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Abstract. The causal semantics of standard net classes like ElenpéeaSys-
tems and Place/Transition Nets, is typically expresseerims of partially or-
dered sets of transition occurrences. In each such partiat,ccausally related
occurrences are ordered while concurrent transition oenges remain unordered.
Partial order semantics can, in particular, support maaetking by efficient ver-
ification techniques based on net unfoldings.

To enhance the modelling power of standard net classes,amatoduce dif-
ferent forms of ‘testing’ using, for example, inhibitor artHowever, the causal
semantics of such extended nets can often no longer be ledcolely in terms
of partial orders. In this paper, we explain what modificasito the partial order
semantics are needed in order to provide a satisfactorytezs for nets with
activator, inhibitor and mutex arcs. On the technical dilde proposed solution is
based on causal structures which enrich partial ordersaditlitional order rela-
tions corresponding to other aspects of causality. \&iithsystems as our starting
point, we discuss how their extensions can be treated usasgtricher notions
of causality.

Keywords: elementary net systems, activator arcs, inhibitor arcéexnarcs, semanti-
cal framework, step sequences, processes, causality sesnan

1 Introduction

In order to be able to verify complex, distributed systenss, to guarantee correctness
of their behaviour, one has to understand the relationsdsiveoncurrently ongoing
operations. This involves, in particular, providing apmiate mathematical abstractions
to capture the operational properties of such systems.

Petri nets are a system model related to state machines ienildrsisequential,
behaviour defining devices. However, the states of Pets aet distributed (over so-
called places) and also their actions (transitions, iniBetrterms) occur purely locally.
Whether or not a transition can occur, depends only thosgoaents (places) of the
state to which it is directly related. Moreover, when it ot affects only neighbour-
ing places. Hence, each transition occurrence (an evextt} ® a local change of state.
All this induces local interactions between transition urcences making it possible



to extract from a run of a Petri net, the essential causalioekships between events.
These local interactions can be derived from so-calledgs®es, i.e., labelled acyclic
nets representing the unfolding of a net corresponding toglesexecution (with all
choices and conflicts resolved). Abstracting from the deads to a causal semantics
expressed in terms of partially ordered sets of occurreat&ansitions: causally re-
lated events are ordered, while concurrent events remairdered. Each such partial
order describes the causal structure of a single concunistotry or run of the system
and as such represents several — closely related — (steygisees of (simultaneously
occurring) transitions, each of them being a possible olagien of that run. The stan-
dard net classes of Elementary Net System&{esystems) and Place/Transition Nets
(or PT-nets) are typical examples of this approach [1, 26].

As an example, consider Figured)(depicting aneEN-system with three step se-
guences involving the executions of transitien$ andc, viz. o1 = {a,b}{c}, 02 =
{a}{b}{c} andos = {b}{a}{c}. They can be seen as observations of a single history
underpinned by a causal partial order in whickndb are unordered and bothandb
precede-.

Consistency between the different levels of abstractiomtdath one captures the
concurrency in the behaviour can be established within argeapproach (theeman-
tical frameworkof [19]) aimed at fitting together systems (i.e., nets fronedain class
of Petri nets), abstract causal orders and individual elasiens.

Partial order semantics as just described can supportesificierification tech-
niques. Rather than exploring the full state space of asystmstructed from sequen-
tial observations, one uses unfoldings, see [4] for a gédeszription of this idea. The
idea behind the resulting more efficient algorithms is toleixphe concurrency (un-
orderedness) in the behaviour to alleviate the state spagueston problem. For Petri
nets, unfoldings and nonsequential net processes providdyaconcurrent seman-
tics with partial orders as a succinct representation @teel observations. Unfoldings
based on the branching processes from [3] in which also allcels are modelled, are
the basis for efficient verification algorithms [5, 18, 23].
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Fig. 1. An EN-system {); anEN-system with an inhibitor arc joining the output place ofision

b with transitiona implying thata cannot be fired if the output place bfis not empty §); an
EN-system with an activator arc joining the input place of siéian b with transitiona implying
thata can be fired provided that the input placebofs not empty ¢); and anEN-system with

a mutex arc between transitionsandb implying that the two transitions cannot be fired in the
same stepd).



To enhance the modelling power of the standard net classesamintroduce dif-
ferent forms of ‘testing’, for example, testing for the ahse of a token using inhibitor
arcs. This may imply that the causal semantics of such egtbRetri net models can
no longer be described solely in terms of partial orders.

Figure 16) depicts aren-system with an inhibitor arc. Such an arc between a place
and a transition indicates that the place has to be emptyhéotransition to be able
to fire. Hence this net has only two step sequences involvemsitionsa, b andc,
namelyo, = {a,b}{c} andos = {a}{b}{c}. This is because can occur beforé or
simultaneously witlb but ‘not later thanb (weak causality). These two step sequences
can be seen as belonging to the abstract causal historypindednotby causal partial
orders but rather by causality structures introduced irfj {#4called stratified order
structures— based on causal partial orders and, in addition, weak tpag#al orders.
Inhibitor arcs are closely related to activator arcs. Aeofiorm of testing is portrayed
by the net in Figure I which depicts aren-system with an activator arc. Such a
‘testing’ arc between a place and a transition means thailttee has to be non-empty
for the transition to be able to fire. As a result, both stepusages and abstract causal
histories of this net are exactly the same as in the previcasiple.

Yet another example, in Figured)( depicts aren-system with a mutex arc. Such
an arc means that the two adjacent transitions may occurimier but not simulta-
neously (commutativity). Hence this net has two step secggeimvolving transitions
a, b ande, namelyoy = {a}{b}{c} andos = {b}{a}{c}. They belong to an abstract
history underpinned by causality structures introduced ji0] — calledgeneralised
stratified order structures— based on causal partial orders together with weak causal
partial orders and, in addition, a commutativity relatiomeh tells what pairs of events
cannot belong to the same step.

In this paper, we explain what modifications to the partialesrsemantics are
needed in order to provide a satisfactory treatment for nélts inhibitor, activator
and mutex arcs. The model which we extend with these new pass are Elemen-
tary Net systems [26]. This model the basic class of Petri nets and is particularly
suited for the study of fundamental properties of concursgstems. In particular, Ele-
mentary Net Systems are the typical concurrency model ichvivent independence,
simultaneity, and unorderedness amount to basically time s@mantical phenomenon,
making partial orders exactly the right abstract model ieirt behaviour. We will dis-
cuss how the extended classeseofsystems can be treated with the richer notions
of causal semantics using the generic approach provideldebgemantical framework
of [19]. Finally, we will include Place/Transition Nets smbur discussion and reflect
upon similarities and differences with tlE-systems approach. As a tutorial survey,
this paper provides no proofs, but rather provides ‘facithweferences for proofs and
more background information, given per (sub)section.

2 Preliminaries

Composing two functiong : X — 2¥ andg : Y — 27 is defined byg o f(z) =
Uyef(w)g(y), for all z € X. Restricting functionf to a subset of X is denoted by
f|z. Similarly, the restriction of a binary relatioR C X x Y to a subseZ of X x Y



is denoted byR|z. We may use the infix notationR y to denote thatz,y) € R. The
compositionk o @ of two relationsk C X x Y and@ C Y x Z comprises all pairs
(z,z) in X x Z for which there isy in Y such that(z,y) € R and(y,z) € Q. We
assume the following notions and notations:

— R ={(y,2) | (z.y) € R}. (reverse)
- RV =idx ={(z,7) |z € X}. (identity)
- R"=R"'0oR. (n-th power,n > 1).
- RT=R'UR?uU.... (transitive closure)
- R*=RURT. (reflexive transitive closure)
- RY" =ROURL (symmetric closure)

— Ris symmetric, reflexive, irreflexive, transitive if, resgigely,
R=R',idx CR,idxNR=9,RoRCR.
— Ris acyclicif RT is irreflexive.

A relational structureis a tuplers = (X, Q1,...,Q,) whereX is a finitedomain
and the));’s are binary relations o (we can select components using the subsesipt
e.g.,X,s). For relational structures with the same domain and aritgndrs’, we write
rs C rs’ if the subset inclusion holds component-wise. The intdise¢) R of a set
R of relational structures with the same arity and domain fsnde component-wise.

A sequencever a finite sefX is a finite stringz; . . . 2, of symbolsz; from X. A
stepover X is a non-empty subset of, and astep sequencever X is a finite string
X5 ... X, of steps. A step sequencesimgularif the X;'s are mutually disjoint. The
empty (step) sequence, corresponding to the aase), is denoted by\. As singleton
sets can be identified with their only elements, sequenaebeaegarded as special
step sequences. Moreover, we will drop the set bracketagfetbn sets.

A labelling ¢ of a setX is a function fromX to a set of labelg(X), and aabelled
setis a pair(X, ¢) whereX is a set and is a labelling ofX. The labelling is extended
to finite sequences of elementsof X by ¢(x; ... x,) = {(x1)...¢(z,), and to fi-
nite sequences of subsets of X by ¢(X; ... X,,) = ¢(X1)...4(X,). To make the
labelling explicit, we will sometimes denote a labelledistequence bio, £). We also
will use ¢(o, ¢) = (o) to indicate that we ‘forget’ about the underlying elemenis b
rather focus on the step sequerite) over/(X).

We assumethroughout that all sets in this paper dabelled setswith the
default labelling simply being the identity function. Ifetactual labelling is
irrelevant for a particular definition or result, it may be itted. Moreover,
whenever it is stated that two domains are the same, we iitipkhssume that
their labellings are identical.

3 Causal partial orders and order structures

To capture the intrinsic causal relationships betweentsveccurring in a concurrent
system history, one normally resorts to using a suitaltkering relation In its ba-
sic form, such a relation is a partial order (reflecting theeyally accepted view that



causality is transitive and acyclic). However, for systemth a complex structure, par-
tial orders may need to be extended to more expressder structuresvhich support
additional relations between events, suchvaskcausality. We will present two kinds
of such extended order structures.

When using (causal) ordering relations in the treatmendn€arrent histories, there
are two crucial issues which need to be satisfactorily sxtdr@. The first is the relation-
ship with their associated executions or observationsc#yly captured by sequences
or step sequences of events. To be meaningful, an ordetatgreshould be a faithful
abstraction of a set of executions in the sense that eaclesd ttorrespond to the given
order (should be allowed as an execution). Moreover, thevald be an unambiguous
way of deriving an ordering relation from a set of observagiby capturing all essential
causal orderings between events while ignoring coincaleartering in any concrete
observation. We will refer to such a propertyAdsstraction The second issue is related
to the way ordering relations are derived. Intuitively, aei@ll causal ordering relation
is built up from smaller, more direct local, causal ordeniatations by applying some
notion of transitivity. We will refer to such an operation@®sure

3.1 Partial orders

A partially ordered set(or poset)po = (X, <) is a relational structure comprising
a finite setX and an irreflexive and transitive binary relatienon X. Two distinct
elementse, y of X areunorderedz ~ v, if neitherxz < y nory < 2. We denoter < b
ifa<bora ~b.

Intersecting posets to filter out their common ordering isunsl operation yielding
a new poset.

Fact 1 (poset intersection)If PO is a non-empty set of posets with a common domain,
then( PO is a poset with the same domain.

A posetpo is total (or linear) if all pair of distinct elements of are ordered, and
stratified (or weak) if ~Uid x is an equivalence relation. Note that all total posets are
also stratified. If a poset represents a history of a conntsyestem, then: < y means
thatz can only be observed befagewhile z ~ y means that andy can be observed in
any order, even simultaneously. In Figurg2y, is a total poset anspo,, is a stratified
poset

292 zZ3ea b?ZQ zZ3ea
\/ |
|
Y
)

Z4.C zZs@C &

tpo,: total  spo,: stratified poo:nelthertotal s0so: SO-structure gsos,: GSo-structure
nor stratified

Fig. 2. Hasse diagrams of posets and order structures showinghal$attels ¢, b andc) of their
elements. Solid arcs representdashed arcs represent and solid edges represest



To formulate theAbstractionproperty for posets, we first need to make it clear
which executions correspond to a given (causal) ppse® total posetipo is alin-
earisationof po if tpo C po, while a stratified posetpo is a stratification of po if
spo C po. (That is, po is a faithful abstraction ofpo and spo.) We denote this re-
spectively bytpo € lin(po) and spo € strat(po). In Figure 2,tpo, € lin(po,) and
spog € strat(po,). Converselypo captures all essential orderings presentin its lineari-
sations or stratifications, respectively.

Fact 2 (poset abstraction [27]) For every posepo, lin(po) # @ and

po = ﬂlin(po) .

The above fact, known &zpilrajn’s Theoremimplies that a poset is uniquely de-
termined by the intersection of its linearisations. The séwlds for its stratifications.

Fact 3 (poset abstraction [15]) For every posepo, strat(po) # & and

po = ﬂstrat(po) .

The Poset Closurgroperty described next is simple and indeed standard} st i
still a good idea to state it explicitly as we will soon geriseit to more complicated
order structures.

A pre-poseis a relational structure = (X, <) such that<* is irreflexive. In such
a case, itpo-closurds defined agP® = (X, <T). Intuitively, < indicates which of the
executed actions amdirectly causally related andP° provides a full account of both
direct and indirect (derived) causality between eventeré&fore, we require that be
acyclic, i.e., <7 is irreflexive. Then its transitive closure yields the oviecausality
relationship.

Fact 4 (poset closure)For every pre-poset, oP° is a poset.

As we already mentioned, individual executions of a corentrsystems are often
represented by sequences of events or sequences of seatsuttteeously occurring
events (step sequences). Both are language theoretic tiadimeorder theoretic notions,
but there is a straightforward way to move between these épresentations. Given a
stratified posetpo = (X, <), there is a unique enumeratiof, . . ., X}, of the equiv-
alence classes of the relatieruid x such that: < y, forallz € X; andy € X; and
i < j. We then associate witkpo the singular step sequensteps(spo) = X7 ... Xj.
Conversely, ifr = X7 ... X (k > 0) is a singular step sequence, then

spo(o) = (UX’“ U X; x X;)
i i<j
is the stratified poset associated within Figure 2,

steps(tpoy) = 21222324 spo(z1222324) = tpo,
steps(spoy) = z1{z2, 23} 24 spo(z1{z2,z3}24) = spo,, .



Fact 5 (posets and step sequencespo = spo(steps(spo)), for every stratified poset
spo, ando = steps(spo(c)), for every singular step sequenge

Hence we caidentifyeach stratified posepo with steps(spo) or, equivalentlyidentify
each singular step sequenceith spo(o). This also applies to labelled stratified posets
and labelled singular step sequences.

3.2 Stratified order structures

Posets capture an ‘earlier than’ relationship between kbments of their domains.
Their first extension we consider, consists in introducimg ¢oncept of a weaker —
‘not later than’ — relationship.

A stratified order structuréor so-structureos = (X, <, ) comprises two binary
relations,< (causality and_ (weak causalityin diagrams represented by dashed arcs,
see Figure 2) on a finite séf such that, for alk, v, z € X:

S1: zlfx S8 zCyCz ANae#2z = 2Lz
S2: z<y = xzCy S4: xCy<zVe<yLz — x<2.

Intuitively, < represents the ‘earlier than’ relationshipXn andrC the ‘not later than’
relationship. Accordingly< is a partial order, and < y impliesy Z x. It is easily
seen thatikpo is a stratified poset, then the relational structosgspo) = (Xspo, <spo

~

; 2spo) IS @ANSO-Structure.

Again, intersectingso-structures to filter out their common orderings is a sound
operation yielding a newo-structure.

Fact 6 (sos intersection)If SOS is a non-empty set ofo-structures with a common
domain, therf) SOS is anso-structure with the same domain.

To formulate theAbstractionproperty forso-structures, we first need to define
which executions would correspond to a giv&mstructuresos. A stratified posetpo
is anextensiorof sos if sos C sos(spo). (Thussos is faithful to spo.) We denote this
by spo € ext(sos). In Figure 2,tpo,, spo, € ext(sosy).

Fact 7 (sos abstraction)For everyso-structuresos, ext(sos) # & and

sos = ﬂsos(ext(sos)) .

The Closureproperty forso-structures generalises the notion of po-closure intro-
duced for posets. pre-so-structureis a relational structure = (X, <, C) such that
the relationy o < o v is irreflexive, wherey = (< U C)*. Then theso-closures:

0° = (X,yo<oy,y\idx) .

Note that in a preso-structurep there are nag, z1, ..., x, = xo such thateg < z;
and, for all0 < i < n, z; < z;41 Or z; C x;41. This can be regarded as a counterpart
of the acyclicity required of pre-posets.

Fact 8 (sos closure)For every preso-structurep, ¢*° is anso-structure.

Stratified order structures were independently introdulc¢@] and [12]. Their the-
ory has been presented in [15], and they have been used giopdg, to model inhibitor
and priority systems, asynchronous races and syntheditepne (see, e.g., [17]).



3.3 Generalised stratified order structures

The second extension of causal posets introduces a repaésrof ‘non-simultaneity’.
A generalisedso-structure (or Gso-structure)gsos = (X, =, ) comprises two
irreflexive relations,= (commutativity which is symmetric) and- (weak causality
as before) onX such that(X,= N C,C) is anso-structure. Note that commuta-
tivity represents the ‘earlier than or later than, but nesierultaneous’ relationship.
Accordingly,= N C represents the ‘earlier than’ relationship, and so it isimegl that
together withC it forms anso-structure. In fact, one could have defingglo-structures
asgsos = (X, <, C, =) making them a direct generalisation®@$o-structures. How-
ever, it is always the case thatis the same as the intersectiorroind—=, and so it can
be omitted. It is easily seen thatdfo is a stratified poset, then the relational structure
g50s(5p0) = (Xspo, <305 R5po) IS GSOSrUCtUreE.
Also in this case, intersectingso-structures to filter out their common orderings is
a sound operation yielding a nemgo-structure.

Fact 9 (gsos intersection)Iif GSOS is a non-empty set aéso-structures with a com-
mon domain, them GSOS is anGso-structure with the same domain.

To formulate theAbstractionproperty forcso-structures, we need to define which
executions would correspond to a giveao-structuregsos. A stratified posetpo is an
extensiorof gsos if gsos C gsos(spo). (Thusgsos is faithful to spo.) We denote this by
spo € ext(gsos). In Figure 2,spo,, € ext(gsos,). We then obtain thatso-structures
are fully determined by their extensions.

Fact 10 (gsos abstraction)For everyGso-structuregsos, ext(gsos) # @ and

gsos = ﬂgsos(ext(gsos)) .

The Closureproperty forcso-structures generalises the notion of so-closure intro-
duced forso-structures. Apre-Gso-structureis a relational structure = (X, <, C, =)
based on local relationships between events such that lt@reY™ U MU = is
irreflexive and symmetric, where

a=vo=<oy and f=C"o(=NC")oC" and y=(<kUD)".

In such a case, itgso-closuras defined ag8*° = (X, a®¥™ U BY™U =, v\ idx ). Note
that= relates events that cannot be executed simultaneously.

Fact 11 (gsos closure)or every presso-structurep, 08 is a GSo-structure.

Generalisedo-structures were introduced in [7] to represent the moségeizon-
current histories in the approach of [13]. They were ingggtd in [10], and used to
provide nets with mutex arcs with a semantics in [21].



4 Elementary net systems

All net models considered in this paper have a net as theienlyidg structure.

AnetN = (P, T, F) comprises disjoint finite sets of nodé¢3andT’, called respec-
tively placesandtransitions and theflowrelationF' C (T' x P)U (P x T'). A marking
of N is a set of places. In diagrams, places (local states) aregepted by circles,
transitions (actions) by rectangles, the flow relation yectied arcs, and a marking
(global state) byokens(small black dots) drawn inside places. Tihputsandoutputs
of a nodex are the set8z = {y | (y,x) € F} anda® = {y | (z,y) € F}; moreover,
*z® = *xUx®. Itis assumed th&lu # @ # a®, for every transitior:. The dot-notation
extends to setX of nodes in the usual way, e.d.X = [J{°z | z € X}.

p1 p3 Ps
® O ®
n 0]
\o \@ 0/ :
p2 P4 Pe EN 0

Fig. 3. EN-system model of a producer/consumer system.

Figure 3 shows a net model of a system consisting of a prodaiberfer of capacity
one, and a consumer. The producer can exeeutgnaking an item)q (adding a new
item to the buffer), and (failing to add an item). The consumer can execugigetting
an item),u (using the item), and (completing the work). The buffer executes cyclically
thea andg actions. The three components operate independently hitred actions
being executed jointly. Figure 3 also shows an (initial) kiag M = {p1, p4, ps }-

Net executions can be captured by sequences of steps dfitassA stepof a net
is a setU of transitions such thatt®* N *v® = &, forallt # v € U. Itis enabledat a
markingM if *U C M andU® N M = @. In such a case, thexecutiorof U leads to
markingM’ = (M\*U) U U*®. We denote this bW/ [U)M'.

A step sequendeom a marking) to a markingM’ is a sequence = U; ... U,
(n > 0) of non-empty stepd/; such thatM [U) M, ..., M, _1[U,)M’, for some
M, ..., M,_1. We denote this by/[c) M’, and call}M/’ reachablegfrom M. When all
stepsl; are singletonssy is afiring sequencefor the netin Figure 3, we have:

{p27p37p6} [m) {pup&ps} {p17p47p5} [a{m,g}{a,c}m) {p1,p3,p7}
{p2,p3,p6} [{m.c}) {p1,p3,p7} {p1,p4,p5} [amgacm) {p1,p3,p7} -

An EN-systenis atupleEN = (P, T, F, M;,;;) suchtha{P, T, F') is itsunderlying
net, andM,,;; is aninitial marking. Moreoversteps(EN) and fseq(EN) comprise
respectively all the step sequences and all firing sequenaesthe initial marking
M+ Figure 3 depicts aaN-system withsteps(EN () = {\, a,ag,am, a{g, m},...}
andfseq(ENg) = {\, a,ag,am,agm,amg, .. .}.
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Thereachability graphrg(EN) = (V, A) of EN hasV as its set of vertices and
as its set of labelled arc¥. consists of all markings reachable from the initial marking
Mnie, and A is given asA = {(M,U,M’) | M € V. A M[U)YM'}. Similarly, the
sequential reachability graptg,.,(EN) = (V', A") of EN hasV” as its set of vertices
and A’ as its set of labelled arc§” consists of all markings reachable from the initial
marking M,,;; through firing sequences, ant is given as4d’ = {(M,t,M') | M €
V AM][t)M'}. It can be seen that although, in genergl,,(EN) is a proper subgraph
of rg(EN), their vertices are the same.

The EN-system in Figure 3 isontact-freewhich means that, for all markings/
reachable from/,,;; and transitions, *¢t C M impliest®* N M = &. Contact-freeness
can always be enforced without influencing the step sequeelaviour, bycomple-
menting(all or some) placep using fresh placeg satisfying®p = p°®, p®* = °*p, and
declaring thap € M, iff p ¢ M,,;;. For example, in Figure 33, = ps. In what
follows, all EN-systemsis well as their extensions are assumed to be contact-free.

Reachability graphs and structure

Strong connections between structure and behaviour harefoe a long time a rich
source of analytical techniques for Petri nets. These adiores are particularly direct
in the case oEN-systems. To start with, at a markidg, we say that two transitions,
andv, are:

— independentf they are both enabled and the execution of one does nablidishe
other. InEN-systems this is equivalent to saying thatv} is a step enabled &t
This is illustrated in Figure 4( for t = f andv = g.

— in conflict, if they are both enabled and the execution of one disabkesttier. In
EN-systems this is equivalent to saying thatv} is not a step enabled af. This
is illustrated in Figure 4( fort = a andv = f.

— causally relatedif one is enabled and its execution makes the other enablesl.
is illustrated in Figure 4 for t = m andv = f.

{p1,p3,ps5} {p1,pa,p5} {p2,p3,p5}
m

. S

[}
(0) (c)
Fig. 4. Independence, conflict and causality in the reachabiligplgrg( ENo).

The above relationships abehavioura) in the sense that they refer explicitly to
executability at a markings. There is, however, an altéreatharacterisation, where
we say that two transitions andv, arestructurally:

— independenif °t* N *v® = &; for example,f andg in ENg.
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— in conflict if *¢ N *v # @ ort® Nv*® # @; for example,f anda in ENy.
— causally relatedif t* N *v # @ orv® N °t # &; for exampleym and f in EN.

We then obtain a direct connection between the behavioarhsauctural characteri-
sations of fundamental relationships between transiiiogsi-systems.

Fact 12 (structure vs. behaviour) In EN-systems, behavioural independence, conflict
and causality respectively imply structural independeroeflict and causality.

In other words, transitions which are structurally indegesmt will never be in con-
flict or causally related whatever the current marking. &nremarks hold for conflict
and causality.

Another observation concerns the relationship betweeunlsameity and unordered-
ness in the behaviour &N-systems. We can formulate the general property that

Simultaneity <= Unorderedness

by which we mean that it is always the case thalt, v) M’ iff M[tv) M’ A Mvt)M'.

5 Fitting nets and order structures

Given the execution semanticseri-systems, we could now turn to the development of
a causality semantics in terms of occurrence nets and assdciausal posets. However,
since we aim at a systematic presentation of causality séesdior different net classes,

it pays off to develop first a general scheme for doing thisaAgsult, one can then
simplify the formal treatment and also appreciate commaperties shared across a
range of net classes.

The operational and causality semantics of a class of RPN can be presented
within @ common scheme introduced in [19] (see also [17]) emtoduced here as
Figure 5 whereV is a net fromPN and:

— EX are executions (or observations) of net®.

— LAN are labelled acyclic nets, each representing a concurigomn

— LEX are labelled executions of netsliiN.

— ILCS are labelled causal structures (e.g., order structurgsliiag causality rela-
tionships between executed actions.

Here, EX will be step sequences afidEX will be labelled singular step sequences.
However,LAN andILCS will depend on the chosen class of nits.
The maps in Figure 5 relate the semantical view8i) LAN, LEX, andLCS:

— w returns a set of executions, defining thpgerationalsemantics ofVv.

— « returns a set of labelled acyclic nets, definingaaiiomatic processemantics
of N.

— my returns, for each execution &f, a non-empty set of labelled acyclic nets, defin-
ing theoperational processemantics ofV.
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N € PN o LAN
T ]
7 P
¢ "
EX LEX

Fig. 5. Semantical framework for a class of Petri n&fS. The bold arcs indicate mappings to
powersets and the dashed arc indicates a partial function.

— A returns a set ofabelledexecutions for each process &% and after applying
to such labelled execution one should obtain an executidy.of

— k associates a labelledhusalstructure with each process f.

— ¢ and: allow one to go back and forth between labelled causal strestand the
sets of their labelled executions.

The semantical framework provided by the schema indicatesthe different se-
mantical views should agree. According to the rectangldnenéft, the Petri net defines
processes satisfying certain axioms and moreover all lbelcyclic nets satisfying
these axioms can be derived from the executions of the PetriAiso, the labelled
executions of the processes correspond with the execusifdhe original Petri net. In
the triangle on the right, the labelled acyclic nets frb/N, the causal structures from
LCS and the labelled executions frolEX are related. The order structure defined
by a labelled acyclic net can be obtained by combining itsetiens and, conversely,
the stratified extensions of the order structure defined Iapallled acyclic net are the
(labelled) executions of that net. Thus the abstract miatbetween the actions in the
labelled causal structures associated with the Petri neb@consistent with its chosen
operational semantics.

To demonstrate that these different semantical views aggeaptured through this
semantical framework, it is sufficient to establish a seoksesults callecaims As
there exist four simple requirements (calle@pertied guaranteeing these aims, one
can concentrate on defining the semantical domains and npgesudng in Figure 5
and proving these properties.

Property 1 (soundness of mappings)The maps, a, A, ¢, T | (n)» £, € aNd2| an)
are total. Moreovery, a, A, mn |, () @nde always return non-empty sets.

Property 2 (consistency)For all £ € EXand LN € LAN,

Eew(N) | . LN € a(N)
LNGWN@>}'ﬁ {§e¢u@N»-

Property 3 (representation) 2 o € = idpcs.
Property 4 (fitting) A\ = e o k.

The above four properties imply that the axiomatic (defifedugha) and opera-
tional (defined through y o w) process semantics of netslkiN are in full agreement.
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Also, the operational semantics 8f(defined throughv) coincides with the operational
semantics of the processes®f(defined throughy o A o o). Finally, the causality in a
process ofV (defined throughk) coincides with the causality structure implied by its
operational semantics (through \). That is, we have the following.

Aml o =7y ow.
Aim2 w=¢oloa.
Aim3 Kk =10\,

As a consequence, the operational semantics of the PetV rzetd the set of la-
belled causal structures associated with it are related Byp o € o k o .

6 Semantical framework for EN-systems

Some of the notions needed to specialise the general canzighe semantical frame-
work for EN-systems have already been introduced. We will now intredhie missing
ones, starting with the definition of a class of labelled &cywets capturing the causal-
ity semantics oEN-systems.

An occurrence nets a tupleON = (P’,T', F’,¢) such that P’, 7", F’) is its un-
derlying net and/ is a labelling forP’ U T". Moreover, it is assumed théftp| < 1
and|p®| < 1, for every placep, andooy = (T7, (F' o F')|7 x7+) IS @ pre-poset (in
other words /" is acyclic). The defaulinitial /S andfinal Mjggv markings respec-
tively consist of all places without inputs and outputs.Uf&6 shows an occurrence net
labelled by places and transitions of the-systemEN, of Figure 3, with the default
initial and final markingg b1, b2, b3} and{be, by, b1 }.

e1 bs €2 bs €3
bz (P4) ®3)bs  (P4) be
by @@Lt @

€4 b7 €5

Fig. 6. An occurrence neO N, (labels are shown inside the nodes).

Note that, due to the acyclicity of the flow relation and theklaf multiple inputs
(or outputs) of places, each transitiorilihappears exactlgncein any step sequenee
satisfyingh} [o) MY In particular, such a step sequence is singular, asgs(@)
is a well-defined stratified poset.

The behaviour of an occurrence neiV is captured by the sateps(ON) of la-

belled step sequencemprising all pairgo, ¢|1+) such that is a step sequence from

3 The dot-notations, markings, etc, foxN are as those defined for the underlying net.



14

the default initial marking ofON to the default final marking. For each such labelled
step sequenceé(a, £|7/) = {(o). Moreoverfseq( ON ) are thdabelled firing sequences
of ON, i.e., all the labelled step sequences/|r ) such that is a sequence of single-
ton steps. For the occurrence net of Figure 6, we hdwe, g}{ f, u} € ¢(steps(ONy))

as well asimg fu € ¢(fseq(ONy)).

Fact 13 (labelled executions)teps(ON) # @ andfseq(ON) # &, for every occur-
rence netON.

For an occurrence nedN, oon iS a pre-poset representing the direct causal re-
lationships between its transitions. Hence, by FagtdON) = ©%,; is theinduced
poset representing all, direct and indirect, causal deprecids between the transitions
in T". For the occurrence net of Figure 6, we have thatauses:, directly, but there
is only an indirect causal link fror, to e3. Also, there are no causal links betwegn
ande; which means that they are independent. This and otheroe#dtips can be read
out from the diagram of the pre-posgt, shown in Figure 7.

Fig. 7. Pre-posebon, for the occurrence nedNo.

To define processes of @&n-system, we need to provide an axiomatic characteri-
sation of occurrence nets consistent with the structuregbfen EN-system. Aprocess
of EN-systemEN is an occurrence né? N with the labelling? which:

— labels places 0ON with places ofEN.

— labels transitions 0O N with transitions ofEN .

— isinjective onM 0N and{(MON) = M.

— is injective on®t and¢® and, moreover,(°t) = *¢(t) and{(t®) = ((t)®, for every
transitiont of ON.

We denote this byON € proc(EN). For exampleON( € proc(ENg), where EN
and ON are the nets in Figures 3 and 6.

Fact 14 (injective labelling) The labellingl of ON € proc(EN) is injective on any
marking reachable from the default initial marking. It isalinjective on any individual
step appearing in the step sequencestefs(ON) # @.

The only missing component of the semantical frameworkefoisystems is now
the mapping returning processes derived from individuegd sequences.

The occurrence nekoc ; (o) generatedby a step sequenee= U, ... U, of EN
is the last element in the sequen@d/y, ..., ON,, where eachON is an occurrence
net( Py, Ty, Fi, {) constructed in the following way.
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Step 0:Py = {p' | p € Minit} andTy = Fy = @.
Stepk: Given ON,_; we extend the sets of nodes and arcs as follows:

P,=PFP._1U {p1+Ap |p € U,:}
T =T 1 U {tlJrAt |t € U}
Fy = F,_ U{{@®P, "2 |t e Uy, Ap € *t}
U {8t ptae) [t e Uy, Ap et} .

In the above, the label of each nadéeis set to be:, andAx denotes the number of the

nodes ofON;_; labelled byz.
The above constructionis illustrated in Figure 8 forhesystemEN  of Figure 3.

The resulting occurrence net is isomorphic@d, of Figure 6 which, as we already
noted, is a process dN.

ON, al ON,

ON,

@ ONs

ut Pg
]
] D

Fig. 8. Processgrocy, (o) = ON 3 generated fofZN, and step sequenee= a{m, g}{f, u}.

We will now explain how the four semantical properties cares&blished foEN-
systems and their step sequence semantics (the treatmérinfpsequences is almost
the same). Referring to Figure 5, whergV is aneEN-system,ON an occurrence net,
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(0,¢) a labelled step sequencey a poset, and”' a set of labelled singular step se-
guences with the same domain, we have the following:

PN are EN-systems EX are step sequences

LLAN are occurrence nets LEX are labelled singular step sequences
LCS are labelled posets

w(EN) is steps(EN) a(EN) is proc(EN)

A(ON) is steps(ON) men (o) IS procgy (o)

¢(o,l) is l(o) k(ON) is po(ON)

e(po) is steps(strat(po)) (X)) is (spo(X).

Properties 1-4 hold foeN-systems [19, 26]. BelowrN is anEN-system and its
firing sequenceQ N is an occurrence nepyp is a poset, and’ is a set of singular step
sequences with the same domain. (Note that Fact 17 follaws Facts 3 and 5.)

Fact 15 steps(EN), proc(EN), steps(ON) andstrat(po) are non-empty sets. More-
over,po(ON) and("spo(X') are posets, an@rocy (o) is an occurrence net.

Fact 16 procy (o) is a process ofEN. Moreover, if ON is a process ofEN and
o’ € ¢(steps(ON)), theno’ € steps(EN) and ON = procgy (o).

Fact 17 po = () spo(steps(strat(po))).
Fact 18 steps(ON) = steps(strat(po(ON))).

Hence we can claim the semantical aimsHarsystems and step sequences.
Fact 19 Let EN be aneN-system, andN be an occurrence net.

proc(EN) = procgy (steps(EN))
steps(EN) = ¢(steps(proc(EN)))
po(ON) = (spo(steps(ON)) .

7 EN-systems with activator arcs

This section extends the treatment of concurrency to ndtsaeiivator arcs. Consider
again theen-system of Figure 3 and add an activator arc from plact transitionc
with a small black circle as arrowhead. In the resulting 814, shown in Figure 9¢
can only be enabled if there is a token in plageHowever, the execution of transition
c does not consume the token in plage

An elementary net system with activator afcs ENA-system) is a tupléZNA =
(P, T, F, Act, M;,;;) such thatund(ENA) = (P, T, F, M;,;;) is its underlyingen-
system, anddct C P x T'is a set ofactivator arcs. Notions and notations relating
to ENA are inherited fromund(ENA). The only new notation i8¢ denoting the set
of all the place® where the presence of a token is necessary to enable aivarsit
i.e., (p,t) € Act. The behaviour of?NA is also derived from that afnd( ENA) after
assuming that a step of transitiofids enabled at a markingy/ in ENA if it is enabled
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p1

D2

Fig. 9. An ENA-system modelling a second version of the producer/consaystem.

atM inund(ENA) and*U C M, where*U = J,,; *t. The marking resulting from
the execution of such@ is exactly the same as it would beund(ENA). For theENA-
system of Figure 9, we have thif[{a, c}) M andM [ca) M', whereM = {p1,p4, ps}
andM’ = {ps, p3, p7}. However,M [ac) M’ does not hold as after executing transition
a, a token is removed from the activator plageof transitionc.

Reachability graphs of ENA-systems

Reachability inENA-systems depends on the chosen execution semantics: sequen
step sequences. Taking, as an exampletresystem in Figure 1@{), we may observe
that M.t [{t, v}){ps, p4}, but thereis no firing sequeneesuch thatV/;,,;: [0 ) {ps, p4}.

Another observation concerns the relationship betweeunltsmeity and unordered-
ness in the behaviour @&NA-systems. Whereas in the caseeofsystems, we have the
general property tha&imultaneity—- Unorderednesw/e now have

Sitmultaneity <= Unorderedness

by which we mean that it is always the case théft, v) M’ if M[tv)M' N Mvt)M'.
Figure 100, ¢) shows that the reverse implication does not hold.

Fig. 10. Two ENA-systems and the reachability graph of the second one.

Semantical framework for ENA-systems

Causality semantics foENA-systems will be developed by instantiating semantical
framework, similarly as in the case afN-systems. The labelled causal structures em-
ployed areso-structures, while executions remain to be (labelled dexystep se-
quences. To define processes we extend occurrence nettubeiactivator arcs.
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An activator occurrence ngbr AO-net) AON = (P',T', F’, Act,{) is atuple such
thatund(AON) = (P’,T’, F', ¢) is its underlying occurrence net, addt C P’ x T’
is a set ofactivatorarcs. Moreover, it is assumed thaton = (17, <ioc, Cioc, £]77),
with

<toe = (F' o F')|proqr U(F' 0 Act) and T = Act ' o F/

is a preso-structure (see Figure 11). We then defioe(AON) = 0%, to be the
so-structureinducedby AON.

(a) (b) () O

Fig. 11. Two casesa, b) definingt <, v, and one casg:) definingt C o v.

The step sequencsieps(AON) of anao-net AON are defined as farmd(AON),
except that the enabling condition takes into account afttharcs.

Fact 20 (labelled executions)steps(AON) # &, for everyao-net ON.

Note that it may happen th&#eq(AON) = @ even thougtsteps(AON) # @.
Take, for example, theo-net AON; in Figure 12¢) for which steps(AON;) =
{{t,v,w}z} andfseq(AON;) = @ as executing at the default initial marking any
transition in{¢, v, w} means that just one of the remaining transitions will never b
enabled, and so the default final marking cannot be reached.

Fig. 12.An A0-net AON (a), and a failed attempt to extend it to amo-net(b).

An AO-net represents a concurrent run of a system and has to dvoudbcity. In-
tuitively, <, stands for causal precedence (the first transition has ttupeoa token
for consumption or testing by the second transition) emgl. for weak causal prece-
dence (the first transition cannot happen after the secoadsarce the latter consumes
a token which activates the former). Figure 13 showssamet AON labelled by
places and transitions of theNA-systemENA of Figure 9. Its default initial mark-
ing is {b1, b2, b3}, and its default final marking by, b1, b11 }. Note that transitiors
weakly precedes transitiosy, i.e.,e; T €4. Moreover, we have thgtm, g}{a, c}
anda{m, g}ca belong top(steps(AONy)), buta{m, g }ac does not.
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e1 bs es b7 €4
b @ o @ @

by @3 ba (03) D ©3) bio
bs @) é/ @) @) bus

€2 b8 €5

Fig. 13. An activator occurrence netONy.

Processes of aBNA-system are similar to those of the underlyig-system ex-
tended with an appropriate treatment of activator arcprédcessof ENA is an Ao-
net AON such thatund(AON) is a process ofind(ENA) and, in addition/ is in-
jective on®t and ((*t) = */(t) for every transitiont of AON. We denote this by
AON € proc(ENA).

Process generation from a given step sequence is also baskedtdntroduced for
EN-systems. Theo-netprocy4 (o) generatedby a step sequence= U ... U, of
ENA is the last element in the sequend®Ny, ..., AON,, where eachrAON;, =
(P, Tk, Fx, Ui, Ax) is anao-net with the components constructed as in the definition
for proc,nq(gnvay (o), and the following additions (see Figure 14):

Step 0:4) = 2.
Stepk: Ay, = Ap_ U{(p?P, t"t28) |t € U Ap € *t).

Fig. 14.Procesroc 4, (o) generated folZNA, and step sequenee= a{g, m}{a, c}.

We will now show the semantical properties formulated abcae be established
for ENA-systems and their firing sequences. Referring to the otaed in Figure 5,
we have the following, wher€NA is anENA-system A ON anAo-net, (o, ¢) a labelled
step sequencegs anso-structure, and. a set of labelled singular step sequences with
the same domain:
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PN are ENA-systems EX are step sequences

LAN are AO-nets LEX are labelled singular step sequences
LCS are labelledso-structures

w(ENA) is steps(ENA) a(ENA) is proc(ENA)

A(AON) is steps(AON) meNa(0) IS procgya(o)

¢(o,l) is l(o) k(AON) is sos(AON)

€(sos) is steps(ext(sos)) (X)) is [ sos(spo(X)).

It can be shown that Properties 1-4 hold. BelbBWA is anENA-system andr its
step sequencel ON is anAO-net, sos is anso-structure, and is a set of singular step
sequences with the same domain. (Note that Fact 23 follows Facts 5 and 7.)

Fact 21 steps(ENA), proc(ENA), steps(AON) andspo(sos) are non-empty sets. More-
over,sos(AON) and(sos(spo(X')) are so-structures, angroc x4 (o) is anAo-net.

Fact 22 procy4 (o) is a process ofENA. Moreover, if AON be a process off/NA
ando’ € ¢(steps(AON)), theno’ € steps(ENA) and AON = procgy,(c’).

Fact 23 sos = () sos(steps(ext(s0s))).
Fact 24 steps(AON) = ext(sos(AON)).

Hence we can claim the semantical aimsgan-systems.
Fact 25 Let ENA be anENA-system, andlON be anAo-net.

proc(ENA) = procgya(steps(ENA))
steps(ENA) = ¢(steps(proc(ENA)))
sos(AON) = ()sos(steps(AON)) .

EN-systems with inhibitor arcs

It is easy to extend the treatment presented aboveNarsystems t@&N-systems with
inhibitor arcs. Consider again then-system of Figure 3 and add to it an inhibitor
arc linking the placeps and transitionc. This yields the net systerBNI, shown in
Figure 15. (Inhibitor arcs are drawn with small open circ@ssarrowheads.) Adding
such an arc means thatannot be enabled when the buffer is non-empty (a token in
placeps signifies that the buffer contains an item).

An elementary net system with inhibitor ar@s ENI-system) is a tupleNI =
(P, T, F, Inh, M;,;:) such thatund(ENI) = (P,T, F, M;;) is its underlyingen-
system, andnh C P x T is a set ofinhibitor arcs. Notions and notations relating
to ENI are inherited fronund(ENT). The behaviour oFENI is also derived from that
of und(ENI): a step of transition&’ is enabled at a markinyy/ of ENI if it is enabled
atM inund(ENI)and{p | 3t € U : (p,t) € Inh} N M = @. The marking resulting
from the execution of such@ is exactly the same as imd(ENT).

Intuitively, the testing for the presence of tokens withvadbr arcs inENA-systems
has been replaced by testing for their absence with inhilaites inENI-systems. In



21

Hang

Fig. 15.An ENI-system modelling a third version of the producer/consusystem.

fact, the latter can be faithfully simulated by the formertlire case ofeN-systems
(i.e., they have isomorphic reachability graphs). All weedi¢o assume is that every
inhibitor placep has acomplemenplacep satisfying®p = p® and®p = p®. Processes
of ENI-systems are similar to those Bii-systems with the inhibitor arcs of the system
represented by activator arcs which rather than testintpéabsence of tokens are used
to test for the presence of tokens in complement places. éjeme assume that each
placep of ENI adjacent to an inhibitor arc has a complement pfatethe underlying
EN-system. Then, each inhibitor afp, t) can be replaced by an equivalent activator
arc (p, t). Since adding complement places is harmless, we can corikeleausality
treatment ofeNI-systems as being obtained through the corresporelirgsystems.
Note thatENI, in Figure 15 corresponds in this way VA in Figure 9.

8 ENA-systems with mutex arcs

We now extend=NA-systems with mutex arcs prohibiting certain pairs of tidomss
from occurring simultaneously (i.e., in the same step). éduarcs were introduced
in [11], and their causality semantics was developed in.[21]

Consider Figure 16 which shows another variant of the predoonsumer scheme.
In this case, the consumer is allowed to complete (tramsifjpbut never at the same
time as the producer makes an item (transition Other than that, there are no re-
strictions on the executions of transitionandm. To model such a scenario we use a
mutex arc betweenandm (depicted as an undirected edge). Note that mutex arcs are
relating transitions in a direct way. This should howeverlregarded as an unusual
feature as, for example, Petri nets with priorities alsoasgdirect relations between

transitions.
D1 :
O
[a]
P2

Fig. 16. An ENAM-system modelling a fourth version of the producer/consusgstem.
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An elementary net system with activator and mutex fsCENAM-system) is a tuple
ENAM = (P, T, F, ACt, Mt{E, Mznzt) such thatmd(ENAM) = (P, T, F, ACt, M””t)
is the ENA-system underlyinggNAM and Mtz C T x T is a symmetric irreflexive
relation specifying thenutexarcs of ENA M. Where possible, we retain the definitions
introduced forENAM-systems. The notion of a step now changes howevetep of
ENAM is a non-empty sel/ of transitions such thdy is a step ound(ENAM ) and
Mtz N (U x U) = @. With this modified notion of a step, the remaining definiton
pertaining to the dynamic aspects ofamamM-system are the same as for the underlying
ENA-systemund(ENAM).

For the ENAM-system of Figure 16, we havk/[em) M’ as well asM [mc)M’,
whereM = {p2,pa,ps} @andM’ = {p1, p4, p7}. However, M [{c,m}) M’ which holds
now for the underlyingNA-system does not hold asandm cannot be executed in the
same step.

Reachability graphs ofENAM -systems

Reachability inENAM-systems, like irENA-systems, is affected by the choice of the
execution semantics. This is, however, entirely due to tlesgnce of activator arcs,
rather than mutex arcs. For @amAM-system without any activator arcs, the same sets
of markings are reachable under the step sequence and &qugisce semantics.
Another observation concerns the relationship betweeunlsameity and unordered-
ness in the behaviour &NAM-systems. Whereas\A-systems satisfy the relationship
Simultaneity— Unorderednesghis no longer holds foENAM-systems, as illustrated

=
S

(a) (0)

Fig. 17. An ENAM-system (without activator arcs) and its reachability grap

Semantical framework for ENAM -systems

Causality semantics fanAaM-systems will be developed similarly as fex-systems
and ENA-systems. The labelled causal structures employedarestructures, while
executions remain to be step sequences. To define processdendao-nets to in-
clude mutex arcs. Aactivator mutex occurrence n@ir AMO-net) is a tupleA MON =
(P',T',F', Act, Mtz', /) such thaund(AMON) = (P',T', F’, Act, () is theAO-net
underlyingAMON andMtz' C T' x T" is a symmetric irreflexive relation specifying
a set ofmutexarcs. Moreover, it is assumed that

OAMON = (Tlv <locs Cloc Mt1/> )
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where<,. andC,. are defined as farmnd(AMON), is a presso-structure. We then
definegsos(AMON) = 0%}, to be theGso-structure induced byt MON . The step
sequencesteps(AMON) of AMON are defined as farnd(AMON ), except that the
enabling condition takes into account mutex arcs. The digfatial and final markings
of AMON, as well as its step sequence executions are defined asdoA M ON)
under the proviso that steps do not contain transitiongpbloy mutex arcs.

The wayo ar0n deals with the mutex arcs is illustrated in Figurei2(Ve have
there three transitions satisfyingC .. v Cioe w Cioe t. HENce, in any execution
involving all these transitions, they have to belong to thme step. This, however, is
inconsistent with a mutex arc betweerand w, and o4 ;on fails to be a presso
structure agt, t) belongs ta—j,_ o (Mtz'n C},,) o C},..

Processes of anNAM-system are similar to those of the underlyiBga-system
extended with appropriate treatment of mutex arcprécessof ENAM is anAMO-
net AMON such thatund(AMON) is a process ofind(ENAM) and, in addition,
Mtz" = {(t,v) | (£(t),£(v)) € Mtz}. We denote this byl MON € proc(ENA).

Process generation from a given step sequence is also baskedt dntroduced for
EN-systems. The\xo-net procy 4 (o) generatedby a step sequence = U;...U,
of ENAM is the last element in the sequendd/ONg, ..., AMON,, where each
AMONy, = (Py, Ty, Fy., Ax, My, li) is anAMO-net with the components constructed
as in the definition foproc,,,q gnvaar (o), €xcept that

My, = {(e, f) € T x Ty, | (£(e), € (f)) € Mix} .

We denote this bl MON,, € procgyan (o).

./@Qﬁo
& ®© _®
9]

& @

Fig. 18.An AMO-net AMON o with labels shown inside places and transitions.

Figure 18 depicts anmo-net labelled with places and transitions of theAM-
system of Figure 16. We have that betfr f andag fr belong tog(steps(AMONy)),
however,ag{f,r} does not. TheamON-net shown in Figure 18 is a process of the
ENAM-system of Figure 16 with(steps(AMON)) = {agfr, agr f}. Figure 19 shows
the result of applying the construction to thraM-system of Figure 19 and one of its
step sequences. Note that the resultngo-net is isomorphic to that shown in Fig-
ure 18.

The way in which mutex arcs are added in the process constnuentails means
that some may be superfluous. For instance, the transiti@ysjoin may be causally
related. Analysing paths in thevo-net would make it possible to eliminate such re-
dundant mutex arcs. This, however, would be against thditpgainciple which is
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fundamental to the process approach as it would comprotmésktal causes and ef-
fects in the definition and construction of process nets.

Fig. 19.Processroc ;y4,, (o) generated foENAM o and step sequenee= {a}{g}{r}{f}.

The semantical properties formulated above can be edtablialso forENAM-
systems. Referring to the notation used in Figure 5, we hlgefdllowing, where
ENAM is anENAM-system AMON anAMO-net, (o, £) a labelled step sequenggps
aGsosstructure, and a set of labelled singular step sequences with the same domai

PN are ENAM-systems EX are step sequences

LAN are AMO-nets LEX are labelled singular step sequences
LCS are labelledsso-structures

w(ENAM) is steps(ENAM) a(ENAM) is proc(ENAM)

AMAMON) is steps(AMON) TENAM(0) 1S procgyan (o)

#(0,0) is (o) k(AMON) is gsos(AMON)

e(gsos) is steps(ext(gsos)) 1(X) is (N gsos(spo(X)).

It can be shown that Properties 1-4 hold. BelBWA M is anENAM-system and
o its step sequencel MON is anAMO-net, gsos is anso-structure, and” is a set of
singular step sequences with the same domain. (Note tha2&4acllows from Facts 5
and 10.)

Fact 26 steps(ENAM), proc(ENAM), steps(AMON) and spo(gsos) are non-empty
sets. Moreovegsos(AMON ) and() gsos(spo(X')) areGso-structures, angroc gy 41 (o)
is anAMO-net.

Fact 27 procgyaa (o) is a process ofENAM. Moreover, if AMON be a process
of ENAM ando’ € ¢(steps(AMON)), theno’ € steps(ENAM) and AMON =

procgyan (o).
Fact 28 gsos = [ gsos(steps(ext(gsos))).
Fact 29 steps(AMON) = ext(gsos(AMON)).

Hence we can claim the semantical aimsganm-systems.
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Fact 30 Let ENAM be anENAM-system, andl MON be anAMO-net.

proc(ENAM) = procgnap (steps(ENAM))
steps(ENAM) ¢(steps(proc(ENAM)))
gsos(AMON) () gsos(steps(AMON)) .

9 Place/Transition nets

Place/Transition nets [25] (@¥T-nets) are the basic class of Petri nets suited for the
study of systems in which multiplicity of resources matters

A pT-netis atuplePT = (P, T, F, M;,;:) such tha{ P, T, F') is its underlyingnet,
and M;,,;; is theinitial marking of PT', where a marking in this case is amultiset
of places, i.e., a mapping/ : P — N. Most notions concerning the structure and
graphical representation pf-nets are the same as fax-systems except that a marking
M is represented by displaying (p) tokens in each place More important changes
concern the execution semantics which extends that deforefsystems.

A stepU of PT is any multisetof transitions, i.e.lJ : T — N. Such a step is
enabledat a marking)/ if, for every placep, the current marking/ provides enough
input tokens for each occurrence of a transitiod/inthus M (p) > >, . U(t). Exe-
cuting an enabled step leads to the markifigsuch that, for every plage

M'(p)=M(p) = Y Ut)+ Y U(t).

tep® te®p

We denote this, as before, BY[U) M’ or M [U) - M’. The notions of firing sequence,
step sequence, marking reachability and reachabilitytgrage then defined similarly
as in the case afN-systems. Figure 20 depicts threenets such that:

fseq(PTo) ={...,amamamam,...}
Minit [gu{ga a}PTl {’U/, m}am>Minit
steps(PT'2) = {...,a{g, g}mama{u,u}{g,g},...} .

As in the case oEN-systems, marking reachability #m-nets does not depend on
whether one uses firing sequences or step sequences. Tongsfilom the fact that if
U andU’ are two steps satisfying/[U + U’'Y M’ then M [UU’YM’, whereU + U’
is the multiset sum ot/ andU’. As a consequence, every step of transitions occur-
ring at a marking can be split into any sequence of subsetsirfigra partition of
this set, and each such step sequence leads to the samegreskime original step.
However, the reverse implication does not, in general, .etd example, if one takes
thepT-netin Figure 23¢), then we haveél/,,;; [ab){p2, p4} and M+ [ba){p2, ps} but
Minit[{a,b}){p2, pa} is not a valid execution. Moreover, the relation betweendia
tion occurrences is not structural, but depends on the cumarking: with two tokens
in ps in Figure 234), the transitions: and b would be concurrently, i.e., as a step,
enabled.

As before, processes formalise the idea of a concurrentinterestingly, occur-
rence nets provide the basis for the process definitiortafiets in the same way as



26
p1

}H

PT,
p1 p3 Ps
) ®
] 9] O
pr
P2 P4 D6 PTy
p1 ps
O,
P3

D2

Fig. 20. pT-nets modelling three final versions of the producer/coresusystem:PT, with an
unbounded buffer (the number of tokens in plagecan grow unboundedly)PT'; with a two-
place buffer (the number of tokens in plagecan be at most two); an®7T'> with an unbounded
buffer and two consumers (represented by the two tokenszepk).

they did foren-systems. We only need to take into account the potentiaiptiaity of

tokens inPT-nets. This is done by giving each occurrence of a token its phace in
the occurrence nets. procesof aPT-net PT is an occurrence néd N with labelling
£ which:

— labels places 0ON with places ofPT'.
— labels transitions 0O N with transitions ofPT'.
— labels exactiyM;,,;; (p) places ofM 2N with p, for every place of PT.

— is injective on®t and¢® and, moreover,(°t) = *¢(t) and{(t®) = ((t)®, for every
transitiont of ON.

We denote this bY)N € proc(PT'). The occurrence ng?N in Figure 21 is a process
of PT-net P75 in Figure 20.

The main difference with definition of processesen-systems is that now the
labelling of a process is not required to be injective on tekdlt initial marking which
is meant to represent the initial marking. In general, Fdaldes not hold for processes
of PT-nets. For example, the process in Figure 21 allows theviatig sequence of
executions:

{01, 92,43, 94} [t1) {42, 63, 94, G5, g6 } [{ 12, t3}) {45, g7, a8}
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Fig. 21.A processON of thepT-net PT'» in Figure 20.

Defining a process for a given step sequenod aPT-net PT is also a straightfor-
ward extension of the construction fer-systems. An occurrence ngéneratedoy a
step sequence = U; ... U, of PT is the last element in the sequer@d’y, ..., ON,,
where eactON, is an occurrence néb, T, Fi., (1) constructed in the following way.
Step 0:P) = {p" |p € PA1 <i< Myu(p)} andTy = Fy = 2.

Stepk: Given ON;_; we extend the sets of nodes as follows:

Pp=P U{pto? [pe PA1<i <Y, . Ukt)}
T =Tey U2 |t € TAL<i < Ug(t)}.

Again, the label of each nodé€ is set to ber, andAz denotes the number of
the nodes oDN,_; labelled byz.

To define the arcs, we proceed as follows. For every t' € Tj, \ Ty_1,
we choosetwo sets of conditions/n, C M&N*‘*l and Out, C Py \ Pr-1,
such that/n,. comprises a distinct conditiop” for each place» € °t while
Out, comprises a distinct conditiogt for each place; € t*. Moreover, for

anye # f € T, \ Tx—1, In. N Iny = @ and Out. N Outy = &. Then:

Fp,=F,1U U (Ine x {e}) U ({e} x Oute) .
e€T\Tk—1

We denote this bY)N,, € procp, (o).

Note that since there may be more than one choice of suifabks in general, more
than one process can be constructed for a given step sequehoe above construction
is illustrated in Figure 22 fopT-net PT'5 of Figure 20. The resulting occurrence net is
isomorphic toON of Figure 6 which, as we already noted, is a procesBB§.

The detailed development of the process semantiesrafets can be carried out
along the same lines as was done En-systems earlier in this paper, with some
straightforward modification resulting from the multiset rather than set — nature
of markings and executed steps. It is also possible to extentreatment obPT-nets
to include weighted arcs and (weighted) activator and iittrilmets, usingro-nets as
a process model, following what was done EwnA-systems an@&Ni-systems in, e.g.,
in[19, 20].
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Fig. 22.Deriving a process foPT'» and its step sequenee= {a, g}g.

Mutex arcs and self-loops

In PT-nets, in contrast taN-systems, mutex arcs can be represented by self-loops con-

nected to a place marked with a single token, as shown in &ig8¢, ). From a
modelling perspective, there appears to be no real diftereBemantically, however,
the differences can be significant as mutex arcs representio@nt histories in a more
compact way. This could have an impact when net unfoldingsised for model check-
ing. For example, the single process in Figurec28erived for the representation of
Figure 230) has to be replaced by two processes derived for the repetigemof Fig-

ure 23¢) depicted in Figure 23l).

D1 D3 P1

%@9@% :

@ O

D2 P4 P2

pi (@1

ps

@ﬂ@

P3

p @D)—=] a —=@2) p}

O @ pe—{b}—0C)pi
bl

: ps Bl

p3 ©s3

Fig. 23.Mutex arcs can lead to more condensed process semanticsetfidoops.

10 Concluding remarks

This paper is an introduction to the many issues fundameatahderstanding con-
current behaviour. Here we have concerned ourselves viférelt forms of causality
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induced by extensions to the basic structure of Petri net¢eating to relational struc-
tures extending the classical partial order approach.€raer several strands of related
research which have not been described here. For instardeawve not considered the
modelling of conflicts between enabled transitions. Oucpsses and their abstractions
(partial orders) model concurrent runs in which conflictgehalready been resolved.
Branching processes of Petri nets [3] model all possibléceisand lead to a single un-
folding representing all runs of the net model. They arealbtuhe basis for efficient
verification techniques [5, 18, 23]. If, in addition, one tasts from state information
and only considers relations between events the resuleisnibre abstract model of
event structures [9, 24, 28], that can be used to study fuedtahconcepts of concur-
rency in a model-independentway. As far as we are awaret streistures have not yet
been enriched with weak causality and commutativity reteghips, and we consider
such extensions a relevant, and indeed exciting, topictaféuesearch in this area.
Finally, an abstraction not considered here at all, usualigrred to as trace the-
ory [2] initiated in [22], allows one to group together seqtial observations on the
basis of reordering of concurrent (independent) events. résulting model ofrace
monoidcaptures precisely the semantical treatmergnosystems outlined in this pa-
per. For the extended modelseii/ENA-systems, one needs to use the extended model
of comtracesntroduced in [14]. The last extension Bfi-systems considered here, i.e.,
ENAM-systems, calls for the even more elaborate modgeokralised comtracg46].
It should then not come as a surprise thanets require a different kind of extensions
of the basic trace monoid, initiated through the work on ldices of [8]. An exten-
sive account of the intrinsic relationships between varioancurrency monoids and
different net classes can be found in [11].
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