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Causality Constraints on Gravitational Effective Field Theories
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We consider the effective field theory of gravity around black holes, and show that the coefficients
of the dimension-8 operators are tightly constrained by causality considerations. Those constraints
are consistent with — but tighter than — previously derived causality and positivity bounds and imply
that the effects of one of the dimension-8 operators by itself cannot be observable while remaining
consistent with causality. We then establish in which regime one can expect the generic dimension-
8 and lower order operators to be potentially observable while preserving causality, providing a
theoretical prior for future observations. We highlight the importance of “infrared causality” and
show that the requirement of “asymptotic causality” or net (sub)luminality would fail to properly

diagnose violations of causality.

Introduction.— General relativity (GR) should be
thought as the leading order term in an effective field the-
ory (EFT) that includes an infinite number of higher-dim
operators [1-5]. If we are interested in gravity below some
energy scale A, we may integrate out all particles with
masses above that scale. Assuming a tree level weakly
coupled completion, such as a string theory, the effective
action is

2
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where Lp,, denotes a linear combination of all possible
dim-n operators built out of the Riemann (or Weyl) cur-
vature and its covariant derivatives, see App. A. The
higher-dim operators capture the effects of the heavy
fields that have been integrated out at tree-level, i.e. par-
ticles of spin > 2. One would expect the scale A to be
the mass of the lightest higher spin state (s > 2). Mo-
tivated by the recent detections of gravitational waves
(GWs), there has been a surge of interest in establish-
ing whether these operators could be probed assuming a
very low A. Such operators could indicate the presence of
new physics beyond the standard model and potentially
connect us with the dark sector. A formalism for prob-
ing those operators with inspiraling GWs was proposed
in Ref. [7]. Finite size effects of black holes (BHs) have
also been investigated in the presence of dim-8 operators
[8] and dim-6 operators [9] [6]. Interestingly, LIGO and
Virgo constraints on the dim-8 operators were explored
in Ref. [11]. For related works see Refs. [12-15].

While we may be on the edge of constraining
gravitational EFTs using GW observations, theoretical
considerations also have significant impact. For instance,
requiring the low-energy EFTs to be embeddable in a
local Wilsonian, unitary, Lorentz invariant and causal
high energy completion like string theory imposes a
set of positivity constraints on these EFTs [16, 17]. In
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parallel, it is well known that in gravitational EFTs, the
sound speed can appear to be superluminal [9, 19-28],
and by demanding the local group velocity of GWs
to be (sub)luminal, it was shown in Ref. [18] that the
coefficients of the dim-8 operators ought to be sign
definite. In this Letter, we shall complement the state
of the art by further investigating the constraints set
by causality. Our requirements for preserving causality
are similar to the ones indicated in Refs. [29-31] but
differ from the notion of “asymptotic causality” or net
(sub)luminality which is sometimes postulated in the
literature. As we shall see, the “asymptotic causality”
condition, while necessary is not sufficient for preserving
causality and fails to identify situations which are known
to be in tension with causality as inferred for instance
from positivity bounds.

GWs in dim-8 EFT.— Motivated by the findings of
Ref. [11] we shall start with the following dim-8 operator,

2

S](jls) = /d4x\/jg% |:R+ % (RabcdRade)z} ’ (2)
with ¢; = £1. Considering a BH of mass M, the met-
ric slightly deviates from the Schwarzschild one with a
magnitude proportional to the dimensionless parameter
p = (GMA)=%, where G = 1/(87M3,) is Newton’s con-
stant, see App. B for details.

GWs can be decomposed into odd and even parity
metric perturbations ht, propagating independently on
the Schwarzschild-like background. Expressed in spher-
ical harmonics with multipole ¢, the radial dependence
of each mode can be captured by the master variables
\Ilfe(r), where w denotes the frequency. Including the
dim-8 operators perturbatively, the master variable satis-
fies the modified Regge-Wheeler-Zerilli equation [8], [10]

a2,
dr2

= [W? —VE(r: ) —ap VE(r £, w)] T5,, (3)

where r, is the tortoise coordinate, VGiR are the GR po-
tentials and V* the leading-order EFT correction (see
App. B for the technical details). Parity ensures that
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both modes decouple and we shall omit the + indices
unless relevant.

For the EFT to remain valid when scattering GWs
on a BH, the Riemann curvature ought to be small as
compared to the cutoff at the impact parameter r, =
(¢ + 1/2)/w, meaning r,A > 1 and GM/r} < A>.
Moreover, we also require that the description of the
GWs is under control as discussed in Refs. [30, 31] (see
App. C), meaning that their asymptotic energy w should
be bounded by

w < A%y (4)

With this in mind, the background is then automatically
under control if 4 <1 and r, > GM.

Scattering phase shift and time-delay.— When
considering the scattering of GWs on a Schwarzschild-
like BH in model (2), the EFT corrections manifest them-
selves in the scattering phase shift and time delay, which
can be inferred from solving Eq. (3) in the WKB ap-
proximation. For practical reasons, we shall focus on
GWs with w? < max(|Vgr|), in which case the desired
WKB solution is the one that decays exponentially at the
horizon (tortoise coordinate r, — —o0). At infinity, the
corresponding solution asymptotes to [30],

_ (_1)€e—iwr* , (5)
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with the phase shift
5 = / dr, <\/w2 —Ver —apV — w)
rT

1
—wrl + g (K + 2) , (6)

where r!" is the turning point defined by w? — Vgr —
c1pV = 0. The scattering time delay is then given in
terms of the phase shift by T, = 206,(w)/0w. As com-
pared to the GR answer TZGR, the total time delay Ty
acquires an additional EFT contribution §7},

Ty =TPR + 6T, + O(u?). (7)

Writing 67y = cipdte, Fig. 1 shows Jtét as a function
of w for various values of ¢ (see App. D). Interestingly,
0t, and 51? always have opposite sign, so that there is
always a time advance for one of the GW polarizations
for any choice of ¢; = +1.

Infrared Causality.— As has been established for
QED [29] and for other gravitational theories [30], a time
advance compared to GR, i.e. §7T; < 0, does not neces-
sarily indicate acausality. It violates causality only if
the time advance, calculable within the wvalidity regime
of the EF'T, is resolvable. For causality to be respected,
the front velocity should be luminal, meaning that the
infinite frequency limit of the phase velocity should be
luminal as dictated by the geometry seen by those high-
frequency modes. As unitarity and analyticity (derived

40

30p — odd
20F even
wéty 10f
0
-10f \
-20 L L L L
0.2 0.4 0.6 0.8
w?IVimax

FIG. 1. EFT corrections on the scattering time delay
of the odd (blue) and even (orange) modes in the dim-8
EFT (2). From light to dark, the curves show w dt, with
0 =2, 22 42,62 and 82. The EFT contribution to the time
delay is given by 0Ty = c1 4 dte, so the odd modes enjoy a time
advance when c¢; = 1, and the even ones when ¢; = —1.

from causality) dictate that the phase velocity cannot
decrease with frequency, this implies that low-frequency
modes should necessarily be subluminal with respect to
the local background geometry. Indeed, the equivalence
principle implies that the high-frequency modes can only
be sensitive to the local inertial frame, so causality is
fixed by the background geometry seen by the high-
frequency modes. At the level of a low-energy EFT,
causality therefore demands that low-energy modes be
(sub)luminal as compared to the background geometry,
which in terms of observables requires that any support
outside the light cone determined by the geometry be un-
resolvable, see [31] for more details. In other words, the
statement of ‘infrared causality’ is violated if

—0T; 2 1/w (infrared acausality). (8)

Note that infrared acausality necessarily implies the ab-
sence of a standard and causal high energy completion,
however respecting infrared causality does not necessarily
guarantee the presence of a consistent UV embedding, it
only is a necessary condition. Translating this back into
the parameters of the model (2), we infer that a wave
with frequency w and multipole ¢ scattered about a BH
of mass M in the EFT (2) violates causality whenever

1 4172 \*
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Introducing the parameter v defined as w? = 7 Vipax,
with Vigax being the maximum of Vgr ~ (2(GM)~2,
the condition (9) only depends on the BH mass via f.
Naturally, the effect of the dim-8 operator increases with
w as illustrated in Fig. 1, however w should be smaller
than V.« for the phase shift to be well approximated by
(6), [32]. For these reasons, we consider v = 0.9, so that
w x £ at large ¢, and the impact parameter is constant.
We compute the condition (9) numerically and present
the results in Fig. 2 which indicate that the EFT (2) vi-
olates causality in the odd sector if ¢; = +1 and p 2 0.04.
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FIG. 2. Parameter space (shaded grey) of causal violating
time advance in the dim-8 EFT (2). fvalidity and presolvability
are the upper and lower bound of y in condition (9), and fines
is the lower bound in condition (11).

Crucially we see that if ¢; = —1, the even sector
always violates the notion of infrared causality. In
that case, the even modes lead to a time advance
with (5tzr increasing quadratically with the multipole /,
while w increases linearly as £ — oo. Therefore, both
sides of the inequality (9) decrease as £~2 at large /.
Explicit calculation shows that the left hand side of
the inequality (9) is smaller than its right hand side
(cf. Fig. 2). This implies that no matter how small y
is, for sufficiently large ¢ the time advance will always
be resolvable when ¢; = —1, hence violates causality, [33].

The main implication of our findings is that the
EFT defined in (2) can only ever be causal if ¢; = 1
and if (GMA)™% < 0.04 for any BH. Given that the
smallest known BH has 3Mg [35-37], the causality
constraint translates into a lower bound on the cutoff
scale enforcing A > 7 x 1071eV. Within the current
state of the art, the EFT (2) with a cutoff of order
A ~ 107 13eV was shown to lead to observable effects
[11]. While such a low cutoff can lead to a potentially
interesting phenomenology, it also comes hand in hand
with violations of causality. We can push those bounds
further by considering BHs with arbitrarily small mass,
which would lead to a constraint on c¢;/A% to be ar-
bitrarily small. In particular, BHs with radii as small
as the fundamental scale of quantum gravity Myung
would force the scale A to be associated to that scale
A ~ Mgunaq in the case where no other dim-6 and -8
operators are considered.

Our conclusion on the sign of the coefficient of the
dim-8 operator is entirely consistent with expectations
on the low-energy operators derived in type II string
theory [39] after compactification [40]. It also has been
shown that the sign of ¢; can be fixed by demanding
the local group velocity of high-frequency GWs to be
(sub)luminal [18]. The dim-8 operator c; (RabcdRade)2
is, in spirit, the gravitational analog of the c(d¢)*
operator that enters generic Goldstone EFTs. In that
case the existence of a standard Wilsonian completion,

manifests itself via positivity bounds, which have been
shown to be directly linked with the sign of the coeffi-
cient ¢ [41-43]. Within the low-energy EFT, the sign of
coeflicient c is also directly linked to resolvability of time
advances and hence to causality [30]. Applying similar
types of positivity bounds to gravitational EFTs have
been shown to impose ¢; > 0 [16, 17]. Not only are our
conclusions fully consistent with those results, they also
allow us to derive a lower bound of the cutoff of the
EFT considered in (2) when ¢; = 1.

Asymptotic Causality.— The time delay TeGR in-
troduced in Eq. (7), is the one perceived by the freely
propagating modes following null geodesics on that back-
ground. In this sense, T°R represents what the high-
energy modes (the modes with energy well above A and
well below Mp)) are subject to on that very background.
See, for instance, Ref. [29] for an analog discussion in the
case of QED.

On the other hand, §7y represents the additional time
delay of the low-energy modes on that same background,
arising from interactions with the heavy fields (whose ef-
fects are precisely encapsulated by the inclusions of the
higher dimension operators). Since causality demands
that low-energy modes do not travel outside the light
cone set by the high-energy modes, what matters in set-
ting causality is the sign of 67Ty and not the net Tp. Only
a time advance in addition to the GR contribution, i.e., a
negative 67y, would signal that the retarded propagator
has support outside the light cone set by the high-energy
modes [29, 30, 44-47].

Positivity of the net Tp, is referred to as asymptotic
causality, and violating it requires

—T; 2 1/w, (asymptotic acausality), (10)

leading to a different lower bound in the inequality (9),

GR -1 3
M < u <L (W) (11)

—c10tp w2G?M?
From Eq. (6), we see that T® approaches to a constant
at large ¢, while dt, ~ 2 and 515; ~ 2, whereas the
upper bound in the inequality (11) still scales as £73.
Therefore, irrespective of the parameters of the EFT,
sufficiently high multipoles that remain within the
regime of validity of the EFT always enjoy a positive
net time delay, as depicted in Fig. 2. Comparing to the
criteria used previously, the statement of asymptotic
causality while necessary is not sufficient and by itself
would always leads to much weaker constraints on the
EFT. For the EFT considered in (2), the statement of
asymptotic causality would allow for a negative ¢; = —1
so long as u < 1077, i.e., so long as A > 15/GM. Stated
differently, around a BH of mass M = 3Mg, the net
time delay remains positive for all polarizations even if
¢y = —1 and A taken to be as low as 103" Mp. Yet
we know from positivity bounds that such a situation
would be in direct tension with causal and unitary



requirements. This illustrates how the statement of
asymptotic causality fails to properly diagnose violations
of causality. These considerations further show how
insisting instead on an unresolvability of the EFT
time advance is precisely what is linked with causality
considerations in known situations.

Causality in the generic EFT of gravity.— We
now generalize the previous argument to more generic
gravitational EFTs, and show that the causal require-
ment ¢; > 0 in model (2) could have been drawn by
focusing on the high multipole limit. To keep the dis-
cussion general, we consider the EFT corrections on the
potential to scale as V' ~ (™ at large ¢, and extend the
definition of p to u = (GMA)~2™, where n and m are
integers determined by the leading operators present in
the EFT. Again, we write w? = vVpax. As £ — o0,
Vinax — 2/27G?M? and hence w ~ £. Focusing on the
scaling in ¢, the condition (9) reduces to

et < 2tmeT™ for 0> 1, (12)

where the lower bound is the resolvability condition, and
the upper bound ensures the EFT is under control.

From the condition (12) we see that a resolvable
time advance at infinitely large ¢ can only be trusted
when n > m + 1. In this case, for any u there exists a
large enough ¢, such that the resulting multipole would
necessarily violate causality for a particular sign choice
of the higher dimensional operator coefficient. This is
exactly the case for the even modes in model (2), which
have n = 4 and m = 3. It explains why the sign of ¢;
has to be definite. On the other hand the odd modes
have n = 2, and causality only imposes an upper bound
on fi.

This argument can be directly applied to other
higher-dim operators. In particular, the corrected
Regge-Wheeler-Zerilli equations in the presence of dim-6
and dim-8 parity-preserving operators takes a similar
form as Eq. (3) [8, 9]. Up to field redefinitions, there
are two additional dim-8 operators beside the one in
Eq. (2). While one of them is parity violating and
is beyond the scope of this Letter, another operator
62(5“befRabcdRede)2 only affects the odd modes with
V~ ~ ¢* 1In this case, the odd modes exhibit a time
advance when ¢, < 0, and the previous argument
indicates that causality demands ce > 0, which again is
fully consistent with the causality requirements inferred
in Ref. [18] and with the low-energy EFT arising from
type II string theory compactification [39, 40].

The constraints on the dim-8 EFT implicitly assume
that dim-6 ones are subdominant, however up to field re-
definitions, the generic EFT of gravity could also include
the dim-6 operator bR, R /R, ;% (see App. A).
In this case, the EFT corrections are suppressed by
w=(GMA)~* with V ~ (2 at large £. Performing the

same analysis, we find that consistency with causality
depends on the sign of the coefficient b;. For by = —1,
both modes will always exhibit a resolvable time advance
and violate causality whenever A < 10~ 'eV (Mg /M)
(see App. D). However, whenever by = +1 neither mode
presents a time advance. The statement of infrared
causality (imposed by consistency and causality of the
UV completion) thus implies that a low-energy EFT
of the form (1) can only enjoy a standard causal high-
energy completion when the coefficient of the Riemann?
operator is positive or is sufficiently suppressed that it
can be ignored as compared to higher order operators.
This is precisely consistent with known explicit string
theory realizations. Indeed for maximally supersymmet-
ric and heterotic string theory that coefficient vanishes
while it is positive in bosonic string theory [54]. Note,
however, that this result is now proven to be generic for
any consistent tree-level weakly-coupled UV completion,
independently of the details of the specific realization.

Observability and Outlook.— With the growing
interests in probing gravity with GWs, our study pro-
vides a theoretical prior from causality considerations
for all constraints on EFTs of gravity. Remarkably, for
the EFT (2), the regime of parameters which was found
to be disfavored by the GW events GW151226 [49] and
GW170608 [50] in Ref. [11] could have been ruled out
on causality considerations alone, assuming a tree level
UV completion. This also implies that the current GW
observations are not able to test the model (2) against
GR as causality priors require the cutoff of this EFT to
be bounded by at least A > 7 x 10~!1eV (possibly much
higher). We emphasize that the lower bound on A is im-
posed only for the particular dim-8 model (2). General
dim-8 EFTs usually involve both ¢; and ¢y operators,
and there will be no lower bound on A from infrared
causality considerations if both ¢; and co are positive
and if ca/c1 ~ O(1) (see App. D), in which case the cut-
off of the EFT can be as low (or even lower) as that
considered in Ref. [11] and the dim-8 EFTs could be
probed/constrained with the current GW observations
without being in conflict with infrared causality. Note
that If ¢ = 0, and consider BHs with arbitrarily low
mass then causality forces ¢; /A% to be arbitrarily close
to zero.

Moreover, probing the EFT of gravity with GWs is
even more promising when dim-6 operators are included.
The dim-6 operators typically dominate over the dim-8
ones in the EFT expansion and could contribute to in-
spiral waveforms at lower post-Newtonian (PN) order.
While dim-6 operators could start contributing to the
inspiral waveform at 5PN order [14], 3 orders lower than
the dim-8 operators (see App. F), we can still use the
constraints obtained in Ref. [11] as a conservative estima-
tion of constraints on the dim-6 EFT corrections. This
implies that GW events like GW151226 and GW170608
could already probe the EFT of gravity with dim-6 op-
erators for a cutoff A € [1073,10712]eV or even a wider
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FIG. 3. Observability of generic dim-6 operators with inspi-
raling GWs. One could expect to constrain (or observe) dim-6
operators when they enter at a scale A in the enclosed con-
tours. We consider inspiraling GWs from equal mass binaries
BHs with total masses shown in the horizontal axis. For LIGO
and Einstein Telescope (ET), we assume the binaries are at
300Mpc, while for LISA, we consider binaries at 3Gpc (solid
line) and 26Gpc (dashed line).

range. Future GW detectors like Einstein Telescope and
LISA are expected to measure the PN coefficients with
fractional accuracies of 10% [51, 52] or better. Figure 3
shows the potential detectability of generic dim-6 opera-
tors with future GW detectors. Specifically, we assume
the dim-6 operators are detectable if their corrections
on the phase of observed inspiraling GWs, calculated

within the EFT validity regime, is greater than O(1).
For a given GW source, the EFT corrections are propor-
tional to A=* and accumulate during inspiral. Therefore,
the total dephasing could be less than O(1), if A is too
large or is so small that there are not enough GW data
available within the EFT validity regime, leading to an
upper bound and a lower bound on A for the dim-6 op-
erators to be detectable. Remarkably, it is possible to
probe the dim-6 operators of the EFT of gravity while re-
maining consistent with causality at a cutoff in the range
A € [10714, 107!] eV if we observe binary BHs of 20M,
inspiraling at 300Mpc with the Einstein Telescope. That
range can then be lowered to A € [10717, 1071%]eV if we
observe two 10° M, BHs inspiraling at 3Gpc with LISA.
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Appendix A: Higher dimensional operators in gravitational EFTs

The higher-dimensional operators in gravitational EFT have been constructed, for example, in Ref. [55]. The dim-4
operators can be written as

Lps = ap2R* + ay2W}, .5 + acs R, (A1)
where Rip = waa 3 _4R;2w+R2 is the Gauss—-Bonnet term, and W,, s is the Weyl tensor. In 4 spacetime dimensions,
the Gauss—Bonnet term is topological, which allows us to rewrite the dim—4 curvature operator Lagrangian as

Lps = a1R2 + (J,QRI“,R“V, (A?)
with
2
a] = aR2 — §6W2, as = 2aw2. (A3)

The dim—6 operators can be written as
Lpe = blR/waﬁRaﬁwaW + b2RWRw6’vRuaﬁ7 + b3RRuuaﬁRwaﬁ + b4RuavﬁRa’yl30R*f”0V
+ bs ROR + bg R OR™ + by R® + bsRR2, + b3, + b1oR* R*P R0, (A4)

nv

Note that the notation is slightly different from the one used in Ref. [9].

Focusing on a Ricci-flat background, the dim-4 operators and most of the dim-6 operators do not contribute to
the linearized equation of GWs, except operators with coefficients by, ba, b3 and by [9]. Moreover, in 4-dimension
spacetime, the operators with b; and b4 are related. Namely, one of them can be written as a linear combination of
another and the other dim-6 operators [56]. Therefore, it would be sufficient to consider, for example, operators with
b1, bo and b3 when considering linearized GWs propagating on a Ricci-flat background. If we further allow for field
redefinitions, then all operators aside from the one governed by by are field redefinable (in the absence of matter).
We refer to Ref. [47] for a word of caution in performing field redefinitions when it comes to establishing the speed
of various species as the notion of speed is not invariant under field redefinitions even though the notion of causality
is. In what follows we shall however simply focus on the b; operator so as to better draw an analogue to how dim-8
operators have been treated previously.

Appendix B: BH perturbations

GWs can be considered as metric perturbations propagating on a background metric

_ 1 1
g/u/ = g;u/ + mhuy + mhty ) (Bl)

where g, is the background metric, and hi, are the metric perturbations. Here we have decomposed the metric
perturbations into their odd- and even-parity modes, labeled by — and + respectively. For the background, we focus
on the static and spherically symmetric BH, which is described by the Schwarzschild metric in GR. In the presence
of higher-dimension operators, the Schwarzschild solution usually receives corrections, and the background metric, up
to the leading EFT corrections, can be written as [8, 9]
2 2 1 2, .2102
ds [fOr) + pdfe(r)]dt +f(T)+,LL5fr(7")dT +r°dQ*, (B2)
where f(r) =1—2GM/r with M being the ADM mass of the BH, and 0 f;/, are the leading EFT corrections with
w1 being a dimensionless parameter counting the order of the EFT corrections. In the presence of the dim-8 operators,
the dimensionless parameter p is given by u = (GM A)76 For any meaningful BH g is always much less than 1.
For instance, p ~ 1078 for a 30M BH even assuming a cutoff as incredibly low as A ~ 10~'%V. For reference, in
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Ref. [11], the effects of the EFT (2) on the waveform of GWs emitted during the inspiral of BHs was considered for
a cutoff as low as A ~ 107 13eV, and hence p > 1. In this case, the EFT fails to described the geometry near the
BH horizon as well as to predicts the finite-size effects of the BH. Nevertheless, it could be valid in describing the
inspiral GWs, as then the energy scale can be well below the EFT cutoff scale. In the case of dim-6 operators, the
dimensionless parameter p is given by u = (GM A)74.

In order to separate the radial dependence from the time and angular dependence, we can decompose the metric
perturbations hfw into tensor spherical Harmonics in frequency domain,

0 0 —hgcsc00y  hosing Oy
L iwt 0 0 —hjcsc0dy  hysinf 0y
hyw =€ —hgcsc00y —hicschOy %hg cscl X —ihysindW Yem, (B3)
ho Sin@&g h1 Sin@@e —%hg sin @ W —§h2 sinf X
and
—Hy H,y HoOp HoOy
. H H. H10 H10,
+ _ —iwt 1 2 190 1Yo
Py =€ Hody HiOs 12K + r2G0s0p 12G (8p0y — cot 00) Yom,  (B4)

HoOy  H10y  12G (0904 — cot 00y)  12sin® OK + 1r2G (030, + sin 6 cos 095)
where Yy, are the spherical harmonics, and
X = 2(0g0yp — cot 00y) , (B5)
W = (9909 — cot 00p — csc? 0040,) . (B6)

Here hg, h1, ho, Hy, H1, Ha, Ho, H1, K and G are the radial functions that depend only on r. Substituting the above
ansatz into perturbation equations leads to a set of equations of the radial functions, which can be further combined
into two single master equations. In classical GR, the two master equations are the Regge-Wheeler-Zerilli equations,

+
v,

et [ V(s 0] (®7)
with
_ f/rA+2 3
VGR:% — 2 (B8)

f [/\2()\ +2)2% + 32222 + 9\x + 9

Vi, = L
GR g2 23 (A + 3)2 ’

where ry = 2GM, z =r/rg and A = (L + 1) — 2.

Including higher dimension operators generally results in higher-derivative terms in the field equations. Within the
EFT validity regime, these terms ought be treated perturbatively, and hence can be replaced using the lower order field
equations [8, 9] (also see Ref. [47] for a generic prescription). On doing so, we can obtained the Regge-Wheeler-Zerilli
equations with the EFT corrections. Up to O(u), the corrected Regge-Wheeler-Zerilli equations can be written as [8],

2w,
dr?

= — (W = VER(rs ) — pVE(r; £, w)] UF, | (B10)

where r, is tortoise coordinate defined by dr, = dr/\/(f +uofe)(f +pof), and VGiR are the potentials in the non-
corrected Regge-Wheeler-Zerilli equations. Comparing to Eq. (3), we have absorbed the coefficients of the higher-
dimension operators in V¥ in Eq. (B10). For dim-6 operators, we have y = 1/(GMA)* and

_ 9[)1(1 — I) 2 b1 3 2
Vo= 5 1672 40 — 720(\ — 4)x> + 18(89\ — 637)x? + (14473 — 877\)x
—5892|, (B11)
9b1(1 — LE) 2 b1
vt = —360(\ — A28 4+ 18)2 (44)2 — 491\ + 336) z°
6 Wt 16 1"_(2] 210z + 3)3 ( N+ ( + ) *

—\ (4272% — 14185)% + 38106A — 6480) * — 3X (2249\> — 20515\ + 18738) 2

—9 (3263\% — 11041\ + 2646) z* — 9(5495\ — 5781)z — 28080 . (B12)



In the large ¢ limit, we find

_ 91(1—x2) 4 b1 (2 2
Vimsoo =——5—w" = 1 2 (7202% — 16022 + 877) (B13)
91 (1 —x) by (2
+ 2 2
Vilioo T 220 (3602 — 792z + 427) , (B14)

where we keep the w? term as in the main text we consider GWs with w ~ £. Note that for dim-6 operators, the EFT
corrections V* scales with ¢2 in the large ¢ limit.

The dim-8 operator corrections on the Regge-Wheeler-Zerilli equation are derived in Ref. [8]. Here we focus on the
parity-preserving operators, i.e. the ones with coefficients ¢; and ¢z, corrections from which are given by

_ 6301 (IL’ — 1) 2 1 3 2
Vo=t - 5727 c1|288(2\ — 77)x3 + (74956 — 1204)\)z
+(623\ — 83780)x + 31005} + c2 [144>\()\ +2)(2® — m2)} } (B15)
63ci(x — 1) c1
+ 2 _ 3(\241 1 6
v P T P P {3& (A2 + 18X\ +176) =

— 407 (9M% +238)\% + 421X — 7560) 2 + A (299\° + 16012\% — 97068\ + 36288) z*
— 36 (15427 — 2958\ + 3825) 2® — 36 (1105\% — 4757\ + 675) 2

+ (51948 — 70020\)z — 27783} . (B16)

Note that the ¢z operator does not contribute to V. At large £ we find
Vo :% 2_ S {01122 (57622 — 1204z + 623) + cp1446" (2 — z) (B17)
Vi, =200l 2 qux 1), (B18)

with 1 = 1/(GMA)®.

Appendix C: Validity of the EFT

We may use the EFT considered in (2) to study the propagation of GWs on a BH background so long as the
effects of other higher dimensional operators do not spoil the predictability of this theory. As discussed in Ref. [30],
for the EFT to remain valid, the higher-dimension operator corrections, including those from operators with even
higher-dimensions must remain perturbative. When comparing to the cutoff scale, these operators, constructed by
Riemann curvature and its covariant derivatives, should be evaluated not only on the background but also in presence
of GWs. Therefore, in addition to the more familiar constraints on the background curvature (e.g. W? < A%)
we have constraints on the GWs which can be characterized by scalars constructed by the momentum of the on
shell GWs k, the Weyl tensor W and its covariant derivative. For example, considering a transverse wave with
k, = (~w, 0, 0, £wr'/?sin@/\/1 — r,/r), the EFT validity requires [31]

1/2
w < A?r (T - 1) , (C1)

Tg

so that Tr[A"] < A", where A% = W2, k°k?. For a radial travelling wave with k, = (—w, fw/(1 —r4/r), 0, 0),
we find Ag, o< kgky and hence the condition Tr[A"] < A*" becomes trivial. In this case, we need to consider, for
example,

(kMY )P (W ) < AYT2P (C2)
and the most stringent validity condition is imposed when p — oco:

w < A?r. (C3)
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Although the partial waves scattering on the BH background are not exactly transverse nor radial travelling, the
exact analysis was performed in [31], leading to precisely the same result. In this work, we shall thus use Eq. (4) as
an appropriate criteria for the validity of the EFT. In particular, the validity condition (4) should be imposed at the
point of closet approach to the BH for a given partial wave, which can be approximated by the impact parameter
rpy = (£ +1/2)/w. The validity condition (4) also applies when we consider scattering in the presence of other
higher-dim operators when considering a generic gravitational EFT.

Appendix D: Scattering phase shift and time delay

The phase shift of GWs when scattering on a BH can be inferred using the WKB approximation which agrees with
the more familiar classical time delay calculations. For GWs with w? < |Vggr/|, the phase shift is given by Eq. (5), and
hence the time delay is

T, = o _ 2/ dr. 2 alou —1)—2rT. (D1)
dw rT 2y/w? —Var — c1pV

Expanding to the leading order in p gives the leading EFT corrections on the time delay,

> 1 2w — e Y | w
8T, :2/ dr < —2/ dr= [ ——— | , D2
‘ 7Tyser [+ pof <2\/w2 —Vegr —apuV rT f \Vw? —Var (D2)

where I’ 7T and §r7 denotes the turning point in tortoise coordinate, in the usual radial coordinate and the leading
EFT corrections on the turning point, and § f is defined as

piof = \/(f+epdf)(f +eapdf,) — f+0(u?). (D3)

To avoid divergence at the turning point, it is useful to define

w

A= ————, D4
fVw? = Var .
_ Vv 10V of
SA=A {Q(MQ_VGR) oy f] , (D5)
and explicit calculation yields [30]
Oty = _2/,»7" drA (i‘}) . (D6)

As stated in the letter, avoiding a causal-violating time advance in the model (2) imposes a lower bound on the
cutoff A. We emphasize that the lower bound is imposed only on the model (2) however general dim-8 EFTs usually
involve both the ¢; and ¢y operators as if for instance the case in type II string theory [39] after compactification [40],
where ¢; = ¢o > 0. In this case, time advance caused by the ¢; operator in the odd sector can be compensated by the
time delay caused by the co operators when ¢; and ¢y are positive. As a result, if co/c; ~ O(1), and if ¢; and ¢y are
both positive, there will be no causal violating time advance in the odd sector, nor will there be any lower bound on
the cutoff scale A from infrared causality considerations.

This formula also applies for the dim-6 operators. In particular, for the dim-6 operator with coefficient b1, the
time delay and the parameter space of causal-violating time advance are shown in Fig. 4. The dim-6 operators with
coeflicients by and b3 contribute to the time delay in the same manner, and the time delay and the parameter space
of causal-violating time advance are shown in Fig. 5.

Appendix E: GWs with w > Viax

In principle, we could also consider waves with w? > V... Instead of scattering, we now send GWs together
with photons from a location near the BH horizon, and compare the time that they travel to asymptotic infinity. In



11

0.100 AN ' VANV 0100

0.001 0.001

w oty

odd with by=-1 even with b1=-1
-5 -5
10 Y Hvalidity 10 Hvalidity
4 Hresolvability '::‘-.“ Hresolvability
v
Hnet 'v' Hnet
-10 L L L L 107 X. 107
0.2 0.4 0.6 0.8 1 10 100 1000 104 105 1 10 100 1000 104 10°
w?l Vmax 4 4

FIG. 4. The left plot shows the EFT corrections on the scattering time delay of the odd (blue) and even (orange) modes
of dim-6 operator with coefficient b;. From light to dark, the curves show wdt, with £ = 2, 22, 42, 62 and 82. The EFT
contribution to the time delay is given by d7; = biu dt, so both odd and even modes are subject to a positive time delay
when b; = +1 and they both enjoy a time advance when by = —1. The middle and right plots show the parameter space
(shaded grey) where dim-6 exhibit a resolvable time-advance that violates the statement of infrared causality. pvalidity is the
upper bound on p which ensures validity of the EFT. piresolvability and finet are the lower bounds inferred respectively from the
statements of infrared and asymptotic causality.
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FIG. 5. The dim-6 operators with coefficients b2 and b3 contribute in the same way to the scattering time delay. The left plot
shows the EFT corrections on the time delay of the odd (blue) and even (orange) modes of dim-6 operators with coefficients
b2 and b3. From light to dark, the curves show wdt, with ¢ = 2, 22, 42, 62 and 82. The EFT contribution to the time delay
is given by 0Ty = —(ba + 4b3)u dte, so when by 4+ 4b3 = +1 the odd modes enjoy a time advance, while for the even modes,
the time advance is too small to be resolvable in the regime of validity of the EFT. The right plot shows the parameter space
(shaded grey) where dim-6 operators violate the statement of infrared causality while the EFT remaining within its region of
validity, assuming a tree-level weakly coupled UV completion (the regime of validity would be smaller assuming more generic
UV completions). fivatidity and fresolvability are the upper and lower bound demanded by infrared acausality.

this setup, we expect the time difference is dominated by w-dependent EFT corrections to the Regge-Wheeler-Zerilli
equations. Specifically, we can read off the corrected radial velocity ¢s from Eq. (3) [8, 9],

2G M 16128(GM)8
2 _
cs—l—clu<1— " ) e . (E1)
The time advance comparing to photons is given by —d7T..q = —9ciuGM if ¢; < 0. The resolvability indicates

~wOTaa = —9c1ppw GM > 1. On the other hand, the EFT validity requires GMw < (GMA)? (cf. Eq. (4)), hence
we have 1w GM < p?/3 < 1. Therefore, in this setup, a time advance is unlikely to be resolvable within the validity
regime of the EFT.

Appendix F: Observability of higher dimension operators

The direct detection of GWs has sparked interest in probing higher dimension operators entering the EFT of gravity
with GW observations. We consider a standard gravitational EFT parameterized as in Eq. (1). In the vacuum, the
non-topological dim-4 operators have no effect and the EFT corrections are dominated by the dim-6 operators. One
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can also remove all dim-4 and most of the dim-6 operators with field redefinitions. In the presence of matter fields,
field redefinitions lead to additional couplings between the matter fields, and the dim-4 operators deserve a careful
treatment. This is particularly relevant when treating the binaries as point-like particles as well as considering BHs,
because the EFT may break down when approaching to the curvature singularities. Nevertheless, we may expect
that if the non-vacuum effects of dim-4 operators are calculable within the validity regime of the EFT, u must be
very small and the EFT corrections may no longer be of observational interest. For simplicity, we shall omit these
subtleties, and focus on GWs in the vacuum and in the regime where the EFT corrections are dominated by the dim-6
operators. At leading order, we expect that the EFT corrections are proportional to p.

When probing higher dimension operators with GWs from inspirals, the EFT does not have to be valid all the way
down to the BH horizon. The inspiral waveform can be constructed within the EFT, so long as the EFT is valid on
the lowest length scale in the system, i.e. the binary separation. In this case, 4 = (AR)™4(R/GM)* could be larger
than 1, where R is the separation of the binary. By considering only early inspiral GWs, one can consider relatively
large p with the price to pay being the loss of available data. Therefore, a theoretical bound on the detectable A can
be estimated as

A > (GMnaf)?3(GM)™?, (F1)

with f = f; being the initial frequency when the signal becomes detectable. For even lower A, there will be no GW
data available within the regime of validity of the EFT.

The upper bound of the detectable A is determined by the sensitivity of the GW detectors. The EFT corrections on
the PN inspiral waveform have been studied in Refs. [7, 14]. Different from the dim-8 ones, the dim-6 operators start
contributing to the inspiral waveform at 5PN order [14]. Note that the PN order counting here, different from Ref. [7],
is based on the frequency dependence. If we consider the case with AR ~ 1, the 5PN EFT corrections, characterised
by u (GM/R)> = (AR)~*(GM/R), will be enhanced by a large p, and is numerically equivalent to 1PN effects. If the
5PN coefficient can be constrained with a fraction error of §p using the inspiralling GWs, we can expect that GWs
can constrain A up to A < 1/(5131/4GM). More concretely, the dim-6 EFT corrections on the phase of inspiralling
GWs are roughly

AUt ~ (@M fp)* — (GMm £ (F2)

where f; is the frequency at which the inspiralling GW signal enter the observation band, and f; is the frequency as
which the bound (F1) gets saturated or the maximum frequency of the inspiralling GWs that is observed, whichever
is lower. We expect to make a detection of the EFT corrections if Aw%zA > 1, which leads to the observability on
A as shown in Fig. 3. Moreover, when limiting ourselves to ;1 < 1, we can calculate the EFT corrections on tidal
deformability within the EFT validity regime, and search for them in inspiralling GWs.

The higher-dimension operators may also be probed in BH ringdown, for example by measuring quasi-normal
frequencies of the BHs, when limiting to 4 < 1. In this case, the EFT corrections on the quasi-normal frequencies
are calculable within the EFT validity regime, and are suppressed by p as comparing to the GR answers [8, 9, 15].
The fractional error on BH quasi-normal frequencies measured by the LIGO-Virgo observations is about O(1) [57],
indicating that the current GW detection cannot probe the higher-dimensional operators with BH ringdown. Future
GW detectors are expected to measure QNM with higher accuracy. If the fraction error can be reduced to § f < 1,
it could allow us to probe the EFT with cutsoff lower than 1/(6f'/*GM), where M is the mass of the observed BH.
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