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Abstract. The causal semantics of standard net classes like Elementary Net Sys-
tems and Place/Transition Nets, is typically expressed in terms of partially or-
dered sets of transition occurrences. In each such partial order, causally related
occurrences are ordered while concurrent transition occurrences remain unordered.
Partial order semantics can, in particular, support model checking by efficient ver-
ification techniques based on net unfoldings.
To enhance the modelling power of standard net classes, one can introduce dif-
ferent forms of ‘testing’ using, for example, inhibitor arcs. However, the causal
semantics of such extended nets can often no longer be described solely in terms
of partial orders. In this paper, we explain what modifications to the partial order
semantics are needed in order to provide a satisfactory treatment for nets with
activator, inhibitor and mutex arcs. On the technical side,the proposed solution is
based on causal structures which enrich partial orders withadditional order rela-
tions corresponding to other aspects of causality. WithEN-systems as our starting
point, we discuss how their extensions can be treated using these richer notions
of causality.

Keywords: elementary net systems, activator arcs, inhibitor arcs, mutex arcs, semanti-
cal framework, step sequences, processes, causality semantics.

1 Introduction

In order to be able to verify complex, distributed systems, i.e., to guarantee correctness
of their behaviour, one has to understand the relations between concurrently ongoing
operations. This involves, in particular, providing appropriate mathematical abstractions
to capture the operational properties of such systems.

Petri nets are a system model related to state machines and similar, sequential,
behaviour defining devices. However, the states of Petri nets are distributed (over so-
called places) and also their actions (transitions, in Petri net terms) occur purely locally.
Whether or not a transition can occur, depends only those components (places) of the
state to which it is directly related. Moreover, when it occurs, it affects only neighbour-
ing places. Hence, each transition occurrence (an event) leads to a local change of state.
All this induces local interactions between transition occurrences making it possible
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to extract from a run of a Petri net, the essential causal relationships between events.
These local interactions can be derived from so-called processes, i.e., labelled acyclic
nets representing the unfolding of a net corresponding to a single execution (with all
choices and conflicts resolved). Abstracting from the places leads to a causal semantics
expressed in terms of partially ordered sets of occurrencesof transitions: causally re-
lated events are ordered, while concurrent events remain unordered. Each such partial
order describes the causal structure of a single concurrenthistory or run of the system
and as such represents several — closely related — (step) sequences of (simultaneously
occurring) transitions, each of them being a possible observation of that run. The stan-
dard net classes of Elementary Net Systems (orEN-systems) and Place/Transition Nets
(or PT-nets) are typical examples of this approach [1, 26].

As an example, consider Figure 1(a) depicting anEN-system with three step se-
quences involving the executions of transitionsa, b andc, viz. σ1 = {a, b}{c}, σ2 =
{a}{b}{c} andσ3 = {b}{a}{c}. They can be seen as observations of a single history
underpinned by a causal partial order in whicha andb are unordered and botha andb
precedec.

Consistency between the different levels of abstraction atwhich one captures the
concurrency in the behaviour can be established within a generic approach (theseman-
tical frameworkof [19]) aimed at fitting together systems (i.e., nets from a certain class
of Petri nets), abstract causal orders and individual observations.

Partial order semantics as just described can support efficient verification tech-
niques. Rather than exploring the full state space of a system constructed from sequen-
tial observations, one uses unfoldings, see [4] for a general description of this idea. The
idea behind the resulting more efficient algorithms is to exploit the concurrency (un-
orderedness) in the behaviour to alleviate the state space explosion problem. For Petri
nets, unfoldings and nonsequential net processes provide atruly concurrent seman-
tics with partial orders as a succinct representation of related observations. Unfoldings
based on the branching processes from [3] in which also all choices are modelled, are
the basis for efficient verification algorithms [5, 18, 23].

(a)

c d

a b

(b)

c d

a b

(c)

c d

a b

(d)

c d

a b

Fig. 1.An EN-system (a); anEN-system with an inhibitor arc joining the output place of transition
b with transitiona implying thata cannot be fired if the output place ofb is not empty (b); an
EN-system with an activator arc joining the input place of transition b with transitiona implying
that a can be fired provided that the input place ofb is not empty (c); and anEN-system with
a mutex arc between transitionsa andb implying that the two transitions cannot be fired in the
same step (d).



3

To enhance the modelling power of the standard net classes one can introduce dif-
ferent forms of ‘testing’, for example, testing for the absence of a token using inhibitor
arcs. This may imply that the causal semantics of such extended Petri net models can
no longer be described solely in terms of partial orders.

Figure 1(b) depicts anEN-system with an inhibitor arc. Such an arc between a place
and a transition indicates that the place has to be empty for the transition to be able
to fire. Hence this net has only two step sequences involving transitionsa, b and c,
namelyσ1 = {a, b}{c} andσ2 = {a}{b}{c}. This is becausea can occur beforeb or
simultaneously withb but ‘not later than’b (weak causality). These two step sequences
can be seen as belonging to the abstract causal history underpinnednotby causal partial
orders but rather by causality structures introduced in [14] — called stratified order
structures— based on causal partial orders and, in addition, weak causal partial orders.
Inhibitor arcs are closely related to activator arcs. Another form of testing is portrayed
by the net in Figure 1(c) which depicts anEN-system with an activator arc. Such a
‘testing’ arc between a place and a transition means that theplace has to be non-empty
for the transition to be able to fire. As a result, both step sequences and abstract causal
histories of this net are exactly the same as in the previous example.

Yet another example, in Figure 1(d), depicts anEN-system with a mutex arc. Such
an arc means that the two adjacent transitions may occur in any order but not simulta-
neously (commutativity). Hence this net has two step sequences involving transitions
a, b andc, namelyσ2 = {a}{b}{c} andσ3 = {b}{a}{c}. They belong to an abstract
history underpinned by causality structures introduced in[7, 10] — calledgeneralised
stratified order structures— based on causal partial orders together with weak causal
partial orders and, in addition, a commutativity relation which tells what pairs of events
cannot belong to the same step.

In this paper, we explain what modifications to the partial order semantics are
needed in order to provide a satisfactory treatment for netswith inhibitor, activator
and mutex arcs. The model which we extend with these new typesof arcs are Elemen-
tary Net systems [26]. This model isthe basic class of Petri nets and is particularly
suited for the study of fundamental properties of concurrent systems. In particular, Ele-
mentary Net Systems are the typical concurrency model in which event independence,
simultaneity, and unorderedness amount to basically the same semantical phenomenon,
making partial orders exactly the right abstract model for their behaviour. We will dis-
cuss how the extended classes ofEN-systems can be treated with the richer notions
of causal semantics using the generic approach provided by the semantical framework
of [19]. Finally, we will include Place/Transition Nets into our discussion and reflect
upon similarities and differences with theEN-systems approach. As a tutorial survey,
this paper provides no proofs, but rather provides ‘facts’ with references for proofs and
more background information, given per (sub)section.

2 Preliminaries

Composing two functionsf : X → 2Y andg : Y → 2Z is defined byg ◦ f(x) =⋃
y∈f(x) g(y), for all x ∈ X . Restricting functionf to a subsetZ of X is denoted by

f |Z . Similarly, the restriction of a binary relationR ⊆ X × Y to a subsetZ of X × Y
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is denoted byR|Z . We may use the infix notationxR y to denote that(x, y) ∈ R. The
compositionR ◦Q of two relationsR ⊆ X × Y andQ ⊆ Y × Z comprises all pairs
(x, z) in X × Z for which there isy in Y such that(x, y) ∈ R and(y, z) ∈ Q. We
assume the following notions and notations:

– R−1 = {(y, x) | (x, y) ∈ R}. (reverse)
– R0 = idX = {(x, x) | x ∈ X}. (identity)
– Rn = Rn−1 ◦R. (n-th power,n ≥ 1).
– R+ = R1 ∪R2 ∪ . . . . (transitive closure)
– R∗ = R0 ∪R+. (reflexive transitive closure)
– Rsym = R0 ∪R−1. (symmetric closure)
– R is symmetric, reflexive, irreflexive, transitive if, respectively,
R = R−1 , idX ⊆ R , idX ∩R = ∅ , R ◦R ⊆ R.

– R is acyclic ifR+ is irreflexive.

A relational structureis a tuplers = (X,Q1, . . . , Qn) whereX is a finitedomain,
and theQi’s are binary relations onX (we can select components using the subscriptrs ,
e.g.,Xrs). For relational structures with the same domain and arity,rs andrs ′, we write
rs ⊆ rs ′ if the subset inclusion holds component-wise. The intersection

⋂
R of a set

R of relational structures with the same arity and domain is defined component-wise.

A sequenceover a finite setX is a finite stringx1 . . . xn of symbolsxi from X . A
stepoverX is a non-empty subset ofX , and astep sequenceoverX is a finite string
X1 . . . Xn of steps. A step sequence issingular if the Xi’s are mutually disjoint. The
empty (step) sequence, corresponding to the casen = 0, is denoted byλ. As singleton
sets can be identified with their only elements, sequences can be regarded as special
step sequences. Moreover, we will drop the set brackets of singleton sets.

A labellingℓ of a setX is a function fromX to a set of labelsℓ(X), and alabelled
setis a pair(X, ℓ) whereX is a set andℓ is a labelling ofX . The labelling is extended
to finite sequences of elementsxi of X by ℓ(x1 . . . xn) = ℓ(x1) . . . ℓ(xn), and to fi-
nite sequences of subsetsXi of X by ℓ(X1 . . . Xn) = ℓ(X1) . . . ℓ(Xn). To make the
labelling explicit, we will sometimes denote a labelled step sequence by(σ, ℓ). We also
will use φ(σ, ℓ) = ℓ(σ) to indicate that we ‘forget’ about the underlying elements but
rather focus on the step sequenceℓ(σ) overℓ(X).

We assumethroughout that all sets in this paper arelabelled sets, with the
default labelling simply being the identity function. If the actual labelling is
irrelevant for a particular definition or result, it may be omitted. Moreover,
whenever it is stated that two domains are the same, we implicitly assume that
their labellings are identical.

3 Causal partial orders and order structures

To capture the intrinsic causal relationships between events occurring in a concurrent
system history, one normally resorts to using a suitableordering relation. In its ba-
sic form, such a relation is a partial order (reflecting the generally accepted view that
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causality is transitive and acyclic). However, for systemswith a complex structure, par-
tial orders may need to be extended to more expressiveorder structureswhich support
additional relations between events, such asweakcausality. We will present two kinds
of such extended order structures.

When using (causal) ordering relations in the treatment of concurrent histories, there
are two crucial issues which need to be satisfactorily addressed. The first is the relation-
ship with their associated executions or observations, typically captured by sequences
or step sequences of events. To be meaningful, an ordering relation should be a faithful
abstraction of a set of executions in the sense that each of these correspond to the given
order (should be allowed as an execution). Moreover, there should be an unambiguous
way of deriving an ordering relation from a set of observations by capturing all essential
causal orderings between events while ignoring coincidental ordering in any concrete
observation. We will refer to such a property asAbstraction. The second issue is related
to the way ordering relations are derived. Intuitively, an overall causal ordering relation
is built up from smaller, more direct local, causal orderingrelations by applying some
notion of transitivity. We will refer to such an operation asClosure.

3.1 Partial orders

A partially ordered set(or poset)po = (X,≺) is a relational structure comprising
a finite setX and an irreflexive and transitive binary relation≺ on X . Two distinct
elementsx, y of X areunordered, x a y, if neitherx ≺ y nory ≺ x. We denotea ≺

a
b

if a ≺ b or a a b.
Intersecting posets to filter out their common ordering is a sound operation yielding

a new poset.

Fact 1 (poset intersection)If PO is a non-empty set of posets with a common domain,
then

⋂
PO is a poset with the same domain.

A posetpo is total (or linear) if all pair of distinct elements ofX are ordered, and
stratified(or weak) ifa∪idX is an equivalence relation. Note that all total posets are
also stratified. If a poset represents a history of a concurrent system, thenx ≺ y means
thatx can only be observed beforey, whilex a y means thatx andy can be observed in
any order, even simultaneously. In Figure 2,tpo0 is a total poset andspo0 is a stratified
poset

tpo
0
: total

az1

bz2

az3

cz4

spo
0
: stratified

az1

b z2 az3

cz4

po
0
: neither total
nor stratified

az1

b z2 az3

c z4

sos0: SO-structure

az1

b z2 az3

c z4

gsos
0
: GSO-structure

az1

b z2 az3

c z4

Fig. 2.Hasse diagrams of posets and order structures showing also the labels (a, b andc) of their
elements. Solid arcs represent≺, dashed arcs represent⊏, and solid edges represent⇋.
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To formulate theAbstractionproperty for posets, we first need to make it clear
which executions correspond to a given (causal) posetpo. A total posettpo is a lin-
earisationof po if tpo ⊆ po, while a stratified posetspo is a stratificationof po if
spo ⊆ po. (That is,po is a faithful abstraction oftpo and spo.) We denote this re-
spectively bytpo ∈ lin(po) andspo ∈ strat(po). In Figure 2,tpo0 ∈ lin(po0) and
spo0 ∈ strat(po0). Conversely,po captures all essential orderings present in its lineari-
sations or stratifications, respectively.

Fact 2 (poset abstraction [27])For every posetpo, lin(po) 6= ∅ and

po =
⋂

lin(po) .

The above fact, known asSzpilrajn’s Theorem, implies that a poset is uniquely de-
termined by the intersection of its linearisations. The same holds for its stratifications.

Fact 3 (poset abstraction [15])For every posetpo, strat(po) 6= ∅ and

po =
⋂

strat(po) .

ThePoset Closureproperty described next is simple and indeed standard, but it is
still a good idea to state it explicitly as we will soon generalise it to more complicated
order structures.

A pre-posetis a relational structure̺ = (X,≺) such that≺+ is irreflexive. In such
a case, itspo-closureis defined as̺ po = (X,≺+). Intuitively,≺ indicates which of the
executed actions aredirectly causally related and̺po provides a full account of both
direct and indirect (derived) causality between events. Therefore, we require that≺ be
acyclic, i.e.,≺+ is irreflexive. Then its transitive closure yields the overall causality
relationship.

Fact 4 (poset closure)For every pre-poset̺, ̺po is a poset.

As we already mentioned, individual executions of a concurrent systems are often
represented by sequences of events or sequences of sets of simultaneously occurring
events (step sequences). Both are language theoretic rather than order theoretic notions,
but there is a straightforward way to move between these two representations. Given a
stratified posetspo = (X,≺), there is a unique enumerationX1, . . . , Xk of the equiv-
alence classes of the relationa∪idX such thatx ≺ y, for all x ∈ Xi andy ∈ Xj and
i < j. We then associate withspo the singular step sequencesteps(spo) = X1 . . . Xk.
Conversely, ifσ = X1 . . . Xk (k ≥ 0) is a singular step sequence, then

spo(σ) =
(⋃

i

Xi,
⋃

i<j

Xi ×Xj

)

is the stratified poset associated withσ. In Figure 2,

steps(tpo0) = z1z2z3z4 spo(z1z2z3z4) = tpo0

steps(spo0) = z1{z2, z3}z4 spo(z1{z2, z3}z4) = spo0 .
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Fact 5 (posets and step sequences)spo = spo(steps(spo)), for every stratified poset
spo, andσ = steps(spo(σ)), for every singular step sequenceσ.

Hence we canidentifyeach stratified posetspo with steps(spo) or, equivalently,identify
each singular step sequenceσ with spo(σ). This also applies to labelled stratified posets
and labelled singular step sequences.

3.2 Stratified order structures

Posets capture an ‘earlier than’ relationship between the elements of their domains.
Their first extension we consider, consists in introducing the concept of a weaker —
‘not later than’ — relationship.

A stratified order structure(or SO-structure)sos = (X,≺,⊏) comprises two binary
relations,≺ (causality) and⊏ (weak causality, in diagrams represented by dashed arcs,
see Figure 2) on a finite setX such that, for allx, y, z ∈ X :

S1 : x 6⊏ x S3 : x ⊏ y ⊏ z ∧ x 6= z =⇒ x ⊏ z

S2 : x ≺ y =⇒ x ⊏ y S4 : x ⊏ y ≺ z ∨ x ≺ y ⊏ z =⇒ x ≺ z .

Intuitively, ≺ represents the ‘earlier than’ relationship inX , and⊏ the ‘not later than’
relationship. Accordingly,≺ is a partial order, andx ≺ y impliesy 6⊏ x. It is easily
seen that ifspo is a stratified poset, then the relational structuresos(spo) = (Xspo ,≺spo

,≺
a

spo) is anSO-structure.
Again, intersectingSO-structures to filter out their common orderings is a sound

operation yielding a newSO-structure.

Fact 6 (sos intersection)If SOS is a non-empty set ofSO-structures with a common
domain, then

⋂
SOS is anSO-structure with the same domain.

To formulate theAbstractionproperty for SO-structures, we first need to define
which executions would correspond to a givenSO-structuresos . A stratified posetspo
is anextensionof sos if sos ⊆ sos(spo). (Thussos is faithful to spo.) We denote this
by spo ∈ ext(sos). In Figure 2,tpo0, spo0 ∈ ext(sos0).

Fact 7 (sos abstraction)For everySO-structuresos , ext(sos) 6= ∅ and

sos =
⋂

sos(ext(sos)) .

TheClosureproperty forSO-structures generalises the notion of po-closure intro-
duced for posets. Apre-SO-structureis a relational structure̺ = (X,≺,⊏) such that
the relationγ ◦ ≺ ◦ γ is irreflexive, whereγ = (≺ ∪⊏)∗. Then theso-closureis:

̺so = (X, γ ◦ ≺ ◦ γ, γ \ idX) .

Note that in a pre-SO-structure̺ there are nox0, x1, . . . , xn = x0 such thatx0 ≺ x1

and, for all0 < i < n, xi ≺ xi+1 or xi ⊏ xi+1. This can be regarded as a counterpart
of the acyclicity required of pre-posets.

Fact 8 (sos closure)For every pre-SO-structure̺, ̺so is anSO-structure.

Stratified order structures were independently introducedin [6] and [12]. Their the-
ory has been presented in [15], and they have been used, for example, to model inhibitor
and priority systems, asynchronous races and synthesis problems (see, e.g., [17]).
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3.3 Generalised stratified order structures

The second extension of causal posets introduces a representation of ‘non-simultaneity’.
A generalisedSO-structure(or GSO-structure)gsos = (X,⇋,⊏) comprises two

irreflexive relations,⇋ (commutativity, which is symmetric) and⊏ (weak causality,
as before) onX such that(X,⇋ ∩ ⊏,⊏) is an SO-structure. Note that commuta-
tivity represents the ‘earlier than or later than, but neversimultaneous’ relationship.
Accordingly,⇋ ∩ ⊏ represents the ‘earlier than’ relationship, and so it is required that
together with⊏ it forms anSO-structure. In fact, one could have definedGSO-structures
asgsos = (X,≺,⊏,⇋) making them a direct generalisation ofGSO-structures. How-
ever, it is always the case that≺ is the same as the intersection of⊏ and⇋, and so it can
be omitted. It is easily seen that ifspo is a stratified poset, then the relational structure
gsos(spo) = (Xspo ,≺

sym
spo ,≺

a

spo) is aGSO-structure.
Also in this case, intersectingGSO-structures to filter out their common orderings is

a sound operation yielding a newGSO-structure.

Fact 9 (gsos intersection)If GSOS is a non-empty set ofGSO-structures with a com-
mon domain, then

⋂
GSOS is anGSO-structure with the same domain.

To formulate theAbstractionproperty forGSO-structures, we need to define which
executions would correspond to a givenGSO-structuregsos . A stratified posetspo is an
extensionof gsos if gsos ⊆ gsos(spo). (Thusgsos is faithful tospo.) We denote this by
spo ∈ ext(gsos). In Figure 2,spo0 ∈ ext(gsos0). We then obtain thatGSO-structures
are fully determined by their extensions.

Fact 10 (gsos abstraction)For everyGSO-structuregsos , ext(gsos) 6= ∅ and

gsos =
⋂

gsos(ext(gsos)) .

TheClosureproperty forGSO-structures generalises the notion of so-closure intro-
duced forSO-structures. Apre-GSO-structureis a relational structure̺= (X,≺,⊏,⇋)
based on local relationships between events such that the relationαsym ∪ βsym∪ ⇋ is
irreflexive and symmetric, where

α = γ ◦ ≺ ◦ γ and β = ⊏
∗ ◦ (⇋ ∩⊏∗) ◦⊏∗ and γ = (≺ ∪⊏)∗ .

In such a case, itsgso-closureis defined as̺ gso = (X,αsym∪βsym∪ ⇋, γ \ idX). Note
that⇋ relates events that cannot be executed simultaneously.

Fact 11 (gsos closure)For every pre-GSO-structure̺, ̺gso is a GSO-structure.

GeneralisedSO-structures were introduced in [7] to represent the most general con-
current histories in the approach of [13]. They were investigated in [10], and used to
provide nets with mutex arcs with a semantics in [21].
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4 Elementary net systems

All net models considered in this paper have a net as their underlying structure.
A netN = (P, T, F ) comprises disjoint finite sets of nodes,P andT , called respec-

tively placesandtransitions, and theflow relationF ⊆ (T ×P )∪ (P ×T ). A marking
of N is a set of places. In diagrams, places (local states) are represented by circles,
transitions (actions) by rectangles, the flow relation by directed arcs, and a marking
(global state) bytokens(small black dots) drawn inside places. Theinputsandoutputs
of a nodex are the sets•x = {y | (y, x) ∈ F} andx• = {y | (x, y) ∈ F}; moreover,
•x• = •x∪x•. It is assumed that•a 6= ∅ 6= a•, for every transitiona. The dot-notation
extends to setsX of nodes in the usual way, e.g.,•X =

⋃
{•x | x ∈ X}.

EN 0

p7

p1

p2

p3

p4

p5

p6

f cm a g u

Fig. 3. EN-system model of a producer/consumer system.

Figure 3 shows a net model of a system consisting of a producer, a buffer of capacity
one, and a consumer. The producer can execute:m (making an item),a (adding a new
item to the buffer), andf (failing to add an item). The consumer can execute:g (getting
an item),u (using the item), andc (completing the work). The buffer executes cyclically
thea andg actions. The three components operate independently with shared actions
being executed jointly. Figure 3 also shows an (initial) markingM = {p1, p4, p5}.

Net executions can be captured by sequences of steps of transitions. A stepof a net
is a setU of transitions such that•t• ∩ •v• = ∅, for all t 6= v ∈ U . It is enabledat a
markingM if •U ⊆ M andU• ∩M = ∅. In such a case, theexecutionof U leads to
markingM ′ = (M\•U) ∪ U•. We denote this byM [U〉M ′.

A step sequencefrom a markingM to a markingM ′ is a sequenceσ = U1 . . . Un

(n ≥ 0) of non-empty stepsUi such thatM [U1〉M1, . . . ,Mn−1[Un〉M
′, for some

M1, . . . ,Mn−1. We denote this byM [σ〉M ′, and callM ′ reachablefromM . When all
stepsUi are singletons,σ is afiring sequence. For the net in Figure 3, we have:

{p2, p3, p6} [m〉 {p1, p3, p6} {p1, p4, p5} [a{m, g}{a, c}m〉 {p1, p3, p7}

{p2, p3, p6} [{m, c}〉 {p1, p3, p7} {p1, p4, p5} [amgacm〉 {p1, p3, p7} .

An EN-systemis a tupleEN = (P, T, F,Minit ) such that(P, T, F ) is itsunderlying
net, andMinit is an initial marking. Moreover,steps(EN ) and fseq(EN ) comprise
respectively all the step sequences and all firing sequencesfrom the initial marking
Minit . Figure 3 depicts anEN-system withsteps(EN 0) = {λ, a, ag, am, a{g,m}, . . .}
andfseq(EN 0) = {λ, a, ag, am, agm, amg, . . .}.
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Thereachability graphrg(EN ) = (V,A) of EN hasV as its set of vertices andA
as its set of labelled arcs.V consists of all markings reachable from the initial marking
Minit , andA is given asA = {(M,U,M ′) | M ∈ V ∧ M [U〉M ′}. Similarly, the
sequential reachability graphrgseq(EN ) = (V ′, A′) of EN hasV ′ as its set of vertices
andA′ as its set of labelled arcs.V ′ consists of all markings reachable from the initial
markingMinit through firing sequences, andA′ is given asA′ = {(M, t,M ′) | M ∈
V ∧M [t〉M ′}. It can be seen that although, in general,rgseq(EN ) is a proper subgraph
of rg(EN ), their vertices are the same.

The EN-system in Figure 3 iscontact-freewhich means that, for all markingsM
reachable fromMinit and transitionst, •t ⊆ M impliest• ∩M = ∅. Contact-freeness
can always be enforced without influencing the step sequencebehaviour, bycomple-
menting(all or some) placesp using fresh places̃p satisfying•p = p̃•, p• = •p̃, and
declaring that̃p ∈ Minit iff p /∈ Minit . For example, in Figure 3,p4 = p̃3. In what
follows, all EN-systemsas well as their extensions are assumed to be contact-free.

Reachability graphs and structure

Strong connections between structure and behaviour have been for a long time a rich
source of analytical techniques for Petri nets. These connections are particularly direct
in the case ofEN-systems. To start with, at a markingM , we say that two transitions,t
andv, are:

– independent, if they are both enabled and the execution of one does not disable the
other. InEN-systems this is equivalent to saying that{t, v} is a step enabled atM .
This is illustrated in Figure 4(a) for t = f andv = g.

– in conflict, if they are both enabled and the execution of one disables the other. In
EN-systems this is equivalent to saying that{t, v} is not a step enabled atM . This
is illustrated in Figure 4(b) for t = a andv = f .

– causally related, if one is enabled and its execution makes the other enabled.This
is illustrated in Figure 4(c) for t = m andv = f .

(a)

{p1, p3, p5}

f g

g f

{f, g}

(b)

{p1, p4, p5}

a f

(c)

{p2, p3, p5}

m

f

Fig. 4. Independence, conflict and causality in the reachability graphrg(EN 0).

The above relationships arebehavioural, in the sense that they refer explicitly to
executability at a markings. There is, however, an alternative characterisation, where
we say that two transitions,t andv, arestructurally:

– independent, if •t• ∩ •v• = ∅; for example,f andg in EN 0.
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– in conflict, if •t ∩ •v 6= ∅ or t• ∩ v• 6= ∅; for example,f anda in EN 0.
– causally related, if t• ∩ •v 6= ∅ or v• ∩ •t 6= ∅; for example,m andf in EN 0.

We then obtain a direct connection between the behavioural and structural characteri-
sations of fundamental relationships between transitionsin EN-systems.

Fact 12 (structure vs. behaviour) In EN-systems, behavioural independence, conflict
and causality respectively imply structural independence, conflict and causality.

In other words, transitions which are structurally independent will never be in con-
flict or causally related whatever the current marking. Similar remarks hold for conflict
and causality.

Another observation concerns the relationship between simultaneity and unordered-
ness in the behaviour ofEN-systems. We can formulate the general property that

Simultaneity ⇐⇒ Unorderedness

by which we mean that it is always the case thatM [t, v〉M ′ iff M [tv〉M ′ ∧M [vt〉M ′.

5 Fitting nets and order structures

Given the execution semantics ofEN-systems, we could now turn to the development of
a causality semantics in terms of occurrence nets and associated causal posets. However,
since we aim at a systematic presentation of causality semantics for different net classes,
it pays off to develop first a general scheme for doing this. Asa result, one can then
simplify the formal treatment and also appreciate common properties shared across a
range of net classes.

The operational and causality semantics of a class of Petri netsPN can be presented
within a common scheme introduced in [19] (see also [17]) andreproduced here as
Figure 5 whereN is a net fromPN and:

– EX are executions (or observations) of nets inPN.
– LAN are labelled acyclic nets, each representing a concurrent history.
– LEX are labelled executions of nets inLAN.
– LCS are labelled causal structures (e.g., order structures) capturing causality rela-

tionships between executed actions.

Here,EX will be step sequences andLEX will be labelled singular step sequences.
However,LAN andLCS will depend on the chosen class of netsPN.

The maps in Figure 5 relate the semantical views inEX, LAN, LEX, andLCS:

– ω returns a set of executions, defining theoperationalsemantics ofN .
– α returns a set of labelled acyclic nets, defining anaxiomatic processsemantics

of N .
– πN returns, for each execution ofN , a non-empty set of labelled acyclic nets, defin-

ing theoperational processsemantics ofN .



12

N ∈ PN LAN

EX LEX

LCS

α

ω πN

φ

λ

ǫ
ı

κ

Fig. 5. Semantical framework for a class of Petri netsPN. The bold arcs indicate mappings to
powersets and the dashed arc indicates a partial function.

– λ returns a set oflabelledexecutions for each process ofN , and after applyingφ
to such labelled execution one should obtain an execution ofN .

– κ associates a labelledcausalstructure with each process ofN .
– ǫ andı allow one to go back and forth between labelled causal structures and the

sets of their labelled executions.

The semantical framework provided by the schema indicates how the different se-
mantical views should agree. According to the rectangle on the left, the Petri net defines
processes satisfying certain axioms and moreover all labelled acyclic nets satisfying
these axioms can be derived from the executions of the Petri net. Also, the labelled
executions of the processes correspond with the executionsof the original Petri net. In
the triangle on the right, the labelled acyclic nets fromLAN, the causal structures from
LCS and the labelled executions fromLEX are related. The order structure defined
by a labelled acyclic net can be obtained by combining its executions and, conversely,
the stratified extensions of the order structure defined by a labelled acyclic net are the
(labelled) executions of that net. Thus the abstract relations between the actions in the
labelled causal structures associated with the Petri net will be consistent with its chosen
operational semantics.

To demonstrate that these different semantical views agreeas captured through this
semantical framework, it is sufficient to establish a seriesof results calledaims. As
there exist four simple requirements (calledproperties) guaranteeing these aims, one
can concentrate on defining the semantical domains and maps appearing in Figure 5
and proving these properties.

Property 1 (soundness of mappings)The mapsω,α, λ, φ, πN |ω(N), κ, ǫ andı|λ(LAN)
are total. Moreover,ω, α, λ, πN |ω(N) andǫ always return non-empty sets.

Property 2 (consistency)For all ξ ∈ EX andLN ∈ LAN,

ξ ∈ ω(N)
LN ∈ πN (ξ)

}
iff

{
LN ∈ α(N)
ξ ∈ φ(λ(LN )) .

Property 3 (representation) ı ◦ ǫ = idLCS.

Property 4 (fitting) λ = ǫ ◦ κ.

The above four properties imply that the axiomatic (defined throughα) and opera-
tional (defined throughπN ◦ ω) process semantics of nets inPN are in full agreement.
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Also, the operational semantics ofN (defined throughω) coincides with the operational
semantics of the processes ofN (defined throughφ ◦ λ ◦ α). Finally, the causality in a
process ofN (defined throughκ) coincides with the causality structure implied by its
operational semantics (throughı ◦ λ). That is, we have the following.

Aim 1 α = πN ◦ ω.

Aim 2 ω = φ ◦ λ ◦ α.

Aim 3 κ = ı ◦ λ.

As a consequence, the operational semantics of the Petri netN and the set of la-
belled causal structures associated with it are related byω = φ ◦ ǫ ◦ κ ◦ α.

6 Semantical framework for EN-systems

Some of the notions needed to specialise the general concepts of the semantical frame-
work for EN-systems have already been introduced. We will now introduce the missing
ones, starting with the definition of a class of labelled acyclic nets capturing the causal-
ity semantics ofEN-systems.

An occurrence netis a tupleON = (P ′, T ′, F ′, ℓ) such that(P ′, T ′, F ′) is its un-
derlying net3 andℓ is a labelling forP ′ ∪ T ′. Moreover, it is assumed that|•p| ≤ 1
and|p•| ≤ 1, for every placep, and̺ON = (T ′, (F ′ ◦ F ′)|T ′×T ′) is a pre-poset (in
other words,F ′ is acyclic). The defaultinitial MON

init andfinalMON
fin markings respec-

tively consist of all places without inputs and outputs. Figure 6 shows an occurrence net
labelled by places and transitions of theEN-systemEN 0 of Figure 3, with the default
initial and final markings{b1, b2, b3} and{b6, b9, b10}.

p1b1

p4b2

p5b3

p3 b4

p2

b5

p4 b6

p6

b7

p1

b8

p5 b9

p2 b10a

e1

m

e2

f

e3

g

e4

u

e5

Fig. 6. An occurrence netON 0 (labels are shown inside the nodes).

Note that, due to the acyclicity of the flow relation and the lack of multiple inputs
(or outputs) of places, each transition inT ′ appears exactlyoncein any step sequenceσ
satisfyingMON

init [σ〉M
ON
fin . In particular, such a step sequence is singular, and sospo(σ)

is a well-defined stratified poset.
The behaviour of an occurrence netON is captured by the setsteps(ON ) of la-

belled step sequences, comprising all pairs(σ, ℓ|T ′ ) such thatσ is a step sequence from

3 The dot-notations, markings, etc, forON are as those defined for the underlying net.
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the default initial marking ofON to the default final marking. For each such labelled
step sequence,φ(σ, ℓ|T ′ ) = ℓ(σ). Moreover,fseq(ON ) are thelabelled firing sequences
of ON , i.e., all the labelled step sequences(σ, ℓ|T ′ ) such thatσ is a sequence of single-
ton steps. For the occurrence net of Figure 6, we havea{m, g}{f, u} ∈ φ(steps(ON 0))
as well asamgfu ∈ φ(fseq(ON 0)).

Fact 13 (labelled executions)steps(ON ) 6= ∅ andfseq(ON ) 6= ∅, for every occur-
rence netON .

For an occurrence netON , ̺ON is a pre-poset representing the direct causal re-
lationships between its transitions. Hence, by Fact 4,po(ON ) = ̺poON is the induced
poset representing all, direct and indirect, causal dependencies between the transitions
in T ′. For the occurrence net of Figure 6, we have thate1 causese2 directly, but there
is only an indirect causal link frome1 to e3. Also, there are no causal links betweene3
ande5 which means that they are independent. This and other relationships can be read
out from the diagram of the pre-poset̺ON 0

shown in Figure 7.

a

e1

m

e2

f

e3

g

e4

u

e5

Fig. 7. Pre-poset̺ ON0
for the occurrence netON 0.

To define processes of anEN-system, we need to provide an axiomatic characteri-
sation of occurrence nets consistent with the structure of agivenEN-system. Aprocess
of EN-systemEN is an occurrence netON with the labellingℓ which:

– labels places ofON with places ofEN .
– labels transitions ofON with transitions ofEN .
– is injective onMON

init andℓ(MON
init ) = Minit .

– is injective on•t andt• and, moreover,ℓ(•t) = •ℓ(t) andℓ(t•) = ℓ(t)•, for every
transitiont of ON .

We denote this byON ∈ proc(EN ). For example,ON 0 ∈ proc(EN 0), whereEN 0

andON 0 are the nets in Figures 3 and 6.

Fact 14 (injective labelling) The labellingℓ of ON ∈ proc(EN ) is injective on any
marking reachable from the default initial marking. It is also injective on any individual
step appearing in the step sequences ofsteps(ON ) 6= ∅.

The only missing component of the semantical framework forEN-systems is now
the mapping returning processes derived from individual step sequences.

The occurrence netprocEN (σ) generatedby a step sequenceσ = U1 . . . Un of EN
is the last element in the sequenceON 0, . . . ,ON n where eachON k is an occurrence
net(Pk, Tk, Fk, ℓk) constructed in the following way.
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Step 0:P0 = {p1 | p ∈ Minit} andT0 = F0 = ∅.
Stepk: GivenON k−1 we extend the sets of nodes and arcs as follows:

Pk = Pk−1 ∪ {p1+△p | p ∈ U•
k}

Tk = Tk−1 ∪ {t1+△t | t ∈ Uk}
Fk = Fk−1 ∪ {(p△p, t1+△t) | t ∈ Uk ∧ p ∈ •t}

∪ {(t1+△t, p1+△p) | t ∈ Uk ∧ p ∈ t•} .

In the above, the label of each nodexi is set to bex, and△x denotes the number of the
nodes ofON k−1 labelled byx.

The above construction is illustrated in Figure 8 for theEN-systemEN 0 of Figure 3.
The resulting occurrence net is isomorphic toON 0 of Figure 6 which, as we already
noted, is a process ofEN 0.

ON 0p1

p11

p4

p14

p5

p15

ON 1p1

p11

p2

p12

p4

p14

p3

p13

p5

p15

a

a1

ON 2p1

p11

p2

p12

p1

p21

p4

p14

p3

p13

p4

p24

p5

p15

p6

p16

a

a1 m

m1

g

g1

ON 3p1

p11

p2

p12

p1

p21

p2

p22

p4

p14

p3

p13

p4

p24

p5

p15

p6

p16

p5

p25

a

a1 m

m1

f

f1

g

g1

u

u1

Fig. 8. ProcessprocEN0
(σ) = ON 3 generated forEN 0 and step sequenceσ = a{m,g}{f, u}.

We will now explain how the four semantical properties can beestablished forEN-
systems and their step sequence semantics (the treatment for firing sequences is almost
the same). Referring to Figure 5, where:EN is anEN-system,ON an occurrence net,
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(σ, ℓ) a labelled step sequence,po a poset, andΣ a set of labelled singular step se-
quences with the same domain, we have the following:

PN are EN-systems EX are step sequences
LAN are occurrence nets LEX are labelled singular step sequences
LCS are labelled posets

ω(EN ) is steps(EN ) α(EN ) is proc(EN )
λ(ON ) is steps(ON ) πEN (σ) is procEN (σ)
φ(σ, ℓ) is ℓ(σ) κ(ON ) is po(ON )
ǫ(po) is steps(strat(po)) ı(Σ) is

⋂
spo(Σ).

Properties 1–4 hold forEN-systems [19, 26]. BelowEN is anEN-system andσ its
firing sequence,ON is an occurrence net,po is a poset, andΣ is a set of singular step
sequences with the same domain. (Note that Fact 17 follows from Facts 3 and 5.)

Fact 15 steps(EN ), proc(EN ), steps(ON ) and strat(po) are non-empty sets. More-
over,po(ON ) and

⋂
spo(Σ) are posets, andprocEN (σ) is an occurrence net.

Fact 16 procEN (σ) is a process ofEN . Moreover, ifON is a process ofEN and
σ′ ∈ φ(steps(ON )), thenσ′ ∈ steps(EN ) andON = procEN (σ′).

Fact 17 po =
⋂
spo(steps(strat(po))).

Fact 18 steps(ON ) = steps(strat(po(ON ))).

Hence we can claim the semantical aims forEN-systems and step sequences.

Fact 19 LetEN be anEN-system, andON be an occurrence net.

proc(EN ) = procEN (steps(EN ))

steps(EN ) = φ(steps(proc(EN )))

po(ON ) =
⋂
spo(steps(ON )) .

7 EN-systems with activator arcs

This section extends the treatment of concurrency to nets with activator arcs. Consider
again theEN-system of Figure 3 and add an activator arc from placep4 to transitionc
with a small black circle as arrowhead. In the resulting netENA0 shown in Figure 9,c
can only be enabled if there is a token in placep4. However, the execution of transition
c does not consume the token in placep4.

An elementary net system with activator arcs(or ENA-system) is a tupleENA =
(P, T, F,Act ,Minit ) such thatund(ENA) = (P, T, F,Minit ) is its underlyingEN-
system, andAct ⊆ P × T is a set ofactivator arcs. Notions and notations relating
to ENA are inherited fromund(ENA). The only new notation is�t denoting the set
of all the placesp where the presence of a token is necessary to enable a transition t,
i.e., (p, t) ∈ Act . The behaviour ofENA is also derived from that ofund(ENA) after
assuming that a step of transitionsU is enabled at a markingM in ENA if it is enabled
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ENA0

p7

p1

p2

p3

p4

p5

p6

cm a g uf

Fig. 9.An ENA-system modelling a second version of the producer/consumer system.

atM in und(ENA) and�U ⊆ M , where�U =
⋃

t∈U
�t. The marking resulting from

the execution of such aU is exactly the same as it would be inund(ENA). For theENA-
system of Figure 9, we have thatM [{a, c}〉M ′ andM [ca〉M ′, whereM = {p1, p4, p6}
andM ′ = {p2, p3, p7}. However,M [ac〉M ′ does not hold as after executing transition
a, a token is removed from the activator placep4 of transitionc.

Reachability graphs ofENA-systems

Reachability inENA-systems depends on the chosen execution semantics: sequences or
step sequences. Taking, as an example theENA-system in Figure 10(a), we may observe
thatMinit [{t, v}〉{p3, p4}, but there is no firing sequenceσ such thatMinit [σ〉{p3, p4}.

Another observation concerns the relationship between simultaneity and unordered-
ness in the behaviour ofENA-systems. Whereas in the case ofEN-systems, we have the
general property thatSimultaneity⇐⇒ Unorderednesswe now have

Simultaneity ⇐= Unorderedness

by which we mean that it is always the case thatM [t, v〉M ′ if M [tv〉M ′ ∧M [vt〉M ′.
Figure 10(b, c) shows that the reverse implication does not hold.

(a)

p1

p3

p2

p4

t v

(b)

t v

(c)

v t

v

{t, v}

Fig. 10.Two ENA-systems and the reachability graph of the second one.

Semantical framework for ENA-systems

Causality semantics forENA-systems will be developed by instantiating semantical
framework, similarly as in the case ofEN-systems. The labelled causal structures em-
ployed areSO-structures, while executions remain to be (labelled singular) step se-
quences. To define processes we extend occurrence nets to include activator arcs.
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An activator occurrence net(or AO-net)AON = (P ′, T ′, F ′,Act , ℓ) is a tuple such
thatund(AON ) = (P ′, T ′, F ′, ℓ) is its underlying occurrence net, andAct ⊆ P ′ × T ′

is a set ofactivatorarcs. Moreover, it is assumed that̺AON = (T ′,≺loc,⊏loc, ℓ|T ′),
with

≺loc = (F ′ ◦ F ′)|T ′×T ′ ∪ (F ′ ◦Act) and ⊏loc = Act−1 ◦ F ′

is a pre-SO-structure (see Figure 11). We then definesos(AON ) = ̺soAON to be the
SO-structureinducedbyAON .

(a) t v (b) t v (c) t v

Fig. 11.Two cases(a, b) definingt ≺loc v, and one case(c) definingt ⊏loc v.

The step sequencessteps(AON ) of anAO-netAON are defined as forund(AON ),
except that the enabling condition takes into account activator arcs.

Fact 20 (labelled executions)steps(AON ) 6= ∅, for everyAO-netON .

Note that it may happen thatfseq(AON ) = ∅ even thoughsteps(AON ) 6= ∅.
Take, for example, theAO-net AON 1 in Figure 12(a) for which steps(AON 1) =
{{t, v, w}z} and fseq(AON 1) = ∅ as executing at the default initial marking any
transition in{t, v, w} means that just one of the remaining transitions will never be
enabled, and so the default final marking cannot be reached.

(a)

z

t

v

w (b)

z

t

v

w

Fig. 12.An AO-netAON 1 (a), and a failed attempt to extend it to anAMO-net(b).

An AO-net represents a concurrent run of a system and has to avoid circularity. In-
tuitively, ≺loc stands for causal precedence (the first transition has to produce a token
for consumption or testing by the second transition) and⊏loc for weak causal prece-
dence (the first transition cannot happen after the second one, since the latter consumes
a token which activates the former). Figure 13 shows anAO-netAON 0 labelled by
places and transitions of theENA-systemENA0 of Figure 9. Its default initial mark-
ing is{b1, b2, b3}, and its default final marking is{b9, b10, b11}. Note that transitione5
weakly precedes transitione4, i.e., e5 ⊏loc e4. Moreover, we have that{m, g}{a, c}
anda{m, g}ca belong toφ(steps(AON 0)), buta{m, g}ac does not.
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p1b1

p4b2

p5b3

p3b4

p2

b5
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p2 b9

p3 b10

p5 b11

a

e1

m

e3

a

e4

g

e2

c

e5

Fig. 13.An activator occurrence netAON 0.

Processes of anENA-system are similar to those of the underlyingEN-system ex-
tended with an appropriate treatment of activator arcs. Aprocessof ENA is an AO-
netAON such thatund(AON ) is a process ofund(ENA) and, in addition,ℓ is in-
jective on�t and ℓ(�t) = �ℓ(t) for every transitiont of AON . We denote this by
AON ∈ proc(ENA).

Process generation from a given step sequence is also based on that introduced for
EN-systems. TheAO-netprocENA(σ) generatedby a step sequenceσ = U1 . . . Un of
ENA is the last element in the sequenceAON 0, . . . ,AON n where eachAON k =
(Pk, Tk, Fk, ℓk, Ak) is anAO-net with the components constructed as in the definition
for procund(ENA)(σ), and the following additions (see Figure 14):
Step 0:A0 = ∅.
Stepk: Ak = Ak−1 ∪ {(p△p, t1+△t) | t ∈ U ∧ p ∈ �t}.

p1

p11

p4

p14

p5

p15

p3

p13

p2

p12

p4

p24

p1

p21

p6

p16

p2

p22

p3

p23

p5

p25

a

a1 m

m1

a

a2

g

g1

c

c1

Fig. 14.ProcessprocENA0
(σ) generated forENA0 and step sequenceσ = a{g,m}{a, c}.

We will now show the semantical properties formulated abovecan be established
for ENA-systems and their firing sequences. Referring to the notation used in Figure 5,
we have the following, whereENA is anENA-system,AON anAO-net,(σ, ℓ) a labelled
step sequence,sos anSO-structure, andΣ a set of labelled singular step sequences with
the same domain:
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PN are ENA-systems EX are step sequences
LAN are AO-nets LEX are labelled singular step sequences
LCS are labelledSO-structures

ω(ENA) is steps(ENA) α(ENA) is proc(ENA)
λ(AON ) is steps(AON ) πENA(σ) is procENA(σ)
φ(σ, ℓ) is ℓ(σ) κ(AON ) is sos(AON )
ǫ(sos) is steps(ext(sos)) ı(Σ) is

⋂
sos(spo(Σ)).

It can be shown that Properties 1–4 hold. BelowENA is anENA-system andσ its
step sequence,AON is anAO-net,sos is anSO-structure, andΣ is a set of singular step
sequences with the same domain. (Note that Fact 23 follows from Facts 5 and 7.)

Fact 21 steps(ENA), proc(ENA), steps(AON ) andspo(sos) are non-empty sets. More-
over,sos(AON ) and

⋂
sos(spo(Σ)) are SO-structures, andprocENA(σ) is anAO-net.

Fact 22 procENA(σ) is a process ofENA. Moreover, ifAON be a process ofENA
andσ′ ∈ φ(steps(AON )), thenσ′ ∈ steps(ENA) andAON = procENA(σ

′).

Fact 23 sos =
⋂
sos(steps(ext(sos))).

Fact 24 steps(AON ) = ext(sos(AON )).

Hence we can claim the semantical aims forENA-systems.

Fact 25 LetENA be anENA-system, andAON be anAO-net.

proc(ENA) = procENA(steps(ENA))

steps(ENA) = φ(steps(proc(ENA)))

sos(AON ) =
⋂
sos(steps(AON )) .

EN-systems with inhibitor arcs

It is easy to extend the treatment presented above forENA-systems toEN-systems with
inhibitor arcs. Consider again theEN-system of Figure 3 and add to it an inhibitor
arc linking the placep3 and transitionc. This yields the net systemENI 0 shown in
Figure 15. (Inhibitor arcs are drawn with small open circlesas arrowheads.) Adding
such an arc means thatc cannot be enabled when the buffer is non-empty (a token in
placep3 signifies that the buffer contains an item).

An elementary net system with inhibitor arcs(or ENI-system) is a tupleENI =
(P, T, F, Inh,Minit ) such thatund(ENI ) = (P, T, F,Minit ) is its underlyingEN-
system, andInh ⊆ P × T is a set ofinhibitor arcs. Notions and notations relating
to ENI are inherited fromund(ENI ). The behaviour ofENI is also derived from that
of und(ENI ): a step of transitionsU is enabled at a markingM of ENI if it is enabled
atM in und(ENI ) and{p | ∃t ∈ U : (p, t) ∈ Inh} ∩M = ∅. The marking resulting
from the execution of such aU is exactly the same as inund(ENI ).

Intuitively, the testing for the presence of tokens with activator arcs inENA-systems
has been replaced by testing for their absence with inhibitor arcs inENI-systems. In
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ENI 0

p7

p1

p2

p3

p4

p5

p6

cm a g uf

Fig. 15.An ENI-system modelling a third version of the producer/consumersystem.

fact, the latter can be faithfully simulated by the former inthe case ofEN-systems
(i.e., they have isomorphic reachability graphs). All we need to assume is that every
inhibitor placep has acomplementplacep̃ satisfying•p = p̃• and•p̃ = p•. Processes
of ENI-systems are similar to those ofEN-systems with the inhibitor arcs of the system
represented by activator arcs which rather than testing forthe absence of tokens are used
to test for the presence of tokens in complement places. Hence, we assume that each
placep of ENI adjacent to an inhibitor arc has a complement placep̃ in the underlying
EN-system. Then, each inhibitor arc(p, t) can be replaced by an equivalent activator
arc (p̃, t). Since adding complement places is harmless, we can consider the causality
treatment ofENI-systems as being obtained through the correspondingENA-systems.
Note thatENI 0 in Figure 15 corresponds in this way toENA0 in Figure 9.

8 ENA-systems with mutex arcs

We now extendENA-systems with mutex arcs prohibiting certain pairs of transitions
from occurring simultaneously (i.e., in the same step). Mutex arcs were introduced
in [11], and their causality semantics was developed in [21].

Consider Figure 16 which shows another variant of the producer/consumer scheme.
In this case, the consumer is allowed to complete (transition c), but never at the same
time as the producer makes an item (transitionm). Other than that, there are no re-
strictions on the executions of transitionsc andm. To model such a scenario we use a
mutex arc betweenc andm (depicted as an undirected edge). Note that mutex arcs are
relating transitions in a direct way. This should however not be regarded as an unusual
feature as, for example, Petri nets with priorities also impose direct relations between
transitions.

ENAM 0

p7

p1

p2

p3

p4

p5

p6

cm a g uf

Fig. 16.An ENAM-system modelling a fourth version of the producer/consumer system.
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An elementary net system with activator and mutex arcs(or ENAM-system) is a tuple
ENAM = (P, T, F,Act ,Mtx ,Minit ) such thatund(ENAM ) = (P, T, F,Act ,Minit )
is the ENA-system underlyingENAM andMtx ⊆ T × T is a symmetric irreflexive
relation specifying themutexarcs ofENAM . Where possible, we retain the definitions
introduced forENAM-systems. The notion of a step now changes however. Astep of
ENAM is a non-empty setU of transitions such thatU is a step ofund(ENAM ) and
Mtx ∩ (U × U) = ∅. With this modified notion of a step, the remaining definitions
pertaining to the dynamic aspects of anENAM-system are the same as for the underlying
ENA-systemund(ENAM ).

For the ENAM-system of Figure 16, we haveM [cm〉M ′ as well asM [mc〉M ′,
whereM = {p2, p4, p6} andM ′ = {p1, p4, p7}. However,M [{c,m}〉M ′ which holds
now for the underlyingENA-system does not hold asc andm cannot be executed in the
same step.

Reachability graphs ofENAM -systems

Reachability inENAM-systems, like inENA-systems, is affected by the choice of the
execution semantics. This is, however, entirely due to the presence of activator arcs,
rather than mutex arcs. For anENAM-system without any activator arcs, the same sets
of markings are reachable under the step sequence and firing sequence semantics.

Another observation concerns the relationship between simultaneity and unordered-
ness in the behaviour ofENAM-systems. WhereasENA-systems satisfy the relationship
Simultaneity⇐= Unorderedness, this no longer holds forENAM-systems, as illustrated
in Figure 17.

(a)

t v

(b)

t v

v t

Fig. 17.An ENAM-system (without activator arcs) and its reachability graph.

Semantical framework for ENAM -systems

Causality semantics forENAM-systems will be developed similarly as forEN-systems
and ENA-systems. The labelled causal structures employed areGSO-structures, while
executions remain to be step sequences. To define processes we extendAO-nets to in-
clude mutex arcs. Anactivator mutex occurrence net(or AMO-net) is a tupleAMON =
(P ′, T ′, F ′,Act ,Mtx ′, ℓ) such thatund(AMON ) = (P ′, T ′, F ′,Act , ℓ) is theAO-net
underlyingAMON andMtx ′ ⊆ T ′ × T ′ is a symmetric irreflexive relation specifying
a set ofmutexarcs. Moreover, it is assumed that

̺AMON = (T ′,≺loc,⊏loc,Mtx ′) ,
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where≺loc and⊏loc are defined as forund(AMON ), is a pre-GSO-structure. We then
definegsos(AMON ) = ̺gsoAMON to be theGSO-structure induced byAMON . The step
sequencessteps(AMON ) of AMON are defined as forund(AMON ), except that the
enabling condition takes into account mutex arcs. The default initial and final markings
of AMON , as well as its step sequence executions are defined as forund(AMON )
under the proviso that steps do not contain transitions joined by mutex arcs.

The way̺AMON deals with the mutex arcs is illustrated in Figure 12(b). We have
there three transitions satisfyingt ⊏loc v ⊏loc w ⊏loc t. Hence, in any execution
involving all these transitions, they have to belong to the same step. This, however, is
inconsistent with a mutex arc betweenv andw, and̺AMON fails to be a pre-GSO-
structure as(t, t) belongs to⊏∗

loc ◦ (Mtx ′∩ ⊏
∗
loc) ◦⊏

∗
loc.

Processes of anENAM-system are similar to those of the underlyingENA-system
extended with appropriate treatment of mutex arcs. Aprocessof ENAM is anAMO-
net AMON such thatund(AMON ) is a process ofund(ENAM ) and, in addition,
Mtx ′ = {(t, v) | (ℓ(t), ℓ(v)) ∈ Mtx}. We denote this byAMON ∈ proc(ENA).

Process generation from a given step sequence is also based on that introduced for
EN-systems. TheAO-net procENA(σ) generatedby a step sequenceσ = U1 . . . Un

of ENAM is the last element in the sequenceAMON 0, . . . ,AMON n where each
AMON k = (Pk, Tk, Fk, Ak,Mk, ℓk) is anAMO-net with the components constructed
as in the definition forprocund(ENAM )(σ), except that

Mk = {(e, f) ∈ Tk × Tk | (ℓk(e), ℓk(f)) ∈ Mtx} .

We denote this byAMON n ∈ procENAM (σ).

p1

p4

p5

p3

p2

p4

p6

p0

p7

a r

g f

Fig. 18.An AMO-netAMON 0 with labels shown inside places and transitions.

Figure 18 depicts anAMO-net labelled with places and transitions of theENAM-
system of Figure 16. We have that bothagrf andagfr belong toφ(steps(AMON 0)),
however,ag{f, r} does not. TheAMON-net shown in Figure 18 is a process of the
ENAM-system of Figure 16 withφ(steps(AMON 0)) = {agfr, agrf}. Figure 19 shows
the result of applying the construction to theENAM-system of Figure 19 and one of its
step sequences. Note that the resultingAMO-net is isomorphic to that shown in Fig-
ure 18.

The way in which mutex arcs are added in the process construction entails means
that some may be superfluous. For instance, the transitions they join may be causally
related. Analysing paths in theAMO-net would make it possible to eliminate such re-
dundant mutex arcs. This, however, would be against the locality principle which is
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fundamental to the process approach as it would compromise the local causes and ef-
fects in the definition and construction of process nets.

p1

p11

p4

p14

p5

p15

p3

p13

p2

p12

p4

p24

p6

p16

p0

p10

p7

p17

a

a1 r

r1

g

g1

f

f1

Fig. 19.ProcessprocENAM0
(σ) generated forENAM 0 and step sequenceσ = {a}{g}{r}{f}.

The semantical properties formulated above can be established also forENAM-
systems. Referring to the notation used in Figure 5, we have the following, where
ENAM is anENAM-system,AMON anAMO-net,(σ, ℓ) a labelled step sequence,gsos

a GSO-structure, andΣ a set of labelled singular step sequences with the same domain:

PN are ENAM-systems EX are step sequences
LAN are AMO-nets LEX are labelled singular step sequences
LCS are labelledGSO-structures

ω(ENAM ) is steps(ENAM ) α(ENAM ) is proc(ENAM )
λ(AMON ) is steps(AMON ) πENAM (σ) is procENAM (σ)
φ(σ, ℓ) is ℓ(σ) κ(AMON ) is gsos(AMON )
ǫ(gsos) is steps(ext(gsos)) ı(Σ) is

⋂
gsos(spo(Σ)).

It can be shown that Properties 1–4 hold. BelowENAM is anENAM-system and
σ its step sequence,AMON is anAMO-net,gsos is anSO-structure, andΣ is a set of
singular step sequences with the same domain. (Note that Fact 28 follows from Facts 5
and 10.)

Fact 26 steps(ENAM ), proc(ENAM ), steps(AMON ) andspo(gsos) are non-empty
sets. Moreover,gsos(AMON ) and

⋂
gsos(spo(Σ)) areGSO-structures, andprocENAM (σ)

is anAMO-net.

Fact 27 procENAM (σ) is a process ofENAM . Moreover, ifAMON be a process
of ENAM and σ′ ∈ φ(steps(AMON )), thenσ′ ∈ steps(ENAM ) andAMON =
procENAM (σ′).

Fact 28 gsos =
⋂
gsos(steps(ext(gsos))).

Fact 29 steps(AMON ) = ext(gsos(AMON )).

Hence we can claim the semantical aims forENAM-systems.
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Fact 30 LetENAM be anENAM-system, andAMON be anAMO-net.

proc(ENAM ) = procENAM (steps(ENAM ))

steps(ENAM ) = φ(steps(proc(ENAM )))

gsos(AMON ) =
⋂
gsos(steps(AMON )) .

9 Place/Transition nets

Place/Transition nets [25] (orPT-nets) are the basic class of Petri nets suited for the
study of systems in which multiplicity of resources matters.

A PT-net is a tuplePT = (P, T, F,Minit ) such that(P, T, F ) is its underlyingnet,
andMinit is the initial marking ofPT , where a marking in this case is anymultiset
of places, i.e., a mappingM : P → N. Most notions concerning the structure and
graphical representation ofPT-nets are the same as forEN-systems except that a marking
M is represented by displayingM(p) tokens in each placep. More important changes
concern the execution semantics which extends that defined for EN-systems.

A stepU of PT is anymultisetof transitions, i.e.,U : T → N. Such a step is
enabledat a markingM if, for every placep, the current markingM provides enough
input tokens for each occurrence of a transition inU , thusM(p) ≥

∑
t∈p• U(t). Exe-

cuting an enabled step leads to the markingM ′ such that, for every placep,

M ′(p) = M(p)−
∑

t∈p•

U(t) +
∑

t∈•p

U(t) .

We denote this, as before, byM [U〉M ′ orM [U〉PTM ′. The notions of firing sequence,
step sequence, marking reachability and reachability graph, are then defined similarly
as in the case ofEN-systems. Figure 20 depicts threePT-nets such that:

fseq(PT 0) = {. . . , amamamam, . . .}

Minit [gu{g, a}PT1
{u,m}am〉Minit

steps(PT 2) = {. . . , a{g, g}mama{u, u}{g, g}, . . .} .

As in the case ofEN-systems, marking reachability inPT-nets does not depend on
whether one uses firing sequences or step sequences. This follows from the fact that if
U andU ′ are two steps satisfyingM [U + U ′〉M ′ thenM [UU ′〉M ′, whereU + U ′

is the multiset sum ofU andU ′. As a consequence, every step of transitions occur-
ring at a marking can be split into any sequence of subsets forming a partition of
this set, and each such step sequence leads to the same marking as the original step.
However, the reverse implication does not, in general, hold. For example, if one takes
thePT-net in Figure 23(a), then we haveMinit [ab〉{p2, p4} andMinit [ba〉{p2, p4} but
Minit [{a, b}〉{p2, p4} is not a valid execution. Moreover, the relation between transi-
tion occurrences is not structural, but depends on the current marking: with two tokens
in p5 in Figure 23(a), the transitionsa and b would be concurrently, i.e., as a step,
enabled.

As before, processes formalise the idea of a concurrent run.Interestingly, occur-
rence nets provide the basis for the process definition ofPT-nets in the same way as
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Fig. 20. PT-nets modelling three final versions of the producer/consumer system:PT 0 with an
unbounded buffer (the number of tokens in placep3 can grow unboundedly);PT 1 with a two-
place buffer (the number of tokens in placep3 can be at most two); andPT 2 with an unbounded
buffer and two consumers (represented by the two tokens in placep5).

they did forEN-systems. We only need to take into account the potential multiplicity of
tokens inPT-nets. This is done by giving each occurrence of a token its own place in
the occurrence nets. Aprocessof a PT-netPT is an occurrence netON with labelling
ℓ which:

– labels places ofON with places ofPT .
– labels transitions ofON with transitions ofPT .
– labels exactlyMinit (p) places ofMON

init with p, for every placep of PT .
– is injective on•t andt• and, moreover,ℓ(•t) = •ℓ(t) andℓ(t•) = ℓ(t)•, for every

transitiont of ON .

We denote this byON ∈ proc(PT ). The occurrence netON in Figure 21 is a process
of PT-netPT 2 in Figure 20.

The main difference with definition of processes ofEN-systems is that now the
labelling of a process is not required to be injective on the default initial marking which
is meant to represent the initial marking. In general, Fact 14 does not hold for processes
of PT-nets. For example, the process in Figure 21 allows the following sequence of
executions:

{q1, q2, q3, q4}[t1〉{q2, q3, q4, q5, q6}[{t2, t3}〉{q5, q7, q8} ,
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with ℓ(q7) = ℓ(q8) = p6 andℓ(t2) = ℓ(t3) = g.

p1q1

p5q2

p3q3

p5q4

a

t1

g
t3

p2 q5

p3 q6

p6 q8

g

t2
p6 q7

Fig. 21.A processON of thePT-netPT 2 in Figure 20.

Defining a process for a given step sequenceσ of a PT-netPT is also a straightfor-
ward extension of the construction forEN-systems. An occurrence netgeneratedby a
step sequenceσ = U1 . . . Un of PT is the last element in the sequenceON 0, . . . ,ON n

where eachON k is an occurrence net(Pk, Tk, Fk, ℓk) constructed in the following way.
Step 0:P0 = {pi | p ∈ P ∧ 1 ≤ i ≤ Minit (p)} andT0 = F0 = ∅.
Stepk: GivenON k−1 we extend the sets of nodes as follows:

Pk = Pk−1 ∪ {pi+△p | p ∈ P ∧ 1 ≤ i ≤
∑

t∈•p Uk(t)}

Tk = Tk−1 ∪ {ti+△t | t ∈ T ∧ 1 ≤ i ≤ Uk(t)} .

Again, the label of each nodexi is set to bex, and△x denotes the number of
the nodes ofON k−1 labelled byx.
To define the arcs, we proceed as follows. For everye = ti ∈ Tk \ Tk−1,
we choosetwo sets of conditions,Ine ⊆ M

ONk−1

fin andOute ⊆ Pk \ Pk−1,
such thatIne comprises a distinct conditionpm for each placep ∈ •t while
Oute comprises a distinct conditionql for each placeq ∈ t•. Moreover, for
anye 6= f ∈ Tk \ Tk−1, Ine ∩ Inf = ∅ andOute ∩Outf = ∅. Then:

Fk = Fk−1 ∪
⋃

e∈Tk\Tk−1

(Ine × {e}) ∪ ({e} ×Oute) .

We denote this byON n ∈ procPT (σ).
Note that since there may be more than one choice of suitableIne’s, in general, more

than one process can be constructed for a given step sequenceσ. The above construction
is illustrated in Figure 22 forPT-netPT 2 of Figure 20. The resulting occurrence net is
isomorphic toON of Figure 6 which, as we already noted, is a process ofPT 2.

The detailed development of the process semantics ofPT-nets can be carried out
along the same lines as was done forEN-systems earlier in this paper, with some
straightforward modification resulting from the multiset —rather than set — nature
of markings and executed steps. It is also possible to extendthe treatment ofPT-nets
to include weighted arcs and (weighted) activator and inhibitor nets, usingAO-nets as
a process model, following what was done forENA-systems andENI-systems in, e.g.,
in [19, 20].
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p6 p26

Fig. 22.Deriving a process forPT 2 and its step sequenceσ = {a, g}g.

Mutex arcs and self-loops

In PT-nets, in contrast toEN-systems, mutex arcs can be represented by self-loops con-
nected to a place marked with a single token, as shown in Figure 23(a, b). From a
modelling perspective, there appears to be no real difference. Semantically, however,
the differences can be significant as mutex arcs represent concurrent histories in a more
compact way. This could have an impact when net unfoldings are used for model check-
ing. For example, the single process in Figure 23(c) derived for the representation of
Figure 23(b) has to be replaced by two processes derived for the representation of Fig-
ure 23(a) depicted in Figure 23(d).
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a b

(b)
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a b

(c)
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p3p13 p4 p14
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a1

b

b1

p1p11 p2 p12

p3p13 p4 p14
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(d)

p1p11 p2 p12

p3p13 p4 p14

p5p15 p5 p25 p5 p35

a

a1

b

b1

Fig. 23.Mutex arcs can lead to more condensed process semantics thanself-loops.

10 Concluding remarks

This paper is an introduction to the many issues fundamentalto understanding con-
current behaviour. Here we have concerned ourselves with different forms of causality
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induced by extensions to the basic structure of Petri nets and leading to relational struc-
tures extending the classical partial order approach. There are several strands of related
research which have not been described here. For instance, we have not considered the
modelling of conflicts between enabled transitions. Our processes and their abstractions
(partial orders) model concurrent runs in which conflicts have already been resolved.
Branching processes of Petri nets [3] model all possible choices and lead to a single un-
folding representing all runs of the net model. They are actually the basis for efficient
verification techniques [5, 18, 23]. If, in addition, one abstracts from state information
and only considers relations between events the result is the more abstract model of
event structures [9, 24, 28], that can be used to study fundamental concepts of concur-
rency in a model-independent way. As far as we are aware, event structures have not yet
been enriched with weak causality and commutativity relationships, and we consider
such extensions a relevant, and indeed exciting, topic of future research in this area.

Finally, an abstraction not considered here at all, usuallyreferred to as trace the-
ory [2] initiated in [22], allows one to group together sequential observations on the
basis of reordering of concurrent (independent) events. The resulting model oftrace
monoidcaptures precisely the semantical treatment ofEN-systems outlined in this pa-
per. For the extended models ofENI/ENA-systems, one needs to use the extended model
of comtracesintroduced in [14]. The last extension ofEN-systems considered here, i.e.,
ENAM-systems, calls for the even more elaborate model ofgeneralised comtraces[16].
It should then not come as a surprise thatPT-nets require a different kind of extensions
of the basic trace monoid, initiated through the work on local traces of [8]. An exten-
sive account of the intrinsic relationships between various concurrency monoids and
different net classes can be found in [11].
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