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Abstract: We identify conditions for the entanglement entropy as a function of

spatial region to be compatible with causality in an arbitrary relativistic quantum field

theory. We then prove that the covariant holographic entanglement entropy prescrip-

tion (which relates entanglement entropy of a given spatial region on the boundary to

the area of a certain extremal surface in the bulk) obeys these conditions, as long as the

bulk obeys the null energy condition. While necessary for the validity of the prescrip-

tion, this consistency requirement is quite nontrivial from the bulk standpoint, and

therefore provides important additional evidence for the prescription. In the process,

we introduce a codimension-zero bulk region, named the entanglement wedge, naturally

associated with the given boundary spatial region. We propose that the entanglement

wedge is the most natural bulk region corresponding to the boundary reduced density

matrix.
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1 Introduction

One of the remarkable features of the holographic AdS/CFT correspondence is the

geometrization of quantum-field-theoretic concepts. While certain aspects of recasting

field-theory quantities into geometric notions have been ingrained in our thought, we

are yet to fully come to grips with new associations between QFT and bulk geometry.

A case in point is the fascinating connection of quantum entanglement and spacetime

geometry. The genesis of this intricate and potentially deep connection harks back

to the observation of Ryu-Takayanagi (RT) [1, 2] and subsequent covariant general-

ization by Hubeny-Rangamani-Takayanagi (HRT) [3] that the entanglement entropy

of a quantum field theory is holographically computed by the area of a particular ex-

tremal surface in the bulk. In recent years, much effort has been expended in trying to
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flesh out the physical implications of these constructions and in promoting the geom-

etry/entanglement connection to a deeper level [4–7] which can be summarized rather

succinctly in terms of the simple phrases “entanglement builds bridges” and “ER =

EPR”. Whilst any connection between entanglement and geometry is indeed remark-

able, further progress is contingent on the accuracy and robustness of this entry in the

holographic dictionary. Let us therefore take stock of the status quo.1

The RT proposal is valid for static states of a holographic field theory, which allows

one to restrict attention to a single time slice Σ̃ in the bulk spacetimeM. The entan-

glement entropy of a region A on the corresponding Cauchy slice Σ of the boundary

spacetime B is computed by the area of a certain bulk minimal surface which lies on Σ̃.

In this case we have a lot of confidence in this entry to the AdS/CFT dictionary; firstly

the RT formula obeys rather non-trivial general properties of entanglement entropies

such as strong subadditivity [8–10], and secondly a general argument has been given

for it in the context of Euclidean quantum gravity [11].

However, it should be clear from the outset that restricting oneself to static states

is overly limiting. Not only is the field theory notion of entanglement entropy valid in

a broader, time-dependent, context, but more importantly, one cannot hope to infer all

possible constraints on the holographic map without considering time dependence.

The HRT proposal, which generalizes the RT construction to arbitrary time-de-

pendent configurations by promoting a minimal surface on Σ̃ to an extremal surface EA
inM, allows one to confront geometric questions in complete generality. However, this

proposal has passed far fewer checks, and an argument deriving it from first principles

is still lacking. This presents a compelling opportunity to test the construction against

field-theory expectations and see how it holds up. Since the new ingredient in HRT

is time-dependence, the crucial property to check is causality. The present discussion

therefore focuses on verifying that the HRT prescription is consistent with field-theory

causality.2

Let us start by considering the implications of CFT causality on entanglement

entropy, in order to extract the corresponding requirements to be upheld by its putative

bulk dual. As we will explain in detail in §2, there are two such requirements. First,

the entanglement entropy is a so-called wedge observable. This means that two spatial

regions A, A′ that share the same domain of dependence, D[A] = D[A′], have the same

entanglement entropy, SA = SA′ ; this follows from the fact that the corresponding

1 We will focus exclusively on local QFTs with conformal UV fixed points which are holographically

dual to asymptotically AdS spacetimes in two-derivative theories of gravity.
2 As we elaborate in the course of our discussion this result follows from Theorem 6 of [12]. As

this is however not widely appreciated we focus on proving the result from a different perspective

highlighting certain novel bulk constructs in the process.

– 2 –



reduced density matrices ρA, ρA′ are unitarily related [13]. Second, fixing the initial

state, a perturbation to the Hamiltonian with support contained entirely inside D[A]∪

D[Ac] (where Ac is the complement of A on a Cauchy slice) cannot affect SA. The

reason is that we can choose a Cauchy slice Σ′ that lies to the past of the support

and contains a region A′ with D[A′] = D[A]; since the perturbation cannot change the

state on Σ′, it cannot affect SA′ , which by the previous requirement equals SA. Time-

reversing the argument shows that, similarly, SA cannot be affected by a perturbation

in D[A] ∪ D[Ac] when we consider time evolution toward the past with a fixed final

state.

Having specified the implications of causality for the entanglement entropy in the

field theory, let us now translate them into requirements on its holographic dual. First,

in order to ensure that the HRT formula in general gives the same entanglement entropy

for A and A′, they should have the same extremal surface, EA = EA′ . Second, in order

for EA to be safe from influence by perturbations of the boundary Hamiltonian in D[A]

and D[Ac] (when evolving either toward the future or toward the past), it has to be

causally disconnected from those two regions. This means that the extremal surface

has to lie in a region which we dub the causal shadow, denoted by Q∂A and defined in

(2.7) as the set of bulk points which are spacelike-separated from D[A] ∪D[Ac].

This causality requirement takes an interesting guise in the case where A is an

entire Cauchy slice for a boundary. If this is the only boundary, and the bulk is causally

trivial, then there is no causal shadow; indeed, EA = ∅, corresponding to the fact that

the entanglement entropy of the full system vanishes in a pure state. However, if the

state is not pure, the bulk geometry is causally nontrivial: typically the bulk black-hole

spacetime has two boundaries, dual to two field theories in an entangled state (which

can be thought of as purifying the thermal state of the theory on one boundary). If we

take the region A to be a Cauchy slice for one boundary and Ac a Cauchy slice for the

other, then the extremal surface whose area, according to HRT, measures the amount

of entanglement between the two field theories must lie in a region out of causal contact

with either boundary.3

How trivial or expected is the claim that the extremal surface resides in the causal

shadow? It is interesting to note that for local CFT observables, analogous causal-

ity violation is in fact disallowed by the gravitational time-delay theorem of Gao and

Wald [14]. This theorem, which assumes that the bulk satisfies the null energy con-

dition, implies that a signal from one boundary point to another cannot propagate

faster through the bulk than along the boundary, ensuring that bulk causality respects

3 For the well-known eternal static Schwarzschild-AdS case, the shadow region degenerates to the

bifurcation surface, but we will see that in general it is a finite codimension-zero bulk region.
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Fig. 1: For AdS3, the RT formula satisfies field-theory causality marginally. The plane generated

by null geodesics (color-coded by angular momentum) from a given boundary point (blue)

is also ruled by spacelike geodesics at constant time (color-coded by time).

boundary causality. However, since entanglement entropy is a more nonlocal quantity,

which according to HRT is captured by a bulk surface that can go behind event and

apparent horizons [15, 16] and penetrate into causally disconnected regions from the

boundary, it is far less obvious whether CFT causality will survive in this context.

Let us first consider a static example. Although it is guaranteed to be consistent

with CFT causality since it is covered by the RT prescription which is “derived” from

first principles, it is useful to gain appreciation for how innocuous or far-fetched causal-

ity violation would appear in the more general case. Intriguingly, already the simplest

case of pure AdS reveals the potential for things to go wrong. As illustrated in Fig.

1, the null congruence from a single boundary point (which bounds the bulk region

which a boundary source at that point can influence) is simultaneously foliated by

spacelike geodesics {EA}. So a signal that can influence a given extremal surface EA in

that set can also influence ∂A, thereby upholding CFT causality. However, note that

here causality was maintained marginally: if the extremal surface was deformed away

from A by arbitrarily small amount, one would immediately be in danger of causality

violation.

Another, less trivial, test case is the static eternal Schwarzschild-AdS black hole.

The extremal surface that encodes entanglement between the two boundaries is the

horizon bifurcation surface. Again, arbitrarily small deformation of this surface would

shift it into causal contact with at least one of the boundaries, thereby endangering

causality; in particular, entanglement entropy for one CFT should not be influenced

by deformations in the other CFT. For static geometries we’re in fact safe because
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extremal surfaces do not penetrate event horizons [17]; however this is no longer the

case in dynamical situations [15, 16, 18–20]. Moreover, as illustrated in [21], in Vaidya-

AdS geometry, EA can be null-related to the past tip of D[A], thereby again upholding

causality just marginally—an arbitrarily small outward deformation of the extremal

surface would render it causally accessible from D[A]. These considerations demon-

strate that the question of whether the HRT prescription is consistent with field-theory

causality is a highly nontrivial one.

The main result of this paper is a proof that, if the bulk spacetime metric obeys

the null energy condition, then the extremal surface EA does indeed obey both of the

above requirements. We conclude that the HRT formula is consistent with field-theory

causality. This theorem can be viewed as a generalization of the Gao-Wald theorem

[14]. We regard it as a highly nontrivial piece of evidence in favor of the HRT formula.

Along the way, we will also slightly sharpen the statement of the HRT formula, and in

particular clarify the homology condition on EA.

Partial progress towards this result was achieved in [22, 23], which showed that

the extremal surface EA generically lies outside of the “causal wedge” of D[A], the

intersection of the bulk causal future and causal past of D[A]. (However, these works

did not make the connection to field-theory causality). A stronger statement equivalent

to our theorem was proved in [12] (cf., Theorem 6) and it is noted in passing that this

would ensure field theory causality. We present an alternate proof which brings out

some of of the bulk regions more cleanly and make the connections with boundary

causality more manifest.

As a byproduct of our analysis, we will identify a certain bulk spacetime region,

which we call the entanglement wedge and denoteWE [A], which is bounded on one side

by D[A] and on the other by EA. Apart from providing a useful quantity in formulating

and deriving our results, the entanglement wedge is, as we will argue, the bulk region

most naturally associated with the boundary reduced density matrix ρA.

The outline of this paper is as follows. We begin in §2 with an overview of the

causal domains of interest on each side of the gauge-gravity duality, and motivate and

state the core theorem of the paper, which shows that the HRT proposal is consistent

with boundary causality. We motivate one of the major implications of our theorem

by considering spherically symmetric deformations of the eternal black hole containing

a region out of causal contact with both asymptotically AdS boundaries, the causal

shadow, and showing that the HRT surface lies in this causal shadow. In §3, we

begin to develop some intuition used in the proof of our main theorem, by considering

classes of null geodesic congruences in AdS3. In §4 we prove the general theorem which

establishes the main result of the paper. We conclude in §5 with a discussion of the

physical implications of our result and open questions.
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Note added: While this paper was nearing completion [24] appeared on the arXiv,

which has some overlap with the present work. It introduces the notion of quantum

extremal surfaces and argues that for bulk theories that satisfy the generalized second

law such surfaces satisfy the causality constraint.

2 Causal domains and entanglement entropy

In this section we will state our basic results and discuss some of their implications.

The specific proof, and some additional results, will be presented in §4. In §5 we will

suggest some further interpretations of our results, particularly regarding the dual of

the reduced density matrix.

We will open in §2.1 by deriving the causality properties of entanglement entropy in

a QFT, and setting up some notation regarding causal domains which will be useful in

the sequel. In §2.2, we will review the HRT formula and discuss various causal regions

in the bulk. In §2.3, we state the basic theorem and some implications for the bulk

causal structure relative to specific regions arising in the HRT conjecture. §2.4 spells

out a particular consequence of our results for spacetimes with multiple boundaries.

Where left unspecified, our notation follows [25].

2.1 Causality of entanglement entropy in QFT

Consider a local quantum field theory (QFT) on a d-dimensional globally hyperbolic

spacetime B. The state on a given Cauchy slice4 Σ is described by a density matrix ρΣ;

this could be a pure or mixed state. We are interested in the entanglement between the

degrees of freedom in a region5 A ⊂ Σ and its complement Ac. Following established

terminology, we call the boundary ∂A the entangling surface.

The entanglement entropy is defined by first decomposing the Hilbert space H of

the QFT into HA ⊗ HAc , after imposing some suitable cutoff.6 The reduced density

matrix ρA := TrHAc ρΣ captures the entanglement between A and Ac; in particular, the

entanglement entropy is given by its von Neumann entropy: SA := −Tr (ρA ln ρA). For

4 Throughout this paper we will require all Cauchy slices to be acausal (no two points are connected

by a causal curve). This is slightly different from the standard definition in the general-relativity

literature, in which a Cauchy slice is merely required to be achronal. The reason is to ensure that

different points represent independent degrees of freedom, which is useful when we decompose the

Hilbert space according to subsets of the Cauchy slice.
5 Technically, A is defined as the interior of a codimension-zero submanifold-with-boundary in Σ,

∂A is the boundary of that submanifold, and Ac := Σ \ (A ∪ ∂A).
6 In the case of gauge fields, this decomposition is not possible even on the lattice. Instead, one must

extend the Hilbert spaces HA, HAc to each include degrees of freedom on ∂A, so that H ⊂ HA⊗HAc

[26–29].
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holographic theories, we expect that this quantity has good properties in the large-N

limit,7 unlike the Rényi entropies Sn,A := − 1
n−1

ln Tr (ρnA) [10, 31]. Note that both

quantities are determined by the eigenvalues of ρA, and are thus insensitive to unitary

transformations of ρA.

Now, since Σ is a Cauchy slice, the future (past) evolution of initial data on it allows

us to reconstruct the state of the QFT on the entirety of B. In other words, the past

and future domains of dependence of Σ , D±[Σ], together make up the background

spacetime on which the QFT lives, i.e., D+[Σ] ∪ D−[Σ] = B. Likewise, the domain

of dependence of A, D[A] = D+[A] ∪D−[A], is the region where the reduced density

matrix ρA can be uniquely evolved once we know the Hamiltonian acting on the reduced

system in A.8

Ac similarly has its domain of dependence D[Ac]. However, unless A comprises the

entire Cauchy slice, the two domains do not make up the full spacetime, D[A]∪D[Ac] 6=

B, since we have to account for the regions which can be influenced by the entangling

surface ∂A. Denoting the causal future (past) of a point p ∈ B by J±(p) we find that

we have to keep track of the regions J±[∂A] which are not contained in either D[A] or

D[Ac]. As a result, the full spacetime B decomposes into four causally-defined regions:

the domains of dependence of the region and its complement, and the causal future

and past of the entangling surface:

B = D[A] ∪D[Ac] ∪ J+[∂A] ∪ J−[∂A] . (2.1)

These four regions are non-overlapping (except that J±[∂A] both include ∂A). See

Fig. 2 for an illustration of this decomposition. Although this decomposition is fairly

obvious pictorially, for completeness we provide a proof in §4 (cf. theorem 12).

The decomposition (2.1) is particularly convenient for formulating the QFT causal-

ity constraint. Recall that the eigenvalues of the reduced density matrix ρA, and hence

the Rényi and von Neumann entropies, are invariant under unitary transformations

which act on HA alone or on HAc alone. These include perturbations of the Hamilto-

nian and local unitary transformations supported in the domains D[A] or D[Ac]. In

particular, if we consider another region A′ of a Cauchy slice Σ′ such thatD[A] = D[Ac]

(as indicated in Fig. 2), then the state ρΣ′ is related by a unitary transformation to

the state ρΣ. It is clear that such a transformation can be constructed from operators

localized in A, and so does not change the entanglement spectrum of ρA. Furthermore,

7 Technically, by “large-N” we mean large ceff, where ceff is a general count of the degrees of freedom

(see [30] for the general definition of ceff).
8 We remind the reader that D[A] is defined as the set of points in B through which every inex-

tendible causal curve intersects A. Note that, given that we have defined A as an open subset of Σ,

D[A] is open subset of B.
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J+[∂A]

J−[∂A]

Fig. 2: An illustration of the causal domains associated with a region A, making manifest the

decomposition of the spacetime into the four distinct domains indicated in (2.1). Two

deformations A′ are also included for illustration in the right panel.

if we fix the state at t → −∞, then a perturbation to the Hamiltonian with support

R cannot affect the state on a Cauchy slice to the past of R (i.e. that doesn’t intersect

J+[R]). Such a perturbation can therefore affect the entanglement spectrum only if R

intersects J−[∂A], because otherwise we can imagine evaluating SA by using a suffi-

ciently early Cauchy slice Σ′ ⊃ ∂A that passes to the past of R. Similarly, if we fix the

state at t → +∞, the spectrum can be affected only by perturbations in J+[∂A]. In

summary, we have the following properties of ρA:

• The entanglement spectrum of ρA depends only on the domain D[A] and not on

the particular choice of Cauchy slice Σ. The spectrum is thus a so-called “wedge

observable” (although it is not, of course, an observable in the usual sense).

• Fixing the state in either the far past or the far future, the entanglement spectrum

of ρA is insensitive to any local deformations of the Hamiltonian inD[A] orD[Ac].

These are the crucial causality requirements that entanglement (Rényi) entropies are

required to satisfy in any relativistic QFT.

The essential result of this paper is that the HRT proposal for computing SA

satisfies these causality constraints. In the conclusions we will revisit the question of

what the dual of ρA, and thus of the data in D[A], might be.

2.2 Bulk geometry and holographic entanglement entropy

Let us now restrict attention to the class of holographic QFTs, which are theories

dual to classical dynamics in some bulk asymptotically AdS spacetime. To be precise,

we only consider strongly coupled QFTs in which the classical gravitational dynamics

– 8 –



truncates to that of Einstein gravity, possibly coupled to matter which we will assume

satisfies the null energy condition.

The dynamics of the QFT on B is described by classical gravitational dynamics

on a bulk asymptotically locally AdS spacetime M with conformal boundary B, the

spacetime where the field theory lives. We define M̃ :=M∪B. M̃ is endowed with a

metric g̃ab which is related by a Weyl transformation to the physical metric gab onM,

g̃ab = Ω2gab, where Ω→ 0 on B.9 Causal domains on M̃ will be denoted with a tilde to

distinguish them from their boundary counterparts, e.g., J̃±(p) will denote the causal

future and past of a point p in M̃ and D̃[R] will denote the domain of dependence of

some set R ⊂ M̃.

It will also be useful to introduce a compact notation to indicate when two points

p and q are spacelike-separated; for this we adopt the notation ≍, i.e.

p ≍ q ⇔ ∄ a causal curve between p and q. (2.2)

Moreover, to denote regions that are spacelike separated from a point, we will use S(p)

and S̃(p) in the boundary and bulk respectively,

S(p) := {q | p ≍ q} =
(

J+(p) ∪ J−(p)
)c

and S̃(p) :=
(

J̃+(p) ∪ J̃−(p)
)c

.

(2.3)

Just as for other causal sets, we can extend these definitions to any region R, namely

S[R] := ∩p∈RS(p) is the set of points which are causally disconnected from the entire

region R, etc.

Having established our notation for general causal relations, let us now specify the

notation relevant for holographic entanglement entropy. As before we will fix a region

A on the boundary. The HRT proposal [3] states that the entanglement entropy SA is

holographically computed by the area of a bulk codimension-two extremal surface EA
that is anchored on ∂A; specifically,

SA =
Area(EA)

4GN

. (2.4)

In the static (RT) case, it is known that the extremal surface is required to be homol-

ogous to A, meaning that there exists a bulk region RA such that ∂RA = A ∪ EA.

So far, it has not been entirely clear what the correct covariant generalization of this

condition is. In particular, should it merely be a topological condition, or should one

impose geometrical or causal requirements on RA, for example, that it be spacelike?

(A critical discussion of the issues involved can be found in [32].) In this paper, we

9 These are necessary but not sufficient conditions for the spacetime to be asymptotically AdS.
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will show that a clean picture, consistent with all aspects of field-theory causality, is

obtained by requiring that RA be a region of a bulk Cauchy slice.10 We will call this

the “spacelike homology” condition.11

The homology surface RA naturally leads us to the key construct pertaining to

entanglement entropy, which we call the entanglement wedge of A, denoted by12WE [A].

This can be defined as a causal set, namely the bulk domain of dependence of RA,

WE [A] := D̃[RA] . (2.5)

Note that the entanglement wedge is a bulk codimension-zero spacetime region, which

can be equivalently identified with the region defined by the set of bulk points which

are spacelike-separated from EA and connected to D[A]. The latter definition has the

advantage of absolving us of having to specify an arbitrary homology surface RA rather

than just EA and D[A]. As we shall see below, the bulk spacetime can be naturally

decomposed into four regions analogously to the boundary decomposition (2.1); the

entanglement wedge is then the region associated with (and ending on) D[A].

While we have focused on the regions in the bulk which enter the holographic

entanglement entropy constructions, we pause here to note two other causal constructs

that can be naturally associated with A. First of all we have the causal wedge WC[A]

which is set of all bulk points which can both send signals to and receive signals from

boundary points contained in D[A], i.e.,13

WC[A] := J̃+
[

D[A]
]

∩ J̃−
[

D[A]
]

. (2.6)

(The entanglement wedgeWE [A] and causal wedgeWC[A] are in fact special cases of the

“rim wedge” and “strip wedge” introduced recently in [33] as bulk regions associated

with residual entropy.)

The second bulk causal domain which will play a major role in our discussion below

is a region we call the causal shadow Q∂A associated with the entangling surface ∂A.

10 Technically, similarly to A, we define RA to be the interior of a codimension-zero submanifold-

with-boundary of a Cauchy slice Σ̃ of M̃ (with Σ̃∩B = Σ). Since Σ̃ itself has a boundary (namely its

intersection with B), the interior of a subset (in the sense of point-set topology) includes the part of

its boundary along B. Thus, RA includes A (but not EA).
11 If there are multiple extremal surfaces obeying the spacelike homology condition, then we are to

pick the one with smallest area. However, in this paper we will not use this additional minimality

requirement; all our theorems apply to any spacelike-homologous extremal surface.
12 While we have associated it notationally with the region A, it depends only on D[A].
13 Following [22], we can also define a particular bulk codimension-two surface ΞA, the causal

information surface, to be the rim of the causal wedge; in fact, it is the minimal area codimension-two

surface lying on ∂WC [A].
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EA AAc

← D[A]D[Ac]→



y

Q∂A

Fig. 3: Example of a causally trivial spacetime and a boundary region A whose causal shadow is

a finite spacetime region. We have engineered an asymptotically AdS3 geometry sourced

by matter satisfying the null energy condition (see footnote 14) and taken A to nearly

half the boundary, ϕA = 1.503, at t = 0 (thick red curve). The shaded regions on the

boundary cylinder are D[A] and D[Ac] respectively. The extremal surface is the thick

blue curve, while the purple curves are the rims of the causal wedge (causal information

surfaces) for A and Ac respectively. A few representative generators are provided for

orientation: the blue null geodesics generate the boundary of the causal wedge for A

while the green ones do likewise for Ac. The orange generators in the middle of the

spacetime generate the boundary of the causal shadow region Q∂A.

We define this region as the set of points in the bulkM that are spacelike-related to

both D[A] and D[Ac], i.e.,

Q∂A :=
(

J̃+[D[A]] ∪ J̃−[D[A]] ∪ J̃+[D[Ac]] ∪ J̃−[D[Ac]]
)c

= S̃[D[A] ∪D[Ac]] . (2.7)

For a generic region A in a generic asymptotically AdS spacetime, the causal shadow
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is a codimension-zero spacetime region; see Fig. 3 for an illustrative example.14 In

certain special (but familiar) situations, such as spherically symmetric regions in pure

AdS (where ρA is unitarily equivalent to a thermal density matrix), it can degenerate

to a codimension-two surface. In such special cases, the entanglement wedge and the

causal wedge coincide [22]. In general, the causal information surface for A and that

for Ac comprise the edges of the causal shadow. For a generic pure state these causal

information surfaces each recede from EA towards their respective boundary region but

approach each other near the AdS boundary. Hence the geometrical structure of Q∂A,

described in language of a three-dimensional bulk, is a “tube” (connecting the two

components of ∂A) with a diamond cross-section, which shrinks to a point where the

tube meets the AdS boundary at ∂A.

For topologically trivial deformations of AdS, in the absence of EA (i.e. when the

state is pure and A = Σ) the causal shadow disappears, but intriguingly, even when A

is the entire boundary Cauchy slice, the causal shadow can be nontrivial. This occurs

for example in the AdS3-geon spacetimes15 [34] and in perturbations of the eternal AdS

black hole, such as those studied by [35]. In such a situation we simply define the casual

shadow of the entire boundary (dropping the subscript) as

Q := S̃[B] =
(

J̃+[B] ∪ J̃−[B]
)c

(2.8)

Here B is understood generally to include multiple disconnected components; the causal

shadow is the region spacelike separated from points on all the boundaries.

2.3 Causality constraints on extremal surfaces

Having developed the various causal concepts which we require, let us now ask what

the constraints of field-theory causality concerning entanglement entropy translate to

in the bulk. The first constraint is that SA should be a wedge observable, i.e. if

D[A] = D[A′] then SA = SA′ . For this to hold in general, we need EA = EA′ . The

second concerns perturbations of the field-theory Hamiltonian. Such perturbations will

source perturbations of the bulk fields, including the metric, that will travel causally

with respect to the background metric. In particular, disturbances originating in D[A]

14 The bulk metric used in the plot for Fig. 3 is

ds2 =
1

cos2 ρ

(

−f(ρ) dt2 +
dρ2

f(ρ)
+ sin2 ρ dϕ2

)

, f(ρ) = 1−
1

2
sin2(2 ρ) .

The matter supporting this geometry satisfies the null energy condition as can be checked explicitly.
15 Since these describe pure states, the presence of a causal shadow region does not necessarily

guarantee the presence of an extremal surface whose area gives the entanglement entropy contained

within it. However, there will be some extremal surface spanning this region.
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will be dual to bulk modes propagating in J̃+
[

D[A]
]

(if we fix the state in the far past)

or in J̃−
[

D[A]
]

(if we fix the state in the far future). If either of these bulk regions

intersected EA, the dual of local operator insertions in D[A] could change the area of

EA, meaning that the HRT proposal would be inconsistent with causality in the QFT.

By the same token, the extremal surface cannot intersect J̃+
[

D[Ac]
]

or J̃−
[

D[Ac]
]

.

Since the region complement to union of the causal sets J̃±[D[A]], J̃±[D[Ac]] is the set

of points that are spacelike related to D[A] ∪D[Ac], we learn that

EA ≍ D[A] ∪D[Ac] . (2.9)

In others words, using (2.7) we can say that EA has to lie in the causal shadow of ∂A

EA ⊂ Q∂A . (2.10)

It is known, based on properties of extremal surfaces, that EA lies outside the causal

wedgesWC[A] andWC[A
c] [12, 22, 23]. This leaves open the possibility that the surface

could still lie in the causal future (or past) of the boundary domain of dependence of A

or Ac. A particular worry arises in explicit examples in Vaidya-AdS geometries where

the extremal surface lies on the boundary of J̃+
[

D[A]
]

. This then leaves open the

question whether one might indeed be able to push EA into a causally forbidden region,

by introducing appropriate deformations in D[A]. A theorem of Wall [12] (Theorem 6

of the reference), guarantees that this does not occur (modulo some assumptions).

We will prove an essentially equivalent statement in §4, directly for extremal sur-

faces in an asymptotically AdS spacetime. The main result however can be stated in

terms of three simple causal relations:

D̃[RA] ∩ B = D[A]

D̃[Rc
A] ∩ B = D[Ac]

J̃±[EA] ∩ B = J±[∂A] .

(2.11)

In other words, the causal split of the bulk into spacelike- and timelike-separated regions

from EA restricts to the boundary at precisely the boundary split (2.1). Given the

decomposition (2.1), these causal relations imply that perturbations in D[A] ∪ D[Ac]

are not in causal contact with EA. So, as required, the extremal surface lies in the

causal shadow.

As a consequence of this theorem, we will also show that, if there is a spacelike

region A′ such that D[A′] = D[A], then there is a bulk region RA′ such that ∂RA′ =

A′ ∪ EA, so EA is spacelike-homologous to A′. Thus, the HRT formula gives the same

entanglement entropy for A′ and A, as required on the field-theory side.
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2.4 Entanglement for disconnected boundary regions

A striking consequence of the theorems discussed above emerges when we consider

spacetimes with two boundary components, and let A be (a Cauchy slice for) all of one

component.

As a starting point, consider the eternal Schwarzschild-AdSd+1 black hole in the

Hartle-Hawking state, with a Penrose diagram shown in Fig. 4(a) below. The left and

right boundaries of the diagram each have the topology Sd−1 × R. This geometry is

believed to be dual to the CFT on the product spatial geometry Sd−1
L × Sd−1

R , in the

entangled “thermofield double” state [36–39]:

|HH〉L,R =
∑

i

e−
1

2
β Ei |Ei〉L |Ei〉R (2.12)

where |Ei〉R,L is the energy eigenstate of the CFT on Sd−1
R,L .

Let ΣR lie on the t = 0 slice of the right boundary, and consider the reduced density

matrix for some region A ⊂ ΣR. Since this is a static geometry, its entanglement

entropy SA is computed by a minimal surface EA which never penetrates past the

bifurcation surface X of the black hole [17].16 If we let A be the full Cauchy slice of

one of the boundaries, say A = ΣR, the extremal surface precisely coincides with the

black hole bifurcation surface, as indicated in Fig. 4. Note that EA lies on the edge of

the causally acceptable region since X sits at the boundary of bothWC[A] andWC[A
c],

and therefore constitutes the entire causal shadow for this special case.

One might now wonder what happens if we deform the state (2.12). This is not

an innocuous question. In time-dependent geometries, the global (teleological) nature

of the event horizon implies that extremal surfaces anchored on the boundary can pass

through this horizon [15]. Furthermore, as first explicitly shown in [16], even apparent

horizons do not form a barrier to the extremal surfaces. Hence we see that, a priori, in

a state which is a deformation of (2.12), EA is in danger of entering WC[A
c].

The theorems we have stated above indicate that this does not happen. The

question is, how precisely does the extremal surface EA avoid doing so? As a first step

to answering this, consider a deformation of the static eternal case localized along a null

shell emitted from the right boundary at some time. The corresponding metric is given

by the global Vaidya-SAdS geometry, where both the initial (prior to the shell) and

final (after the shell) spacetime regions describe a black hole. Fig. 4b presents a sketch

of the Penrose diagram of such a geometry, contrasted with the standard static eternal

Schwarzschild-AdS black hole (Fig. 4a). The diagonal brown line represents the shell

16 Note that the extremal surface does not come arbitrarily close to the horizon—it either includes

a component that wraps the horizon, or stays a finite distance away from it [32].
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(a) (b)

F

P

RL

Fb

Fa
Fc

P
Pc

RaRc

Rb

L

Fig. 4: Sketch of Penrose diagram for (a) static eternal Schwarzschild-AdS and (b) ‘thin

shell’ Vaidya-Schwarzschild-AdS, with the various regions labeled. The AdS boundaries

are represented by vertical black lines, the singularities by purple curves, the horizons by

diagonal blue lines, and the ‘shell’ in the Vaidya case by diagonal brown line.

which is sourced at some time on the right boundary and implodes into the black hole

(terminating at the future singularity), and the blue lines represent the various (future

and past, left and right) event horizons. The solid parts of these lines indicate where

these event horizons coincide with apparent horizons (as well as isolated horizons); the

dashed parts are parts of the event horizon which are not apparent horizons.

In such a geometry, let us again consider A = ΣR. Then our theorems guarantee

that the extremal surface must lie on the null sheet separating regions Rc and Pc: it

is again spacelike-separated from both D[ΣL] and D[ΣR]. (In fact, since the spacetime

prior to the shell is identical to the eternal static case, the extremal surface remains in

the same location as for the static case, namely the bifurcation surface where regions

Rc and L touch.) The situation is again marginal, much like the original undeformed

case. Indeed, any perturbation to Schwarzschild-AdS which emanates from (or reaches

to) the right boundary cannot change the location of the original extremal surface by

causality; it could at most generate a new extremal surface.

A less marginal case occurs when we symmetrically perturb both copies of the

CFT as above. Consider a perturbation at t = 0 such that spherically symmetric null

shells are emitted both to the past and future on both sides of the diagram. One then

obtains the Penrose diagram shown in Fig. 5; this has time-reflection symmetry about
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CFTRCFTL

AEA

Q
WC[A]WC[A

c]

FA

Fig. 5: Sketch of Penrose diagram for a symmetric Vaidya-Schwarzschild-AdS geometry ob-

tained by imploding null shells to the past and future from both boundaries. The crucial

new feature of note is the presence a causal shadow region that is spacelike separated

from both boundaries. We have also indicated the extremal surface EA for the region

A = ΣR in red at the center of the figure and FA is a Sd−1 of finite area in the causal

future of the left boundary. The lightly shaded regions are the causal wedges associated

with A and Ac respectively.

t = 0, symmetry under exchanging the left and right sides, and the SO(d) rotational

symmetry.

According to the theorems above, the extremal surface must be spacelike-separated

from both boundaries, when we take A = ΣR. Using both time and space reflection

symmetry, it is clear that EA must sit in the center of the causal shadow Q of the two

boundaries, spacelike separated from both.

In the general case of spherically symmetric spacetime (even in the absence of time

or space reflection symmetry) there is an easy proof of our claim that EA must lie in the

causal shadow. We proceed by contradiction: suppose that a spherical extremal surface

EA lies in J̃+ [ΣL]. This means that on a Penrose diagram, it lies somewhere in the top-

left region; say it is the surface FA indicated in Fig. 5 (which by rotational symmetry is

a copy of Sd−1). Let us then consider the past congruence of null normal geodesics from

FA towards BL. Since we assume that FA candidate surface lies in J̃+ [ΣL], past-going

null congruences from the surface intersect BL on a spacelike codimension-one surface.
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In other words, the area of the spheres grows without bound along this past-directed

congruence.

However, by definition, for an extremal surface the initial expansion is vanishing.

Moreover, if the matter in the spacetime satisfies the null energy condition,then it also

follows that the area along the congruence is guaranteed not to grow. Nor can the area

go to zero along the congruence, since the area of the Sd−1 represented by each point

on the Penrose diagram is finite. It therefore follows that our assumption about EA
penetrating J̃+ [ΣL] must be erroneous; FA cannot be an extremal surface. Running a

similar argument for the other unshaded regions in Fig. 5, we learn that the extremal

surface must indeed lie in the causal shadow region, as denoted by the red surface EA.

Indeed, in this particular case, the extremal surface lies at the point on the Penrose

diagram where the future and past apparent horizons meet—the “apparent bifurcation

surface”. The fact that it lies in the causal shadow is a consequence of the familiar

fact that the apparent horizon can never be outside the event horizon, applied to both

future and past horizons.

While the above result relied on the special properties of spherically symmetry

(both of the spacetime and the null congruences therein), the theorems we prove in §4

will establish this in full generality.

In the next two sections we set out to prove the theorems stated in §2.3. The proof

in our spherically symmetric case indicates that understanding null congruences leaving

the extremal surface might play a key role. We will therefore spend some time in §3

examining null congruences emanating from bulk codimension-two surfaces in AdS3,

in order to develop a picture of the relevant causal domains, before embarking on a

general proof in §4.

3 Null geodesic congruences in AdS3

In this section, we consider null geodesic congruences emanating from curves in AdS3

that are anchored at the boundary. Our aim is to build some intuition about such

congruences in a simple setting, since their properties will play a crucial role in the

proofs in what follows. Readers familiar with the general statements are invited to skip

ahead to the abstract discussion.

We work in the Poincaré patch of AdS3 with the standard metric:

ds2 =
1

z2
(

−dt2 + dx2 + dz2
)

(3.1)

Since our aim is to understand specifically the (causal) boundary of bulk causal do-

mains, we are going to examine properties of null geodesic congruences. In particular,
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for a spacelike codimension-one region R ⊂M which is anchored on the AdS boundary,

the domain of dependence D̃[R] is bounded by a family of outgoing null geodesics ema-

nating from ∂R, up to the point where each geodesic encounters a caustic or intersects

another generator.17

To gain intuition for how these null congruences behave in the context of the

extremal surfaces of interest, we examine a more general family of codimension-two

surfaces (these are curves in AdS3) which in the above coordinates are given by

x2 +
z2

a2
= 1 , t = 0 (3.2)

parameterized by a. Note that all of these are anchored on the boundary R1,1 at the

ends of the interval A = {(t, x) ∈ R1,1 | t = 0, x ∈ [−1, 1]}. (For orientation, see

the bottom set of curves in Fig. 7.) When a = 1, the surface is a semi-circle, which

is simultaneously the causal information surface ΞA defined in [22], and the extremal

surface EA for the region A under consideration. Surfaces with a < 1 lie inside the

causal wedge WC[A], while those with a > 1 lie outside i.e., they are spacelike related

to D[A]. We wish to study the family of null congruences leaving these surfaces, as we

vary a. The geodesics will be labelled by their starting position x0 and parameterized

by an affine parameter λ (fixed such that we have unit energy along each geodesic).

3.1 Explicit solutions for geodesic congruences

Since the a = 1 surface is extremal, the null expansion Θ(λ; a = 1) = 0 for each

generator. For the surfaces with a < 1, closer to the boundary, we expect that the

expansion is positive and the congruence intersects the boundary in a spacelike curve

inside D[A] = {(t, x) ∈ R1,1 | |t ± x| ≤ 1}. For curves with a > 1, long ellipse, we

expect the expansion to be negative. The resulting congruence should develop a caustic

before reaching the boundary.

Due to the relative simplicity of the set-up, we can confirm these expectations

explicitly. Since everything is time-symmetric, let us consider just the future-directed

17 The latter set of intersections is referred to as cross-over points; the set of these generically form

a crossover seam which is codimension-one on this null surface.
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outgoing congruence:

z(λ) =
a
√

1− x2
0

√

1− x2
0 + a2 x2

0

a (1− x2
0)λ+

√

1− x2
0 + a2 x2

0

x(λ) = x0
a (1− a2) (1− x2

0)λ+
√

1− x2
0 + a2 x2

0

a (1− x2
0)λ+

√

1− x2
0 + a2 x2

0

t(λ) =
a2 (1− x2

0)
√

1− x2
0 + a2 x2

0 λ

a (1− x2
0)λ+

√

1− x2
0 + a2 x2

0

(3.3)

Note that the endpoints of these generators at λ =∞ are given by

z∞ = 0 , x∞ = x0 (1− a2) , t∞ = a
√

1− x2
0 + a2 x2

0 (3.4)

A representative plot of the generators is given in Fig. 6 for a = 0.5 (left) and a = 1.5

(right). We see that when a < 1, the generators don’t intersect each other before

reaching the boundary, and they reach within D+[A]. On the other hand, when a > 1,

the generators intersect in a seam (drawn as thick blue curve, whose explicit expression

is given below in (3.5)), before reaching the boundary (with the geodesic endpoints

indicated by the red curves in Fig. 6). We call the points on this seam the cross-over

points; non-neighbouring geodesics intersect at these points. This seam terminates in

a caustic, which as always refers to the locus where neighbouring geodesics intersect.

3.2 Intersections within congruences

We can determine the intersection between distinct geodesics in the bulk using the

explicit expressions from (3.3). By symmetry of the set-up, we know that geodesics

with opposite values of x0 necessarily intersect, and they must do so at x = x× = 0.

Solving for the intersection of the pair of geodesics starting from x0 and −x0 we find

that they meet at:

t× =

√

1− x2
0 + a2 x2

0

a
, z× =

a2 − 1

a

√

1− x2
0 , λ× =

√

1− x2
0 + a2 x2

0

a (a2 − 1) (1− x2
0)

(3.5)

This generates the seam of cross-over points depicted in the right panel of Fig. 6,

and plotted for various values of a in Fig. 7 (the top set of curves, color-coded by

a corresponding to the initial surface indicated by the thick horizontal curve of the

same color). It is easy to see from (3.5) that the cross-over points terminate on the

boundary at the future tip of D+[A], i.e., at z = 0, x = 0, t = 1, corresponding to

the intersection of the boundary geodesics x0 = ±1. On the other hand, the cross-over
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Fig. 6: Null normal congruence from the initial surface given by (3.2) with a = 0.5 (left) and

a = 1.5 (right). The initial surface is the bold black curve on the bottom, the boundary

is the shaded plane on the left in each plot (with the domain of dependence D+[A]

boundary indicated by the thin black lines), the individual geodesics are the thin lines

color-coded by x0, their endpoints on the boundary are depicted by the red curve, and

finally the seam of crossover points where generators intersect for a > 1 is the blue thick

curve. (The generators are cut off at a finite value of λ ≈ 64, so in the plot they don’t

look like they reach all the way to the boundary.)

seams for different a start at the point in the bulk when neighbouring geodesics from

x0 ≃ 0 intersect which happens at

x× = 0 , t× =
1

a
, z× =

a2 − 1

a
, λ× =

1

a (a2 − 1)
(3.6)

To summarize, depending on whether a is greater or less than 1, the congruence has

qualitatively different behaviour, as illustrated in Fig. 7. For a < 1 (depicted by colors

from red toward green), the congruence reaches the boundary inside D+[A], while for

a > 1, the generators intersect each other at the seam of crossover points (depicted by

colors from red toward purple). At precisely a = 1, all generators reach the boundary

at the future tip of D+[A], namely z = 0, x = 0, t = 1.
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Fig. 7: Initial surfaces (thick curves at the bottom, color-coded by a), along with endpoints

of the generators of the corresponding null congruence: for a = 1 (initial surface is the

red semi-circle), all generators meet at the tip. Increasing a > 1 (color shift towards

purple and blue) makes the generators intersect at the seam of cross-over points before

reaching the boundary. On the other hand, decreasing a < 1 (color shift towards orange

and green) makes the generators reach the boundary within D+[A] (depicted as in

Fig. 6).

3.3 Expansion of congruences and caustics

Let us now analyze the expansion along this congruence. This can be calculated as the

change in area along the wavefront

Θ(λ, x0) =
1

A(λ, x0)

∂

∂λ
A(λ, x0) (3.7)

with

A(λ, x0) =

∫ x0+δx

x0

√

−t′(λ, x̃0)2 + x′(λ, x̃0)2 + z′(λ, x̃0)2

z2(λ, x̃0)
dx̃0 (3.8)

where t′(λ, x0) ≡
∂

∂x0

t(λ; x0) etc., using the expressions given in (3.3). While one can

numerically solve for Θ(λ) it is easier to obtain the solution for small λ and evolve

using the Raychaudhuri equation.

Near λ = 0, the leading order expression for Θ is:

Θ0 ≡ Θ(λ = 0) =
a (1− a2) (1− x2

0)
2

(1− x2
0 + a2 x2

0)
3/2

(3.9)

This is plotted in the left panel of Fig. 8 (with same color-coding by a as employed in

Fig. 7). At the ends of the interval x0 = ±1, Θ0 vanishes (which is to be expected since
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Fig. 8: Expansion Θ(λ;x0) along the generators for various values of a (color-coded by a as

in Fig. 7). On left, we show the expansion from the initial surface λ = 0 as a function

of the starting position x0. On right, we fix x0 = 0 as plot the evolution of Θ(λ) along

the radial generator.

the congruence approximates a larger one with a = 1), while Θ0 reaches its extremum

at the midpoint, x0 = 0 (again, expected by symmetry), where Θ0(x0 = 0) = a (1−a2).

Furthermore, Θ0 is positive for a < 1 and negative for a > 1; that is, the congruences

are expanding for a < 1 and converging for a > 1). The former make it out to the

boundary without intersecting, while the latter have a seam of cross-overs. As we will

see below, the geodesics end in a curve of caustics, which touches the seam of cross-overs

at the endpoint of the latter.

Given Θ0 as our initial condition, it is straightforward to solve the Raychaudhuri

equation
dΘ

dλ
= −Θ2 − 2 σab σ

ab −Rab ξ
a ξb (3.10)

to find the expansion along the geodesics. Here ξa is the tangent vector to the null

geodesics and σµν is the shear of the congruence. For a one-dimensional congruence

the shear trivially vanishes and the Ricci tensor contracted with null tangents likewise

vanishes upon using the bulk equations of motion Rab = −2 gab, so (3.10) simplifies to:

dΘ

dλ
= −Θ2 ⇒ Θ(λ) =

Θ0

1 + Θ0 λ
(3.11)

Using (3.9), we find:

Θ(λ, x0) =
a (1− a2) (1− x2

0)
2

(1− x2
0 + a2 x2

0)
3/2 + a (1− a2) (1− x2

0)
2 λ

(3.12)

In Fig. 8 we have plotted this as a function of λ for x0 = 0, at which Θ = a (1−a2)
1+a (1−a2)λ

.

For a > 1, we expect the congruence to develop a caustic where the expansion

diverges. This occurs when infinitesimally nearby geodesics intersect each other. Eq.
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(3.12) shows that this can only occur for a > 1, where the second term in the de-

nominator is negative for positive λ. In this case Θ(λ) → −∞ at a finite value of

λ = λc,

λc =
(1− x2

0 + a2 x2
0)

3/2

a (a2 − 1) (1− x2
0)

(3.13)

for any x0. The spacetime coordinates for the points along the congruence where this

happens are given by

xc = (1− a2) x3
0 , tc =

(1− x2
0 + a2 x2

0)
3/2

a
, zc =

a2 − 1

a
(1− x2

0)
3/2 (3.14)

Viewed as a pair of parametric curves parametrized by x0 which starts at x0 = 0 and

ends at x0 = ±1, the caustic seams are null curves, starting at the intersection point

(3.6) and ending on the boundary at zc = 0, xc = ±(1 − a2), and tc = a2. Note that

this is a finite distance on the boundary.

The divergence Θ→ −∞ signifies the presence of conjugate points, but their geo-

metric meaning is a bit obscure in our discussion so far. The reason is as follows: as

we see in Fig. 6 and can check explicitly, we generically have caustics in the neighbour-

hood of x0 ≃ 0, but more generally encounter cross-over points from the intersection

geodesics symmetrically placed about x0 = 0. The expansion is finite along the cross-

over seam (3.5) for x0 6= 0. This can be understood by realizing that the expansion is

a local property of the nearby geodesics which doesn’t know about any other piece of

the congruence. So nothing special ought to happen at the cross-over points which are

non-local in the congruence, and indeed these are not conjugate points.

The clue as to the geometric meaning of Θ→ −∞ comes from plotting this locus

on the surface of the null congruence (continued through the cross-over seam). This

is presented in Fig. 9 by the thick red curves. We see that the surface intersects itself

at the cross-over seam, beyond which the constant-λ wavefronts form closed loops. On

the sharp flank, these wavefronts turn around and locally become null; this is precisely

where A(λ, x0) vanishes and therefore Θ→ −∞.

3.4 Summary

The upshot of our calculations can be summarized as follows. Consider the null geodesic

congruence emanating from a codimension-two spacelike surfaces FA ⊂ M anchored

on the boundary of a region A with ∂A = FA ∩ B.

• If FA ⊂ WC[A] then the congruence terminates inside D[A] along a spacelike

boundary codimension-one surface.
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Fig. 9: Surface generated by the null normal congruence, along with the locus of points on

this surface where the expansion diverges, indicated by the thick red curves. The cyan

contours represent the geodesic generators, while the blue contours are the constant-λ

wavefronts (we cut off the surface at |x0| < 1 for convenience).

• If FA lies on the boundary of the causal wedge WC[A] then the congruence inter-

sects the boundary on the null surface ∂D[A].

• If FA ⊂ S̃ [D[A]] then the congruence finds itself terminated by a seam of cross-

over points (and if continued further, would encounter caustic points prior to

reaching the AdS boundary). The seam itself however reaches out to the boundary

and ends on the future tip18 of ∂D[A].

This gives a clear picture of the causal domains for regions bounded by curves inside

and outside of WC[A]. As we will see in our explicit proof, the extremal surface will

in general lie outside of WC[A]; in special cases it can at best lie on the boundary, but

never in the interior, of the causal wedge.

4 Theorem and proof

We now get to the main part of the paper where we prove that the extremal surface EA
satisfies the causality requirements discussed in §2.3. Our main goal will be to establish

18 In higher-dimensional setting, D[A] itself may terminate in a crossover seam rather than a single

point, which occurs when the null generators of ∂D[A] on the boundary themselves cross over.
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the causal relations quoted there in (2.11). These will establish for us the consistency

of the HRT proposal for computing holographic entanglement entropy.

In §4.1, we remind the reader of the holographic set-up and of our assumptions. In

§4.2, we study null geodesic congruences in the bulk and their intersections with the

boundary. In particular, since a geodesic that reaches the boundary travels an infinite

affine parameter, a non-expanding congruence that reaches the boundary without hit-

ting a caustic must have vanishing shear, and therefore must intersect the boundary

at a single point. This allows us to show, using the null energy condition, that the

intersection with the boundary of the causal future of an extremal bulk surface equals

the causal future of its intersection with the boundary. As a warm-up, we prove a

version of the Gao-Wald theorem [14]. Finally, in §4.3, we carefully define what we

mean by a region and by the spacelike homology condition. We prove that a region A

implies a natural decomposition of the spacetime into four regions D[A], D[Ac], and

J±[∂A]. Then, given the spacelike homology condition, and using the results of §4.2,

we establish the compatibility of the boundary and bulk decompositions, (2.11), and

prove that the extremal surface is a wedge observable.

4.1 Holographic setup

In this subsection we will describe our holographic setup and assumptions.19

Let (M, gab) be a connected spacetime, of dimension greater than or equal to 3,

that can be embedded in a spacetime (M̄, g̃ab), such that the boundary B of M in

M̄ is a smooth timelike hypersurface in M̄, and such that g̃ab = Ω2gab, where Ω is a

smooth function on M̄ that vanishes on B. (We do not assume that B is connected.)

We define M̃ :=M∪B. On M̃ we have a causal structure induced from g̃ab, which in

M agrees with that induced from gab. We make the following assumptions:

(i) (M, gab) obeys the null energy condition.

(ii) M̃ is globally hyperbolic.

(iii) Every null geodesic in (B, g̃ab) is a geodesic in (M̃, g̃ab).
20

19 We largely follow the setup and assumptions of section 3 of [14], with two exceptions: we remove

the null generic condition and we add the condition that the boundary is totally geodesic for null

geodesics (assumption (iii) below).
20Assumption (iii) is equivalent to the following property of the extrinsic curvature Kab of B in M̃:

for any point p ∈ B and any null vector ka in the tangent space to B at p, Kabk
akb = 0. That it holds

for an asymptotically AdS spacetime can be seen by working in Fefferman-Graham coordinates. If we

set Ω = 1/z, where z is the standard radial coordinate, thenKab = 0 (so all geodesics in B are geodesics

in M̃, i.e. B is totally geodesic). The property Kab = 0 is not preserved by Weyl transformations, and
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We begin by showing that B is globally hyperbolic. We omit the proofs, which are

very simple, cf., [40]. (For brevity, we will only indicate one time direction for each

statement below, but the time-reversed statements are clearly equally valid.)

Lemma 1 For any set Υ ⊂ M̃, D̃+[Υ] ∩ B ⊂ D[Υ ∩ B].

Lemma 2 If Σ̃ ⊂ M̃ is closed and acausal, then Σ̃ ∩ B is closed and acausal in B.

Corollary 3 If Σ̃ is a Cauchy slice21 for M̃, then Σ̃ ∩ B is a Cauchy slice for B.

Corollary 4 B is globally hyperbolic.

4.2 Congruences of null geodesics

In this subsection, we will study null geodesics in M̃. Assumption (iii) has the following

useful implication:

Lemma 5 Any null geodesic in M̃ either (1) lies entirely in B, or (2) does not intersect

B except possibly at its endpoints, where it is not tangent to B.

Proof: Given a point p in B and a non-zero null vector in the tangent space to B

at p, there exists a null geodesic in B passing through p with that tangent vector. By

assumption (iii), it is a geodesic in M̃, and by the uniqueness of geodesics it is the

only one. Therefore no null geodesic passing throughM can intersect B tangentially.

Finally, since B is the boundary of M̃ and is smooth, any smooth curve that intersects

B at some point without ending there must be tangent to it. �

Now we constrain the behavior of congruences of null geodesics that pass through

M, using the fact that the metric gab obeys the null energy condition and the fact that

a geodesic that reaches B travels an infinite affine parameter.

Lemma 6 Consider a codimension-one congrence of future-directed null geodesics in

M̃, each of which lies entirely in M except possibly at its endpoints. Suppose that

the part of the congruence in M has the following properties: (1) its expansion with

respect to the metric gab is nowhere positive; (2) at each point, every deviation vector

is spacelike and orthogonal to the tangent vector. Then the congruence intersects B on

a set of isolated points.

so does not hold for a general choice of Ω, but the weaker condition Kabk
akb = 0 does (as can be seen

either from a direct calculation or from the fact that the set of null geodesics is invariant under Weyl

transformations).
21 We remind the reader that, as explained in footnote 4, throughout this paper we require all

Cauchy slices to be acausal, not just achronal.
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Proof: We begin by working in the metric gab. Since the deviation vectors are ev-

erywhere spacelike, the expansion Θ is finite everywhere. On any geodesic that reaches

B, the affine parameter goes to infinity, so, by the null energy condition, Θ is nowhere

negative, and therefore vanishes everywhere. Again using the null energy condition,

the shear therefore vanishes everywhere also. Therefore, for any one-parameter family

of geodesics that reach B, the norm of the deviation vector Xa is a positive constant

along each geodesic.

We now return to M̃, and switch to the metric g̃ab. On B, Xa has vanishing norm;

being also orthogonal to the geodesic’s tangent vector T a, it is proportional to T a

(since orthogonal null vectors are proportional). Without loss of generality, we choose

the affine parameter λ on each geodesic so that it intersects B at λ = 0; hence, at λ = 0,

Xa is tangent to B. However, by lemma 5, T a is not tangent to B. So Xa = 0. Since

this holds for every one-parameter family of geodesics, every connected set of geodesics

that reach B intersects it at a point. �

As a warm-up for our main theorem of this subsection, we will now use lemma

6 to prove a version of the Gao-Wald theorem [14] and a version of the topological

censorship theorem [41].

Theorem 7 For any point p ∈ B, J̃+(p) ∩ B = J+(p).

Proof: Clearly J+(p) ⊂ J̃+(p) ∩ B. Let t be a global time function on M̃. Then

if t(q) < t(p) we have q /∈ J̃+(p). Therefore, each connected component of B contains

some points not in J̃+(p). Therefore, if J̃+(p) ∩ B 6= J+(p), then ∂J̃+(p) ∩ B includes

a hypersurface S in B that is not in J+(p). We will now show that S cannot exist.

∂J̃+(p) consists of future-directed null geodesics starting at p on which, except at

the endpoints, every deviation vector is spacelike and orthogonal to the tangent vector.

By lemma 5, each such geodesic either lies entirely in B or lies entirely inM except at

its endpoints. In particular, the points in S must lie on geodesics that are entirely inM

except at their endpoints. We thus consider the congruence of geodesics inM starting

at p. Reversing its direction, every geodesic in this congruence reaches B (at p), so the

expansion is nowhere negative. Therefore, in the forward direction, its expansion is

nowhere positive. Thus the conditions of lemma 6 apply. Hence S consists of isolated

points, contradicting the fact that it is a hypersurface in B. �

Corollary 8 If B1,B2 are distinct connected components of B, then J̃+(B1) ∩ B2 = ∅.

Corollary 8 rules out traversable wormholes through the bulk connecting different

boundary components, and is thus closely related to topological censorship. (A simple

argument establishing this can be found in [42].)
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Our goal for the rest of this subsection is generalize Theorem 7 to codimension-two

surfaces that are extremal with respect to gab. First, we need two lemmas:

Lemma 9 Let E be a compact codimension-two submanifold-with-boundary of M̃, with

boundary N . Then every point p ∈ ∂J̃+[E ] is on a future-directed null geodesic lying

entirely in ∂J̃+[E ] that either (1) starts orthogonally from E and has no point conjugate

to E between E and p, or (2) starts orthogonally from N , moving away from E (i.e.

UaT
a > 0, where T a is the tangent vector to the geodesic at its starting point, and Ua

is a vector at the same point that is tangent to E , normal to N , and outward-directed

from E).

Proof: This is a generalization of theorem 9.3.11 in [25]. Every p ∈ ∂J̃ [E ] lies on

a null geodesic starting from E . If neither condition (1) nor (2) is met, then it can be

deformed to a timelike curve and therefore p ∈ Ĩ+[E ]. �

Lemma 10 Let E be a spacelike submanifold-with-boundary of M̃ whose restriction to

M is extremal with respect to the metric gab. Then E intersects B orthogonally, i.e.,

every normal vector to E is tangent to B.

Proof: A short calculation shows that, in M, the mean curvature K̃a of E with

respect to g̃ab is related to that with respect to gab, K
a, as follows:

K̃a = Ω−2Ka + dim(E) Q̃ab∂b ln Ω , (4.1)

where Q̃ab := Qa
c g̃

bc and Qa
c is the projector normal to E . Since E is extremal, Ka = 0.

So

K̃2 = dim(E)2 Q̃ab ∂a ln Ω ∂b ln Ω . (4.2)

Since E is smooth, K̃2 remains finite on B, where lnΩ→ −∞. This requires that every

normal vector to E be tangent to B. �

Theorem 11 Let E be a compact smooth spacelike codimension-two submanifold-with-

boundary in M̃, whose only boundary is where it intersects B, and whose restriction to

M is extremal with respect to the metric gab. Then J̃+[E ] ∩ B = J+[E ∩ B].

Proof: The proof is largely a repetition of that of Theorem 7. Clearly J+[E ∩B] ⊂

J̃+[E ]∩B. Let t be a global time function on M̃. Since E is compact, it has a minimum

time tmin. Clearly if for some point q ∈ B, t(q) < tmin, then q /∈ J̃+[E ]. Therefore, each

connected component of B contains some points not in J̃+[E ]. Therefore, if J̃+[E ]∩B 6=

J+[E ∩ B], then ∂J̃+(m) ∩ B includes a hypersurface Σ in B that is not in J̃+[E ∩ B].

We will now show that S cannot exist.
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By lemma 10, E intersects B orthogonally. Therefore, in lemma 9, the second

type of null geodesic in ∂J̃+[E ] does not exist. The first type of geodesic forms a

codimension-two congruence starting orthogonally from E on which, except possibly at

the endpoints, every deviation vector is spacelike and orthogonal to the tangent vector.

By lemma 5, each such geodesic either lies entirely in B or lies entirely inM except at

its endpoints. In particular, the points in S must lie on geodesics that are entirely in

M except where they end. We thus consider the congruence of geodesics inM starting

orthogonally from E ∩M. Since E ∩M is extremal, its expansion (with respect to gab)

is initially zero. By the null energy condition, its expansion is nowhere positive. Thus

the conditions of lemma 6 apply. Hence S consists of isolated points, contradicting the

fact that it is a hypersurface in B. �

Note that theorem 7 is a special case of theorem 11, in which we take E to be a

small (in the metric g̃ab) hemisphere centered on p and take the limit in which its radius

goes to 0.

4.3 Spatial regions and causal decompositions

Let Σ be a Cauchy slice of B. Given a codimension-zero submanifold of Σ, let A be its

interior, ∂A its boundary, and Ac its complement; these three sets do not overlap and

cover Σ. They naturally induce a causal decomposition of the spacetime B into four

nonoverlapping regions (except that J±[∂A] both include ∂A):

Theorem 12

D[A] ∪D[Ac] ∪ J+[∂A] ∪ J−[∂A] = B (4.3)

D[A] ∩D[Ac] = D[A] ∩ J±[∂A] = D[Ac] ∩ J±[∂A] = ∅ (4.4)

J+[∂A] ∩ J−[∂A] = ∂A . (4.5)

Proof: (4.4) and (4.5) are obvious from the definitions.

We now prove (4.3). Suppose a point p ∈ J+[Σ] is not in any of the four regions.

Each inextendible causal curve through p intersects Σ exactly once, but not in ∂A (else

p ∈ J+[∂A]). Nor can all such curves intersect it in A (else p ∈ D[A]) or Ac (else

p ∈ D[Ac]). So some must intersect Σ in A and others in Ac. Let λ1 be in the first

set and λ2 in the second. Join λ1 and λ2 at p to make a continuous curve λ from A

to Ac. Now, in any globally hyperbolic spacetime there exists a global timelike vector

field; its integral curves can be used to construct a continuous map f from J+(Σ) to

Σ. f(λ) is a continuous curve in Σ from A to Ac. There therefore exists a point q ∈ λ
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such that f(q) ∈ ∂A, and therefore q ∈ I+[∂A]. Since p ∈ J+(q), p ∈ J+[∂A], which is

a contradiction. �

Now let EA be a surface in M̃ that satisfies the conditions of theorem 11 and is

spacelike-homologous to A. The precise meaning of the latter condition is as follows:

There exists a Cauchy slice Σ̃ for M̃ such that Σ̃ ∩ B = Σ, containing a codimension-

zero submanifold with boundary A ∪ EA; we call its interior RA. Since Σ̃ is itself a

manifold-with-boundary (namely Σ̃ ∩ B), one has to be careful about the definitions

of “interior” and “boundary” for a submanifold. We mean “interior” in the sense of

point-set topology; thus RA includes A but not EA. The “boundary” can be either in

the sense of “submanifold-with-boundary” (which is what we call ∂RA), or in the sense

of point-set topology. In the latter sense, the boundary is just EA.
22 As with A, we

define Rc
A := Σ̃ \ (RA ∩ EA). To summarize, in parallel to the decomposition of Σ into

A, Ac, and ∂A, we have a decomposition of Σ̃ into RA, R
c
A, and EA. Furthermore,

RA ∩ B = A, Rc
A ∩ B = Ac, and EA ∩ B = ∂A.

We can now apply theorem 12 to obtain a decomposition of M̃ into the four

spacetime regions D[RA], D[Rc
A], J

±[EA]. The central result of this section is that

this decomposition reduces on the boundary precisely to its decomposition into D[A],

D[Ac], and J±[∂A]:

Theorem 13

D̃[RA] ∩ B = D[A] (4.6a)

D̃[Rc
A] ∩ B = D[Ac] (4.6b)

J̃±[EA] ∩ B = J±[∂A] (4.6c)

Proof: Equation (4.6c) is Theorem 11 (and its time reverse). Using Theorem 12 both

in B and in M̃ to take the complement of both sides, we have

(

D̃[RA] ∩ B
)

∪
(

D̃[Rc
A] ∩ B

)

= D[A] ∪D[Ac] . (4.7)

Lemma 1 then implies (4.6a), (4.6b). �

Theorem 13 immediately implies that EA is outside of causal contact with D[A]

and D[Ac], as required by field-theory causality.

The spacelike-homology condition raises the following practical question: Given a

codimension-one submanifold of M̃ with boundary A∪ EA, under what circumstances

22 The point-set-topology boundary can be shown to equal the “edge” of the submanifold, in the

sense used in the general-relativity literature (see e.g. [25]).
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is it contained in a Cauchy slice? Obviously, it must be acausal. However, this is

not sufficient; for example, a spacelike hypersurface in Minkowski space that approaces

null infinity is not contained in a Cauchy slice. The following lemma, which will also

be needed in theorem 15, shows that compactness is a sufficient additional condition.

(This lemma applies in any globally hyperbolic spacetime.)

Lemma 14 If R is a compact acausal set, then there exists a Cauchy slice containing

it.

Proof: Let t ∈ R be a global time function, and define tmax := maxR(t), tmin :=

minR(t) (these exist since R is compact). Define Υ := {p : t > tmax} and Υ′ :=

Υ ∪ I+[R]. Define

Σ := ∂Υ′ =
(

∂Υ \ I+[R]
)

∪
(

∂I+[R] \Υ
)

. (4.8)

∂I+[R] contains R, and Υ ∩ R = ∅, so R ⊂ ∂I+[R] \ Υ ⊂ Σ. Next we show that Σ

is achronal. The maximum value of t on Σ is tmax, so there can be no future-directed

timelike curve from ∂Υ to Σ. Further ∂I+[R] is itself achronal. Finally, if there is a

future-directed timelike curve from p ∈ ∂I+[R] to q ∈ ∂Υ, then q ∈ I+[R] and hence

q 6∈ Σ. So Σ is achronal.

Next, we show that every inextendible future-directed timelike curve intersects Σ.

On such a curve, t increases monotonically and continuously from −∞ to +∞. For

t ≤ tmin, the curve is not in Υ′; for t > tmax, it is. Therefore for some value of t it

intersects Σ.

While Σ is achronal, it is not quite a Cauchy slice (in the sense used in this paper)

because it is not acausal. However, since R is acausal, Σ can be deformed outside of R

to be acausal. �

Theorem 15 Let Σ′ be a Cauchy slice for B and A′ ⊂ Σ′ a region such that A′ ∪ ∂A′

is compact and D[A′] = D[A]. Then A′ is spacelike-homologous to EA.

Proof: Since EA and A′ ∪ ∂A′ are both compact, EA ∪ A
′ is compact as well.

(Recall that ∂A′ = ∂A ⊂ EA.) EA and A′ are acausal, since each sits on a Cauchy slice.

Furthermore, by theorems 12 and 11, there are no causal curves connecting them; hence

EA ∪ A
′ is acausal. Therefore, by theorem 14, there is a Cauchy slice Σ̃′ containing

both EA and A′.

Choosing a global timelike vector field on M̃, its integral curves define a diffeo-

morphism f : Σ̃ → Σ̃′. Let R′
A := f(RA). Since EA is contained in both Σ and

Σ′, f(EA) = EA. Since every timelike curve in D[A] intersects Σ in A and Σ′ in A′,
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f(A) = A′. So R′
A := f(RA) is a region in Σ̃′ with ∂R′

A = A′∪EA. (Strictly speaking,

we also need to define a new Cauchy slice for B, Σ′′ := Σ̃′ ∩B, and to consider A′ to be

a region in Σ′′, since the equality Σ′′ = Σ̃′ ∩ B is part of the definition of the spacelike

homology condition.) �

Theorem 15 shows that the HRT formula gives the same value for the entanglement

entropy of A and A′, as required by field-theory causality.

5 Discussion

The main result of this paper, Theorem 13, shows that the HRT prescription for com-

puting holographic entanglement entropy [32] is consistent with the requirements of field

theory causality. As we have explained with various simple examples and gedanken ex-

periments in §2.4, the result was in no way a priori obvious, since there are several

marginal cases where arbitrarily small deformation of the bulk extremal surface would

place it in causal future of a boundary deformation which however cannot affect the

entanglement entropy. With the primary result at hand, we now take stock of the

various physical consequences it implies for holographic field theories.

Causality constraints on holography: Let us start by asking what we can learn

about holography from causality considerations. Recall that we proved our result for

extremal surfaces in the context of two-derivative theories of gravity satisfying the null

energy condition. This was crucial for us to be able to use the Raychaudhuri equation in

order to ascertain properties of null geodesic congruences. Thus the domain of validity

of our statements was strong coupling in a planar (large-N) field theory. This translates

to demanding a macroscopic spacetime with ℓs ≪ ℓAdS in a perturbative string (gs ≪ 1)

regime. Lets see what happens as we move away from this corner of moduli space.

Firstly, consider classical stringy corrections which we can encapsulate in an effec-

tive higher-derivative theory of gravity. In such a theory, as long as higher-derivative

operators are suppressed by powers of ℓs, our conclusions will hold, since the domi-

nant effect will come from the leading two-derivative Einstein-Hilbert term in the bulk.

When the higher-derivative operators are unsuppressed we have little to say for two

reasons: (a) the holographic entanglement prescription so far is only given for static

situations (or with time reversal symmetry) [43, 44] and (b) even assuming the co-

variant generalizations, one is stymied by the absence of clean statements regarding

dynamics of null geodesic congruences (even for example in Lovelock theories).23 One

23 The family of f(R) theories can be brought to heel, since here we can map the theory to Einstein-

Hilbert via a suitable Weyl transformation. Causality constraints can be discerned here so long as the

Weyl transformation (which is non-linear in the curvature) is well-behaved.
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could, however, use the causality constraint to rule out certain higher-derivative theo-

ries from having unitary relativistic QFT duals (see e.g. [45]); this is similar in spirit

to the recent discussions on causality constraints on the three-graviton vertex [46].

Turning next to 1/N , or bulk quantum corrections, while we have less control in

general, we can make some observations about the leading 1/N correction which has

been proposed to be given by the entanglement of bulk perturbative quantum fields

across EA [47]. Since the bulk theory itself is causal, it follows that entanglement across

the extremal surface satisfies the desired causality conditions.

Does causality prove the HRT conjecture?: One intriguing possibility given,

the importance of the causality, is whether we can use it to constrain the location of

the extremal surface in the bulk, and thus prove the HRT conjecture.24 Unfortunately,

causality alone is not strong enough to pin down the location of the extremal surface.

What we can say is that the extremal surface EA has to lie inside the causal shadow

Q∂A. In a generic asymptotic AdS spacetime, for a generic region A, the casual shadow

is a codimension-zero volume of the bulk spacetimeM. It is only in some very special

cases that we zero in on a single bulk codimension-two surface uniquely (e.g., spherical

regions in pure AdS or in the eternal Schwarzschild-AdS black hole).25

Causality constraints on other CFT observables: Our discussion has exclu-

sively focused on the causality properties of a particular non-local quantity in the field

theory, namely the entanglement entropy. However, causality places restrictions on

other physical observables we can consider on the boundary as well. For instance, cor-

relation functions of (time-ordered) local operators, Wilson loop expectation values,

etc., should all obey appropriate constraints which we can infer from basic principles.

Indeed, this can be shown to be the case, for example, for correlation functions, by

considering the fact that the bulk computation involves solving a suitable boundary

initial value problem for fields in the bulk, which can be checked to manifestly satisfy

causality.

However, this is less clear when we approximate, say, two point functions of heavy

local operators using the geodesic approximation [48]. Similar issues arise for the

semi-classical computation of Wilson loop expectation values [49, 50] using the string

worldsheet area. In these cases, one generically encounters some tension between the

use of extremal surfaces—geodesics, two-dimensional worldsheets, etc.—for the bulk

computation, and field theory expectations regarding causality (cf., [51] for an earlier

24 We thank Vladimir Rosenhaus for inspiring us to think through this possibility.
25 The examples are all cases where, by a suitable choice of conformal frame, the extremal surface

can be mapped onto the bifurcation surface of a static black hole. The black funnel and droplet

solutions (see [30] for a review) provide nontrivial examples, cf., [23].
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discussion of this issue). Indeed, it appears that codimension-two extremal surfaces are

special in this regard, for we can rely on the boundary of the entanglement wedge being

generated by a codimension-one null congruence, and thus apply the Raychaudhuri

equation. Understanding the proper application of the WKB approximation for other

observables is an interesting question; we hope to report upon in the near future [52].

Entanglement wedges: One of the key constructs in our presentation, naturally

associated with a given boundary region A, has been the entanglement wedge WE [A].

This is the domain of dependence of the homology surface RA (recall that RA forms

a part of a Cauchy surface which interpolates between A and EA). Equivalently, it

comprises the set of spacelike-separated points from EA which is connected to A, one

of the four regions in the natural decomposition of the bulk spacetime.

Given A, one might ask how unique this decomposition is. Since WE [A] is a

causally-defined set, its specification only requires the specification of the (oriented)

extremal surface EA (possibly consisting of multiple components when so required by

the homology constraint). The prescription for constructing the null boundary ofWE [A]

is unambiguous: simply to follow all null normals (emanating from EA in the requisite

direction, towards D[A]) until they encounter another generator (i.e. a crossover seam)

or a caustic. However, there is a possibility that the extremal surface itself is not

uniquely determined from A. This happens when multiple (sets of) extremal surfaces

satisfy (2.4) but have the same area. Since entanglement entropy itself cares only about

the area, the HRT (as well as RT and maximin) prescription is to take any of these.

However, which we take does matter for the entanglement wedge. We propose that, just

as for the extremal surfaces, in such cases we may have multiple entanglement wedges

WE [A] associated to the same boundary region A.

The most “obvious” class of examples where this can happen is the case of A

consisting of multiple regions or in higher dimensions where the entangling surface

∂A consists of multiple disjoint components. As we vary the parameters describing

the configuration, the extremal surfaces involved typically exchange dominance, so

at some point their areas must agree. Applying continuity from both sides, at the

transition point, both entanglement wedges should be naturally associated with A.

However, in complicated states, there can actually be multiple extremal surfaces even

for when A and ∂A are both connected. In such cases, we could have candidate

entanglement wedges which are proper subsets of (rather than merely overlapping with)

other candidate entanglement wedges.

It is also interesting to note that the decomposition of the bulk into four spacetime

regions causally defined from EA need not coincide with the bulk decomposition defined

from EAc , despite there being a unique boundary decomposition defined from ∂A. For
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A

Q

WE [A
c] WE [A]

Fig. 10: Sketch of Penrose diagram for a symmetric Vaidya-Schwarzschild-AdS geometry

obtained by imploding null shells to the past and future from both boundaries now

displaying the entanglement wedges and the causal shadow region, with A being a full

Cauchy surface for CFTR.

pure states, where the homology constraint trivializes and we have EA = EAc , we can

write the bulk decomposition equivalently with respect to both A and Ac,

M =WE [A] ∪WE [A
c] ∪ J̃+[EA] ∪ J̃−[EA] (5.1)

which is directly analogous to the boundary decomposition (2.1). However, for mixed

states, where typically EA 6= EAc , the decomposition (5.1) is not true;26 instead the

correct decomposition should replace WE [A
c] with the bulk domain of dependence of

the complement of RA within the bulk Cauchy slice Σ̃, or more precisely D̃[Σ̃\RA\EA].

Dual of ρA? Within the class of CFTs and states with a geometrical holographic

dual, it has often been asked,27 for a given region A, what is the bulk “dual” of the

reduced density matrix ρA. One way to formulate what one means by this is as follows:

suppose we fix ρA and vary over all compatible density matrices for the full state

ρ. What is the maximal bulk spacetime region which coincides for all such ρ’s? By

26 Note however that if we purify a mixed state by additional boundaries, such as in the deformed

eternal black hole example illustrated in Fig. 10, then the decomposition (5.1) does hold.
27 In recent years this question has been invigorated by e.g. [53, 54].
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“coinciding bulk regions” one means having the same geometry, i.e. the same bulk

metric modulo diffeomorphisms. Another way to define the dual of ρA is to ask what

is the maximal bulk region wherein we can uniquely determine the bulk metric (again

modulo diffeomorphisms). In fact there are several (generally distinct) bulk regions

that might be naturally associated with the density matrix; in nested order:

• The bulk region that ρA is sensitive to; in other words, regions wherein a defor-

mation of the metric affects ρA.
28

• The bulk region that ρA determines, i.e. where we can uniquely reconstruct all

the components of the metric (up to diffeomorphisms).

• The bulk region that ρA affects, i.e. where by changing ρA one can change the

bulk metric.

Here we focus on the second case, following [53, 54]. Based on lightsheet arguments,

the authors of [53] proposed the causal wedge as the correct dual. On the other hand,

[54], as well as [12, 22], argued that the requisite region should contain more than the

causal wedge. In particular, [54] presented a number of criteria that such a region

should satisfy, and explored several possibilities, most notably the region they denoted

ŵ(DA) which corresponds to the bulk domain of dependence of the spacetime region

spanned by all codimension-two extremal surfaces anchored within D[A]. If every point

of RA lies on at least one of these, then this region coincides with our entanglement

wedge WE [A]. On the other hand, as [54] pointed out, there may be “holes” in such a

set, i.e., regions of RA which do not lie along any least-area extremal surface anchored

on a given region A′ ⊂ A.29

We propose that, since the most “natural” causal set associated with ρA from the

bulk point of view is the entanglement wedge, this is indeed the most appropriate region

to be identified with the “dual” of the reduced density matrix ρA (even in the presence

of such entanglement “holes”). In this context, we should note that we can strip away

the rest of the boundary spacetime, and consider the field theory just on D[A], which

is a globally hyperbolic spacetime in its own right, in the state ρA. Whether this

state in general admits a holographic description is not known, but, if it does, then

28 In fact there is a further subdivision here based on whether any geometrical deformation of the

metric should change ρA or merely whether there should exist some deformation of the metric which

changes ρA. We thank Mark Van Raamsdonk for discussions on this issue.
29 The example given in [54] involves a region through which traversing surfaces are not the smallest-

area ones anchored on the given region, but a simpler physical example would be a point sufficiently

close to an event horizon of an eternal spherical black hole, with A = Σ of one side as considered in

§2.4.
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a natural candidate would seem to be the entanglement wedge: this is, in its own

right, a globally hyperbolic, asymptotically AdS spacetime, whose conformal boundary

(according to theorem 13) is precisely D[A], and the area of whose edge EA gives the

entropy of ρA.

Here the word “natural” should be qualified, especially in light of the arguments

in [22] that the causal wedge WC[A] is a natural bulk codimension-zero region asso-

ciated with A. The latter can be obtained more minimally: it suffices to know the

causal structure of the bulk to define WC[A]. On the other hand, the density matrix

clearly encodes much more than the bulk causal structure, since at least it knows the

entanglement entropy (as well as entanglement entropies of all subregions, apart from

other observables). Since, in the bulk, the corresponding extremal surface is defined

only once we know the bulk geometry, the entanglement wedge WE [A] it defines is a

less minimal construct that the causal wedge WC[A]. Nevertheless, once EA is identi-

fied, the rest of the bulk construction of the entanglement wedge is purely causal, and

therefore defined fully robustly for any time-dependent asymptotically AdS spacetime.

The statement that the entanglement wedge is the natural dual of the reduced

density matrix (which implies that the boundary observer in D[A] can learn about

the bulk geometry in the entire WE [A]) has a profound consequence. We have shown

that the extremal surface EA has to lie in the causal shadow. This set can however be

quite large, and so EA can lie very deep inside the bulk (as indicated by the shaded

region in Fig. 10). In fact, a simple example supports the idea that the entanglement

wedge represents the state in such a case (see Fig. 11). We start with a deconfined

thermal state at t = 0 on a single Sd−1, represented holographically by the exterior

Schwarzschild-AdS solution. We add an outgoing null shell that reaches the boundary

at t < 0 and an ingoing one that leaves it at t > 0. At t = 0 we still have the thermal

state. The bulk solution is also unchanged between the past and future shells. However,

these shells move the singularity and therefore have the effect of bringing the future

and past event horizons closer to the boundary, leaving the previous bifurcation surface

hidden behind both horizons. While this surface is no longer the bifurcation surface of

a global Killing vector, it remains the extremal surface whose area gives the entropy

of the state of the field theory on the right boundary. Presumably the holographic

description of the state extends all the way down to this extremal surface, as it does in

the absence of the shells, and thus consists of the entire entanglement wedge.

Another (related) example where the separation between entanglement wedge and

causal wedge is particularly striking is the eternal (two-sided) black hole deformed by

many shocks considered in [35, 55]. The Einstein-Rosen bridge is highly elongated

and the extremal surface probably lies somewhere in the middle of it—so that the

entanglement wedge for the entire right boundary is substantially larger than the causal
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AA
RA RA

EA EA

Fig. 11: Left: Exterior AdS-Schwarzschild solution, dual to a deconfined thermal state on Sd−1.

The extremal surface for the entire boundary (red dot) coincides with the bifurcation

surface and the causal information surface. Right: Vaidya solution with an ingoing

null shell that reaches the boundary at t < 0 and an outgoing one that leaves it at

t > 0 (brown); the geometry between the shells is unchanged, but the past and future

event horizons (blue) have moved closer to the boundary, leaving the extremal surface

(red dot) hidden behind them. The entanglement wedge in both cases is the entire

spacetime (with a homology surface shown in green), while the causal wedge in the

right figure is just the part outside of the event horizons. (The causal information

surface is shown as the black dot.)

wedge, which in this case is simply the right exterior (domain of outer communication)

of the black hole. So not only does the entanglement wedge penetrate arbitrarily close

to the curvature singularity, it also contains a substantial part of the spacetime far

beyond the black hole horizon!
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