positivity of r.h.s., these reproduce the known bounds derived in [48]:12

g6 ≥ 0 , −90
11 ≤

g′6
g6
≤ 6 . (2.43)

We will see in section 4.4 that the above bounds are not optimal; we will get tighter ones
by using more null constraints. In particular we will show that indeed g′6 ≥ 0 (up to 1/M2

pl
corrections from loops, like other bounds in this paper).

A generic observation is that all dimensionless ratios of the form gkM
2(k−4)/g4 satisfy

two-sided bounds, consistent with dimensional analysis scaling. We do not have a formal
proof for all couplings, but we expect this to hold in analogy with the scalar theory case
studied in [15]. The novel feature for gravitons is that we will be able to upper-bound g4
itself by a multiple of G/M6, as we now discuss.

3 Bounds that relate gravity and higher derivatives

3.1 Impact parameter functionals

As we reviewed in the previous section, the simplest positivity bound is g4 ≥ 0, which is
trivially established by evaluating B(1)

4 at p→ 0. However, this says little about the size of
g4 since Newton’s constant does not appear. On the other hand, one may expect that all
graviton interactions shut down if G = 0, a concrete example being the CEMZ bound [7].
To probe Newton’s constant with dispersion relations, we must inevitably use the spin-2
sum rules B2 and deal with the 1/p2 pole. This precludes doing Taylor expansions around
the forward limit.

Our strategy will follow [15]: we tame the graviton pole by considering processes
with finite impact parameter b ∼ 1/M . In spacetime dimensions D > 4 this removes all
divergences. In D = 4, as we are considering in this paper, we will be left with infrared
logarithms, still a major improvement over power-law divergences in our opinion. Being
mindful of the compact-support property (see section 2.3), we consider functionals of the
generic form:

F =
∫ M

0
dp
∑
i

ψi(p)Bi(p2) , (3.1)

where Bi(p2) generally denotes dispersive sum rules and ψi(p) is compact functions in p.
The reader might worry that the integral in eq. (3.1) is done all the way up to the cutoff,
pushing the convergence of the EFT expansion to the limit. For the time being we will
focus on super-convegent sum rules, for which this is not an issue. In section 3.4 we will
review how this problem can be avoided by considering improved sum rules [14, 15], which
only receive contributions from a finite number of EFT coefficients.

12If we denote the three sum rules in the order they appear as A,B,C, the relevant linear combinations
are respectively: 6A−B + C ≥ 0 and 90A+ 11B + 1

2C ≥ 0.
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In order to get a bound, the idea is to look for functionals whose action on any state
above the cutoff is nonnegative:

if F [J,m2] =
∫ M

0
dp
∑
i

ψi(p)Ci,−p2 [J,m2] ≥ 0 , ∀m ≥M ,J ∈ Z ,

then −
∫ M

0
dp
∑
i

ψi(p)Bi(p2)
∣∣∣
low
≥ 0 , (3.2)

where Ci,−p2 [J,m2] are the heavy densities defined in eq. (2.33). In words, any nonnegative
functional yields an inequality on low-energy observables, thanks to the relation between
low and high energies (2.27).

In D = 4 there will be a tension between finiteness and positivity: finiteness on the
graviton pole requires ψi(p) to vanish faster than p at the origin, which is impossible for
the Fourier transform of a positive function. In practice, we begin by finding functionals
which are rigorously positive at all impact parameters but logarithmically diverge on the
graviton pole. We then regulate by adding an infrared cutoff mIR �M , and accept that
this causes negativity at large impact parameters.

Before explaining how we produce positive functionals, we first detail how we ascer-
tain positivity.

3.2 Example positive functionals involving gravity

We now present explicit bounds that combine two ingredients:

• The spin-2,3 sum rules B(1)
2 (p), B(1)

3 (p), smeared against suitable wavepackets ψ(p)

• The forward limit of spin-4 sum rules and its first derivative: B(1)
4 (0), ∂p2B

(1)
4 (0).

These use only B(1) (2.25): fixed-u dispersion relation for the MHV amplitude.
In principle the spin-4 sum rules should also be smeared to make them rigorously valid,

but as discussed in section 2.3 this is a technical modification, which we will ignore here.
Using these ingredients and the method of section 2.4, we have constructed the following

two functionals:

Fg3 =
∫ M

mIR
dp (1− p)3(p(65 + 155p+ 47p2)B(1)

2 + 2(81− 1927p+ 4601p2)B(1)
3
)

− 5∂p2(B(1)
4 +B

(2)
4 )|p=0 , (3.3a)

Fg4 =
∫ M

mIR
dp(1− p)3(p(99 + 282p+ 49p2)B(1)

2 + (21− 474p+ 1216p2)B(1)
3
)

−
(
7B(1)

4 + ∂p2B
(1)
4 + ∂p2B

(2)
4
)
|p=0 , (3.3b)

in units where M = 1. Notice the lower cutoff mIR makes the functionals infrared-safe.
We claim that:

• Without the cutoff mIR, the functionals are positive for all states with m > M

• With the cutoff mIR, they only become negative at some large b ∼ m−2/3
IR
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• They imply the respective bounds:

|ĝ3|2M8 ≤ 37.8 log(M/mIR)− 45.4−Fg3

∣∣
matter , (3.4a)

g4M
6 ≤ 8πG

(
14.1 log(M/mIR)− 15.5− 0.04|ĝ3|2

)
−Fg4

∣∣
matter , (3.4b)

where the matter contributions (coming from possible light scalars or Kaluza-Klein
modes and detailed in eq. (3.8) below) is sign definite: F

∣∣
matter ≥ 0.

The bound (3.4a) is a sharp version of the CEMZ constraint [7]: ĝ3 ∼< 1
M4 , up to loga-

rithms. This shows that a cubic coupling of size 1
M4R

3 cannot be turned on without having
a heavy state at the mass M or lighter. The bound (3.4b) is similar for quartic couplings.

The functionals (3.3) are not optimal: their main virtue is to be explicit enough to be
analyzed in full detail in this section. They establish our main conceptual result: higher
dimensional couplings can be bounded in terms of Einstein gravity. Optimal bounds are
presented in the next section, see eq. (4.4).

How do we ascertain that a functional is positive on all heavy states? A simple strategy
is to plot the action F [m2, J ] as a function of m for various discrete spins J = 0, 2, 4, 5, 6, . . ..
Note that the heavy contribution (2.32) is the sum of two positive unknowns (|c++

J,m2 |2 and
|c+−
J,m2 |2) and we must ascertain that the coefficient of each is positive: we will refer to those

as F++ and F+− below. Thus two plots must be made for each (even) value of the spin,
and one plot for each odd spin.

Since we cannot plot infinitely many spins, it is fruitful to exploit regularity of the
functionals. We find that when plotted as a function of “impact parameter” b = 2J/m, and
m, the curves vary smoothly with spin and display simple asymptotic trends. This allows
us to draw contour plots where positivity is easy to ascertain, and potentially dangerous
regions can be easily identified for finer sampling.

We display Fg3 in figure 3. Unless noted otherwise, all plots in this section are in units
where M = 1. To make the plot, we considered data up to Jmax = 300, more specifically,
J = 0, 2, . . . , 300 for F++

g3 and J = 4, 5, . . . , 300 for F+−
g3 , accounting for spin selection rules.

For each spin, we sample the interval m ∈ [1, 16], with a larger density of points closer to the
origin (for example 80 points between 1 and 1.2 and 700 between 1.2 and 16). At the highest
value m = 16 we have safely reached the m→∞ limit, further discussed below, and the
value b = 40 is well past any interesting structure. Therefore figure 3 establishes positivity
of Fg3 . Similar plots are displayed for Fg4 in figure 4, where we used the same sampling.

In addition to sampling a finite range, we find it useful to verify positivity in a m→∞
scaling limit. The limit is nontrivial if keeping impact parameter b = 2J/m is fixed, and is
dominate by the B2 component of the sum rules. It is essentially the Fourier transform of
its coefficient [15]:

lim
m→∞

F [m2, bm2 ] = 2
m4

∫ 1

0
dpψ(p)×

((
|c++
J,m2 |2 + |c+−

J,m2 |2
)
J0(pb) + . . .

)
, (3.5)

where . . . represents higher orders in 1/m. With mIR = 0, positivity is easy to ascertain
at all b, as shown for Fg3 in figure 5. (In this limit, F++ and F+− coincide, so there is
only one curve.) However, with mIR = 0 the action on low-energy gravity is infinite, and
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(a) action of Fg3 on ++ states. (b) action of Fg3 on +− states.

Figure 3. Contour plots which confirm non-negativity of the functional Fg3 giving the upper
bound (3.4a), in units where M = 1. We scaled the functional by m10 to make scaling limits more
manifest. The sampling points are detailed in the text. The lower-left corner is blank in the second
figure due to the selection rule J ≥ 4.

(a) action of Fg4 on ++ states. (b) action of Fg4 on +− states.

Figure 4. Similar to figure 3: contour plots which confirm non-negativity of Fg4 , establishing the
bound (3.4b).

the resulting upper bound is vacuous. We thus add a cutoff θ(p > mIR), which creates
negativity (we take Fg3 as example to illustrate):

lim
b→∞

lim
m→∞

Fg3 [m2, bm2 ] ≈ 160
m4b3

− 260m
2
IR
m4

J(mIRb)
mIRb

. (3.6)

The second term overwhelms the first at bmax ∼ m−2/3
IR and creates negative plateau up til

b ∼ m−1
IR , where the Bessel function gets damped. While the total area under the functional

is necessarily 0 (because of vanishing at p = 0), the behavior past m−1
IR is not universal

and could be modified by using a smoother cutoff. This is depicted in figure 5, where we
contrast the functionals with mIR = 0 and mIR/M = 10−6.
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(a) (b)

Figure 5. Plots of functionals Fg3 at the scaling limit J,m → ∞ where b = 2J/m. (a) confirms
the positivity at finite b where the cutoff mIR makes no difference. (b) displays the large b behavior
for both mIR = 0 (blue curve) and mIR/M = 10−6 (orange curve). There is a negative plateau in
the range m−2/3

IR ∼< b ∼< m−1
IR as detailed in the text.

Note that the functionals Fg3 and Fg4 include derivatives of the spin-4 sum rule B(1)
4

around the forward limit. For the purposes of bounding |ĝ3|, one can also find functionals
that are pure linear combinations of B(1)

2 and B(1)
3 , with no forward limit component.13

Such functionals may have useful technical applications, since they avoid the subtleties with
forward limits discussed in section 2.5.

3.3 Light spin-0 and spin-2 matter fields don’t lower the cutoff

In addition to the graviton, we allow for the presence of possible spin-0 and spin-2 light
states (for example, Kaluza-Klein modes), whose amplitudes are given by eq. (B.1). They
contribute to the low-energy part of sum rules (integral over the arc at s ∼M2):

B
(1)
2 (p2)|matter = −

∑
m`<M

|g0(m`)|2(p2 − 2m2
` )

−
∑

m`<M

|g2(m`)|2
m4
`

(p2 − 2m2
` )(m2

` − 6m`p
2 + 6p4) , (3.7a)

B
(1)
3 (p2)|matter =

∑
m`<M

|g0(m`)|2 +
∑

m`<M

|g2(m`)|2
m4
`

(m2
` − 6m`p

2 + 6p4) , (3.7b)

B
(1)
4 (p2)|matter = −

∑
m`<M

|g2(m`)|2
m4
`

12 p2 . (3.7c)

The spin-2 contribution with m` → 0 is proportional to that from the cubic coupling |ĝ3|2,
see (2.30).

13One example is

(1− p)2(−154.020p7 + 2006.03p6 − 3443.55p5 − 2322.66p4 + 5294.87p3 − 2194.19p2 + 798.968p)B(1)
2

+ (3701.82p6 − 18251.2p5 + 32684.9p4 − 25581.3p3 + 7603.72p2 − 157.911p+ 0.00171)B(1)
3 ,

which proves the bound |ĝ3|2 ≤ 1598 log(M/mIR)− 3211. This could certainly be improved by including
more powers of p.
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Figure 6. Positivity of functional Fg3

∣∣
matter for acting on light matter fields (3.9). We separate out

the scalar and spin-2 contributions. The blue line is coefficient of |g0(m`)|2 and the orange line is
coefficient of |g2(m`)|2/m4

` in Fg3

∣∣
matter.

The key feature is that the unknown couplings |gJ (m`)|2 are sign-definite. Therefore, if
we take combination of sum rules such that the coefficient of each unknown is positive for
m` ∈ (0,M), then the unknown light and heavy states will all contribute with the same
sign leading again to a valid inequality on EFT parameters. For the functionals in eq. (3.3),
for example, we get:

Fg3

∣∣
matter =

∑
m`<M

|g0(m`)|2
(2591

210 m
2
` + 1

18

)
(3.8)

+
∑

m`<M

|g2(m`)|2
m4
`

(2591
210 m

6
` −

239
18 m

4
` −

64573
1540 m

2
` + 330151

4004

)
.

in units where M = 1. These polynomials are positive-definite as demonstrated in figure 6.
Alternatively, we could move the matter contribution in eq. (3.4a) to the left-hand-

side, giving:

|ĝ3|2 + Fg3

∣∣
matter ≤

1
M8 (37.8 log(M/mIR)− 45.4) . (3.9)

We conclude that our bounds on ĝ3 limit the sum of squared cubic couplings to all light
particles below the higher-spin scale M .

It is remarkable that light scalars or spin-2 particles cannot couple strongly to two
gravitons. This is very different than for the scalar EFT studied in [14], where the only
limit on the interaction strength of light scalars would be the unitarity bound Im aJ (s) ≤ 2.

This result can be interpreted as follows. In Einstein’s gravity, the decay rate of a
Kaluza-Klein graviton to two massless gravitons is proportional to an overlap integral∫
dy
√
gχ(y) = 0, which vanishes by orthogonality of eigenfunctions (here y is a coordinate

on the internal manifold and χ(y) is the eigenfunction corresponding to the mode in
question). Thus Kaluza-Klein modes only decay through higher-derivative corrections from
the higher-dimensional perspective. The 1/M8 suppression in (3.9) confirms that such a
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suppression exists for any massive spin-two particle, irrespective of its microscopic origin.
The scale of suppression is controlled the mass of higher-spin particles.

3.4 Systematic strategy: improved sum rules

In general, a low-energy gravitational EFT includes an infinite number of contact terms.
When evaluated at low-energies, the spin-2 and spin-3 sum rules B2(t) and B3(t) are each
sensitive to an infinite subset of these contact terms. It is useful to subtract from B2(t)
a linear combination of forward-limits of higher spin sum rules to define “improved” sum
rules [15], which are sensitive only to a finite number of higher-derivative corrections.

Ideally, one would like to use only smeared amplitudes in order to construct improved
sum rules. In practice, following [15], we instead take a more pragmatic approach, mentioned
below (2.22): we use smearing for spin-2 sum rules, where it is strictly necessary due to the
graviton pole, and for spin-3. However we allow ourselves to use forward-limit expansions
for all higher-subtracted sum rules. This will greatly simplify calculations.

Not all sum rules need to be improved, for example, the B(1)
2,3 and B(3)

2 sum rules are
automatically free of higher-dimension contact terms. For the B2 sum rules, we only need
to define

B
(2) imp
2 (p2) = B

(2)
2 (p) +

∮
∞

ds

4πi

[
−∂tf(p2 − s, 0)

s(s+ p2) + ∂tf(0, s)
s(s− p2) −

2s− p2

s2(s− p2)2 f(0, s)
]
,

(3.10a)

B
(4) imp
2 (p2) = B

(4)
2 (p) +

∮
∞

ds

4πi

[
p4(4s− 3p2)
s4(s− p2)2 h(s,−s) + 2p6

s3(s2 − p4)∂th(s,−s)
]
.

(3.10b)

The improved spin-2 sum rules have the low-energy contributions

−B(2) imp
2 (p2)|low, grav = 2πG

p2 |ĝ3|2 , −B(4) imp
2 (p2)|low, grav = −40πĝ3p

2 , (3.11)

where we have written only the contribution of graviton exchange for brevity. Similarly we
can also define improved versions of higher-spin sum rules. An example is:

B
(1) imp
4 (p2) = B

(1)
4 (p2) +

∮
ds

4πi

[
p2

s(s− p2)f(0,−s)− 2p12

s5(s2 − p4)f(s,−s)

+ p2(s4 − 2s3p2 − 2s2p4 − 2sp6 − 2p8)
s5(s+ p2) f(0, s) + p4(s2 + 2p4)

s4 ∂tf(0, s)

− p4(s2 − p4)
s4 ∂tf(0,−s)− p8

2s3
(
∂2
t f(0,−s) + ∂2

t f(0,−s)
)]
, (3.12)

which nicely gives

−B(1) imp
4 (p2)|low, grav = 4πG|ĝ3|2 + 2g4 . (3.13)

In this section, we apply these improved sum rules (together with some forward-limit
sum rules) to derive bounds involving higher-derivative Wilson coefficients and gravity,
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using the parameter choices listed in appendix C. Following [15], we consider wavefunctions
ψi(p) that are polynomials in p

ψi(p) =
∑

n=nimin

cinp
n . (3.14)

Our wavefunctions start with specific exponents nimin that depend on the sum rule. Specifi-
cally, we require that all sum rules possess the same large-b behavior in the scaling limit
m→∞ with b = 2J

m fixed and large. (One can prove that this is a necessary condition for
obtaining a positive functional.) Precisely, the minimal values of n for the improved spin-2
sum rules are

(n(1)
2 min, n

(2)
2 min, n

(3)
2 min, n

(4)
2 min) = (1, 10, 6, 1) . (3.15)

Since higher-spin sum rules are subleading at large-m (with fixed b), their wavefunctions
can safely start with nmin = 0, as long as spin-2 sum rules are included in the functional.

It is worth noting that compact support in p can lead to oscillations at large b, which can
potentially hinder positivity. To suppress oscillations, it is useful to make the wavefunctions
smoother near p = 1 (in units where M = 1). We do this by multiplying the wave functions
by a power of (1−p). For example, our example functionals in the previous section included
factors of (1− p)3 to suppress large-b oscillations. In this section, we consider wavefunctions
of the form

ψi(p) =
nimin+nmax∑
n=nimin

cin(1− p)2pn , (3.16)

where we truncate n to nmax. Larger values of nmax will correspond to more complicated
functionals and stronger bounds.

As mentioned before, to allow for light matter particles, we add additional constraints
to the solver SDPB [68, 69] that impose negativity of matter contributions to low-energy
sum rules for m` < M . In practice, this means including positive matrices that are
negatives of the matrices paired with low-energy three-point couplings gs(m`), g∗s(m`), and
g2(m`), g∗2(m`) for m` < M . In the MHV sum rules, matrices for matter particles are simply
the coefficients of |gs(m`)|2, |g2(m`)|2. In numerics, we discretize m` to the following values:
m` ∈ (0, 0.01, . . . , 1)M .

3.5 Relation with the CEMZ argument

In [7], CEMZ considered classical scattering of gravitons with various polarizations against
a target (for example, a black hole) and argued that a too-large value of |ĝ3|M4/G would
lead to a time advance for one of the polarizations. It is instructive to see how the CEMZ
argument is paralled in our formalism.

The basic idea is to consider the B sum rules at large impact parameters bM � 1.
Momentarily ignoring the compact-support constraint p < M , we can define impact-
parameter sum rules by Fourier transforming in the transverse space

B̂
(1)
2 (b) =

∫
d2p

(2π)2 e
ip·bB

(1)
2 (p) = 1

2π

∫ ∞
0

dp pJ0(bp)B(1)
2 (p) . (3.17)
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Figure 7. Scattering of gravitons with arbitrary helicity 1h1 → 4−h4 against a 2→ 3 “target”, as
used in the CEMZ-like argument (3.19). Time runs from left to right.

At large b, the integral is highly oscillatory, which suppresses the heavy action (2.32) on
states with small J . Acting on states with J � 1, the d̃ function simplifies according
to (A.11), and the integral localizes14 to

B̂
(1)
2 (b)

∣∣
high →

1
π

〈(
|c++
J,m2 |2 + |c+−

J,m2 |2
) δ (2J

m − b
)

bm4

〉
. (3.18)

This is positive, yielding a constraint on low-energy coefficients −B̂(1)
2 (b)

∣∣
low.

More generally, we can consider scattering of an arbitrary helicity graviton (1 and 4)
against a positive-helicity target (2 and 3), see figure 7, which motivates us to consider a
matrix of sum rules:

B(p2) =
∮
s=∞

ds

s3

(
M(1+2−3+4−) M(1+2−3+4+)
M(1−2−3+4−) M(1−2−3+4+)

)
(s,−p2) = 0 , (3.19)

evaluated in the forward limit. In the center of mass frame, we have(
M(1+2−3+4−) M(1+2−3+4+)
M(1−2−3+4−) M(1−2−3+4+)

)
∼ s4

(
f(s, t) p̂4g(s, t)
p̂∗4g(s, t) f(s, t)

)
, (3.20)

where we have defined p̂ = p1 + ip2, where pi are the components of transverse momentum
transfer. Thus, we recognize the matrix elements of eq. (3.19) as our forward B(1)

2 , B(3)
2

sum rules

B(p2) =
(

1
2B

(1)
2 (p2) p̂4B

(3)
2 (p2)

p̂∗4B
(3)
2 (p2)∗ 1

2B
(1)
2 (p2)

)
. (3.21)

Let us transform to b space using (3.18) for the diagonal terms. For the off-diagonal
terms, we use

B̂
(3)
2 (b) =

∫
d2p

(2π)2 p̂
4eip·bB

(3)
2 (p) = β2

2π

∫ ∞
0

dp p5J4(bp)B(3)
2 (p) , (3.22)

14A way to see this is using the identity
∫∞

0 dp pJν(xp)Jν(yp) = δ(x− y)/x for ν > −1/2.
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where β = b̂/b̂∗ with b̂ = b1 + b2. We find the following heavy contribution:

B(b)|high∝
〈[(

c++
J,m2β

∗

c−+
J,m2β

)(
c++
J,m2β

∗ c−+
J,m2β

)∗
+
(
c+−
J,m2β

∗

c−−J,m2β

)(
c+−
J,m2β

∗ c−−J,m2β
)∗] δ(2J

m −b
)

bm4

〉
,

(3.23)

which is positive-definite, since the bracket is (by construction) a positive-definite matrix.
On the other hand, evaluating the low-energy contribution in eqs. (2.7) we find

− B(b)|low = 4G

log[1/(bmIR)] 24ĝ3
b̂4

24ĝ∗3
b̂∗4

log[1/(bmIR)]

 . (3.24)

The eigenvalues of this matrix precisely reproduce the eikonal time delays given in eq. (3.22)
of [7] (with γthere = 8ĝhere

3 ). It is instructive to see how these calculations relate. In that
reference the eikonal phase is computed from the Fourier transform of the non-analytic
parts of the amplitude

δ(s, b) = 1
2s

∫
d2p

(2π)2 e
ip·b

 8πGs2

p2
4πGs2p̂4

p2

4πGs2p̂∗4

p2
8πGs2

p2

 . (3.25)

A classical time delay (matrix) is then extracted from the energy derivative: t = ∂
∂E δ(E2, b).

We see that the energy-growing part of the time delay is precisely what our matrix of sum
rules captures:

t = E B(b)|low. (3.26)

Now the dispersive sum rules state that (3.23) equals (3.24). In particular, they imply that
the energy-growing part of time delays (in the linear regime) must be positive.

The argument of ref. [7] is concluded by noting that the low-energy calculation (using
graviton exchange) is only valid then b�M−1 where M is the mass of heavy states. Thus
we should only impose positivity of (3.24) in that range, which gives the parametric bound:

|ĝ3| ∼<
1
M4 log[1/(bmIR)] . (3.27)

Ref. [7] further argued that an infinite tower of higher-spin states needed to appear.
This discussion highlights that CEMZ constraints are built into dispersive sum rules,

they are a subset of the functionals enumerated in the preceding subsection. Namely, this
subset consists of spin-2 functionals B2(p) integrated against wavepackets that are peaked
at impact parameters b. The CEMZ requirement b� 1/M then has a clear origin in our
compact support property p < M (see section 2.3).

Despite the fact that the same mathematics appear, the physical assumptions are
quite distinct. Ref. [7] considered very large center of mass energy, where the amplitude
exponentiates, whereas we consider Gs� 1 where the tree-level approximation is sufficient.
(Appendix D of [7] also presented an argument valid in the linear regime and related to
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spin 8πGĝ3M
2 g4M

4 g5M
6 g6M

8 g′6M
8

0 +1×2
315

16
1575

64
10395

192
35035

64
135135

1
2 −2×2

315
58

1575
944

51975
32

1911
1856

675675

1 +3×2
315

248
1575

848
17325

258304
4729725

13856
675675

3
2 −4×2

315
1676
1575

160
2079

434272
1576575

32192
135135

2 +5×2
315

5368
315 −31888

10395
6024448
1576575

800288
135135

Table 1. One-loop contributions to low-energy parameters from heavy particles of various spins,
divided by an overall factor G2N where N is the number of particles of the given spin circulating in
the loop. Extracted from [48].

the “chaos bound” [55].) The upside of using large center of mass energies there was that
the acausality becomes classical and macroscopic, which led to transparent “grandparent
paradoxes”. The downside is that the cutoff is imprecise, b� 1/M : such a method gives
parametric bounds, in contrast with the precise cutoff p < M which yields sharp bounds.

In addition, the fact that we scatter waves rather than particles enable the precise
energy resolution that is needed to probe the mass and couplings of states above the cutoff.
One might say that time advances constitute a classical statement of causality, while crossing
symmetry and analyticity of the S-matrix provide a quantum version.

4 Results

In this section we will present our results for bounds on EFT modifications of Einstein gravity.

4.1 Comparison with model amplitudes

Following ref. [48] it will be instructive to compare our bounds with explicit models, with
higher-dimension operators arising from integrating out a loop of massive particles of mass
m and spin two or less. For this one loop process, the mass of the lightest higher-spin states,
which are two-particle states, is M = 2m. The resulting Wilson coefficients are shown in
table 1.

Note that the complex coupling ĝ3 (which enter non-MHV amplitudes) vanishes for
supersymmetric spectra; correspondingly, the first column in the table is proportional to
the numbers of degrees of freedom and a fermionic sign. Other complex couplings follow the
same pattern and it thus suffices to record the contribution from a heavy spin-0 particle:{
ĝ4M

2, ĝ5M
4, ĝ6M

8, ĝ′6M
8, ĝ′′6M

8
}

spin 0
= G2N

{ 8
945 ,

4
495 ,

4
3003 ,

3488
225225 ,

512
1576575

}
.

(4.1)

It is important to note that since we neglect light graviton loops, the effect of integrating
out a particle are suppressed by a power of GM2 � 1 compared with the effects we focus
on, and are thus beyond the accuracy of our bounds. Nonetheless, the comparison with
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these models becomes physically meaningful (larger than neglected graviton loops) if a
large number N of heavy particles circulate. In this sense, the upper bounds on couplings
recorded below in figure 9 can be interpreted as bounds on the number of species above
mass M : N ∼< #M2

pl
M2 log(m/mIR), as far as their effects on low energies are concerned. This

has the expected dependence on Mpl from “species bounds,” although our bounds have an
extra factor of an infrared logarithmic due to the nature of the probes we are using.

In addition, following [48], we will consider three models of string theory:

f = 8πG
stu

Γ
(
1− s

M2
)
Γ
(
1− t

M2
)
Γ
(
1− u

M2
)

Γ
(
1 + s

M2
)
Γ
(
1 + t

M2
)
Γ
(
1 + u

M2
) ×Xp , (4.2)

where X = 1− su
M2(t+M2) and p = 0, 1, 2 representing respectively the superstring theory,

the heterotic string, and the bosonic string. In all cases M coincides with the mass of the
first spin-4 particle exchanged between gravitons.

For the string models, we extract low-energy parameters by matching with the low-
energy expansion (2.7) and subtracting the low-energy poles. For the bosonic string, we
additionally subtract a tachyon pole 1

t+M2 . (Because of the tachyon, the bosonic string
model is not fully “physical”, however after subtracting this pole it still has a positive
heavy spectral density.) There is an ambiguity of whether we include the spin-0 and spin-2
contributions to the t = M2 pole as part of fmatter or as part of the “heavy” contributions:
our bounds are valid in either case. In the plots below the string models thus span extended
regions, depending on what fraction 0 ≤ γi ≤ 1 of each pole we choose to subtract. For
example, for the heterotic string we find

g4
∣∣
hs = 8πG

(
1 + 2ζ3 −

11
12γ0 −

1
12γ2

)
, g5

∣∣
hs = −8πG

(
1 + 11

12γ0 + 1
12γ2

)
. (4.3)

4.2 Bounds involving R3, R4 and gravity

In the preceding section, we provided example functionals giving upper bounds (3.4) on
|ĝ3|2 and g4 in terms of gravity. As we emphasized, these bounds were not optimal, and we
get stronger ones by using the numerical parameter choices in appendix C. Our optimal
bounds are:

|ĝ3|2M8 ≤ 24.9 log(M/mIR)− 27.6 , (4.4)
g4M

6

8πG ≤ 12.3 log(M/mIR)− 13.5 . (4.5)

To obtain these, we included all improved sum rules Bimp
2 and Bimp

3 with nmax = 6, and we
included additional ∂qp2B

(1) imp
4 (0) up to q = 2 to get the bound on g4.

A finer way to present the constraint is to carve out the allowed space in the three
EFT parameters |ĝ3|2, g4 and G, as shown in figure 8. These were are computed by using
all improved B2 and B3 for nmax = 5 and additional forward-limit contributions from
∂qp2B

(1) imp
4 (0) up to q = 2.
A special limit of the bound is the dashed line in figure 8 which is tangent to the

allowed region near origin; from its slope we find numerically that
g4

8πG ≥ 0.26|ĝ3|2M2 . (4.6)
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Figure 8. Allowed region for |ĝ3|2 and g4 in terms of Newton’s constant and the spin-4 mass gap
M . Note that both axes are rescaled by an infrared logarithm log(M/mIR). Manifestly, both |ĝ3|2
and g4 obey two-sided bounds; a nonvanishing cubic coupling ĝ3 requires a nonvanishing quartic g4.
The dashed line gives the bound eq. (4.6).

This is effectively equivalent to the bound g4
8πG ≥

1
4 |ĝ3|2M2 reported in (6.13) of [48] using

forward-limit bounds of spin k ≥ 4. This bound indicates that it is not possible to turn on
a cubic coupling without having a quartic coupling as well.

It is instructive to see the impact of allowing light spin-0 and spin-2 matter fields on the
bounds. If we assume that such particles are absent, we of course obtain stronger bounds,
as shown in figure 9, where we used the same space of functionals. Notice both regions with
or without light matter share the same tangent line (4.6).

Our approach can also compute bounds for mixed amplitudes, beyond MHV. In
figure 10, we derive bounds for Re ĝ4 (i.e., in all positive helicity configuration) and g4 in
terms of gravity. In particular, we instead use nmax = 6 to help convergence of functionals
built from combining Bimp

2,3 and forward-limit of improved sum rules ∂qp2B
(2) imp
4 up to q = 2.

Although we consider only Re ĝ4, this bound really applies to the magnitude |ĝ4| since from
the perspective of the graviton scattering amplitude the overall phase of a complex coupling
can be removed by a little-group rotation and thus cannot be constrained (only relative
phases between couplings can).

The dashed lines display the positivity constraints (2.37), which we reproduce here:

g4 ± |ĝ4| ≥ 0 . (4.7)

We see that the allowed region is much smaller than the cone (2.37), which appears to be
tangent to the allowed region. In particular, a theory which would saturate one of these
inequalities is ruled out; this would correspond to a theory where either of α or α′ in (2.8) is
set to zero. (A similar conclusion was reached recently using seemingly different arguments
which used only causality within the EFT [70]; it would be interesting to understand
the relationship.)
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Figure 9. Similar to figure 8: the allowed region for |ĝ3|2 and g4 in terms of Newton’s constant.
For the blue region, light spin-0 and spin-2 massive states are allowed in the spectrum, while the
smaller orange region applies to theories that have no such light fields. Both regions share the same
tangent (4.6).

Figure 10. Allowed region for Re ĝ4 and g4 in terms of Newton’s constant, the spin-4 mass gap M ,
and an infrared cutoff mIR, with light spin-0 and spin-2 matter fields allowed. The dashed lines
show the positivity bounds (4.7). Bounds obtained from improved spin-2, 3 sum rules and B(2) imp

4
at the second derivatives order. The lines display the loop amplitudes of subsection 4.1.

The solid lines in the figure 10 display the loop amplitudes of subsection 4.1 as a
function of N , assuming a large number of species N . As visible from the plot, theories
with N � M2

G are excluded.

4.3 Bounds involving D2R4

Moving to the next derivative order, we apply spin-2 sum rules to relate g5 to g4 and G, see
figure 11a. Of course, we already know from eq. (2.40) that g5/g4 has two-sided bounds,
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(a) (b)

Figure 11. Allowed region for (a) g5 and g4 and (b) Re ĝ5 and g4 in units of Newton’s constant, the
spin-4 mass gap M , and an infrared cutoff mIR, with light spin-0 and spin-2 matter fields allowed.
The dashed lines show the positivity bounds (4.8) and (4.9) respectively. Solid lines display the loop
amplitudes of subsection 4.1.

and that g4/G log is bounded, and therefore we expected two-sided bounds on g5/G log as
well. Similarly we can compute bounds on non-MHV couplings, i.e., for ĝ5 in figure 11b.
We follow the same strategy as for ĝ4 above to project onto the parity eigenstates and thus
present bounds for Re ĝ5, although the bounds really apply to |ĝ5|.

An interesting aspect of these plots is that the allowed regions are rather smaller than
a cone. The dashed lines in figure 11a are tangent to the plot at origin, which reproduces
the positive bounds (2.40):

g4 ± g5M
2 ≥ 0 . (4.8)

Similarly, the dashed lines that are tangent to figure 11b at the origin correspond to simple
positive bounds

g4 ± 0.8|ĝ5M
2| ≥ 0 . (4.9)

Curiously, this bound appears stronger than what we could derive from forward limit
functionals.

To compute bounds plotted in figures 11a and 11b, we truncated the space of functionals
to nmax = 5 built from improved sum rules to from spin-2 to spin-6, i.e., Bimp

i with i = 2 . . . 6.
In the former case we also include forward-limit of sum rules ∂kt B

(1) imp
4 (0) and ∂kt B

(1) imp
5 (0)

and in the latter ∂qp2B
(1) imp
4 (0) and ∂qp2B

(2) imp
4 (0), with up to q = 4 to guarantee the large J

behaviour of functionals are positive. Other detailed parameter choices are listed in table 2.

4.4 Bounds involving D4R4 and low spin dominance

In section 2.5 we reviewed how expanding higher-spin sum rules around forward-limit
produces homogeneous bounds involving e.g., g′6/g6, which gives eq. (2.43), which we
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Figure 12. Allowed regions for g6 and g′6, normalized by the quartic self-coupling, g4. The blue,
orange and olive regions show increasing derivative orders 6, 7 and 15 respectively. On the left we
superimposed the values realized in the models of subsection 4.1. (b) is a zoom near the origin of
the allowed region, showing the rapid convergence with derivative order. Although negative values
of g′6 are excluded asymptotically, at any finite derivative order the boundary appears to be tangent
to lines of slope 6 and − 90

11 .

reproduce here:

−90
11 ≤

g′6
g6
≤ 6 (using forward limits and a single null constraint) . (4.10)

An important observation made in [48] was that the space of couplings spanned by the
theories in section 4.1, a.k.a “the theory island”, is much smaller than that given by such
homogeneous bounds. In [48], in order to approach the theory island, the authors propose
an additional assumption called low-spin-dominance (LSD), which is a constraint on possible
UV spectra stating that higher-spin states are suppressed compared to low-spin states.
Quantitively, for MHV amplitudes, LSD implies

LSD : |c+±
4,m2 | ≥ α|c+±

J>4,m2 |2 , (4.11)

where α ≥ 1 was used to parameterize the size of suppression of higher-spin states. By
increasing α, ref. [48] pushes the bounds asymptotically to

0 ≤ g′6
g6
≤ 2 (assuming LSD) , (4.12)

thus narrowing down the space of couplings to that spanned by the aforementioned theories.
In this paper we do not assume LSD. However, by considering inhomogeneous bounds

involving g6/g4 and g′6/g4 of increasing derivative orders n (meaning null constraints having
up to the same scaling dimension as the coupling gn), we find that we can further narrow
down the space of couplings as shown in figure 12.15 As we increase the number of null

15This result was found concurrently in ref. [71], which also studies inhomogeneous bounds of the form
gnM

2(n−m)/gm, and makes similar observations. We thank the authors of that paper for sharing their draft
with us and coordinating submission.
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(a) (b)

Figure 13. Allowed regions for (a) g6 and g′6 and (b) Re ĝ′′6 and g4, normalized by gravity, and
allowing light matter. The left panel rules out negative values of g′6. Moving along the model lines
corresponds to changing the number N of particles in the loop. Curiously, all considered models
have very small values of ĝ′′6 .

constraints at higher derivative order, we observe that g′6 is approaching g′6 ≥ 0. We can thus
claim that positivity of g′6 holds asymptotically, which agrees with the prediction of LSD [48].
On the rightmost edge g6M

4/g4 = 1 we find the absolute upper bound g′6M4/g4 . 2.38,
which is significantly closer to the ratio predicted by LSD.

We can do even better by considering impact-parameter bounds on g6 and g′6 normalized
by gravity, which are the main novelty of this paper. This can be computed by using Bimp

i

with i = 2 . . . 6 with nmax = 8, with the result shown in figure 13a. Surprisingly, we find,
as we include spin-2 sum rules, we have the dashed line tangent to the plot at origin that
gives bounds

0 ≤ g′6
g6
≤ 3 (our bounds, using spin k ≥ 2 sum rules) . (4.13)

This lower bound is exactly the one predicted by LSD [48]. Furthermore, although the
absolute upper bound is weaker than that predicted by LSD, the whole region is narrower
since the upper dashed line is mostly excluded.

As an additional example, we can also provide bounds involving couplings which
contribute to the + + +− helicity configuration. More concretely, we compute bounds on
Re ĝ′′6 and g4 in terms of gravity using Bimp

i with i = 2 . . . 7 together with ∂qp2B
(1) imp
4 (0)

and ∂qp2B
(3) imp
4 (0) up to q = 4, with the result shown in figure 13b where the dashed lines

correspond to

g4 ± 2.61|ĝ′′6 |M4 ≥ 0 . (4.14)

We conclude that the discrepancy between dispersive bounds and the known “theory
space” is very much reduced when more sum rules are used. Compared with previous
work, our constraints are tighter (without making additional assumptions such as “low spin
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(a)

?)

(b)

or

(c)

or

(d)

Figure 14: Production of a quark jet plus missing energy from a collision of a quark with a

gluon; wavy lines denote graviton and dashed line higher-spin particles. The rapid high-energy

growth of (a) could be softened by modifying its various ingredients: opening up the upper

vertex by making the higher-spin particle composite, or softening the vertical or horizontal

lines by exchanging new particles. Each option opens new processes: (b) the composite’s

components could be produced with M ⇠ (Mpl)
�2 (c) direct gravitational-strength coupling

to Standard Model fields M ⇠ (Mpl)
�1 (d) non-gravitational exchanges ⇠ (Mpl)

0.

10�20 from GR’s prediction, corresponding to higher-derivative terms with size

bg3 ⇠
10�20

(10�11eV)4
or

bg4
16⇡G

⇠ 10�20

(10�11eV)6
. (4.15)

The latter is only relevant if the former vanishes (g5 and higher-derivative couplings can

never dominate over g4, by (2.42)). The bounds 4.4 indicate that light higher-spin states

with M < 10�8eV or M < 10�6eV would then have to exist, depending on whether bg3 or bg4
dominates, respectively.7 Could this compatible with null results from collider searches?

Temporarily treating a higher-spin state as a point-like particle (left-panel of figure 14),

there are two possible tensor structure for its couplings to two gravitons. Its production

cross-section in association with a jet and graviton depends on whether the same-helicity one

is present, or vanishes:

|M|2pp!jet+/E |(a) ⇠

8
<
:

↵s
bs16

M4
plM

12 , if |c++
J=4|2 6= 0,

↵s
bs8

M4
plM

4 , if |c++
J=4|2 = 0.

(4.16)

Here we have included a factor of ↵s to create the jet, and bs is the partonic center of mass

energy. For crude estimates, we will consider that missing-energy searches [] exclude amplitude

that are |M| ⇠> 1 when
p
bs ⇠ TeV. Thus, despite the suppression by the Planck mass

Mpl ⇠ 1015TeV, in the first scenario any M ⇠< MeV is clearly ruled out, while in the absence

of same-helicity couplings (as in a supersymmetric spectrum), existing experiments still rule

out M ⇠< 10�3eV. Thus for a point-like higher-spin particle, colliders and our bounds easily

exclude e↵ects of the size (4.15); corrections at larger distances will be even smaller than

10�20.

7 Here we are conservatively treating infrared logarithms as O(1), since even for the largest logarithm we

can think of, (log RUniverseMPl
)

1/4 ⇡ 3.
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Figure 14. Production of a quark jet plus missing energy from a collision of a quark with a gluon;
wavy lines denote graviton and dashed line higher-spin particles. The rapid high-energy growth of
(a) could be softened by modifying its various vertices or propagators, however each option opens
new processes: (b) if the higher-spin states are composite their components can be produced directly
with M ∼ (Mpl)−2 (c) if other vertical exchanges cancel the graviton contribution they can be
produced directly withM∼ (Mpl)−1 (d) new horizontal exchanges would lead to resonances with
M∼ (Mpl)0.

dominance”) mainly as a result of including more functionals and considering inhomogeneous
bounds. The later greatly helps since tangent slopes near the origin in figure 12 converge
more slowly than other constraints. Given the tendency of higher-derivative coefficients
to grow geometrically, we expect even more dramatic reductions in the allowed volume at
higher derivative orders, although we have not studied those systematically.

4.5 Can higher-spin states be hidden from the Standard Model?

This subsection is less rigorous than the rest of this paper; we limit ourselves to non-
exhaustive arguments and order-of-magnitude estimates.

What do collider searches tell us about higher spin particles, of the kind that can lead
to modifications of GR? Heuristically, because gravity is universal and couples to all matter,
one might expect that modifications to it also couple to everything. Indeed, many specific
scenarios of modified gravity, such as string theory models, predict resonances that couple
directly to Standard Model matter. The non-observation of such resonances impose strong
constraints on the string scale: M ∼>7.7TeV, and on many other scenarios as well [72, 73].
Can model-independent constraints be made on potential low-scale modifications to GR?

To orient the discussion, let us imagine a (very hypothetical) scenario where the
dynamics of a 10M� black hole, of size L ∼ 30km∼ 1/(10−11eV), were somehow observed
to differ by more than 10−20 from GR’s prediction. (Such a signal strength is orders-of-
magnitude weaker than considered in either LIGO or EHT contexts [74, 75], but has been
chosen to illustrate collider constraints.) An effective field theorist might try to attribute
this to higher-derivative terms of size:16

ĝ3 ∼
10−20

(10−11eV)4 or ĝ4
16πG ∼

10−20

(10−11eV)6 , (4.15)

16We recall from the introduction that “fifth forces” which do not grow with energy, involving for example
direct couplings of matter to new spin 0 and spin 1 particles, are unconstrained by our arguments. We thus
omit this possibility here.

– 33 –



J
H
E
P
0
5
(
2
0
2
3
)
1
2
2

the latter being only relevant if the former vanishes. Note that g5 and higher-derivative
couplings can never dominate over g4, by (2.40). The bounds (4.4) indicate that light
higher-spin states with M < 10−6eV or M < 10−8eV would then have to exist, depending
on whether ĝ3 or ĝ4 dominates, respectively.17 Could this be compatible with null results
from collider searches?

Temporarily treating higher-spin states as point-like particles (left-panel of figure 14),
there are two possible index structures for their couplings to two gravitons. These have
respectively eight and four derivatives, corresponding to same- and opposite-helicity of the
two gravitons. The production cross-section of the higher-spin particle at a hadron collider,
in association with a graviton and a jet (to make missing momentum to trigger on) are then

|M|2pp→jet+/E |(a) ∼


αs

ŝ8

M4
plM

12 , if |c++
J=4|2 6= 0,

αs
ŝ4

M4
plM

4 , if |c++
J=4|2 = 0.

(4.16)

Here ŝ is the partonic center of mass energy, and we have included a factor of αs to create
the jet. For crude estimates, we will consider that missing-energy searches [76, 77] exclude
amplitudes of size |M| ∼> 1 when

√
ŝ ∼ TeV. Thus, despite the strong suppression by

Mpl ∼ 1015TeV, we see that in the first scenarioM ∼< MeV is clearly ruled out. However, the
analysis in this paper does not rule out the option that |c++|2 = 0, which is the boundary
of slope −1 in figure 11a; but in this case there is still a tension with collider searches
if M ∼< 10−3eV. We conclude that if higher-spin particles are point-like, colliders and
our bounds easily exclude effects of the size (4.15); effects on larger distances would be
even smaller.

Now, the new states don’t have to be point-like: the above amplitudes could be softer.
However, softening mechanisms generically open up other production mechanisms that are
also constrained, as in the stringy example discussed above. These are depicted in figure 14.

For example, the higher-spin states could be two-particle states of some light fields
that couple to us only through gravity, which would soften the top vertex. However
since two-graviton couplings in this scenario are small ∼ 1/M2

pl, long-distance effects are
negligible unless there are a very large number of such light fields (for the same reason that
quantum effects from Standard Model loops are extremely small for simple observables
around macroscopic black holes [78]). Specifically, in order to have a 10−20 effect at
L, at a minimum N ∼> 1060 of them would be needed (such that N/(M2

plL
2) ∼ 10−20;

fields with mass m < L−1 can be treated as effectively massless in this estimate). This
would lead to a very low “cutoff” Mpl/

√
N above which gravity becomes strongly coupled,

and values N > 1032 are typically not considered for this reason [79]. Besides possible
cosmological constraints, let us simply mention that even with the minimal coupling
(b), since (TeV/Mpl)4 ∼ 10−60, for such N even current colliders could have detected a
production cross-section

|M|2pp→jet+/E
∣∣
(b) ∼ αs

ŝ2

M4
pl
×N. (4.17)

17In this subsection we ignore infrared logarithms since (logMRUniverse)1/4 ∼< 3.
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Other softening mechanisms may modify other ingredients in figure (a). For example new
higher-spin states could be exchanged between Standard Model fields and the higher-spin
particle. But these could then be produced directly with a four-derivative graviton-strength
coupling as in (c):

|M|2pp→jet+/E
∣∣
(c) ∼ αs

ŝ6

M2
plM

4 , (4.18)

detectable if M ∼< 10keV. This amplitude could again be softened, but again the cure is
worse than the disease since this almost certainly requires new states exchanged on the
horizontal propagator, leading to string-like resonances (d) as discussed above.

These estimates, if correct, challenge the notion that modifications of gravity at large
scales could be hidden from colliders. In the considered scenarios, the amplitudes to
produce higher-spin states either grow rapidly with energy, or get cancelled by new particles
that would be themselves detectable. We hope that more robust and model-independent
statements will be obtained in the future.

5 Conclusions

In this paper, we analyzed constraints on low-energy graviton-graviton scattering, assuming
that causality and other basic principles apply at all energies. Theoretically, graviton
scattering is an ideal way to probe potential modifications of Einstein’s theory of gravity. At
the same time, causality of a scattering process translates into well-understand mathematical
properties like analyticity. This implies Kramers-Kronig-type dispersion relations, which
express low-energy observables in terms of unknown but positive absorption probabilities at
high energies, and which we have systematically analyzed.

Our key result (4.4) is simple to state: if a higher-derivative correction were measured,
corresponding to L = 1

16πG(R + r4
0Riem3 + . . .), and if Nature respects causality as we

understand it, then a spin-4 particle must exist whose Compton wavelength is at least as
long as the length r0: M−1 > r0.

The notion that higher-derivative corrections can come from heavy particles may
not surprise an effective field theorist. The scaling with Mpl of our bounds is however
interesting. An effective field theorist might argue that the apparent breakdown of the
derivative expansion at the length r0 suggests the existence of new states with mass ∼ r−1

0
or lighter, but their friend could have objected that the states could be much heavier:
the required three-point couplings respect unitarity bounds as long as M ∼< (M

2
pl
r0

) 1
3 . We

excluded the second option: new higher-spin states must exist with mass M ∼< r−1
0 or

lighter. The Mpl scaling of our bounds means that heavy states couple to two gravitons
with a strength that never exceeds the three-graviton coupling of Einstein’s theory.

This means that the effective field theory approach to gravity can never describe
modifications to Einstein’s theory that are not parametrically small: in any situation where
an EFT is justified at the distance L (ML� 1), corrections are small (r0/L� 1).

Our bounds on cubic couplings are qualitatively similar to the parametric bounds
obtained in [7], with the important novelty that we find sharp bounds with precise numerical
coefficients. As discussed in section 3.5, this is done by imposing a quantum notion of
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causality based on commutators and crossing symmetry, rather than a classical one based
on time advances. Technically, we apply dispersion relations to a physical region where
transverse momenta are below the cutoff M but energies are above M (but still much less
than Mpl, so that tree-level diagrams give a good approximation). The finite momentum
transfer also allows us to constrain local (quartic) and non-local (cubic) self-interactions on
the same footing.

Our bounds assume that new states satisfy M �Mpl. They are expected to be valid
modulo relative corrections ∼ M2

M2
pl

from loop effects within the EFT. It would be interesting
to explicitly compute some of these corrections.

We treated the graviton as exactly massless. By continuity, we expect our bounds
to also control the scattering of transversely polarized gravitons with m � M . For
massive gravitons, one however anticipates much stronger constraints coming from the
study of longitudinal polarizations, which do not have a smooth m → 0 limit (see for
example [35, 80, 81]).

Our results significantly reduce the gap observed in [48] between dispersive bounds and
“theory space”, as further discussed in section 4.4. Yet, it is noteworthy that our bounds
are not saturated by known theories. This could indicate that stronger bounds are still
possible; this is of course also suggested by the fact that all our bounds involving G contain
infrared logarithms. It will be interesting to find a way to obtain infrared-safe bounds, and
to further investigate the gap between theory space and dispersive bounds.

As explained in [39], dispersive bounds for scalar amplitudes in flat space can be lifted to
AdS and imply corresponding bounds on OPE coefficients of holographic CFTs. Physically,
the same must be true for graviton scattering as well. For example, (4.4) translates to a
bound on three-point OPE coefficients of stress tensors in holographic 3d CFTs. In AdS4,
infrared logarithms are simply replaced by log(MRAdS).

The notion of causality that we used in the paper applies to scattering processes in
an otherwise empty and flat region of space. Physically, since we mainly probe energies of
order M and impact parameters b ∼ M−1, we expect our conclusions to remain valid in
any spacetime in which a flat patch of radius �M−1 exists, including our own. (This is
the reason for the agreement between bounds in flat space and AdS.) Evidently, studying
energies above the EFT cutoff was essential to probe the mass and couplings of higher-spin
states. An important question is whether some of our bounds can be understood from
thought experiments within the EFT itself.

From the generic collider estimates given in section 4.5, assuming causality as we
understand it, we find it difficult to imagine that higher-derivative terms could be visible
at macroscopic distances. A better understanding of interactions between gravitational
higher-spin states and matter should lead to more precise constraints.

In summary, experimental verifications of Einstein’s theory test a basic question: can
signals travel faster than the speed of light?
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A Spinning partial waves and Wigner-d functions

The Wigner-d functions are defined as

dJh,h′(x) =N J
h,h′

(1+x
2

)h+h′
2
(1−x

2

)h−h′
2

2F1
(
h−J,J+h+1;h−h′+1; 1−x

2

)
, (A.1)

where we defined the normalization

N J
h,h′ = 1

Γ(h− h′ + 1)

√
Γ(J + h+ 1)Γ(J − h′ + 1)
Γ(J − h+ 1)Γ(J + h′ + 1) , (A.2)

so that dJh,h′(1) = δh,h′ . In the main text we will use instead the helicity-stripped d-functions

d̃Jh′,h(x) = N J
h,h′ 2F1

(
h− J, J + h+ 1;h− h′ + 1; 1−x

2

)
. (A.3)

Note that d̃J0,0(x) is the familiar Legendre polynomial. Some useful properties of these
functions are the symmetries

dJ−h−h′(x) = dJh′h(x) , dJh′,h(x) = (−1)h−h′dJh,h′(x) , (A.4)

and their transformation under parity

dJh,h′(−x) = (−1)J+hdJh,−h′(x) , (A.5)

as well as orthogonality ∫ 1

−1
dx dJh,h′(x) dJ ′h,h′(x) = 2

2J + 1δJJ
′ . (A.6)

Physically, the decomposition (2.13) corresponds to exchanging heavy states X with
the following three-point amplitudes, which are uniquely fixed by Poincaré symmetry [83]:

M(1+, 2−, 3X) = c+−
J,m2

√
16πm2 〈13〉J−4〈23〉J+4〈12〉−J (A.7)

M(1+, 2+, 3X) = c++
J,m2

√
16πm2〈13〉J〈23〉J〈12〉−2−J [12]2 . (A.8)
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We can then glue two three-point amplitudes by summing over immediate polarizations to
conclude the partial wave expansion eq. (2.11) (where ahJ(s) is replaced by eq. (2.13)). For
example, forM+−−+, we have [83]∑
X

M(1+,2−,5X)M(3−,4+,5X∗)

= |c+−
J,m2 |216πm2〈12〉−J〈34〉−J×

∑
j

(J+4)!2(J−4)!2
j!(J+4−j)!2(j−8)!〈13〉j〈14〉J+4−j〈23〉J+4−j〈24〉j−8 .

(A.9)

We can then convert to the center-of-mass frame where

λ1 =
√
m

(
1
0

)
, λ2 =

√
m

(
0
1

)
, λ3 = i

√
m

√1+x
2√

1−x
2

 , λ4 =
√
m

 √
1−x

2

−
√

1+x
2

 .

(A.10)

Using this parameterization, eq. (A.9) can then be analytically summed to Wigner-d
functions.

We will also be interested in the behavior at large J , taken with fixed impact parameter
b = 2J/m, which is given by

lim
J,m→∞

d̃Jh,h′
(
1− 2p2

m2

)
= Jh−h′(bp)

(p/m)h−h′ , (A.11)

where Jh−h′(bp) on the right-hand side is a Bessel function of the first kind.
The following are also useful when expanding around the forward limit, which corre-

sponds to expanding x around 1

dn

dxn
d̃J0,0(x)

∣∣∣
x=1
≥ 0 , dn

dxn
(d̃J4,4(x)− (−1)J d̃J4,−4(x))

∣∣∣
x=1
≥ 0 . (A.12)

B Amplitudes from matter and Kaluza-Klein exchanges

In this appendix, we record the contribution from light “matter” fields to the low-energy
amplitudes (2.7). If the light matter fields have discrete masses m`, these amplitudes are
rational functions whose poles match the spin-0 and spin-2 contributions to the above
partial waves:

fmatter(s, u) =
∑

m`<M

|g++
0 (m`)|2
m2
` − t

+
∑

m`<M

|g++
2 (m`)|2(1− 6su/m4

` )
m2
` − t

. (B.1)

To get the last factor, for example, we used the J = 2 partial wave (2.15b) on the t = m2
` pole:

d̃2
0,0

(
1 + 2s

m2
`

)
= 1 + 6s(s+m2

` )
m4
`

' 1− 6su
m4
`

when t = m2
` . (B.2)

Away from the pole, the spin-2 exchange (B.1) is unique up to contact interactions, which
are, to the same derivative order, either linear in t or constant. (That is, different choices
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of writing (B.1) could shift the g4 and g5 coefficients in (2.7) by multiples of |g++
2 (m`)|2.)

The above choice will lead to the amplitude with the best possible Regge growth (spin-4 at
fixed-s, and spin-2 at fixed-t), and to the simplest sum rules, but other choices would not
significantly change the analysis.

In reality, since they can decay (in particular, to two gravitons), the light fields cannot
give sharp poles but at best resonances; this simply replaces the sum by an integral:

∑
m`<M

|g++
J (m`)|2
m2
` − t

(· · · ) 7→ 16π(2J + 1)
∫ M2

0

dm2
`

2πm8
`

|c++
J,m2

`
|2

m2
` − t− i0

(· · · ) , (B.3)

where the partial waves c++
J,m2

`
are normalized as in (2.15).

Only same-helicity couplings g++
2 appear in the above due to angular momentum rules,

which forbid a particle of spin < 4 from decaying to a (+−) two-graviton state. For the
same reason, the single minus amplitudes do not receive contributions

gmatter(s, u) = 0. (B.4)

Finally, the all-plus amplitudes are

hmatter(s, u) =
∑

m`<M

g++
0 (m`)2

(
s4

m2
` − s

+ t4

m2
` − t

+ u4

m2
` − u

)
(B.5a)

+
∑

m`<M

g++
2 (m`)2

(
s2(s2 − 6tu)
m2
` − s

+ t2(t2 − 6su)
m2
` − t

+ u2(u2 − 6st)
m2
` − u

)
. (B.5b)

It is important here that each numerator is quartic in Mandelstam invariants, so as to
cancel the denominator in (2.3). Contact ambiguities have been fixed to avoid high-energy
growth with Regge spin greater than 2.

C Details on numerics

In this appendix, we give details on our numerical implementation of dispersive bounds.
We mostly follow [15], though some new complications arise when considering spinning
external particles (as opposed to scalars). Most of the issues are not specific to 4d, so we
phrase our discussion in general spacetime dimensions.

A generic dispersive optimization problem takes the following form:

maximize
∑
i

∫ M

0
dpψi(p) Bi(p2)

∣∣∣
low

such that
∑
i

∫ M

0
dpψi(p)Bi(p2)[m2, J, λ] � 0 ∀m > M , reps ρ = [J, λ] . (C.1)

The Bi(p2) are dispersive sum rules, labeled by an index i, evaluated at t = −p2. The
wavefunctions ψi(p) are chosen to project out all but a subset of couplings in the low-energy
contribution Bi(p2)

∣∣
low. Here, ρ runs over little-group representations of massive particles
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that can appear in intermediate channels. We can associate to each ρ a Young diagram
[J,m2, . . . ,mn] where n = bd−1

2 c. We denote λ = [m2, . . . ,mn] and write ρ = [J, λ]. Aside
from a few special cases at small J , the ρ’s fall into families where J can be arbitrarily
large, while λ remains fixed. For each ρ-family, the heavy density Bi[p2,m2, J, λ] is an
n× n matrix, where n (which depends on λ) is the number of three-point structures for
two external particles producing an internal ρ-particle.

Following [15], we choose a polynomial basis for the wavefunctions ψi(p):

ψi(p) =
N∑
n=0

ai,np
n. (C.2)

Then (C.1) becomes a semidefinite program with decision variables ai,n and an infinite num-
ber of positivity constraints labeled by m, ρ. We truncate to a finite number of constraints
using a combination of discretization and polynomial approximations. Specifically, we split
(m, ρ)-space into the following four regimes:

Fixed J , fixed m. Choosing some Jmax, we impose positivity at the finite set
of representations ρ = [J, λ] with J ≤ Jmax and masses m2 = 1/(1 − x), where
x ∈ {0, δx, 2δx, . . . , b 1

δxcδx}. Our detailed parameter choices are listed in table 2.

Large J , fixed m. Unlike in the case of external scalar particles [15], we found that it is
important to explicitly control the large-J limit of our functionals at fixed m. To do so, we
compute a series expansion of the integrated heavy density at large J

∫ 1

0
dp pnBi[p2,m2, J, λ] ∼ #Jr + #Jr−1 + . . . . (C.3)

Truncating this expansion to a finite number of terms, and multiplying by an appropriate
power of J , we obtain a polynomial approximation for the heavy density as a function of
J . We discretize m as before and, for each m, impose positivity of the resulting matrix
polynomial of J on the interval [Jmax,∞).

Large m, fixed b = 2J
m
. An important set of positivity constraints come from the impact

parameter scaling limit m → ∞ with fixed b = 2J
m . In this regime, the heavy densities

behave as

lim
m→∞

Bi[p2,m2,
bm

2 , λ] ∼ Ji,λ(pb)
m2ki

, (C.4)

where ki is the Regge spin of the i-th sum rule. Consequently, only the lowest-spin sum rules
contribute in this limit. Thus, in the scaling limit, we set all higher-spin sum rules to zero
and replace the lowest-spin sum rules with their approximations (C.4). The matrices Ji,λ(pb)
have entries that involve Bessel functions and their derivatives. Following [15], we choose a
cutoff B and impose positivity at a discrete set of b ≤ B, b ∈ {εb, εb+δb, . . . , εb+dB−εbδb

−1eδb}.
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Large m, large b. As in [15], we must take care to impose positivity in the impact
parameter scaling limit for b > B. Let us review the trick used there. For scalar scattering,
the heavy density Cimp

2,−p2 [m2, J ] is simply a 1× 1 matrix, with scaling limit

lim
m→∞

Cimp
2,−p2 [m2, mb2 ] =

2Γ(d−2
2 )

m4

J d−4
2

(bp)

(bp/2) d−4
2
. (C.5)

Integrating against a wavefunction, we have∫ 1

0
dpψ(p)

J d−4
2

(bp)

(bp/2) d−4
2

= A(b) +B(b) cos
(
b− π(d− 1)

4

)
+ C(b) sin

(
b− π(d− 1)

4

)
,

(C.6)

where A(b), B(b), C(b) have well-behaved asymptotic expansions in inverse powers of b. The
large-b behavior of A(b) can be determined from the small-p behavior of the integral on the
left-hand side. The oscillating terms B(b) and C(b) come from the other endpoint of the
integral p = 1.

The key idea is to replace (C.6) with

A(b) +B(b) cosφ+ C(b) sinφ (C.7)

and impose positivity for b > B and arbitrary φ — not just for φ = b− π(d−1)
4 . Although

this is a stronger condition than positivity of (C.6) (and thus, could lead to weaker bounds),
we expect it to be a good approximation at large b, where b− π(d−1)

4 is a rapidly-varying
phase relative to A(b), B(b), C(b).

To see how to impose positivity of (C.7), we write

A(b) +B(b) cosφ+ C(b) sinφ =
(
cos φ2 sin φ

2

)
M(b)

(
cos φ2
sin φ

2

)
, (C.8)

where

M(b) =
(
A(b) +B(b) C(b)

C(b) A(b)−B(b)

)
. (C.9)

Positivity of (C.8) for arbitrary φ is equivalent to the statement that M(b) is positive-
semidefinite:

M(b) � 0 . (C.10)

We can now expand M(b) at large b, and approximate it as a power of b times a 2 × 2
matrix polynomial of b. We then impose positivity of this matrix polynomial for b ≥ B.

Let us now consider the case of interest for this work, where the heavy density is a
matrix. In the impact parameter scaling limit, the integral against wavefunctions ψi(p) has
the same form as before:∑

i

∫ 1

0
dpψi(p)Ji,λ(pb) = Aλ(b) +Bλ(b) cos

(
b− π(d− 1)

4

)
+ Cλ(b) sin

(
b− π(d− 1)

4

)
,

(C.11)
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where now Aλ(b), Bλ(b), Cλ(b) are n× n matrices (n depends on λ). As before, we replace
b− π(d−1)

4 with φ and seek to impose positivity for arbitrary φ. In other words, we would
like to impose

(
~v cos φ2 ~v sin φ

2

)
Mλ(b)

(
~v cos φ2
~v sin φ

2

)
≥ 0 for all φ ∈ R, ~v ∈ Rn , (C.12)

where Mλ(b) is a 2n× 2n matrix of the form (C.9) with n× n block entries.
Note that we can freely rescale the vectors ~v and (cos φ2 , sin

φ
2 ) without changing the

positivity conditions (C.12). Thus, we can think of ~v as parametrizing a point [v1 : · · · :
vn] ∈ RPn−1, and (cos φ2 , sin

φ
2 ) as parametrizing a point [w1 : w2] = [cos φ2 : sin φ

2 ] ∈ RP1.
In this language, (C.12) is equivalent to imposing that Mλ(b) is positive on the image of
the Segre embedding

σ : RP1 × RPn−1 → RP2n−1

σ : ([w1 : w2], [v1 : · · · : vn]) 7→ [w1v1 : · · · : w1vn : w2v1 : · · · : w2vn] . (C.13)

A theorem of [84] states that if a quadratic form Q is nonnegative on a variety X ⊆ RPk−1

of minimal degree, then Q is a sum of squares of linear forms (and hence represented by
a positive semidefinite matrix on Rk). X has minimal degree if it is nondegenerate (not
contained in a hyperplane) and deg(X) = 1 + codim(X). Fortunately, the image of the
Segre embedding σ has precisely these properties: it is nondegenerate, has degree n, and
has codimension n− 1.18 Hence, we conclude that (C.12) is equivalent to the statement
that Mλ(b) is a positive-semidefinite 2n× 2n matrix:

Mλ(b) � 0 . (C.14)

It is remarkable that such a simple condition captures the necessary positivity conditions,
even for n 6= 1. We can now proceed as in the scalar case: we expand Mλ(b) at large b to
rmax subleading orders and approximate it in terms of a matrix polynomial of b. We then
impose positivity of this matrix polynomial for b ≥ B.

Having imposed positivity of the heavy density in these four regimes (fixed m and J ,
large J and fixed m, large m and fixed b, and large m and b), we find that the resulting
functionals are positive in practice for almost all m,J . Violations of positivity come from the
functional becoming slightly negative between discretized values of m or b. Such violations
can usually be fixed by perturbing the functional slightly (for example by including a small
admixture of another nearly positive functional).

Our parameter choices are listed in table 2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

18In fact, the image of σ is an example of a rational normal scroll, which is one of the three families of
minimal degree varieties, according to the classification [85].
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Jmax 42
δx 1/400
εb 1/250
δb 1/32
B 40
rmax 4

non-default
SDPB parameters ––precision=768

Table 2. Table of parameters used for discretization and polynomial approximations.
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