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Inferring nonlinear and asymmetric causal relationships between multivariate longitudinal data is a challenging task
with wide-ranging application areas including clinical medicine, mathematical biology, economics and environmental
research. A number of methods for inferring causal relationships within complex dynamic and stochastic systems have
been proposed but there is not a unified consistent definition of causality in the context of time series data. We evaluate
the performance of ten prominent causality indices for bivariate time series, across four simulated model systems that
have different coupling schemes and characteristics. Pairwise correlations between different methods, averaged across
all simulations, show there is generally strong agreement between methods, with minimum, median and maximum
Pearson correlations between any pair (excluding two similarity indices) of 0.298, 0.719 and 0.955 respectively. In
further experiments, we show that these methods are not always be invariant to real-world relevant transformations
(data availability, standardisation and scaling, rounding error, missing data and noisy data). We recommend transfer
entropy and nonlinear Granger causality as particularly strong approaches for estimating bivariate causal relationships in
real-world applications. Both successfully identify causal relationships and a lack thereof across multiple simulations,
whilst remaining robust to rounding error, at least 20% missing data and small variance Gaussian noise. Finally, we
provide flexible open-access Python code for computation of these methods and for the model simulations.

Quantifying causal relationships between longitudinal ob-

servations of a complex system is essential to an under-
standing of the interactions between sub-components of

the system and is subsequently key to building better and
more parsimonious models1,2. In many real-world appli-
cations, we are rarely able to access or describe an un-

derlying graphical network of these interactions a priori,
and we are typically limited to observing simultaneously

recorded variables from each subsystem as a multivariate
time series. Two key properties that are widely regarded

as crucial in defining causal relationships are: that the ef-
fect is temporally preceded by the cause, and that exter-

nal changes to values of the causal variable propagate to
values of the effect variable and do not break the causal

structure3. Correlation or synchronisation in these mul-
tivariate time series does not necessarily imply a causal

relationship between variables, and counter-examples are
easy to find4. Further, a lack of correlation does not im-

ply a lack of causality, and a reliance on correlation-based
measures may result in nonlinear causal relationships be-

ing obscured, e.g. Ref 5. In recent decades, various math-
ematical frameworks1,6,7 have been described to allow

identification of nonlinear (and asymmetric) causal struc-
ture within complex systems, primarily driven by domain-
specific applications, from diverse application areas in-

cluding as statistical economics8,9, climate science10–12 and
computational neuroscience13,14.

a)Electronic mail: te269@cam.ac.uk

I. INTRODUCTION

No general method exists to identify causal structure within
complex systems, and there is no single consistent and unify-
ing notion of quantitative causality estimation for time series
data. Published methods can be broadly categorised into the
following groups:

1. regression-based indices that use ‘recent history’ vec-
tors as predictors in a model (e.g. Granger causality),

2. information-theoretic indices that build upon ideas of
conditional mutual information (e.g. transfer entropy),

3. indices based on state space dynamics, such as local
neighbourhoods and trajectories (e.g. convergent cross
mapping),

4. graphical models that scale causal inference estima-
tion to high-dimensional multivariate systems for causal
identification.

There exist common themes between these methods, and
membership within these groups is sometimes somewhat
blurred. Figure 1 sets out key properties and similarities be-
tween methods from groups 1-3. Previous reviews of the
literature15–18 typically focus on a subset of methods from
one of these groups. The suitability, interchangeability and
performance of published methods, particularly where they
span more than one of these groups, has received relatively
little attention. In this work, we identified and assessed a
widely used subset of indices for directed bivariate causal-
ity inference, concentrating on methods involving univariate
embeddings to describe the recent history of the system (Sec-
tion II.). A review of such methods has been published pre-
viously by Lungarella et al.19. We reproduce these results for
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FIG. 1. Causality indices described in this paper, which repre-
sent a widely-used but non-exhaustive subset of this field of re-
search. The indices are as follows (where GC is Granger causal-
ity): extended GC (EGC), nonlinear GC (NLGC), predictability
improvement (PI), transfer entropy (TE), effective transfer entropy
(ETE), coarse-grained transinformation rate (CTIR), similarity in-
dices (SI), convergent cross mapping (CCM). We classify these in-
dices into three categories, and highlight commonalities between the
approaches and their estimation (state space dynamics, nearest neigh-
bour computation, kernel estimation).

the original and newer methods. We also extend this work by
proposing a set of modifications that can be made to simulated
data prior to causal estimation, in order to investigate sensitiv-
ity of each method to data availability, scaling, missing data,
rounding and Gaussian noise (Section III.). Each of these re-
produces phenomena that often occur in real-world data, such
as when instruments have a fixed measurement precision and
data is reported with rounding error. We believe these tests
should provide in-depth benchmarking criteria for new pro-
posed methodologies. Finally, we summarise the strengths
and weaknesses of these approaches, and identify key areas of
further research (Section IV.).

II. METHODS

We observe a complex system as a set of variables within
a multivariate time series. The time series X = (x1, . . . ,xT )
and Y = (y1, . . . ,yT ) describe a bivariate system with state
st = (xt ,yt) at time t. A critical implicit assumption is that the

series has unit time, or equivalently that the data is observed
at a fixed constant frequency. Underpinning all methods is
the key assumption that cause directly precedes effect. As a
result, a preliminary step is the construction of time-delay em-
bedding vectors x

m,τ
t in m-dimensional state space X ∼= R

m.
An important distinction in the defined methods is whether
their theoretical basis is stochastic or deterministic. Both em-
ploy the same time-delay vectors, though only in deterministic
systems are the vectors x

m,τ
t considered elements within an m-

dimensional state space X ∼= R
m. We construct equivalent

embedding vectors yt (and state space Y ∼= R
m) for Y , and a

joint embedding vectors zt (and state space Z ∼= R
2m):

xt = x
m,τ
t =

(

xt−(m−1)τ ,xt−(m−2)τ , . . . ,xt−τ ,xt

)′
∈X

zt =

(

xt

yt

)

∈Z , t = (m− 1)τ + 1, . . . ,T

In practice, many real-world systems are stochastic, with
some level of noise or randomness in at least part of the sys-
tem. A further assumption for stochastic causality estimation
is that of separability, which states that there is unique infor-
mation about the effect variable that is contained only within
the causal variable. The standard approach here is to describe
or model the current value xt of X as conditional upon upon
the ‘recent history’ joint embedding vector zt−1 (full model).
Separability means that removing the causal variable Y elim-
inates the information it contains about the effect X , which
we observe either by identifying non-zero coefficients in the
full model or constructing a reduced model, conditioned only
upon xt−1. These methods are generally described with time
index shifted t 7→ t + 1, though the interpretation (‘current’
and ‘recent history’) remains the same.

Granger causality1 (GC), a notable and popular method for
causality estimation in time series, fits autoregressive models
on the time series to this end. Extensions of GC to nonlin-
ear systems include a locally linear version called extended

Granger causality20 (EGC) and nonlinear Granger causal-
ity21 (NLGC), which performs a ‘global’ nonlinear autore-
gression using radial basis functions (RBFs). Predictability
improvement22 (PI) is another locally constant linear regres-
sion of ‘recent history’ embeddings, which measures a reduc-
tion in mean squared error when zt is used for predicting a
‘horizon’ value xt+h instead of xt alone.

Information theory is a natural framework for describing
causal relationships. Transfer entropy7 (TE) measures de-
viation from the generalised Markov property p(xt+1|xt) =
p(xt+1|xt,yt) as a conditional mutual information. With weak
coupling and limited data, transfer entropy can suffer from fi-
nite sample effects and effective transfer entropy23 (ETE)
corrects for this using shuffled versions of the causal vari-
able. TE reduces to vanilla GC under the assumption of Gaus-
sian variables24 (⋆, Figure 1), and non-zero GC implies viola-
tion of the generalised Markov property and non-zero TE25.
Coarse-grained transinformation rate26 (CTIR) is based
upon ‘coarse-grained entropy rates’, and measures the rate
of net information flow, averaged over different lags τ . Of-
ten the difficulty in information theoretic methods (described
in depth in Ref 15) is the robust estimation of joint proba-
bilities or entropy values, which in turn form building blocks
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for these methods. We use a histogram binning partition (H)
and the (hypercube) Kraskov-Stögbauer-Grassberger (KSG)
estimate27, which is a technique involving k-nearest neigh-
bour statistics. All information theoretic computation here is
in ‘nats’ (logarithm base e).

Fully deterministic dynamical systems, which evolve ac-
cording to a differential equation or difference equation, do
not necessarily satisfy the separability condition. In these sys-
tems, xt can often be reformulated as a function of only past
values of X , which makes the potential causal role of Y in the
coupled system less clear, as highlighted by Granger1. Causal
relationships in a coupled deterministic system are instead ob-
served via the event that each variable belongs to a shared
attractor manifold A⊂Z . A consequence of Takens’ embed-
ding theorem28 is that the ‘library of historical behaviour’ of
X preserves the topology of A and, by transitivity, local neigh-
bourhoods in X those in Y and vice versa5. It is possible to
detect unidirectional causal influence, where only the dynam-
ics of a causal variable propagate to the response variable in
this way. Sugihara et al.5 argue that the inferred direction of
unidirectional causal influence is counter-intuitively reversed
(i.e. cross mapping from X to Y reveals causal influence
from Y to X).

The key assumption of cross mapped indices is that causal
relationships are observed in the similarity between sets of
(subscript) indices denoting the nearest neighbours for each
set of embedding vectors, which can be mapped from one
variable to the other to reveal interdependency. This is the
idea behind the similarity indices: two similarity indices we

test here, denoted SI(1)Y→X and SI(2)Y→X , are H(X |Y ) in Ref 29
and E(X |Y ) in Ref 30 respectively. Convergent cross map-
ping5 (CCM) computes the correlation ρ between the cross
mapped estimate and the true value, with convergence in ρ as
T increases “a key property that distinguishes causation from
simple correlation”5.

III. RESULTS

Our results are split into two parts. First, we reproduce the
results from Ref 19, evaluating the performance of all meth-
ods including the additional CTIR and CCM, plus ETE using
histogram binning and TE using KSG. In these simulations,
we choose the same simulation model parameters and causal-
ity index parameters as in Ref 19 (Table I). In the second part,
we investigate sensitivity to common issues relevant to real-
world data, using the Ulam lattice system to illustrate these.

A. Numerical simulations

We investigate performance on four simulated model sys-
tems (Table II). In each simulation, we assess the causality
estimates of each method by varying the coupling strength λ .
These simulated systems are widely studied in chaos theory,
e.g. Ref 38, and also appear elsewhere in the literature, e.g.
Ulam lattice in Ref 7.

Linear process:

xt+1 = bxxt +λ yt + εx,t , yt+1 = byyt + εy,t (1)

εx,t ∼ N(0,σ2
x ), εy,t ∼ N(0,σ2

y )

Ulam lattice:

st+1,l+1 = f (λ st,l +(1−λ )st,l+1), l = 1, . . . ,NL− 1 (2)

st+1,1 = f (λ st,NL
+(1−λ )st,1), f (s) = 2− s2

xt = st,1, yt = st,2

Hénon unidirectional map:

xt+2 = a− x2
t+1 + bxxt (3)

yt+2 = a− (λ xt+1 +(1−λ )yt+1)yt+1 + byyt

Hénon bidirectional map:

xt+2 = a− x2
t+1 +λyx(x

2
t+1− y2

t+1)+ bxxt (4)

yt+2 = a− y2
t+1 +λxy(y

2
t+1− x2

t+1)+ byyt

We reproduce figures for all simulations and methods in Fig-
ures 3-5, and summarise our results in Figure 2, which shows
correlations between each pair of indices. For linear process
and Ulam lattice simulations, we report causality estimates in
both directions, i.e. iX→Y and iY→X (where i denotes any of
the causality indices). For Hénon maps, we instead use the
directed index DX→Y = iX→Y − iY→X , following Ref 19. In
general, all measures exhibit a small standard deviation rel-
ative to the absolute value of the index, indicating that ran-
dom initial conditions during data simulation has at most a
very small influence on the causal structure, when initial tran-
sients are discarded. Though we are able to replicate the
findings in Ref 19 in most cases, we occasionally find mi-
nor differences between their results and ours. In particular,
we sometimes find results of a similar profile but different
magnitude, as λ varies. We observe this for: EGC and lin-
ear processes; PI and all simulations, SI(1) and Ulam lattice;
TE and Hénon unidirectional maps. Though we handle nu-
merical outliers differently in our visualisation of results for
Hénon bidirectional maps, our results for these simulations
appear largely comparable in magnitude and profile. There is
no mention of a data standardisation step in Ref 19 and the
results we report do not involve any pre-processing, though
this did not appear to rectify these differences. In one no-
table difference between identical Hénon bidirectional map
results, Lungeralla et al.19 find a region in λ -space (namely
{(λxy,λyx) : λxy > 0.1, λyx > 0.1, λxy+λyx < 0.35}) in which
they identify general synchronisation between X and Y and
have difficulty estimating indices due to numerical instabili-
ties, yet we do not observe this. We have followed the im-
plementation in Ref 19 as closely as possible and it is unclear
why these differences exist.

We knowingly deviated from the implementations in Ref 19
only in the case of NLGC, in which we preferred to use k-
means rather than fuzzy c-means clustering to determine RBF
centers, after finding similar or improved results but with a
much reduced computational cost. Lungarella et al.19 note
that NLGC is numerically unstable for ‘small’ T and compu-
tationally expensive for ‘large’ T , which we suggest may be
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TABLE I. Causality indices in this review and their parameters. The indices are as follows (where GC is Granger causality): extended
GC (EGC), nonlinear GC (NLGC), predictability improvement (PI), transfer entropy (TE), effective transfer entropy (ETE), coarse-grained
transinformation rate (CTIR), similarity indices (SI) and convergent cross mapping (CCM). Table S.I (Supplementary materials) provides
more detail on the parameter choices for individual simulation results.

Method Parameters / other choices Notes / suggestions Values used here
All T Time series length Depends on data availability 10p, p = 3,4,5

Embedding h Time horizon value Normally h = 1, generalised to h≥ 1 (in PI) h = 1
All \ CTIR m Embedding dimension ‘Optimal’31 vs ‘empirical’ (m = 1, ... ,5) m = 1 or 2

τ Time-delay lag ‘Optimal’32 vs ‘empirical’ (τ = 1,2,3) τ = 1
EGC20 Nearest neighbour metric ℓp, may depend on state space / distribution ℓ1

L No. of neighbourhoods L = 100 in Refs. 19 and 20 (depends on T ) L = 20 or 100
δ Neighbourhood size Compute EGC for δ ↓ 0 (Ref 20) Various (Table S.I)

NLGC21 Radial basis function (RBF) Gaussian RBFs in Refs. 19 and 21 Gaussian
Regression P No. of RBFs e.g. gap statistics33 Various (Table S.I)
error xρ Gaussian RBF centers via k-means or fuzzy c-means clustering via k-means

σ2 Gaussian RBF variance A priori fixed e.g. σ2 = 0.05 in Refs 19 and 21 σ2 = 0.05
PI22 Nearest neighbour (NN) metric ℓp, may depend on state space / distribution ℓ2

R No. of NNs A priori unclear, e.g. R = 1,10 in Refs. 19 and 22 R = 1 or 10
h Time horizon value As above, e.g. h = 1 in Refs. 19 and 22 h = 1

Information Estimation Estimation method e.g. KSG, histogram partition Both (H / KSG)
theory Nearest neighbour metric (KSG) ℓ∞ (for hypercube dimensions)27 ℓ∞

k No. of NNs (KSG) Small values e.g. k = 2,3,427 k = 4
N No. of bins (histogram) e.g. via minimum description length34,35 N = 8

TE7 n/a No parameters besides estimation (above) n/a
ETE23 Nshuffle No. of shuffled X or Y A priori unclear, single shuffle in Ref 23 Nshuffle = 10
CTIR26 τmax Max time-delay lag τmax : I(xt ,xt+τ ′)≈ 0, ∀τ ′ ≥ τmax

26 τmax = 5 or 20
τI , εI For estimation of τmax τmax = minτ ′{τ

′ ≤ τI : I(xt ,xt+τ ′)< εI} Unused, fixed τmax

Cross SI29,30 Nearest neighbour (NN) metric ℓp, may depend on state space / distribution ℓ2
mapped R No. of NNs A priori unclear, e.g. R = 10 in Refs. 29 and 30 Various (Table S.I)

CCM5 Nearest neighbour metric ℓp, may depend on state space / distribution ℓ2
Tmax Max. segment length Convergence: compute ρ for T ↑ Tmax

5 Tmax = T

nT No. segments of size T ρ values averaged across nT segments, size T nT = 40
ρ∞ Converged CCM value ρTmax in Ref 36 or fit exponential regression37 ρTmax (if ↓ holds)
δρ Convergence tolerance ‘Converged’ if ρ∞−ρm+2 > δρ δρ = 0.05

TABLE II. Brief summary of the characteristics of each numerical simulation model system and parameters (equations 1-4). The difference
between identical and non-identical Hénon bidirectional maps is the value of by (by = bx for identical maps and by < bx for non-identical
maps). In each simulation, the first 105 iterations were discarded as transients (104 for linear process). Each simulation is initialised randomly
but seeded for reproducibility. The coupling parameters were incremented by 0.01 in all cases, for each of 10 independent runs and all indices.
We use the following abbreviations in this table: I - identical maps; NI - non-identical maps; L & S - linear and stochastic; NL & D & C -
non-linear, deterministic and chaotic.

Simulation Coupling Dynamics T = 10p Simulation model parameters Coupling strength
Linear process X ←Y L & S p = 4 bx = 0.8, by = 0.4, σ2

x = σ2
y = 0.2 λ ∈ [0,1]

Ulam lattice X →Y NL & D & C p = 3,5 NL = 100 (size of lattice) λ ∈ [0,1]
Hénon uni-d X →Y NL & D & C p = 3,4,5 a = 1.4, bx = 0.3, by = 0.3 λ ∈ [0,1]
Hénon bi-d (I, NI) X ↔Y NL & D & C p = 4 a = 1.4, bx = 0.3, by = 0.3 or 0.1 λxy,λyx ∈ [0,0.4]

partly due to their use of fuzzy c-means. Little detail is pro-
vided about their implementation of this but it may perhaps
be that an early stopping criteria sometimes forces a ‘poor
quality’ clustering. Further, we found that the performance
of NLGC in Hénon bidirectional map simulations improved
significantly with a different set of NLGC parameters (e.g.
P = 50 instead of P = 10), though we do not present these
alternate results.

For the linear process (LP), the simplest simulation model,
all indices show very strong positive correlation in the Y → X

direction (Figure 3). In the reverse X → Y direction, TE and
CTIR both decrease with increasing λ , the cross mapped in-
dices all show a marked increase and the remaining indices
are approximately zero for all λ . This gives rise to patterns
of positive and negative correlation between pairs of meth-
ods. As each xt or yt is a sum of Gaussian variables, we
can derive theoretical values for Shannon entropy and, con-
sequently, for the information theory methods (see Supple-

mentary Materials). Figure 3 shows that TE (KSG) reliably
estimates the ‘true’ transfer entropy but TE (H) significantly
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FIG. 2. Correlations between each of the causality indices, for all simulations: linear process (LP), Ulam lattice (UL) and Hénon unidirectional
maps (HU), identical/non-identical Hénon bidirectional maps maps (HB (I)/HB (NI)). For several of the simulated systems, simulations were
repeated for increasing data size T . In each subplot, the lower left half below the diagonal shows the Pearson correlation between each pair
of indices (across all runs and values of λ ) and the upper right half shows the rank-based Spearman correlation. Both iX→Y and iY→X are
shown for LP and UL simulations but only DX→Y = iX→Y − iY→X was computed for HU and HB. In the final bottom right subplot, we average
correlations in DX→Y for each simulation, weighting each simulation equally.

underestimates the theoretical values. This is a fundamental
flaw that undermines any other advantageous properties of TE
(H). Though computed CTIR values match the theoretical val-
ues, it is clearly negative in X→Y and as such does not reflect
the causal structure of the system. Increasing the size of the
data T alters the value of TE (H) here, but TE (KSG) remains
accurate as T increases. However, in all other simulations, TE
(H) is more robust to increasing data size.

The Ulam lattice (UL) chains together unidirectional cou-
pled chaotic Ulam maps. For large NL, the causal influence
from Y to X is negligible. UL exhibits synchronisation for
λ ≈ 0.18, 0.82, where cause and effect variables are indis-
tinguishable from each other, e.g. the system converges to a
two state attractor. As a result, most indices either have values
approximately equal to zero or suffer from high variance nu-
merical instabilities. Outside of these regions of synchronisa-
tion, the information theoretic methods and regression based
indices show reasonable consistency (Figures 2 and 4). The
exception is CTIR, which slowly decreases as λ increases for
T = 105, albeit still correctly identifying the direction of in-

formation flow. ETE (H) successfully corrects for the small
sample effects that give rise to these spurious positive TE (H)
results in the Y → X direction when T = 103. Both similar-
ity indices fail to identify any causal structure in the UL. For
CCM, whilst the net directed index DX→Y increases with λ , it
is negative for λ < 0.5, and so misidentifies the direction of
causality. The positive correlations between methods in iY→X

for T = 105 occur due to a very slight peak in value at λ ≈ 0.5
for nearly all methods (except CTIR and EGC).

Synchronisation occurs in the range λ ∈ [0.7,1] for Hénon

unidirectional maps (Figure 4). All indices are consistent and
perform reasonably well and we do not observe the noisy fluc-
tuations seen in Ref 19, apart from for EGC when λ > 0.7. It
is notable that about half the indices (TE (H), ETE (H), EGC,
NLGC, PI) are fairly consistent even as the order of magni-
tude of the data size T is increased, whilst the values of the
other indices (TE (KSG), CTIR, SI, CCM) increase, in some
cases tripling in value. There is a strong degree of similar-
ity between all methods for the Hénon bidirectional maps
(Figure 5). In HB (I) simulations, the exceptions to this are
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FIG. 3. Linear Gaussian processes with T = 104 data points and unidirectional (Y→X) coupling. Error bars report ±1 empirical standard
deviation from mean values, after 10 independent simulations from the LP system. Simulation parameters are given in Table II and parameters
for each causality index are given in Table S.I. We have derived analytic solutions for all the information theoretic indices: TE (H), ETE
(H), TE (KSG) and CTIR, which are shown as dashed lines. Note that for TE (KSG) and CTIR, the computational results match the analytic
solutions almost exactly, and the dashed lines overlay the solid.

NLGC and CCM, though we found that setting a larger num-
ber of RBFs resulted in better performance for NLGC. For
CCM, the direction of causality is sometimes incorrect and
the reason for this is unclear, though this may also be a result
of poor parameter choices. We observe expected symmetry
in the values of λ , and synchronisation in the region approx-
imately equal to {(λxy,λyx) : λxy + λyx > 0.28}. There are
a small number of points in which numerical instabilities are
present in all indices, but the consistency across all indices
suggests that these are isolated points in which the system
converges to some limit cycle or attractor. There are more
differences between methods in HB (NI) results. Significant
numerical instabilities occur in EGC, particularly when the
system is in a state of synchrony: the region approximately
equal to {(λxy,λyx) : 0.05 < λxy < 0.15, 0.1 < λyx < 0.28}
Outside of this region, EGC is broadly similar to the infor-
mation theoretic indices, which are highly correlated, and to a
slightly lesser degree with SI(1) and the PI. In contrast, NLGC,
SI(2) and CCM have unusual results. The first of these is neg-
ative almost everywhere (even in a repeat analysis with more
RBF kernels) and the latter two are mostly non-negative, and

moreover the regions with the most extreme values occur in
quite different places in all three.

Computational burden

An important consideration in selecting a suitable method
is any trade-off between performance and computational ef-
ficiency. The most significant factor in this is often how the
algorithmic cost of each method scales with increasing data
size T . Table S.II shows the mean and standard deviations
of the time taken to compute each index and simulation. TE
(H)/ETE (H) is the fastest in almost all cases, even though
this calculation also includes 10 reshuffles and recomputations
for ETE (H). CCM, EGC and TE (KSG) are similarly among
methods with smaller computational cost. Several methods
have extreme values in UL simulations with T = 105, par-
ticularly CTIR and PI, but this is distorted by difficulties in
computation when the system is in a synchronised state. We
observed a marked difference in computational cost for NLGC
when using k-means for clustering instead of fuzzy c-means
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and we suggest that k-means is more suitable here. Our com-
putation was done in a high performance CPU computing
cluster using SkyLake 6140 with 18 core 2.3GHz processors
and 384GB of RAM. Although the computational times we
report may be slightly faster than on a laptop computer with
less processing power, we did not observe any substantial dif-
ference when internally comparing run times.

Real-world relevant data issues

Next, we investigated the sensitivity of all causality indices
to a number of modifications mirroring issues that often arise
in real-world data. We choose UL with T = 103 to illustrate
the effects of these transformations, as LP is too simplistic
a model to give sufficient insight. We keep all simulation
parameters and causality index parameters the same. In Ta-
ble III, we summarise the means µ̂ and standard deviations
σ̂ of the directed indices DX→Y for each λ , which are nor-
malised by their deviation from the ‘base’ UL results and av-
eraged over all λ . This normalisation allows us to compare
across methods that take values in different ranges.

1. Data availability

Many of the indices, with the exception of TE (KSG) and
CTIR, remain consistent with increasing data size T , whilst
at the same time exhibit decreasing variance. These results
reinforce the similar observations in HU maps. The large in-
creases in the value of the two methods mentioned is concern-
ing and represent a drawback of both methods that should be
acknowledged in applications of these approaches. It is un-
clear whether there is convergence to some ‘correct’ value as
the amount of data increases or whether both are unbounded
as T → ∞, but initial computations do not support the former
(not shown). Though the DX→Y values from both transfer en-
tropy methods are highly correlated, they are both estimates of
the same quantity and it is difficult to reconcile their different
magnitudes, particularly as we have already seen significant
underestimation in TE (H) for LP simulations.

2. Standardisation and scaling

In the second set of experiments, we perform three tests:
standardising both series by their sample mean and standard
deviation in the first, and separately scaling each unstandard-
ised time series by a factor of 10 (Figure S2). For the Ulam
lattice system, sample means for both X and Y are typically
between 0.4 and 0.7 and standard deviations are both approxi-
mately equal to 1.2 (except when the system is in synchrony).
Several methods are invariant under linear scaling or shifting
of the original series X and Y , including cross mapping ap-
proaches. Information theoretic measures are also invariant
in theory, but the KSG algorithm, based on k-nearest neigh-
bours, does not retain this property. Similarly, EGC relies on
a neighbourhood size parameter, and scaling the data without

changing this parameter accordingly can result in insufficient
points available for the locally linear regressions, as is ob-
served when either X or Y is scaled by 10. The directed index
for both NLGC and PI has vastly inflated magnitude when Y

is scaled by 10. With this in mind, we recommend standard-
isation or normalisation of the data before employing these
methods.

3. Rounding error and missing data

We perform three experiments to investigate rounding error,
first rounding each time series separately to 1 decimal place
and then rounding both to 2 decimal places (Figure S3). TE
and both GC extensions have similar performance to the base-
line in all cases, whilst CCM suffers the most. In two experi-
ments with missing data of 10% and 20%, all methods appear
robust to this.

4. Noisy data

In the case of the earlier LP simulations, Gaussian noise
forms an integral component of the system itself and the theo-
retical expression for TE shows that this depends only on the
ratio of the variances σx/σy (see Supplementary Material).
However, this noise is inherent in the simulation process (i.e.
it does not arise in observation of the system). In our UL
experiments, we added additional Gaussian noise after simu-
lation. The inclusion of this ‘observation’ noise does not alter
the state of the system or the information flow between vari-
ables but it does obscure the causal structure. In the first of
these experiments (Figure S3), in which we added small vari-
ance Gaussian noise (σG = 0.1), the amplitude of this noise is
an order of magnitude less than the original UL values and the
inclusion of this noise has a small effect for all indices. In the
latter experiments, we added Gaussian noise (with σG = 1) to
each variable individually and the effect is more pronounced.
NLGC performs best in general and appears very resilient to
noise added to Y (effect variable), though it drops slightly in
value when Gaussian noise is added to X (cause variable). It
is interesting that the two SI have quite different results, with
SI(1) more robust to noise, though both methods are not in
general able to successfully identify the direction of causality.

DISCUSSION

In-depth comparative studies of this kind are relatively rare
in the mathematical literature (examples include Refs. 17 and
39), particularly in evaluating performance of methods for es-
timating a concept, such as causality, that does not have a
consistent, fundamental mathematical definition. Even with-
out this, causal inference has a huge importance in how we
can model, predict and exploit real-world applications from
many scientific disciplines. Asymmetric bivariate causal in-
ference is the first key step to providing this insight into inter-
actions between components in complex networks. In the con-
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TABLE III. Summary of all results from experiments into the effects of data size, scaling, rounding, missing data and Gaussian noise. Taking
the Ulam lattice (T = 103) as a baseline, we recompute the causality indices across 10 independent experimental runs for each λ ∈ [0,1] as
before. For each λ , we compute the mean, µ̂ , and standard deviation, σ̂ , of directed indices DX→Y . We subsequently compute the deviation
from the baseline µ and σ , reporting the average of these over the λ values (excluding the few λ values where the system exhibits general
synchronisation). We normalise deviations between µ and µ̂ by the absolute value of µ , with f (µ, µ̂) = 〈µ− µ̂〉/〈|µ|〉 and g(σ , σ̂ ) = 〈σ̂〉/〈σ〉,
where 〈·〉 is the mean over λ . If the modified simulation returns the same values as the baseline, then f = 0 and g = 1. All entries except in
the column for the baseline T = 103 report these f and g values.

Baseline Data size Scaling Rounding Missing data Gaussian noise
Method T = 103 T = 105 Stand. D10X→Y DX→10Y 1 d.p. 1 d.p. 2 d.p. 10% NA 20% NA σ2

G = 0.1 σ2
G = 1 σ2

G = 1
X,Y X Y X,Y X,Y X,Y X,Y X Y

EGC 〈µ〉 = 0.840 f (µ, µ̂) -0.064 0.036 0.207 -0.071 0.031 0.112 0.004 -0.027 -0.040 0.533 0.981 0.950
〈σ〉 = 0.021 g(σ , σ̂ ) 0.660 1.004 1.425 0.691 0.959 0.946 0.970 1.023 1.033 1.025 0.473 0.598

NLGC 〈µ〉 = 0.610 f (µ, µ̂) 0.013 0.299 2.905 -101.849 0.000 -0.003 0.001 -0.008 -0.020 0.031 0.740 -0.007

〈σ〉 = 0.023 g(σ , σ̂ ) 0.089 0.608 64.469 126.734 1.000 0.954 0.994 1.353 1.906 1.023 1.345 2.325
PI 〈µ〉 = 0.380 f (µ, µ̂) 0.002 0.293 1.576 -98.727 0.950 -0.951 -0.016 0.001 0.005 0.011 0.617 0.019

〈σ〉 = 0.032 g(σ , σ̂ ) 0.094 0.681 69.340 66.364 0.918 1.051 1.001 1.214 1.511 1.007 2.041 2.120
TE (H) 〈µ〉 = 0.675 f (µ, µ̂) -0.158 0.000 0.000 0.000 0.011 0.030 0.000 0.071 0.159 0.026 0.786 0.731

〈σ〉 = 0.019 g(σ , σ̂ ) 0.085 1.000 1.000 1.000 1.004 0.994 1.013 1.313 1.633 1.112 1.015 0.920
ETE (H) 〈µ〉 = 0.674 f (µ, µ̂) -0.158 0.000 0.000 0.000 0.014 0.026 0.000 0.075 0.155 0.026 0.748 0.774

〈σ〉 = 0.019 g(σ , σ̂ ) 0.083 1.000 1.000 1.000 0.992 0.994 1.009 1.296 1.634 1.109 0.947 0.854
TE (KSG) 〈µ〉 = 1.509 f (µ, µ̂) -1.348 0.000 0.269 0.609 0.095 -0.134 -0.029 0.111 0.216 0.306 0.841 0.863

〈σ〉 = 0.025 g(σ , σ̂ ) 0.120 1.071 0.869 1.026 1.232 1.320 1.042 1.197 1.430 1.028 1.017 0.962

CTIR 〈µ〉 = 0.462 f (µ, µ̂) -1.226 0.000 0.128 0.713 0.299 -0.355 -0.026 0.083 0.161 0.273 0.826 0.848
〈σ〉 = 0.014 g(σ , σ̂ ) 0.110 1.016 0.898 0.920 1.159 1.209 1.042 1.076 1.258 0.958 0.942 0.872

SI(1) 〈µ〉 = 0.001 f (µ, µ̂) 0.015 0.000 0.000 0.000 0.549 -0.556 0.005 -0.013 0.018 -0.007 -0.061 0.066
〈σ〉 = 0.029 g(σ , σ̂ ) 0.097 1.000 1.000 1.000 1.363 1.355 1.053 1.084 1.219 0.895 0.705 0.693

SI(2) 〈µ〉 = 0.000 f (µ, µ̂) 0.029 0.000 0.000 0.000 -3.105 3.121 -0.001 -0.037 0.017 0.000 -8.256 7.736
〈σ〉 = 0.000 g(σ , σ̂ ) 0.000 1.000 1.000 1.000 1.394 1.399 1.074 1.666 2.630 0.968 2.334 2.018

CCM 〈µ〉 = 0.001 f (µ, µ̂) 0.031 0.000 0.000 0.000 -1.249 1.289 -0.005 -0.009 -0.025 0.013 0.151 -0.075
〈σ〉 = 0.047 g(σ , σ̂ ) 0.103 1.000 1.000 1.000 1.115 1.105 0.740 1.090 1.250 1.010 0.944 0.959

text of causality indices, review papers15–17 have previously
had a narrower focus in some manner, for example on only
one group of methods or on a few bivariate methods and their
multivariate extensions. We follow the template of Ref 19 in
reviewing methods drawn from diverse mathematical founda-
tions, but we extend this review with additional methods and
crucially we investigate the impact of common issues that are
relevant to real-world data. In reproducing and updating their
work, we are also able to resolve some computational stabil-
ity issues and comment on the computational costs of each
method, whilst we also make our code publicly available for
other researchers to develop further.

Further work

A primary concern in causality inference is the difficulties
with model misspecification, specifically causal identification
in multivariate systems. Omission of confounding variables
can create spurious false-positive causal relationships. There
may also be redundancy across multiple variables that provide
similar information to the effect variable or sets of variables
that interact synergistically such that their combined causal in-
fluence is greater than the ‘sum of their parts’. These are key
concerns outlined in Ref 16 and, consequently, results from
bivariate indices cannot be definitively interpreted as the ex-

istence of a fundamental direct causal relationship between
two variables29. A key avenue for further work is to advance
this analysis beyond a bivariate setting by including possi-
ble confounding variables, in line with conditional extensions
to Granger causality9,20,40,41 and transfer entropy42. Recent
work with graphical models of multivariate systems2 is an im-
portant step towards high-dimensional causal identification.

Separate univariate embedding is not without some limi-
tations and is not necessarily the optimal multivariate em-
bedding. Aside from in Ref 43, mixed embeddings are as
yet uncommon in causality estimation. There is not yet a
theoretical framework for longitudinal data that is recorded
non-simultaneous and irregularly. Often, a typical workflow
for such data involves pre-processing to transform the data
into a multivariate series with constant time intervals. How-
ever, many imputation methods result in significant and poorly
quantified biases in information content and flow, which in-
evitably propagate through to estimates of causality, and more
work is needed to explicitly factor this into a causal inference
framework.

Summary and recommendations

Each causality index has strengths and weaknesses, and
there is no single method whose all-round performance ex-
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ceeds all others. Transfer entropy and Granger causality have
long been regarded as the leading methods for systems that
contain a small number of variables, and these have had wide
applications8,9,14. Transfer entropy has the distinct advantage
that it is built upon the principles of Shannon entropy in a
well-established and universal information theoretic frame-
work. It performs solidly throughout, though there is some
tension between algorithms for TE, with the estimates rarely
in complete agreement. We have shown that a histogram fixed
partition approach is biased even in the simplest model, de-
spite TE (H) having general consistency and computation-
ally efficiency. Therefore, we recommend the KSG algorithm
for transfer entropy computation, unless perhaps data is ex-
tremely scarce (T < 103). However, there are some unan-
swered concerns about TE (KSG), particularly that it appears
to increase in magnitude as more data is available. TE (KSG)
also suffers in performance when data is unequally scaled,
due to the resultant difficulties with identifying unique nearest
neighbours. CTIR, whilst sometimes not wholly dissimilar in
value from TE, did not seem to offer any obvious advantage
to compensate for its much higher computational cost or occa-
sional unusual behaviour. Vanilla GC is widely favoured but
has restrictive assumptions and is ill-suited to complex non-
linear problems. Of the two nonlinear extensions to Granger
causality, Lungarella et al.19 appear to prefer EGC. Some of
the computational challenges and numerical instability that
they experienced with NLGC may have been a result of their
choice of a fuzzy c-means for determining RBF kernels, and
alternate parameter choices appear to resolve some of their
concerns. We find that NLGC is one of the most robust meth-
ods to rounding error, missing data and Gaussian noise. They
rightly note that "If the rank of the data is small, kernel based
methods tend to overfit"19, but we did not observe any issues
with this in our simulation experiments. Predictability im-
provement (PI) likewise performed solidly, and has a slight
advantage amongst the regression based indices in that it that
it is perhaps less reliant on parameter choices. Finally, dynam-
ical systems theory offers a different insight into causal infer-
ence that should not be readily dismissed despite our mixed
results here, even though the deterministic simulation mod-
els appeared to be well-suited to the underlying theory. Con-
vergent cross mapping is a more recent and popular method,
and this offered a broad improvement on the similarity indices
(SI), which did not consistently identify the strength or direc-
tion of causality. However, CCM too did not always manage
to determine the correct causal flow in our simulations.

We have highlighted the value of a standardisation pre-
processing step in in avoiding algorithmic issues, which is also
important in comparing results from different data for each
method. Rounding error gives rise to practical issues within
the implementation of several of the algorithms. For instance,
in k-nearest neighbour approaches it is typically assumed that
the distances between pairs of points are unique and not dis-
crete. Subsequent edge cases can be treated by adding ran-
dom noise with low amplitude to the data before estimating
the causal relationships27, though propagation of this noise to
final estimates is something that should be analysed. Like-
wise, many existing implementations of the methods are not

equipped to handle missing data (e.g. Refs. 42 and 44). We
believe this is broadly straightforward to implement across all
indices, as it can be handled exclusively within the time-delay
embedding vector step, by performing an embedding and then
removing any embedding vectors missing at least one compo-
nent. As Mönster et al.37 put it, "Noise in real-world data
is ubiquitous, the inclusion of noise in model investigations
has been largely ignored". Added Gaussian noise leads to
the biggest changes in value for most methods, particularly
noise at observation in the causal variable. However, provided
the magnitude of noise is small compared to the values them-
selves, all methods perform adequately.

On the basis of this work, we conclude that the strongest
choice for identifying and quantifying bivariate causal rela-
tionships is, in our view, either transfer entropy (KSG) or
nonlinear Granger causality. Predictability improvement is
a reasonable alternative and perhaps the next best candidate.
A more cautious approach may involve using more than one
method, from different theoretical backgrounds. Where pos-
sible, it is advantageous to identify a base case for the system,
which subsequent results can be reliably compared against.
For new methodologies, we recommend investigation into the
real-world issues we have discussed.

CODE AND DATA AVAILABILITY

Our code is openly available at the GitHub repository
https://github.com/tedinburgh/causality-review
and Ref 45. The data that support the findings of this study
are openly available at the same repository. A CODECHECK
certificate is available confirming that the computations
underlying this article could be independently executed:
doi.org/10.5281/zenodo.4720843.

Existing open-access code for some indices include repos-
itories for information theory and transfer entropy: IDTxl42

v1.1, PyIF46; and for convergent cross mapping: pyEDM44

v1.7.4. We also adapted fuzzy c-means code based on Ref 47.
We checked our results for transfer entropy and convergent
cross mapping against those from IDTxl and pyEDM respec-
tively. All code in our repository and in these others is Python.

SUPPLEMENTARY MATERIALS

Our supplementary materials contains additional tables and
figures. Tables S.I and S.II show full parameter choices and
computational time requirements of each method respectively.
Figures S1-3 show the results of real-world relevant transfor-
mation experiments. The supplementary materials also con-
tain theoretical results for information theoretic measures in
the linear process simulation.
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