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Abstract. A method is presented to characterize fully the evolution of an arbitrary set of
spinfess particles in (unquantized) (2+ 1)-dimensional gravity theory. The method produces
a complete series of time ordered Cauchy surfaces, which are being triangulated. By
construction, closed timelike curves never arise, even if the initial conditions contain a
Gott pair. In particular our construction shows that the configuration proposed by Carrol
et al, in which a Gott pair is formed in a closed universe, nevertheless does not admit
closed timelike curves; this universe has a finite lifetime, ending in a ‘big crunch’.

1. Introduction

In a recent flurry of papers several authors [1-3] showed that certain solutions of the
equations of motion for particles gravitating in 2+1 dimensions [4, 5] admit the
presence of ‘closed timelike curves’ (ctc). The key construction was first proposed by
Gott [1] who considered two particles each with mass m and rapidity ¢ approaching
each other, such that

cosh £sin mm > 1. (1.1)

Here, rapidity £ is defined such that tanh £ is the velocity o, and the mass m is
normalized such that for a particle at rest there is a deficiency angle a =2mm. If one
were allowed to extend the locally flat spacetime surrounding these particles as far as
one wished (i.e. there are no obstructions caused by other particles) then, as Gott
showed, a ‘space traveller’ can circle around these particles in such a way that his
journey ends at the same spacetime point as where he started: there is a cTC.

We were quick to point out [6] that this ‘Gott pair’ of particles is surrounded by
a boundary condition that has ctc also at infinity, so if one were to formulate
constraining conditions on the boundary, requiring the absence of ctc there, then
such a Gott pair could never be formed.

But this seems to be not the complete answer to the question how one can avoid
cTC occurring, because it was shown by Carrol, Fahri and Guth (5] that in a closed
spacetime (which we will refer to as the CFG universe), having no further boundary
conditions at all, a pair of particles obeying Gott’s condition (1.1) can emerge, in
particular if one allows a heavy particle with mass M to decay into two lighter ones.
Two such decay products (from two different decaying particles) can accidentally
realize a close encounter, and then it seems that the spontaneous creation of a cTc in
the immediate neighbourhood of these two particles is inevitable, in particular if all
other particles stay far away.
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In this paper we show that although particles obeying (1.1) can indeed occur in a
closed or open space, one can still formulate a causal theory for such situations. In
an open space one can still give a boundary condition such that there is time ordering
at the boundary, and in a closed space one can describe time-ordered Cauchy surfaces.
ctc then of course do not form.

But then how can this be reconciled with the Gott/CFG construction? We will show
that if the evolution of the particles is followed in a time-ordered manner then this
system has a finite lifetime. The 2-volume of this universe decreases monotonically
with time until a big crunch ends it all. If one attempts to make the coordinate
transformation necessary to produce Gott’s cTC one sees that the big crunch forms an
obstruction here. Thus, there are no ctc. This paper is to explain how this mechanism
takes place.

2. Triangulation of locally flat spacetime

To describe what happens we want to make optimal use of the fact that in between
the particles spacetime is flat. The ideal method is ‘triangulation’, which implies that
we consider Cauchy surfaces that are built from entirely flat triangular 2-simplexes,
glued together. In practice however it is easier to take polygons rather than triangles,
because in the generic case the vertex points will not connect more than three simplexes
together. The general picture of such a Cauchy surface is sketched in figure 1, although
in practice often the polygons will look somewhat more complex.

Figure 1. Cauchy surface built from polygons. The heavy dots are particles.

All particles in our theory must be at vertex points, but vertex points where no
particles sit are of course also allowed.

If all particles are at rest then the situation is easy to visualize. At all vertices we
can take the angles to add up to exactly 27, unless there is a particle present, and then
the angles add up to 27 —2#m. If the total mass exceeds 1 then this Cauchy surface
closes, so that there must be further particles at the ‘antipodes’. The total mass then
automatically adds up to 2.

But if the particles move the situation is more complex. The polygons become
deformed as a function of time, and in general the boundary between one polygon
and another will involve a Lorentz transformation. It is now very instructive to formulate
the rules that the moving polygons have to obey, if we insist that at the seams between
all pairs of polygons spacetime remains locally flat. Most importantly, since we are
constructing Cauchy surfaces we will never allow for time shifts at the seams.

We consider each polygon in its own rest frame. In general the sides all move in
this rest frame, and their lengths change. Now in principle we could allow that on
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each polygon time runs at different speeds, that is, have g, different for different
polygons (as long as time runs forward), but we will impose the simplifying extra
requirement that time runs equally fast at each polygon, which corresponds to choosing
Zoo=1 everywhere. In that case the evolution is uniquely determined, and furthermore
the rules at the seams become very simple.

(1) The lengths of matching edges of two adjacent polygons, as measured in the
rest frame of each, are equal. This is not a completely trivial statement because the
matching goes with a Lorentz transformation.

(2) The velocities with which the matching edges of two adjacent polygons move
(always in a direction orthogonal to the orientation of the edge) in the rest frame of
each, are the same, but the signs may differ. In general the signs are such that if the
edge of one polygon recedes, the matching edge in the other one recedes also, because
in the other case the matching becomes trivial.

(3) The identification of points at two matching edges is such that a point moving
in an orthogonal direction on one edge, remains identified with a point moving
orthogonally on the matching edge, as seen in the corresponding frames.

(4) The vertices between three polygons move in such a way that rules 1, 2 and 3
remain valid. When new vertices are created (one vertex may split into several), special
attention should be paid to whether they represent flat space or particles. Often this
comes out all right because of energy-momentum conservation at such spacetime points.

The proof that polygons describing locally flat space can only move according to
the above rules is not difficult. One must insist that g,,, stays continuous. Thus, if we
take dt=0 and dx in the direction of the seam, then ds®=dx* must be the same for
two adjacent polygons. This proves requirement (1).

Figure 2. Matching edges of two adjacent polygons.

Now take a line segment (dx, df) in 3-space on the edge of one polygon. Take the
edge to be in the direction dy, so that dx = v d¢, and dy is arbitrary. We have

ds*=(v*—1)d*+dy? (2.1)

and this must be the same for the two adjacent polygons. If the corresponding point
on the other polygon had

dx'=v"dt dy'=dy+« dt (2.2)
then
ds?=(v?+k*—1) dr*+dy*+2« dy dt. (2.3)

This must coincide with (2.1). Therefore, x =0, which proves requirement (3), and
v'=+v, which proves requirement (2).

Requirement (4) has to be checked explicitly when vertices split. At first sight these
rules may seem to be trivial but they are far from that, as we will see, in particular
because the matching goes with Lorentz transformations at every seam. Indeed, these
rules will allow us to construct complete spacetimes with relatively little effort. Since
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time runs forward everywhere and always, this method allows us to resolve the questions
concerning CTC.

The connected edges of two polygons I and II form 2-surfaces in spacetime
determined by the equation

L=ty (2.4)

The location of this surface in the frame of polygon I completely determines the
Lorentz boost of polygon II (apart from an irrelevant spacelike rotation of the frame
of polygon II). The resulting equations are given in the appendix.

The most elementary way in which our Cauchy surface can evolve further is pictured
in figure 3. At a certain moment f, a boundary line between polygons II and III
disappears and a new boundary between I and IV forms. As we explained, the angles
of the edges of each polygon and the velocities of the edges completely fix the velocities
of each frame with respect to the others. Therefore the angles and velocities at the
new boundary between I and IV are all completely determined, if there are no particles
at the vertices (if there are particles the evolution is as described in the next section).
For the technical details we refer to the appendix.

(a) (® ()

Figure 3. (a, b) Formation of a new edge in flat space. {¢) Diagrammatic notation for this
event.

3. Evolution of polygons near moving particles

A spinless particle at rest can easily be described in a triangulated spacetime. All we
need is a single polygon. The particle is at one of its vertices and the two edges that
join at this vertex are glued together. They must have equal length and the receding
velocity v at both sides vanishes. The spacetime has its familiar conical structure (figure
4(a)).

When a particle moves there are various possibilities, but we will always take the
simplest one. Again we take one single polygon, and the particle sits at one of its
vertices. The two edges there are glued together, as before, but now they both move
with velocity v, and because of requirement (2) these must be equal at both sides. It
is easy to see that the geometry implies that, in the frame of this polygon, the particle
moves in the direction of the bisector at that point (figure 4(b)).

Indeed, this is the only way to describe the spacetime surrounding a moving particle
such that the identification at the seam does not involve a time shift. Our prescription
will never allow for time shifts when two polygons are glued together because then
we are no longer dealing with Cauchy surfaces.
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Figure 4. (a) Particle at rest. The shaded region is excised from flat space and the two
edges are glued together. The two dots are points to be identified. (b) Particle moving
downwards (arrow). We get the Lorentz contraction of picture (a), therefore the angle
widens. Since the two dots in (a) are at the same height, they still will be at the same
height in (b), and after the Lorentz transformation there will be no relative time shift. (¢)
Diagrammatic notation for a particle.

The generic situation is then that a particle sits on a vertex at the end of the two
identified edges, and in figure 1 three particles are drawn like that. The fourth is in
an exceptional position. We see in figure 4 how the moving particle can be obtained
from a static one by means of a Lorentz transformation. Only if the excised region is
chosen symmetrically with respect to the particle’s trajectory does the identification
of points across the excised region go without any time shift. We may either choose
this excised region to trail behind the particle or to lie ahead of it. In this paper we
will let them trail behind.

If ¢ is the particle’s rapidity, we see that due to the Lorentz contraction the deficiency
angle B of the moving particle is related to the one of the static particle (27m) by

tan 38 =tan(zm) cosh & (3.1)
The orthogonal velocity of the polygon’s edges is given by
v=tanh n =sin 3B tanh & (3.2)

As long as a particle stays in one polygon its geometry is given as in figure 5. But
of course it may happen that a particle will reach the boundary of a polygon and try
to enter into the neighbouring polygon. The crossover is described in figure 5(b). This
figure is obtained as follows. Before the particle P crosses the seam it has a known
velocity and a known deficiency angle. In figure 5(a) the points A and A’ are identified.
The line AA’ must always be orthogonal to the trajectory of P. Now the vertical seam
is assumed to move with velocity »=tanh 7 in both polygons I and II, but in opposite
directions. Therefore when the particle enters polygon II its velocity is boosted by a

(¢)

Figure 5. (a), (b) Particle traversing a seam. Polygon 1 is split into two polygons I, and
I,. Shaded regions are the excluded ones. (¢) Diagrammatic notation for this transition.
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Lorentz boost 27, in the horizontal direction. So we know its new velocity in II. The
sign of the vertical component in I and II remains the same. As soon as it is in polygon
IT the particle P creates two edges PA and PA' again at equal angles with its new
trajectory, of which A’ is on the old edge, and identified with A” on the edge of I.
Similarly there is a line BB’ at the left of which the geometry was as before, and B is
on the old seam, to be identified with B” on the edge of II. Now in general there is
no reasen why B", A and P should form a straight line, and in general they will not.
Neither will C', B’ and A" form a straight line. But one will discover that B"A and
B’A” come out to have equal length. This is because we know that at the seam AB
there is no curvature and hence our requirements (1)-(4) must be valid.

It is not difficult to convince oneself that all other such crossings will be uniquely
defined. Thus any Cauchy surface that was once ‘triangulated” with polygons will
evolve in a unique manner into new Cauchy surfaces, also triangulated by polygons.
Every time a particle crosses a boundary the new Cauchy surface may appear to obtain
more edges than the previous ones, but we found that in practice other transitions
occur that tend to keep the number of edges limited.

There is a small danger in this procedure. In principle one could obtain particle-like
singularities at the new node points A and B. Are those points really flat? Indeed they
are, provided that we gave particle P the correct mass and velocity to begin with. In
that case energy and momentum conservation prevents the emergence of any particles
at A and B. So we obey requirement (4).

A transition that will also often occur is that a particle crosses a seam sideways/back-
wards. This transition is pictured in figure 6. Here the number of edges remains the
same. It occurs if the sides XA and A"Y move faster than the particle. Note that the
points A, A"and A" are physically identified, a notation that we will be using frequently.

(a) )

X 4 Y IIIP

Figure 6. Particle P crosses a seam backwards. In polygon I the edges AP and PA" disappear
and in Il new edges A'P and PA” form. (¢} Diagrammatic notation.

We made the simplifying requirement that at all polygons time runs equally fast.
As stated earlier, one might relax on this requirement, but then the rules are much
more complicated. For our purposes it suffices to have time run equally fast everywhere.

In the appendix we give some useful relations that enable one to work out the
angles and velocities of new boundaries such as the new edges AB in figure 5 and AP
in figure 6(b), as they develop during the evolution.
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4. The CFG universe

Clearly then, by construction, any spacetime described by our triangulated Cauchy
surfaces, can never admit any cTC. So how can this be reconciled with the findings of
Gott, Guth and others?

In an open universe, Goft’s system satisfies bad boundary conditions [6], so that
in his Lorentz frame Cauchy surfaces cannot be constructed properly because they
cannot be matched with the boundary. However, we can consider two particles
approaching each other head on with velocities satisfying Gott’s inequality (1.1) as an
initial condition, and as Cutler showed [2], we then may still start with good Cauchy
surfaces. Furthermore, the crFG universe is closed. It has no boundary. Its initial
conditions are entirely regular. In all these cases we should be able to apply our
method. How could the closed timelike curves that these authors found suddenly have
disappeared? Let us see what we get. To make our point, the closed CFG universe is
more suitable because it is finite, so that our polygons have a finite size.

CFG start with two heavy static particles, each having a mass M, = M, = M, which
we take to be equal for simplicity. A third particle, X, also static, which we will call
the ‘antipode’, closes the universe. It has mass 2—-2M (if 2M <1 we would need more
than one antipode particle, but that is not the interesting case). The two particles M, ,
M, in their (common) rest frame both decay simultaneously into two particles: M-
P+R, M,»> Q+S, where P, Q, R and S each have equal masses m and rapidity & It
is easy to see that if 8 is defined as in equation (3.1) then

27M =2 (4.1)

so that both the parent particle and the pairs of decay products shortly after the decay
can be described with a single polygon such that they give the same contribution to
the total deficiency angle. The geometry shortly after the decay is pictured in figure 7.

By comparing (3.1) with (1.1) we see that, if the masses m are taken to be fairly
small then the Gott condition (1.1) can be satisfied if tan 38 is somewhat larger than
one, so that M has to be somewhat larger than 1 which is why we said that the universe
has to be closed and one antipode particle suffices. The decay products can of course
go in any direction they want, as long as their centre of mass remains static. We take
the case that, accidentally, one decay product P of M, makes a close encounter with

(a) (b) ()

(M

Figure 7. (a) The CFG universe shortly after the decays. (b) At the time of close encounter.
(c) Diagram, to be obtained by pulling the polygon over a 2-sphere, and gluing the edges
together.
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a decay product Q of M,. They miss each other by a small but non-vanishing impact
parameter b. The geometry is given by figure 7(a). The particle R moves close to the
boundary KX, which is identified with the line K'X’, and similarly the particle S.

Just after the close encounter the geometry is as pictured in figure 7(b). The question
is now how they proceed. The answer given by Gott would be the following. We rotate
the excised regions near the particles such that they remain turned away from each
other. One gets the geometry of figure 8.

Near P and Q the cusps are chosen in a direction orthogonal to their trajectories.
This is of course against the rules of section 2, and therefore there are now time shifts.
In the rest frame of P the points A and A’ would be identified without time shift, but
in the moving frame there is a time shift, and because of that the points A and A’
move far apart in our reference frame, as drawn (our reference frame can be seen to
be the one of the antipode particle X). The points B and B’ are identified with the
opposite time shift because the velocity of Q is opposite to that of P. Under Gott’s
condition (1.1) these time shifts can become so large that a cTc is possible (the trajectory
ABB’A’A in figure 8). Note that, incidentally, the angle APA’ here is the same as the
angle B, equation (3.1). There are right angles in figure 8.

Figure 8. Rotation of the forbidden regions. The path ABB'A’A is a closed timelike curve.
Only the unshaded region in the centre is supposed to be the physical space.

Further away from the encounter region we may turn the boundaries back so that
they match with the original ones. Thus we draw the lines PACD to be matched with
PA'C'D’' and QBEF to be matched with QB'E'F'.

One might suggest that this rotation should be allowed, in particular if the impact
parameter b is small, so that figure 8 may be seen as a very large magnification of the
encounter in the centre of figure 7(b).

5. Cauchy surfaces in the cFG universe

But this is not the case, as we shall see. Let us now treat the evolution of figure 7
strictly abiding by the rules. When P and Q reach (simultaneously) the edges of the
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polygon the situation is as described in figure 9(a). We see that the original polygon
splits in two. A transition takes place that is a limiting case of figure 5 (more precisely,
two transitions, one for P and one for Q). The edge PQ’ of polygon 1 now matches
with edge P'Q of polygon II. If the original boundaries were moving with rapidity 7,
according to equation (3.2), the rapidity of PQ’ and P'Q will be 27, so from now on
these edges will move faster. In figure 9(b), a snapshot of a few moments later, these
edges, now called B"A’ and BA", have therefore run ahead of the other boundaries
parallel to them.

After crossing the boundaries the particles P and Q both have gained a larger
velocity. Their rapidity, &, can be calculated to be given by

cosh & = cosh £(1+4 sin*(rm) sinh? ¢) (5.1)

and the motion is directed as indicated in figure 9(b). Clearly the velocities increased.
One might wonder how this can be reconciled with energy conservation, but we know
that the total energy is topologically fixed to be 2. Just because the two particles are
in different polygons and therefore in different Lorentz frames one cannot add the
energies to see if energy is conserved. One can also say that in our coordinate frame
there is energy in the gravitational field.

In figure 9(b) we see two new segments, QA, to be glued against QA’, and PB, to
be glued onto PB'. Their opening angles are widened because of the increased rapidities
of P and Q.

But this is not the final state. It is inevitable that P and Q hit the other boundaries
again. We get transitions of the type of figure 3 and figure 6. The velocities increase
again, but the general topological shape of the polygons returns to its previous shape,
figure 9(b). And even that is not the end. As long as the antipode particle X stays out
of the way, P and Q will never cease to cross the polygon boundaries, interchanging
their positions in I and 1I, in a spiralling motion. This spiralling motion cannot end
because the intersection point x of the lines CA and DB" in figure 9(b) moves with
velocity

v, =tanh ¢ tan(38) =tan(zm) sinh £ (5.2)

()

Figure 9. (a) P and Q reach the edges of the polygon, which now splits in two, T and I
P re-emerges at P’ and Q at Q". In (b) we see how I and II evolve. As in previous figures,
A is identified with A’ and A”, and the other points correspondingly.
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where we substituted equation (3.1). Now if we assume Gott’s inequality (1.1) to hold,
or

cosh® £>>1/sin*(7rm) (5.3)
then we must have
sinh® £> 1/sin®(7rm)—1=1/tan’(7wm) (5.4)

and so precisely in that case this point moves faster than the speed of light. So there
is no situation possible such that P and Q can outrun the boundaries. There is an
eternal cycle as indicated diagrammatically in figure 10.

T R R AT S SR
L ]

c_ !
A
Figure 10. One evolution cycle of a Gott pair, diagrammatic notation.

Each time the boundaries are crossed the particle velocities are boosted in the
direction of the antipode particle X. We also see that the surface area of the two
polygons rapidly decreases. The author was able to follow the development of this
situation numerically. The sizes of the edges reach essentially the same values after
every cycle, and the duration of each cycle rapidly goes to a constant. It all ends when
the particles P and Q meet the other particles, R, S and the antipode particle X. By
that time they have a tremendous velocity. The total 2-volume of space has decreased
to zero. Thus we have a ‘big crunch’. We briefly discuss this crunch in section 7.

6. What happened to the crc?

Now back to the Gott/crG construction. Suppose we try to make the coordinate
transformation towards figure 8. Its smallest cTc circles around the pair of particles
at some distance, proportional to the impact parameter b. The points B and A’ of the
cTC are at some distance in the future of the Gott pair. Since this cTc obviously does
not exist in our legal description of this universe we must conclude that these points
are simply too farin the future. The big crunch has already occurred. This is a completely
acceptable conclusion. One might object that by tuning the impact parameter b towards
a very small value one can bring B and A’ arbitrarily close to P and Q, which are
pictured at an instant well before the crunch. However one must realize that figure 8
is in a Lorentz frame close to the rest frames of both particles. Now the smaller the
impact parameter b, the faster these particles will be boosted to very near light velocity
(much closer than in figure 8). Due to time dilation the big crunch will then be
encountered by these particles extremely quickly, if they are followed in their own rest
frames. Regardless the impact parameter, the big crunch, and the X, R and S particles
were illegally not represented in figure 8. So we conclude that no contradictions arise.
There is no cTc but a final catastrophe in the CFG universe.

We saw in section 5 that as soon as two particles meet each other with Gott’s
inequality their behaviour in our Cauchy planes becomes such that they begin a
spiralling motion, increasing their speed closer to that of light at every turn, until the
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final crunch ends it all. Closely before that there might be interactions with the antipode
particle(s) but that will hardly slow them down. This mechanism will always successfully
suppress any CTC.

Until close before the big crunch, our description of the orbiting particles is in the
rest frame of particle X. One may ask whether an observer at X will really see the
particles orbiting. This is not so, because the orbiting particles are approaching X
faster than the speed of light. The first signals from the orbiting particles that reach
X will not be sent in a straight line within the polygon we constructed because that is
impossible. Instead, the signals travel entirely in (the analytic extension of) the last
frame. The observer at X will always see the other particles. We suspect that the
trajectory of the light rays involved in this observation will be very close to the apparent
cTc. The first real cc in figure 8 is screened off by the other particles and the big crunch.

Consider the first cLc (closed lightlike curve) that opens up in figure 8. It is
approximately, but not precisely the dotted line there (the first cLc, which contrary
to a claim in [2] is also a lightlike geodesic, is actually a bit tilted because it occurs a
little before P and Q are directly opposed to each other). Then in a very large universe
this cLc is the natural boundary where the big crunch occurs.

The fact that no ctc is allowed in (2+1)-dimensional gravity was already stated
in [5] without proof. This insight had been based on considerations of Cauchy surfaces.
In the present paper we made the argument explicit. It is clear that the statement only
holds if one uses appropriate boundary conditions. For a closed universe this means
that one should take a possible final crunch into account; in an open universe one
should not allow for cTc at the boundary. A safe way to consider open spaces is to
view them as limiting cases of infinitely large closed spaces. This will imply automati-
cally that certain regions of spacetime are screened off by a big crunch.

7. Why a crunch and not a ‘bounce’?

One could have thought that the CFG universe may not end as violently as in a big
crunch. It would be natural to suspect that, because the particles R, S and X are
encountered just before the end, this catastrophe might be averted in the last minute.
Maybe the velocities are turned around and the particles move outward again: a big
bounce rather than a big crunch. Alas, the inhabitants of this universe have no such
luck. This can be derived from the formulae in the appendix. Our argument goes as
follows.

Numerical calculations, which can be checked analytically, show that at the first
stage in the CFG universe the situation can be described in terms of a single polygon.
All angles «; at its edges are between 0° and 180°, so they have

Sin a,>0 (7'1)

except those edges where a particle moves inwards. Secondly, very soon all edges move
inwards so that at all edges L the quantities o, (see appendix) have the same sign (or
are zero). One now uses the equations (A.1)-(A.6) to show that this situation cannot
possibly alter. Any of the transitions, figures 3, 5, 6, 9 and 10 will keep this situation
as it was. Therefore the 2-volume of this universe will decrease monotonically with
time, and only a finite amount of time is needed to make it shrink to zero. The big
crunch cannot be averted, even if we take all other particles into account.




1346 G 't Hooft

Another danger is the ‘Achilles and the Tortoise’ effect: it could be that transitions
follow each other at geometrically decreasing time intervals, ending in a ‘coordinate
singularity’ rather than in a physical singularity. Our numerical calculations however
did not indicate that this ever happens. It is also difficult to conceive how the various
Lorentz frames could give rise to such a behaviour unless there were a real physical
singularity at that spot. In any case the Gott configuration does not lead to any Achilles
and the Tortoise effect.
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Appendix

The evolution of the system can be formulated by giving the sizes and shapes of the
polygon(s) as a function of time, and also the velocities at the edges. In the generic
case we can take all particles to be ‘inside’ polygons, such that at the location of a
particle just two edges of one polygon join. In addition then we have vertices where,
in the generic case, three polygons touch each other, but no particle. Given the initial
configuration the evolution of this is unique. Changes can take place either when a
particle hits the edge of the polygon it is in, or when the length of an edge shrinks to
zero. In the first case we use figure 5, and in the second case figures 3 and 6.

In the case of figure 3 we have (locally) entirely flat space. This makes the algebra
there easy. In general one has four different Lorentz frames, I, II, IIT and IV. The
boundaries are simply the planes determined by the equations f,=1,, t,=1;, etc. In a
computer program one would make a list of all angles and all velocities, and then one
needs a prescription to determine the new angles and velocities of the new edge. This
we do by giving some relations that hold as soon as three polygons meet at a vertex
in flat space (there is no particle assumed to be at the vertex). In figure A.1 we indicate
the angles a,, @, and «;, and the rapidities of the edges 7,, 7, and 7n; (note that for
symmetry reasons the rapidity of the edge between I and 11 is called 7,; the signs may
now be defined such that with positive rapidities the polygons all grow, so that in
section 7 most signs are negative).

Since the relativistic velocity of frame III relative to frame I can be obtained by
adding relativistically the velocities I>1I and 1I-III, one obtains a number of
goniometric equations. We use the short-hand notation:

sina; =s; cosa; =c¢; sinh2n, =g; cosh2n, =% (A.l)

Figure A.1. Three polygons meet at a vertex in flat space.
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then we find that

51182183 =0,:105:04 (A.2)
Y283t 516+ €5,y; =0 (A.3)
€1 = 303 Y18253 (A.4)
Y1 =Y2Y3 T 02036 (A.5)
cot a, =—cot a; cosh 27; ~coth 27, sinh 27,/sin (A.6)

and all cyclic permutations.

Equation (A.4) tells us that if all angles add up to 360° then the rapidities have to
be zero. The last two equations are particularly useful because they give all data needed
for the edge between II and III if we know only the properties of polygon 1. So we
find easily practically all we want to know about the newly opened edges in figures 3,
5,6, 9 and 10.

Note however that equations (A.5) and (A.6) only give the rapidity 1, up to a sign,
and the angles a, and a3 up to a multiple of 180°. This corresponds to the fact that
the orientation of this edge is not yet determined. One has to determine this by actually
constructing the corresponding polygon, and by requiring that a newly formed edge
must be a growing one; it cannot start by shrinking. The growth rate g, of an edge 1
gets two contributions, ga;, and gy, from the two adjacent vertices. The growth g4, at
vertex A of edge labelled 1 is given by

ga1 = (v, COs a3+ v,)/5in a3 = (v, cOs @+ v;)/sin a, (A7)
where the velocities are defined as
v; =tanh n; = o7/ (1+v:). (A.8)

The second equality in equation (A.7) follows from the earlier equations.
Another useful identity is the growth rate gp of an edge ending in a particle P with
mass m, if we know the rapidity n at that edge. This turns out to be

___tanh n cos mm
Jeosh? ) —cos® mm
It should be clear that these rules completely fix the geometry of figures 3, 5, 6, 9
and 10. Equations (A.7) and (A.9) are needed to determine the shapes of the polygon(s)
at some time after a transition, and for calculating the time intervals between events.
We used those to observe that no Achilles effect takes place at a Gott pair (section 7).

Although we did not encounter it in our calculations, it should be mentioned that
there could be a transition as pictured in figure A.2, where an angle a,>180° of a

(A9)
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Figure A.2. One other possible transition. Polygon 1 splits inte [, and I,,. (¢) In diagrams,
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polygon meets one of its other sides. The computation of the newly opened edges goes
again by using the identities (A.5) and (A.6).
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