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Abstract

For hadron production in high energy collisions, causality requirements lead to the coun-
terpart of the cosmological horizon problem: the production occurs in a number of causally
disconnected regions of finite space-time size. As a result, globally conserved quantum
numbers (charge, strangeness, baryon number) must be conserved locally in spatially
restricted correlation clusters. This provides a theoretical basis for the observed sup-
pression of strangeness production in elementary interactions (pp, e+e−). In contrast, the
space-time superposition of many collisions in heavy ion interactions largely removes these
causality constraints, resulting in an ideal hadronic resonance gas in full equilibrium.

1 Introduction

The temperature of the cosmic microwave background radiation (CBR) is, with a precision
of up to one part in 105, found to be the same, some 2.7◦Kelvin, throughout the observable
universe. This constitutes one of the basic problems of Hot Big Bang cosmology, since at
the end of the radiation era, when the CBR first appeared, the presently visible universe
consisted of a huge number of causally disconnected spatial regions; for a schematic view,
see Fig. 1. How could such a uniformity in temperature arise without any communication
between the radiation sources?

The standard explanation has the equilibration arising either before or at inflation. In the
inflation process, shortly after the Big Bang, the transition to the present stable vacuum
ground state took place, accompanied by an exponential growth of the scale factor. This
implies that when the present constituents of matter and radiation first appeared in our
world, they were already in the same thermal state throughout all of space. They inherited
this thermal behavior from a previous world of very much smaller dimension, in which
they were in causal contact and hence able to equilibrate.

The evolution of elementary high energy collisions is generally described in terms of an
inside-outside cascade [1]. It specifies a boost-invariant proper time τq, at which local
volume elements experience the transition from an initial state of frozen virtual partons
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Figure 1: The origin of the observed cosmic background radiation

(“color glass”) to the on-shell partons which will eventually form hadrons. This partoni-
sation time can be estimated most easily in e+e− annihilation (see Fig. 2).
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Figure 2: Initial stages of e+e− annihilation

The initial quark-antiquark pair is bound by a string of tension σ. When the separation
distance xq of the initial pair exceeds the energy 2ωq of an additional qq̄ pair, the string
breaks and the virtual pair is brought on-shell. For quarks of mass mq, this energy is
determined by

σxq = 2
√

m2
q + k2

T , (1)

where kT is the transverse momentum of each quark in the newly formed pair. Through

uncertainty relations, this is given by kT =
√

πσ/2, leading to

xq ≃
√

2π

σ
≃ 1 fm, (2)

using σ ≃ 0.2 GeV2 and mq ≪ σ. From this, we estimate

τq ≃
√

σ

2π
≃ 1 fm. (3)

This process is subsequently iterated, leading to a cascade of emitted qq̄ pairs; while the
first pair appears at rest in the center of mass of the annihilation process, the subsequent
pairs are produced at increasing rapidities. The different pairs will eventually bind to
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Figure 3: The evolution of e+e− annihilation

form free-streaming hadrons; for a boost-invariant evolution, this defines a second time
threshold, the hadronisation time τh > τq. The overall scheme is summarized in Fig. 3.

The generalization to pp collisions is straight-forward: again there is a finite time τq
needed to bring the partons on-shell, and after a larger time τh, these combine to form
hadrons. We denote the bubbles of medium for proper time τ , with τq < τ < τh, as
“fireballs”. Hadronisation thus occurs through the formation of partonic fireballs in a
cascade of increasing rapidities. In a boost-invariant scheme, the center of mass space-
time coordinates x, t, with x denoting the collision axis, are related to proper time τ and
spatial rapidity η through

t = τ cosh η, x = τ sinh η, (4)

with c = 1. The resulting evolution is illustrated in Fig. 4, where the transition curves
are determined by t2−x2 = τ 2. Schematically included in this figure is a fireball at η = 0
and one at a larger η.
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Figure 4: The boost-invariant evolution of a high energy collision, from the partonisation
stage (τ ≤ τq) to a fireball (τq ≤ τ ≤ τh) to hadrons (τ ≥ τh). The region causally
connected to a fireball at η = 0 is colored in yellow, the fireball itself in red. An identical
fireball for η = ηd is marked in green, one for η > ηd in blue.

Both the partonisation and the hadronisation points for the system at larger η are seen to
be well outside the future region of the η = 0 fireball. More specifically, the hadronization
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point for the large η fireball just touches the event horizon of the η = 0 fireball for

tanh ηd =
τ 2h − τ 2q
τ 2h + τ 2q

, (5)

defining the fireball range causally connected to the system at η = 0. Beyond this rapiditiy,
i.e., for η > ηd, the two fireballs are causally disconnected and cannot synchronize each
other’s thermal status. For the moment we are here neglecting the spatial extension of
the fireball, but we shall return to this aspect shortly.

To illustrate, we choose τq = 1 fm and τh = 2 fm; in this case, a fireball with η > 0.7
cannot communicate with one at η = 0. The longer the fireball lifetime is, the larger is
the rapidity range of fireballs in causal communication with that at η = 0. The increase
of the range with fireball lifetime is quite slow, however; even for τh = 7 fm, the rapidity
horizon is only ηd = 2. In other words, collisions at RHIC or at the LHC will lead to
hadron production from causally disconnected fireballs.

The observation just made does not, of course, rule out a causal connection (and hence
correlations) for hadron production at large rapidity intervals; it only means that any cor-
relations must have originated in the earlier partonisation stage. It does imply, however,
that any state formed at η = 0 after a finite time interval cannot synchronize its thermal
status with a corresponding state at larger rapidity. We thus conclude that the fireballs
formed in elementary high energy collisions appear in causally disconnected regions, which
cannot communicate and thus in particular cannot establish a uniform temperature. If
the hadronization temperature is found to be the same for different kinematic regions, this
must be due to the local hadronization nature. There does not exist some large equivalent
global system in thermal equilibrium, since any such equilibrium requires communication.

2 Causal Connection of Fireballs

In the previous section, we had obtained in eq. 5 the maximum rapidity ηd for which a
fireball could still receive a signal from a one at η = 0. Here the spatial extension of the
fireball was for simplicity neglected. For a more realistic situation, we have to consider
a fireball of finite spatial extent. We take the longitudinal extension of the system to
be vanishingly small at the interaction time t = 0; for sufficiently high energy, this is
expected to be a good approximation. The evolution of the system is shown in Fig.
5, where the shaded area defines the fireball produced at rest in the CMS. The extremal
velocity lines ±β = ±v/c specify the spatial size of this fireball at the time τq of formation
and its expansion up to the hadronisation time τh. To consider the system as one fireball,
we require that the spatially right-most point qR at formation can send a signal to the
spatially left-most point hL at hadronisation; i.e., we require that the most separate points
of the fireball can still communicate. This definition of a “causal” fireball is evidently an
upper limit in size; one may wish to impose more stringent conditions and obtain a smaller
fireball. We will keep that in mind in what follows. The crucial requirement in our case
is that the world-line connecting qR on the τq hyperbola with the point hL on the τh
hyperbola is light-like, as shown in Fig. 5.
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Figure 5: The formation and evolution of a fireball at rest in the center of mass; the
fireball evolution is indicated in pink.

To determine the resulting value of the velocity β, we note that the point qR has the
coordinates

qR =

[

τq√
1− β2

,
βτq√
1− β2

]

, (6)

while hL is given by

hL =

[

τh√
1− β2

,− βτh√
1− β2

]

. (7)

The light ray eminating from qR is described by

−
(

t− τq√
1− β2

)

= x− βτq√
1− β2

. (8)

Imposing that hL lies on this line leads to

β =
τh − τq
τh + τq

(9)

and thus determines the rapidity with which the edges of the central fireball move out by
its expansion. The resulting spatial extension of this fireball becomes

d =
2βτh√
1− β2

=

√

τh
τq
(τh − τq), (10)

measured at the time of hadronisation in the center of mass and thus in the proper frame
of the fireball. This is the maximum initial size the fireball can have and still retain
in its life-time a causal connection between its most distant space-time points. It is
therefore fully determined by the proper fireball formation time τq and its proper life-time
τh − τq. In table 1, we show the resulting velocities β and rapidities η for the fireball
edges and the radii (r = d/2) of the fireballs produced at rest in the center of mass at
τq = 1 fm, for different values of the fireball life-time. Of course the size of the fireball
increases with increasing hadronisation time; it is only the finite life-time of the partonic
state that causes the total rapidity range for production to become divided into causally
disconnected segments. The rapidity extension of a fireball, as we have defined it here, is
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τh [fm] β̄ η r [fm]
2 0.33 0.35 0.7
3 0.50 0.55 1.7
4 0.60 0.69 3.0
5 0.67 0.81 4.5

Table 1: Velocity (β) and rapidity (η) limits of a fireball at rest in the center of mass, and
its proper hadronisatin radius r, as given by eqs. 9 and 10, for a formation time τq = 1
fm and different hadronisation times τh.

roughly plus/minus one unit for τq = 1 fm, τh = 3 fm; its (proper) spatial radius at the
time of formation is about 2 fm.

We now assume complete boost invariance: the collision leads to the production of iden-
tical fireballs at all rapidities, with identical formation and hadronisation times τq, τh in
their respective rest frames. To study the causal connection of fireballs moving at dif-
ferent rapidities, it is helpful to introduce a more specific notation for their velocities.
We denote the velocity of the fireball at rest in the CMS by β̄0 = 0, and its extremal
velocities by β0L = −β and β0R = β. The neighboring fireball then has a central velocity
β̄1 and extremal velocities β1L and β1R. In its own rest-frame, this fireball will have the
same evolution pattern and spatial size as the one at rest in the center of mass. To define
a causal connection between this fireball and the one at rest in the center of mass, we
determine the largest value of β̄1, which still allows any point of the moving fireball to
receive at (the latest) time τh a signal from at least one point of the CMS fireball emitted
at (the earliest) time τq, and vice versa, for the cms fireball. The relevant geometry is
illustrated in Fig. 6. It is evident that the left extreme world-line of the central fireball
must then coincide with the right extreme of the fireball moving with velocity −β̄1. In
other words, two adjacent fireballs of identical structure will, in the sense just defined, be
causally connected. The next one “down the line”, however, with velocity β̄2, is causally
disconnected from the central fireball.
The determination of the central velocities of the successive fireballs is given in the ap-
pendix; the result is

βn =
τ 2nh − τ 2nq
τ 2nh + τ 2nq

, n = 0, 1, 2, ... (11)

Similarly, we obtain for the left extremal velocity of the n-th fireball

βnL =
τ 2n+1
h − τ 2n+1

q

τ 2n+1
h + τ 2n+1

q

, n = 0, 1, 2, ..., (12)

where β0L reduces to the value already given by eq. 9 for the fireball at rest in the overall
center of mass. Moreover, quite generally βnL = β(n+1)R. We have thus divided the
thermal space-time region, between τq and τh, into separate (non-overlapping) fireballs,
such that next neighbors are causally connected, all further ones not.

To illustrate the mesh of the net thus obtained, we list in table 2 the values of the velocities
and rapidities of the first moving fireball, as measured in the CMS, for the fireball life-
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Figure 6: The formation and evolution of two fireballs, one at rest in the center of mass
(pink), one moving with velocity β̄1 (green). The light line from a to b determines the
largest velocity difference still allowing a full causal connection between the two fireballs.
For illustration, a third (yellow) fireball is shown, moving with velocity β̄2 and not causally
connected to the one at rest in the center of mass.

τh [fm] β1 η1
2 0.60 0.70
3 0.80 1.10
4 0.88 1.39
5 0.92 1.61

Table 2: Limiting velocities and rapidities for a moving fireball to have causal connection
with one at rest in the center of mass, see eq.(9)

times used above. These values specify the maximum rapidity a moving fireball can have
and still remain causally connected to the one at rest in the CMS.

3 Hadronisation of Fireballs

The hadrons formed through the final parton fusion constitute in principle a complex
interacting medium. A great simplification of this situation is provided by an old argument
[2, 3]: if the interactions between the basic hadrons, mesons and baryons, are resonance-
dominated, then the interacting system of ground state hadrons can be replaced by an
ideal gas of all possible resonances. The relative abundances of the different hadrons are
in this case determined simply by the corresponding phase space weights, specified in
terms of the hadron masses and intrinsic degrees of freedom.

The resulting statistical hadronisation model, based on a ideal gas of all observed hadronic
resonances, provides an excellent general account for hadron production in high energy
collisions, from e+e− annihilation to the collision of heavy nuclei (see, e.g., [4–7], and
further references given there). All high energy data lead to a universal hadronisation
temperature around 160 MeV, in accord with the pseudo-critical temperature found in fi-
nite temperature lattice QCD with physical quark masses and for vanishing or low baryon
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density. This raises the question if and how hadronisation in elementary collisions differs
from that in nucleus-nucleus interactions. Here the crucial observation is that in ele-
mentary collisions, the production of hadrons containing n strange quarks or antiquarks
is reduced in comparison to the ideal resonance gas prediction. This reduction can be
accounted for by the introduction of a universal strangeness suppression factor γn

s , where
n denotes the number of strange quarks and/or antiquarks contained in the hadron in
question [8]. The value of γs is rather energy-independent and found to be around 0.5 to
0.7, from some 20 GeV up to LHC energies. In nuclear collisions, in contrast, γs appears
to converge to unity at RHIC and LHC energies, apart from slight corrections presumably
due to corona effects [9, 10].

The statistical hadronization model assumes that hadronization in high energy collisions
is a universal process proceeding through the formation of multiple massive colorless
clusters or fireballs of finite spacial extension and distributed over the rapidity range of the
process. These clusters are taken to decay into hadrons according to a purely statistical
law: every multi-hadron state of the cluster phase space defined by its mass, volume
and charges is equally probable. The mass distribution and the distribution of charges
(electric, baryonic and strange) among the clusters and their (fluctuating) number are
determined in the prior dynamical stage of the process. Hence in principle one would need
the mentioned dynamical distributions in order to make definite quantitative predictions.
However, for Lorentz-invariant quantities such as multiplicities, one can further simplify
matters by assuming that the distribution of masses and charges among clusters is again
purely statistical, so that, as far as the calculation of multiplicities is concerned, the set of
clusters becomes equivalent, on average, to one large cluster, the equivalent global cluster,
whose volume is the sum of proper cluster volumes and whose charge is the sum of cluster
charges, and thus the conserved charge of the initial colliding system. In such a global
averaging process, the equivalent cluster in many cases turns out to be large enough in
mass and volume so that the canonical ensemble becomes a good approximation.

To obtain a simple expression for our further discussion, we neglect for the moment an
aspect which is important in any actual analysis. Although in elementary collisions the
conservation of the various discrete Abelian charges (electric charge, baryon number,
strangeness, heavy flavour) has to be taken into account exactly [12], we here consider for
the moment a grand-canonical picture. We also assume Boltzmann distributions for all
hadrons. The multiplicity of a given scalar hadronic species j then becomes

〈nj〉primary =
V Tm2

j

2π2
γnj

s K2

(

mj

T

)

(13)

with mj denoting its mass and ns the number of strange quarks/antiquarks it contains.
Here primary indicates that it gives the number at the hadronisation point, prior to all
subsequent resonance decay. The Hankel function K2(x), with K(x) ∼ exp{−x} for large
x, gives the Boltzmann factor, while V denotes the overall equivalent cluster volume. In
other words, in an analysis of 4π data of elementary collisions, V is the sum of the all
cluster volumes at all different rapidities. It thus scales with the overall multiplicity and
hence increases with collision energy. A fit of production data based on the statistical
hadronisation model thus involves three parameters: the hadronisation temperature T ,
the strangeness suppression factor γs, and the equivalent global cluster volume V .
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We want to use the results of the present paper to show that the nature of V in ele-
mentary collisions is quite different from that in nuclear collisions, and this can in effect
lead to different behavior in the two cases. Strangeness production is perhaps the most
readily accessible such phenomenon. In elementary collisions, the clusters at rapidities
sufficiently far apart are, as we have seen, causally disconnected, so that they cannot
exchange information. Hence strangeness must be conserved locally; in pp collisions, for
example, each cluster must have strangeness zero. Thus typically there will be only one
pair of strange particles within a given cluster, adding up to zero total cluster strangeness.
Such a local strangeness conservation is known to lead to a suppression of strangeness
production [11]; we return to details shortly. In high energy nuclear collisions, on the
other hand, the equivalent global cluster consists of the different clusters from the differ-
ent nucleon-nucleon interactions at a common rapidity. At mid-rapditiy, for example, we
thus have the sum of the superimposed mid-rapidity clusters from the different nucleon-
nucleon collisions, and these are all causally connected, allowing strangeness exchange
and conservation between the different clusters.

As noted, the local conservation of charges, and in particular of strangeness, has in fact
been proposed for quite some time as the mechanism responsible for strangeness sup-
pression [11]; more details are given in appendix A2. In the grand canonical approach,
the introduction of the suppression factor γs achieves the observed suppression. The al-
ternative of local strangeness suppression is based on two features. First, one imposes
exact strangeness conservation, which leads to a volume-dependent strangeness reduc-
tion [12, 13]; the ratio of canonical to grand-canonical partition functions,

Zcan(T, V, S)

Zgcan(T, V, 〈S〉)
< 1 (14)

approaches unity only in the limit of large volumes. However, in elementary collisions
with the corresponding overall equivalent cluster volume, the resulting reduction is not
sufficient to account for the observed strange particle rates. Hence it was argued that if in
a given collision only one pair of strange hadrons is produced, these should appear close
to each other spatially, the more so if the medium is relatively short-lived. This approach
thus introduces somewhat ad hoc a strangeness correlation volume Vc < V , within which
strangeness has to be conserved exactly. The corresponding model thus now has T , V and
Vc as the parameters to be specified by the data, and fits based on such a model provide
as good an account for the data as the earlier γs scheme [14,15], with the exception of the
φ, to which we return later. However, a priori little is known about Vc, and in particular
it remains open what happens to it in nuclear collisions.

We here propose that the strangeness correlation volume Vc is in fact that of a causally
connected cluster; causal connectivity thus provides the fundamental reason for local
strangeness conservation and hence for the strangeness suppression observed in elementary
interactions. It is moreover clear that in nucleus-nucleus interactions, the overlapping
fireballs produced at fixed rapidity by the different nucleon-nucleon collisions will give
rise to a much larger causally connected volume and thus effectively remove the locality
constraints. Moreover, if very high energy pp interactions lead to multiple jet production,
this could eventually lead to a similar effect, with overlapping clusters from the different
jet directions.
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We have seen how the size of the causally connected cluster volumes varies with the fireball
life-time. An obvious question therefore is whether the fits to production data lead to
reasonable cluster sizes. It is found [14, 15] that good fits to data at

√
s = 17.3 and 200

GeV require a strangeness correlation radius of about 1 fm, while leading to the same
universal hadronisation temperature of about 160 MeV. In our considerations, this is seen
to be in accord with a hadronisation time τh of about 2 - 3 fm. For an evolution of the
kind shown in Fig. 2 that makes good sense: it takes about 1 fm to form the first qq̄ pair,
and another to have it hadronize. The causality constraints in elementary high energy
collisions thus appear to provide the reason for the observed strangeness suppression,
thereby justifying the strangeness correlation model [11].

We further note here that in elementary collisions, hadronisation as Unruh radiation
arising from quarks tunnelling through their color confinement horizon [16] inherently
contains locals strangeness conservation. In such a scheme, the maximum separation
between s and s̄ can never exceed the hadronic scale leading to string breaking, i.e.,
about 1 fm, thus enforcing strangeness production in a very restricted spatial volume.

In the case of heavy nuclei, on the other hand, we find in the center of mass with increasing
collision energy a superposition of more and more individual nucleon-nucleon interactions
in the same space-time region. At high enough collision energy, there will thus be on
the average around five or six superimposed nucleon-nucleon collisions, so that there now
exists a causally connected region having an effective volume five or six times larger
than that in a nucleon-nucleon collision, with a corresponding increase in the number of
produced strange particles. An s quark produced in any specific nucleon-nucleon collision
now finds so many s̄ from other such collisions in its immediated environment that no
spatial constraints on its partner s̄ are necessary. Moreover, the superposition of collisions
at central rapidity greatly increases the partonic density there. As a consequence, it takes
a longer time for the system to expand up to the hadronisation point, so that τh now
is considerably larger. This aspect further increases the correlation volume. In terms
of a conventional statistical description, it implies that γs is driven towards unity. At√
s = 17.3 GeV, the overlap is not yet complete: when the first nucleons collide, those

at the opposite edges of the two nuclei are still some 3 fm apart, so that we can still
expect some strangeness suppression, and this is indeed observed. At

√
s = 200 GeV, this

separation has decreased to 0.3 fm, so that at RHIC and at the LHC, there should not
be any suppression, apart from possible corona contributions.

4 The Problem of Hidden Strangeness

The approach presented here for the suppression of strangeness production in elemen-
tary collisions contains one open issue, which arises in all attempts of local strangeness
conservation. It is found experimentally that the φ meson, consisting of an ss̄ pair, is
also suppressed, although from a hadronic point of view, it is of zero strangeness. In the
conventional statistical model with a strangeness suppression factor, the power of γs is
determined by the number of s plus s̄ quarks a given hadron contains. Hence the φ gets
a factor γ2

s , which leads to rough agreement with the data. In contrast, in a canonical
formulation on a hadronic level, the φ does not present any quantum number to be con-
served exactly and is not subject to any suppression. There are (at least) two ways to
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resolve this issue.

It is well-known that quarkonia (cc̄ and bb̄ mesons, states of hidden heavy flavor) cannot
be accommodated at all in any statistical approach. Their production and binding is
governed by gluon dynamics instead. One might therefore argue that the φ, as hidden
strangeness meson, also falls into this category and hence its abundance cannot be de-
termined in a statistical model. However, such an approach has its own problems. The
abundance of charmonium and bottomonium states is underpredicted by orders of mag-
nitude, while that of the φ is overpredicted by a factor four or so. The quarkonium states
are below the open charm/beauty thresholds, while the φ decays strongly into a KK̄ pair.
Finding a common ground for it and the quarkonia is therefore surely not easy.

Another approach is that taken in the introduction of the suppression factor γs in powers
of the content of strange and antistrange quarks. The evolution of the statistical hadroni-
sation went from grand-canonical to canonical, and on to the introduction of a correlation
volume in the hadronic canonical formulation. The disagreement of the φ abundance may
thus be nature’s way of telling us that strangeness correlation really occurs already on a
pre-hadronic level. Requiring exact strangeness conservation for the quark system in the
fireball prior to hadronisation would in fact result in canonical strangeness suppression of
both open and hidden strangeness (see Fig. 7), of a functional form very similar to that
obtained on a hadronic level in Appendix 2.

0 1 2 3 4 5
R in fm

0

0.2

0.4

0.6

0.8

1

I_
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m_s = 0.08 Gev
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Figure 7: The suppression factor for exact strangeness conservation of strange quarks of
mass ms = 80 MeV in a volume of radius R, compared to the suppression factor of kaons
(see appendix 2), both at a temperature of 160 MeV.
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Appendix A1

According to the criterium of causal connection discussed in Section 2, the world-lines of
the left extremum and of the right extremum of the fireball n, with n ≥ 1, in the region
x < 0 are, respectively, −βn+1t = x and −βnt = x (see Fig. 6).

The right extremum meets the hyperbola of the plasma formation time, t2 − x2 = τ 2q , at
the event point Ea with coordinates

(tqn, x
q
n) = (

τq
√

1− β2
n

,
−βnτq
√

1− β2
n

). (15)

The light ray originating from the point Ea has equation

−t +
τq

√

1− β2
n

= x− βnτq
√

1− β2
n

(16)
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and crosses the hyperbola of the hadronization time, t2 − x2 = τ 2h , at the event point Eb

with coordinates

(th, xh) =

(

1

2τq

√

1 + βn

1− βn

[

τ 2h + τ 2q
1− βn

1 + βn

]

,
1

2τq

√

1 + βn

1− βn

[

τ 2h − τ 2q
1− βn

1 + βn

])

. (17)

Since the event Eb has to be on the world line of the left extremum, we must have
βn+1 = −xh/th, i.e.

βn+1 =

(

τ 2h − τ 2q
1− βn

1 + βn

)

/

(

τ 2h + τ 2q
1− βn

1 + βn

)

, (18)

expressing our condition of causal connection. The first extremal world-line in the x < 0
region has speed (see eq.(9))

β1 =
τh − τq
τh + τq

, ; (19)

hence (1 − β1)/(1 + β1) = τq/τh, and, by iteraction, the speeds of the left extrema are
found to be (n ≥ 0)

βn+1 =
τ 2n+1
h − τ 2n+1

q

τ 2n+1
h + τ 2m+1

q

(20)

The speed of the cms of the n-th fireball, β̄n, with respect to the rest frame (corresponding
to the cms of the fireball at x = 0) is defined by requiring that all fireballs have the same
structure in their cms. In other words, if βn+1 and βn are the speeds of the two extrema
of a fireball n in the overall rest frame, and β

′

n+1 and β
′

n are the corresponding velocities
in the rest frame of this fireball, the speed β̄n of the cms of the fireball with respect to
the overall rest frame must be such that β

′

n+1 = −β
′

n. By the velocity composition law,
it turns out that

β̄n =
(1 + βn+1βn)−

√

(1− β2
n+1)(1− β2

n)

βn+1 + βn
(21)

By eq. (18) and after some algebra, one obtains

β̄n =
[τh(1 + βn)− τq(1− βn)]

2

τ 2h(1 + βn)2 − τ 2q (1− βn)2
. (22)

By use of eq. (19) and some iteration, this gives

β̄n =
τ 2nh − τ 2nq
τ 2nh + τ 2nq

. (23)

for the speed of fireball n.

Appendix A2

We here want to illustrate in some detail the mechanism of local strangeness reduction.
To simplify matters, let us assume that there are only two hadron species: scalar and
electrically neutral mesons, “pions” of mass mπ, “kaons” of mass mK and strangeness
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s = 1 together with “antikaons” of the same mass but strangeness s = −1. In this case,
the grand canonical partition function for a system of of volume V and temperature T
has the form

ZGC(T, V, µ) =
V T

2π2

[

m2
πK2(mπ/T ) +m2

KK2(mK/T )e
µ/T +m2

KK2(mK/T )e
−µ/T

]

, (24)

where µ denotes the chemical potential for strangeness. If the overall strangeness is zero,
µ = 0 and the average density of mesons of type i (i = π,K, K̄) is given by

ni(T ) =
Tm2

i

2π2
K2(mi/T ), (25)

while the ratio of kaon to pion multiplicities becomes

NK

Nπ

=
(

mK

mπ

)2 K2(mK/T )

K2(mπ/T )
≃
(

mK

mπ

)3/2

exp{−(mK −mπ)

T
}. (26)

Both species densities and ratios thus are independent of the overall volume V ; they are
determined by the respective masses and the hadronisation temperature T . The grand
canonical form assures that the average overall strangeness is zero, but only the average;
there are fluctuations, and, for example, the second cumulant

(

∂2 ln ZGC

∂µ2

)

∼ 〈S2〉 (27)

indicates that the average of the squared strangeness does not vanish.

The grand canonical ensemble effectively corresponds to an average over all possible
strangeness configurations, with exp(±µ/T ) as weights. If instead we insist that the
overall strangeness is exactly zero, we have to project out that term of the sum. This
canonical ensemble can lead to a severe restriction of the available phase space and hence
of the production rate. Thus the canonical density of kaons becomes [11, 13]

ñK(T, V ) = nK(T )
I1(xK)

I0(xK)
, (28)

where In(X) is the n−th order Bessel function of imaginary argument and nK(T ) is given
by eq. (25) and

xK =
V Tm2

K

2π2
K2(mK/T ). (29)

The canonical density, in contrast to the grand canonical form, thus depends on the
volume V of the system. Since In(x) ∼ xn for x → 0 and In(x) → ex for x → ∞, we see
immediately that in the large volume limit,

ñK(T, V ) → nK(T ), (30)

the canonical form converges to the grand canonical one, as expected. In the small volume
limit, however, the Bessel function ratio results in a strong suppression of canonical relative
to grand canonical form, with I1(x)/I0(x) → 0 for x → 0. For the actual values of the
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Figure 8: The suppression factor for exact strangeness conservation of kaons in a volume
of radius R.

kaon mass and T ≃ 160 MeV, this suppression sets in for volumes of radii less than some
2 - 3 fm; above that, the grand canonical form becomes valid. The form of the suppression
factor is shown in Fig. 8; we recall that strange baryons are neglected in obtaininng eq.
28, so that the figure is for illustration only.

We thus see that the exact conservation of charges, such as strangeness, results in a
“canonical suppression” for sufficiently small volumes. Now the overall volume V in the
conventional description of e+e− annihilation or in pp collisions is that of the equivalent
cluster and hence determined largely by the number of pions. Thus imposing exact
strangeness conservation here is not the solution - the total volume is so large that there
is no effective canonical suppression. To obtain the observed strangeness reduction, an
additional mechanism is necessary.

This was obtained [11] by arguing that in the case of very few charge carriers, charge
neutralisation must occur in a correlation volume Vc very much smaller than the overall
volume V . For a given charge, there must be an opposite charge nearby, not some large
distance away. This argument was supported by kinetic studies, indicating that the typical
life-time of the partonic medium is not sufficient for far-away charges to meet, making
exact conservation unlikely. As a result, the partition function for our pion-kaon system
now becomes for exact strangeness zero

Z(T, V, Vc) =
V T

2π2

[

m2
πK2(mπ/T ) + 2m2

KK2(mK/T )

(

I1(xK(T,mK , Vc))

I0(xK(T,mK , Vc))

)]

, (31)

where the argument of the Bessel functions is given by

xK =
VcTm

2
K

2π2
K2(mK/T ). (32)

and thus contains the strangeness correlation volume Vc as further parameter. By tuning
Vc, we can thus achieve as much strangeness suppression as desired.

As mentioned, our considerations here are only meant as illustration. In actual studies,
both normal, strange and multi-strange baryons have to be included, as well as all higher
resonant states. If this is done, a formulation of the type discussed here leads with a
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correlation radius Rc around 1 fm to the observed suppression and to a model which can
account for the data from elementary collisions as well as the conventional γs approach,
except for the mentioned φ problem.
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