
PERSPECTIVE

Causality matters in medical imaging
Daniel C. Castro 1✉, Ian Walker1 & Ben Glocker 1✉

Causal reasoning can shed new light on the major challenges in machine learning for medical

imaging: scarcity of high-quality annotated data and mismatch between the development

dataset and the target environment. A causal perspective on these issues allows decisions

about data collection, annotation, preprocessing, and learning strategies to be made and

scrutinized more transparently, while providing a detailed categorisation of potential biases

and mitigation techniques. Along with worked clinical examples, we highlight the importance

of establishing the causal relationship between images and their annotations, and offer step-

by-step recommendations for future studies.

T
remendous progress has been achieved in predictive analytics for medical imaging. With
the advent of powerful machine-learning (ML) approaches such as deep learning, stag-
gering improvements in predictive accuracy have been demonstrated for applications such

as computer-aided diagnosis1 or assisting radiotherapy planning and monitoring of disease
progression via automatic contouring of anatomical structures2. However, two of the main
obstacles for translating these successes to more applications and into wider clinical practice
remain: data scarcity, concerning the limited availability of high-quality training data required
for building predictive models; and data mismatch, whereby a model trained in a lab environ-
ment may fail to generalise to real-world clinical data.

Let us exemplify with a hypothetical scenario how these obstacles may arise in practice and
pose real threats to the success of research projects. Suppose a team of academic radiologists is
excited about the opportunities artificial intelligence seems to offer for their discipline. In a
recent study, the clinical team was able to demonstrate the effectiveness of using human
interpretation of magnetic resonance imaging (MRI) for diagnosis of prostate cancer, yielding
higher sensitivity and specificity than a conventional diagnostic test, as confirmed via ground-
truth labels from histopathology. Motivated by these results, the team decides to approach a ML
research lab with the idea of developing a tool for automated, MRI-based diagnosis of prostate
cancer. Because reading MRI requires advanced training and experience, they hope such a
system may facilitate widespread adoption of MRI as a novel, accurate, and cost-effective tool for
early diagnosis, especially in locations with lower availability of the required human expertise.

The clinicians still have access to their previous study data, and are confident this may be used
for ML development. Unfortunately, the sample size is small—there are insufficient pairs of
images and diagnosis labels to train a state-of-the-art deep learning image classification method.
However, the clinicians have access to large amounts of (unlabelled) routine MRI scans. The ML
researchers are hopeful they can additionally leverage this data in a so-called semi-supervised
learning strategy. After a pilot phase of development, the team is planning to evaluate their
method in a large multi-centre study.
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What are the chances of success for their project, and how
could a causal analysis help them to identify potential issues in
advance? Regarding the limited availability of annotated data,
here the team may be lucky in successfully exploiting the unla-
belled data thanks to the anticausal direction between images and
confirmed diagnosis labels (as we will discuss later in more
detail). However, major obstacles may arise due to data mismatch
between the ML development and clinical validation stage,
resulting from specific inclusion criteria (selection bias), varying
patient populations (e.g. changes in demographics), and pre-
valence of disease (e.g. due to environmental factors). Identifying
these issues is important for properly designing prospective
validation studies. Although researchers are generally aware of
the adverse effects of such differences in aspects of the data, they
may be unaware that causal reasoning provides tools for laying
out any underlying assumptions about the data-generating pro-
cess in a clear and transparent fashion, such that any issues can be
more easily identified beforehand and possibly resolved by
employing suitable data collection, annotation and ML strategies.

In this article, we discuss how causal considerations in medical
imaging can shed new light on the above challenges—illustrated
with cartoon examples in Fig. 1—and help in finding appropriate
solutions. In particular, we demonstrate how the causal structure
of a task can have profound, and sometimes surprising, con-
sequences on the soundness of the employed ML approach and
resulting analysis. We highlight that being aware of causal rela-
tionships, and related issues such as dataset shift and selection
bias, allows for systematic reasoning about what strategies to
prefer or to avoid. Here, the language of causal diagrams provides
explicit means to specify assumptions, enabling transparent
scrutiny of their plausibility and validity3. It is in fact a natural
way of defining the relationships between variables of interest,
because it reflects the expert’s knowledge of the biological and
logistical processes involved in the generation and collection of
data, and has been successfully applied for building models for
decision-making in healthcare, for example4,5. We hope our work
can serve as a practical guide and inspire new directions for
research in medical imaging.

Causality matters
Before diving into details of the challenges of data scarcity and
data mismatch, the causal properties of the core predictive task
must be analysed. In particular, one must pay close attention to
the relationship between the inputs and targets of the devised
model. Readers less familiar with causal reasoning may refer to
Box 1 for a brief background and introductory references.

Predictive analytics in medical imaging. The focus of this article
is on predictive modelling: given an image X, train a model to

predict some given annotation Y. Specifically, we wish to estimate
the conditional probability distribution P(Y∣X) by fitting a sta-
tistical model with a suitable objective function. This formulation
encompasses a variety of common medical image analysis tasks,
such as semantic segmentation (i.e. contouring of structures of
interest), disease classification, outcome prediction, and
many more.

In this context, it is worth clarifying some terminology
regarding the data that is used for development and after
deployment, in order to avoid confusion of some terms that are
sometimes used differently in clinical and ML communities. We
refer to an annotated dataset with pairs (X, Y) as the development
data, which is used to train and test a predictive model in a lab
environment. In ML workflows, the development data is typically
split into training, validation and hold-out test sets. The training
set is used to learn the model parameters (e.g. the weights in a
convolutional neural network), whereas the validation set is used
during training to monitor the learning progress and avoid
overfitting to the training set. The test set is used only after
training is completed, in order to quantify the performance of the
model on ‘unseen’ data. It is prudent to avoid re-using the test
data in development cycles as it can lead to unrealistic
performance estimates6.

Importantly, the assumption that the performance of a trained
model on the development test set is representative of the
performance on new clinical data after deployment in varying
environments is often violated due to differences in data
characteristics, as discussed earlier. It is therefore absolutely
critical to be able to clearly formalise and communicate the
underlying assumptions regarding the data-generating processes
in the lab and real-world environments, which in turn can help
anticipate and mitigate failure modes of the predictive system.

Causality in medical imaging. Given the specification of the
input images, X, and the prediction targets, Y, it is imperative to
determine which is the cause and which is the effect. Using the
categorisation in ref. 7, we wish to establish whether a task is

● Causal: estimate P(Y∣X), when X → Y (predict effect from
cause); or

● Anticausal: estimate P(Y∣X), when Y → X (predict cause from
effect).

The answer is crucial to all further causal analysis of the problem,
and has a strong impact on the applicability of semi-supervised
learning8,9 (discussed later) and on whether generative or
discriminative models should be preferred10.

Recall the definitions of cause and effect: if the annotation
could have been different by digitally editing the image before-
hand, then one can conclude that the image causes the
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Fig. 1 Key challenges in machine learning for medical imaging. a Data scarcity and b–d data mismatch. X represents images and Y, annotations (e.g.

diagnosis labels). Ptr refers to the distribution of data available for training a predictive model, and Pte is the test distribution, i.e. data that will be

encountered once the model is deployed. Dots represent data points with any label, while circles and crosses indicate images with different labels (e.g.

cases vs. controls).
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annotation. For example, manual segmentation masks are drawn
over the image by visual inspection and would evidently be
influenced by certain pixel changes. On the other hand, a
pathology lab result would be unaffected by such manipulations.
Images and targets may alternatively be confounded, i.e. descend
from a common cause. This relationship is often treated similarly
to the anticausal case7.

It is generally possible to discern causal structures only when we
are aware of the acquired data’s background details, as meta-
information plays a fundamental role in understanding the data
generation and collection processes. A recently compiled ontology
of medical imaging meta-information11 contains several attributes
that can help characterise the predictive causal direction in an
imaging study, such as field of application and task category (e.g.
lesion detection for screening, segmentation for treatment plan-
ning), as well as details about the annotation process (manual vs.
(semi-)automatic vs. laboratory; image-wide vs. pixel-wise annota-
tions; factors affecting reliability; etc.). Let us further illustrate this
discussion with two practical examples, depicted in Fig. 2.

Worked clinical examples. Consider a skin lesion classification
task, wherein a set of dermoscopic images (X) is collected along
with histopathology diagnosis for melanoma following biopsy
(Y). Here, Y is a gold-standard proxy for the true presence of skin
cancer, and as such can be considered as a cause of the visual
appearance of the lesion, X. This task is therefore anticausal (note

the arrow directions in Fig. 2a). Further, routine dermoscopic
examination of pigmented skin lesions typically results in a
‘benign’, ‘suspicious’, or ‘malignant’ label. Prediction of such
labels would instead be causal, as they are obtained visually and
could be affected if the images were digitally manipulated.

Box 1 | Brief background on causal reasoning
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Causal reasoning is the process of analysing the data-generating process in terms of cause–effect relationships. One can formalise causation as follows:

a variable A is a direct cause of variable B, written A → B, if forcing A to different values changes the likelihood of B, all else held constant31. In other

words, B (say, an outcome) is assumed to have a mechanistic dependence on A (say, exposure) and potentially also on other factors and on

independent noise64. Crucially, A → B entails that the distribution of the cause, P(A), does not inform or influence the conditional P(B∣A), a principle

known as independence of cause and mechanism64,67.

Taking this a step further, the postulated causal links between multiple variables form a directed acyclic graph (DAG), called a causal diagram. Such

graphs encode assumptions about direct and indirect causal links and capture probabilistic information about variables such as conditional

independences. To illustrate this more concretely, let us analyse some canonical relationships between three variables. If A (say, exposure to sunlight)

affects a variable C (say, skin cancer) indirectly through its impact on B (damage to the skin cells), illustrated with the causal diagram in panel a, we say

B is a mediator and A is an indirect cause of C. Here, B completely screens off the effect of A on C, meaning A ⫫ C∣B (read ‘A is conditionally independent

of C, given B’). Alternatively, assume A is a common cause of B and D (say, vitamin D levels), represented by the causal diagram in panel b. In this case,

A is known as a confounder, producing an association between B and D, thus B ⊥̸ D (read ‘B is not independent of D’). However, controlling for A makes

them independent: B ⫫ D∣ A. Finally, consider the case wherein B is a common effect of A and E (say, genetic predisposition), illustrated in panel c. Here,

B is called a collider. Unlike the two situations above, this configuration implies A and E are independent a priori. On the other hand, conditioning on B

introduces an association between A and E, as they may now ‘explain away’ the effect of each other on the observed outcome, B (i.e. A ⊥̸ E∣B)31.

For more general graph structures, such as the full example diagram in panel d, one should reason in terms of paths (i.e. chains of nodes connected by

edges pointing in any direction), as they are the conduits for correlations propagated across the graph. Any path that does not contain a collider is said

to be unblocked or open, and implies a potential statistical association between its endpoints. Conversely, a path containing a collider is said to be

blocked or closed, and does not carry any indirect causal influence between its endpoints a priori65. If there are no unblocked paths between two

variables, we conclude they are independent. As mentioned above, however, conditioning on a collider (or on a descendant of one) may unblock

previously blocked paths.

A purely statistical perspective would be unable to distinguish all three configurations in panels a–c, making it difficult to decide what to control for. The

causal perspective, on the other hand, requires us to be clear about our assumptions and immediately reveals possible confounding. Under this model,

for example, although vitamin D levels are predictive of skin cell damage, taking vitamin supplements would be assumed to have no effect on the sun-

damaged DNA molecules. The fact that causal models allow us to enquire about the effects of interventions is what sets them apart from pure

statistical models, which are limited to studying correlations. This illustrates that careful considerations may be required when making decisions about

the data collection, sample selection, and subsequent analysis. With the ability to formalise causal concepts in clear mathematical and probabilistic

terms, causal reasoning opens the door for researchers to go beyond association by allowing them to incorporate domain expertise when answering

fundamental scientific questions. We refer the reader to ‘Methods’ section for a more detailed treatment of causality theory, including advice on using

domain knowledge to build their own causal graphs.

Skin cancer
Image

Suspicion

Biopsy

performed

Predicta

Segmentation
Image

Prostate

cancer

Train / test domain

Predict

b

Fig. 2 Causal diagrams for medical imaging examples. a Skin lesion

classification. b Prostate tumour segmentation. Filled circular nodes

represent measured variables, double circular nodes denote sample

selection indicators, and squares are used for sample domain indicators.

Here we additionally highlight the direction of the predictive task.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17478-w PERSPECTIVE

NATURE COMMUNICATIONS |         (2020) 11:3673 | https://doi.org/10.1038/s41467-020-17478-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Now recall our earlier example where a team of radiologists had
developed a new MRI-based diagnostic tool for prostate cancer.
This time the team aims to improve the cancer treatment via
radiotherapy by automating the planning process. Currently, the
patient MRI scans (X) need to be manually segmented by carefully
contouring the tumour regions and any organs-at-risk (Y). This
annotation is done by visual inspection and evidently depends on
image content, resolution, and contrast, for example, whereas
manually editing the segmentation masks would have no effect on
the images. These considerations allow us to conclude that image
segmentation is a case of causal prediction (X → Y; Fig. 2b).

For the two examples above, establishing the causal direction
between images and prediction targets seemed reasonably
straightforward. This is not always the case, and arguably in
many settings identifying whether the relationship is causal or
anticausal can be non-trivial, particularly if crucial meta-
information is missing. Consider the case when prediction targets
are extracted from radiology reports. At first, one may conclude
that the report reflects purely the radiologist’s reading of a
medical image, hence image causes report. However, their
conclusions could be based on additional information—poten-
tially even more important than the findings in the images—such
as blood tests or other diagnostic test results. In the context of
segmentation, an annotator’s knowledge about the grade of a
tumour might influence how certain boundaries will be
contoured, in which case an additional arrow from ‘prostate
cancer’ to ‘segmentation’ could be included. This would however
not alter the fact that the segmentations are a consequence of the
images (and diagnoses), thus the task remains causal. Or what if
image-derived diagnosis labels determined by an expert with long
years of experience are nearly identical to biopsy results? Could
these labels serve as proxies for the ground truth, configuring an
anticausal relationship? These instances highlight the importance
of investigating and modelling the full data-generating process to
make informed decisions about the causal relationships under-
lying the data. As there may not always be a single correct answer,
it is crucial to clearly communicate the assumptions we make so
these can be open to scrutiny.

Data scarcity
One of the notorious challenges in medical image analysis is the
scarcity of labelled data, in great part due to the high costs of
acquiring expert annotations or expensive lab tests, e.g. to confirm
initial diagnosis. The techniques often used to circumvent this
shortage, namely semi-supervised learning and data augmentation,
have markedly different properties under the lens of causality.

Tackling data scarcity via semi-supervision. Semi-supervised
learning (SSL) aims to leverage readily available unlabelled data in
the hope of producing a better predictive model than is possible
using only the scarce annotated data. Given this ambitious goal, it
is perhaps unsurprising that strong requirements need to be met.
Namely, the distribution of inputs needs to carry relevant infor-
mation about the prediction task—otherwise it would be pointless
to collect additional unlabelled data. This idea is typically
articulated in terms of specific assumptions about the data which
can be intuitively summarised as follows8: similar inputs (images
in our case) are likely to have similar labels and will naturally
group into clusters with high density in the input feature space.
Lower density regions in that space in-between clusters are
assumed to be ideal candidates for fitting decision boundaries of
predictive models. In this context, considering large amounts of
unlabelled data together with the scarce labelled data may reveal
such low density regions and may lead to better decision
boundaries than using labelled data alone.

Note how this idea insinuates an interplay between the
distribution of inputs, P(X), and the label conditional, P(Y∣X).
Now recall that, by independence of cause and mechanism, if the
prediction task is causal (X → Y), then P(X) is uninformative
with respect to P(Y∣X), and SSL is theoretically futile in this
case8,9. Since typical semantic segmentation tasks are causal, as
illustrated in our prostate cancer example, there is likely very little
hope that semantic segmentation can fundamentally benefit from
unlabelled data, which may relate to recent concerns raised in the
literature12. Intuitively, a model trained on image-derived
annotations will attempt to replicate the (most often manual)
annotation process, rather than to predict some pre-imaging
ground truth (e.g. ‘true’ anatomy). It is plausible, then, that seeing
more raw images without corresponding anatomical information
provides no new insight about the annotation mechanism.
Conversely, if Y→ X as for skin lesions, then these distributions
may be dependent, and semi-supervision has a chance of success9.
We conjecture that, in practice, anticausal problems are more
likely than causal ones to comply with the SSL assumptions
outlined above, as observed, e.g. among the datasets analysed in
ref. 10.

That is not to say that SSL is completely useless for causal
tasks, as there can be practical algorithmic benefits. Under
certain conditions, unlabelled data can be shown to have a
regularising effect, potentially boosting the accuracy of an
imperfect model by lowering its variance13, and may reduce the
amount of labelled data required to achieve a given perfor-
mance level14,15. To the best of our knowledge, there have been
no empirical studies systematically investigating the efficacy of
SSL in causal and anticausal medical imaging tasks, especially
for segmentation, hence further work is needed to validate
its gains.

A recent comprehensive empirical study12 reported that
properly tuned purely supervised models and models pre-
trained on related labelled datasets (i.e. transfer learning) are
often competitive with or outperform their semi-supervised
counterparts. It also demonstrated that SSL can hurt classification
performance under target shift (discussed later as prevalence
shift) between labelled and unlabelled sets. This suggests that
practitioners willing to apply SSL should be cautious of potential
target distribution mismatch between labelled and unlabelled
sets—e.g. unequal proportions of cases and controls or presence
of different pathologies.

Tackling data scarcity via data augmentation. In contrast with
SSL, data augmentation produces additional plausible (x, y) pairs
by systematically applying random, controlled perturbations to
the data. Because it provides more information about the joint
distribution, P(X, Y) rather than only the marginal P(X), it is
suitable for both causal and anticausal tasks, without the theo-
retical impediments of semi-supervised learning for causal pre-
diction. This now ubiquitous technique is a powerful way of
injecting domain knowledge to improve model robustness to
variations one expects to find in the test environment. Notably,
we can distinguish between augmentations encouraging invar-
iance and equivariance.

Many tasks require predictions to be insensitive to certain types
of variation. Examples include image intensity augmentations,
such as histogram manipulations or addition of noise, and spatial
augmentations (e.g. affine or elastic transformations) for image-
level tasks (e.g. regression or classification, as in the skin lesion
example). As these augmentations apply uniformly to all inputs x
without changing the targets y, their benefits stem from a refined
understanding of the conditional P(X∣Y), while contributing no
new information about P(Y).
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For other tasks, such as segmentation or localisation, predic-
tions must change similarly to the inputs, e.g. a spatial
transformation applied to an image x—such as mirroring, affine
or elastic deformations—should be likewise applied to the target y
(e.g. spatial coordinates or segmentation masks, as in the prostate
tumour example). Information is gained about the joint
distribution via its shared spatial structure, related to e.g.
anatomy and acquisition conditions.

Data mismatch
The recurrent issue of mismatch between data distributions,
typically between training and test sets or development and
deployment environments, tends to hurt the generalisability of
learned models. In the generic case when no assumptions can be
made about the nature of these differences, any form of learning
from the training set is arguably pointless, as the test-time per-
formance can be arbitrarily poor. Nonetheless, causal reasoning
enables us to recognise special situations in which direct gen-
eralisation is possible, and to devise principled strategies to
mitigate estimation biases. In particular, two distinct mechanisms
of distributional mismatch can be identified: dataset shift and
sample selection bias. Learning about their differences is helpful
for diagnosing when such situations arise in practice.

Data mismatch due to dataset shift. Dataset shift is any situation
in which the training and test data distributions disagree due to
exogenous factors, e.g. dissimilar cohorts or inconsistent acqui-
sition processes. As before, let X be the input images and Y be the
prediction targets. We use an indicator variable D for whether we
are considering the training (Ptr(X, Y)) or the test domain
(Pte(X, Y)):

PtrðX;YÞ :¼ PD¼0ðX;YÞ and PteðX;YÞ :¼ PD¼1ðX;YÞ: ð1Þ

For simplicity, in the following exposition we will refer only to
disparities between training and test domains. This definition can

however extend to differences between the development datasets
(training and test data) and the target population (after deploy-
ment), when the latter is not well represented by the variability in
the test data.

Moreover, when analysing dataset shift, it is helpful to
conceptualise an additional variable Z, representing the unob-
served physical reality of the subject’s anatomy. We then interpret
the acquired images X as imperfect and potentially domain-
dependent measurements of Z, i.e. Z → X.

Switching between domains may produce variations in the
conditional relationships between X, Y and Z or in some of their
marginal distributions. Based on the predictive causal direction
and on which factors of the joint distribution change or are
invariant across domains, dataset shift can be classified into a
variety of familiar configurations. Here we formulate the concepts
of ‘population shift’, ‘annotation shift’, ‘prevalence shift’,
‘manifestation shift’ and ‘acquisition shift’. These terms corre-
spond roughly to particular dataset shift scenarios studied in
general ML literature, namely ‘covariate shift’, ‘concept shift’,
‘target shift’, ‘conditional shift’ and ‘domain shift’, respectively16.
However, we believe it is beneficial to propose specific
nomenclature that is more vividly suggestive of the phenomena
encountered in medical imaging. By also explicitly accounting for
the unobserved anatomy, the proposed characterisation is more
specific and enables distinguishing cases that would otherwise be
conflated, such as population or manifestation shift versus
acquisition shift. The basic structures are summarised in Fig. 3
in the form of selection diagrams (causal diagrams augmented
with domain indicators)3, and some examples are listed in
Table 1. We hope this may empower researchers in our field to
more clearly communicate dataset shift issues and to more easily
assess the applicability of various solutions.

For causal prediction, we name population shift the case
wherein only intrinsic characteristics (e.g. demographics) of the
populations under study differ, i.e. Ptr(Z) ≠ Pte(Z). Fortunately,
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Fig. 3 Selection diagrams for dataset shift. a–c Causal and d–f anticausal scenarios, with corresponding factorisations of the joint distribution PD(X, Y, Z).

X is the acquired image; Y, the prediction target; Z, the unobserved true anatomy; and D, the domain indicator (0: ‘train’, 1: ‘test’). An unfilled node means

the variable is unmeasured.

Table 1 Types of dataset shift.

Type Direction Change Examples of differences

Population shift Causal PD(Z) Ages, sexes, diets, habits, ethnicities, genetics

Annotation shift Causal PD(Y∣X) Annotation policy, annotator experience

Prevalence shift Anticausal PD(Y) Baseline prevalence, case–control balance, target selection

Manifestation shift Anticausal PD(Z∣Y) Anatomical manifestation of the target disease or trait

Acquisition shift Either PD(X∣Z) Scanner, resolution, contrast, modality, protocol
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this case is directly transportable, i.e. a predictor estimated in one
domain is equally valid in the other17. An underfitted model (‘too
simple’) may however introduce spurious dependencies, for
which importance reweighting with pte(x)/ptr(x) is a common
mitigation strategy18,19. This approach is not without limitations,
however, as it requires access to Pte(X) and may rely on further
assumptions in order to truly correct for changes in P(Z).
Moreover, learning in this scenario makes sense only if the
variability in the training data covers the support of the test
distribution16—in other words, there are no guarantees about
extrapolation performance to modes of variation that are missing
from the training environment.

Under prevalence shift (for anticausal tasks), the differences
between datasets relate to class balance: Ptr(Y) ≠ Pte(Y). This can
arise for example from different predispositions in the training
and test populations, or from variations in environmental factors.
If the test class distribution Pte(Y) is known a priori (e.g. from an
epidemiological study), generative models may reuse the
estimated appearance model Ptr(X∣Y) (= Pte(X∣Y)) in Bayes’ rule,
and, for discriminative models, instances can be weighted by
pte(y)/ptr(y) to correct the bias in estimating the training loss.
Alternatively, more elaborate solutions based on the marginal
Pte(X) are possible18,20, or the unknown target prevalence Pte(Y)
may be approximated using the confusion matrix of a trained
predictive model21.

Cases of annotation shift involve changes in class definitions,
i.e. the same datum would tend to be labelled differently in each
domain (Ptr(Y∣X) ≠ Pte(Y∣X)). For example, it is not implausible
that some health centres involved in an international project
could be operating slightly distinct annotation policies or grading
scales, or employing annotators with varying levels of expertise
(e.g. senior radiologists vs. trainees). Without explicit assump-
tions on the mechanism behind such changes, models trained to
predict Ptr(Y∣X) evidently cannot be expected to perform sensibly
in the test environment, and no clear solution can be devised22. A
tedious and time-consuming calibration of labels or (partial) re-
annotation may be required to correct for annotation shift.

Another challenging scenario is that of manifestation shift,
under which the way anticausal prediction targets (e.g. disease
status) physically manifest in the anatomy changes between
domains. In other words, Ptr(Z∣Y) ≠ Pte(Z∣Y). As with annotation
shift, this cannot be corrected without strong parametric
assumptions on the nature of these differences.

We lastly discuss acquisition shift, resulting from the use of
different scanners or imaging protocols, which is one of the most
notorious and well-studied sources of dataset shift in medical
imaging23. Typical pipelines for alleviating this issue involve
spatial alignment (normally via rigid registration and resampling
to a common resolution) and intensity normalisation. In
addition, the increasingly active research area of domain
adaptation investigates data harmonisation by means of more
complex transformations, such as extracting domain-invariant
representations24,25 or translating between imaging modalities26

(e.g. synthesising MRI volumes from CT scans27). Note that

domain adaptation may fail or even be detrimental under changes
in class prevalence28.

Returning to the prostate cancer example, suppose our dataset
was collected and annotated for research purposes, employing a
high-resolution 3 T MRI scanner and containing a majority of
younger patients, and that the trained predictive model is to be
deployed for clinical use with conventional 1.5 T scanners. This is
a clear case of dataset shift, firstly because the images are expected
to be of different quality (acquisition shift). Secondly, because the
different age distribution in the target population entails
variations in prostate size and appearance (population shift). In
addition, the presence of both types of shift can lead to
confounding (Fig. 2b): a model trained on this data may
erroneously learn that image quality is predictive of the risk of
prostate cancer.

Data mismatch due to sample selection bias. A fundamentally
different process that also results in systematic data mismatch is
sample selection. It is defined as the scenario wherein the training
and test cohorts come from the same population, though each
training sample is measured (S = 1) or rejected (S = 0) according
to some selection process S that may be subject-dependent:

PtrðX;YÞ :¼ PðX;YjS ¼ 1Þ and PteðX;YÞ :¼ PðX;YÞ: ð2Þ

Some examples are presented in Table 2. The main difference to
standard dataset shift is the data-dependent selection mechanism
(Fig. 4), as opposed to external causes of distributional changes
(Fig. 3). In other words, the indicator variables in sample selec-
tion concern alterations in the data-gathering process rather than
in the data-generating process19.

Completely random selection simply corresponds to uniform
subsampling, i.e. when the training data can be assumed to
faithfully represent the target population (Ptr(X, Y) ≡ Pte(X, Y)).
Since the analysis will incur no bias, the selection variable S can
safely be ignored. We conjecture this will rarely be the case in
practice, as preferential data collection is generally unavoidable
without explicit safeguards and careful experimental design.

Table 2 Types of sample selection.

Type Causation Examples of selection processes Resulting bias

Random None Uniform random sampling None

Image X → S Visual phenotype selection (e.g. anatomical traits, lesions) Population shift

Image quality control (QC; e.g. noise, low contrast, artefacts) Acquisition shift

Target Y → S Hospital admission, filtering by disease, annotation QC, learning strategies (e.g. class balancing, patch

selection)

Prevalence shift

Joint X → S ← Y Combination of the above (e.g. curated benchmark dataset) Selection bias30

X Y

S

a
X Y

S

b

X Y

S

c
X Y

S

d

Fig. 4 Causal diagrams for different sample selection scenarios.

a Random; b image-dependent; c target-dependent; d jointly dependent. S = 1

indicates an observed sample, and plain edges represent either direction.
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Selection can be affected by the appearance of each image in
two different manners. We can select subjects based on
anatomical features—viewing the image X as a proxy for the
anatomy Z—which has similar implications to population shift.
Alternatively, selection criteria may relate to image quality (e.g.
excluding scans with noise, poor contrast, or artefacts), which is
akin to acquisition shift22. If selection is purely image-based
(X → S, cf. Fig. 4b), we may exploit the conditional independence
S ⫫ Y∣X, which implies that the predictive relation is directly
recoverable29, i.e. Pte(Y∣X) ≡ Ptr(Y∣X). In a learning scenario,
however, the objective function would still be biased, and
methods for mitigating the corresponding cases of dataset shift
can be employed. Relating back to the skin lesion example,
patients are referred for biopsy only if dermoscopy raises
suspicions. As inclusion in this study is image-dependent, a
dataset with ground-truth biopsy labels is not representative of
the overall distribution of pigmented skin lesions.

When selection is solely target-dependent (Y → S), we have
Pte(X∣Y) ≡ Ptr(X∣Y), and it can be treated as prevalence shift. This
will typically result from factors like hospital admission,
recruitment or selection criteria in clinical trials, or annotation
quality control. Notably, ML practitioners should be wary that it
can also arise as a side-effect of certain training strategies, such as
class re-balancing or image patch selection for segmentation (e.g.
picking only patches containing lesion pixels).

Sample selection can additionally introduce spurious associa-
tions when the selection variable S is a common effect of X and Y
(or of causes of X and Y): implicitly conditioning on S unblocks
an undesired causal path between X and Y (see Methods). This is
the classic situation called selection bias30 (cf. Berkson’s
paradox31), and recovery is more difficult without assumptions
on the exact selection mechanism. In general, it requires
controlling for additional variables to eliminate the indirect
influence of X on Y via conditioning on the collider S3,29.

Discussion
This paper provides a fresh perspective on key challenges in
machine learning for medical imaging using the powerful fra-
mework of causal reasoning. Not only do our causal considera-
tions shed new light on the vital issues of data scarcity and data
mismatch in a unifying approach, but the presented analysis can
hopefully serve as a guide to develop new solutions. Perhaps
surprisingly, causal theory also suggests that the common task of
semantic segmentation may not fundamentally benefit from
unannotated images via semi-supervision. This possibly con-
troversial conclusion may prompt empirical research into vali-
dating the feasibility and practical limitations of this approach.

Other advanced topics could be worth exploring in future work
for causally expressing more subtle facets of predictive modelling
workflows. In particular, one recurring topic in epidemiology and
sociology that is relevant to our imaging context is measurement
bias32,33. This is the study of properties of proxy variables, which
stand in for true variables of interest that are difficult or impos-
sible to measure directly. Of particular note are the cases wherein
proxies are additionally affected by other variables (‘differential’),
or when measurement errors for separate proxies are correlated
(‘dependent’)34. Measurement bias was explored here for the case
of acquisition shift (images as proxies for anatomy, affected by the
domain), and similar considerations could extend to other vari-
ables, e.g. patient records or pathology results.

A further pertinent topic is that of missingness. Whereas
sample selection refers to the observability of full records, miss-
ingness concerns partial measurements—i.e. when some subjects
may be missing observations of some variables. This is the context
of semi-supervised learning, for example, as target labels are

observed only for a subset of the data points. The classical
characterisation distinguishes whether data is missing completely
at random, missing at random, or missing not at random, when
the missingness of a measurement is independent of any of the
variables of interest, dependent on observed variables, or
dependent on the missing values, respectively35. Causal diagrams
again prove instrumental in identifying such structural assump-
tions about missingness mechanisms36,37.

Finally, we highlight that our contribution is only the first step
towards incorporating causality in medical image analysis. Here
we introduce to this community purely the language of causal
reasoning, hoping this will facilitate novel research directions
exploiting causality theory to its full extent. Specifically, the
endeavours of causal inference and causal discovery are so far
largely unexplored in medical imaging. In this context, they could
lead to the discovery of new imaging biomarkers and to exciting
new applications such as personalised counterfactual predictions
(‘What if a patient were not a smoker?’). Large population ima-
ging studies such as the UK Biobank38,39 can greatly empower
this kind of research, as they offer unique opportunities for
extracting the relevant patterns of variation from sheer
observational data.

Beside enabling new research directions, incorporation of
causal reasoning in medical image analysis aligns with a growing
awareness among stakeholders of the need for responsible
reporting in this field. There have been increasing efforts from
regulatory bodies—such as the US Food and Drug
Administration40,41, the UK’s Department of Health and Social
Care42, National Institute for Health and Care Excellence43, and
NHSX44, and even the World Health Organization45—to outline
best practices for the safe development and monitoring of AI-
enabled medical technologies46. Guidelines for designing and
reporting traditional clinical trials are now also being specialised
for AI-based interventions47. This has been accompanied by a
recent surge in discussion among the medical community about
the opportunities and, crucially, the risks of deploying such tools
in clinical practice48–55. Most of the apprehension revolves
around the external validity of these predictive models, i.e. their
generalisability beyond the development environment, in terms of
e.g. robustness to dataset shift48,49 and selection bias48,56, as
discussed herein. Other important concerns involve data inac-
curacy, inconsistency, and availability48–50,53,56, and alignment of
the model training objective with the target clinical
setting49,51,53,54. In a similar yet complementary vein to the
notable TRIPOD guidelines57,58, our work ties precisely into this
context of encouraging transparent reporting of predictive ana-
lytics in healthcare.

This debate also relates to parallel initiatives from within the
machine learning community, in specific in the emerging field of
fairness, accountability, and transparency (FAT). Scholars in FAT
have proposed checklist-style guidelines for reporting datasets59

and models60, for example, and have been investigating sources of
failure for ML models, among which is poor reporting61. Inter-
estingly, the same formalism of causal reasoning explored here
was also shown to be especially well-suited for expressing and
addressing issues of unfairness (e.g. social biases)62 and dataset
shift63 in other contexts.

Overall, the goal of this article has been to introduce to the
medical imaging community the language of causal diagrams, and
to demonstrate how it can illuminate common issues in predictive
modelling. While causal reasoning by itself may not solve any of
the data scarcity or mismatch problems, it provides a clear and
precise framework for expressing assumptions about the data.
Presenting such assumptions transparently in the form of causal
diagrams makes them immediately recognisable by other
researchers, and therefore easier to be confirmed or disputed. The
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real challenge lies in identifying these very assumptions, as they
can often be unclear or ambiguous.

To facilitate this task, we offer in Table 3 a step-by-step
summary of our recommendations, and Fig. 5 presents a generic
‘scaffold’ diagram from which most typical workflows can be
adapted. Readers may then refer to the other tables for help in
identifying the components of their own diagram for the problem
at hand. We believe that this exercise of building the full causal
story of a dataset will encourage analysts to consider potential
underlying biases more thoroughly, and that it may, like the
TRIPOD checklist, lead to ‘more comprehensive understanding,
conduct, and analysis of prediction model studies’58.

Methods
Fundamentals of causal reasoning. Learning tasks can be broadly divided into
three categories based on the causal information used: (i) prediction, in which
observed data are used to infer values of unobserved variables, e.g. image classi-
fication; (ii) interventions, where investigators study the impact of forcing a vari-
able to attain a certain value, e.g. randomised controlled trials (RCTs) for drug
testing; and (iii) counterfactual analysis, wherein observed data combined with a
structural causal model are used to answer questions of the form, ‘What would
have happened if individual I had received treatment T instead?’ While most are
familiar with causal inference in the context of RCTs or scientific experiments,

causal information is vital even in certain purely predictive tasks, as we discussed in
the context of medical imaging.

Let us now illustrate the concept of causation and the principle of independence
of cause and mechanism, presented earlier in the text. Consider the example
wherein a radiologist makes a decision, B, for referral to further clinical testing (e.g.
needle biopsy) based on any suspicious findings in the patient’s medical scan, A.
Given an image, the distribution over possible decisions is the conditional P(B∣A).
If the appearance of the scan changes, this referral distribution—reflecting the
radiologist’s judgement—changes as well. On the other hand, the mechanism that
translates from a finding of a suspicious pattern in the scan A to a referral decision
B is independent of how likely any individual scan is to appear in the real world,
P(A). This is further justified as such mechanism may typically be formed by rules
from radiology guidelines. Here, the cause of the referral decision is clearly the
medical scan, as altering the decision would not affect the scan’s appearance.

In the above example, the correct graphical model would be A → B, as resolved
via domain knowledge. If presented only with observational data of medical images
and referrals, however, from a purely statistical perspective one would find it
difficult to identify whether A → B or B → A. It may still be possible to identify
which is the correct relationship if the gathered data were the result of two
experiments, respectively manipulating A or B. Determining the presence and
direction of causal relationships from data is the realm of causal discovery, which is
an extremely challenging and active field of research but is beyond the scope of this
article.

Causal graphical models. When multiple variables are involved, causal assump-
tions can be expressed as a simple directed acyclic graph (DAG; no loops, at most
one edge between any pair of nodes), whose nodes represent variables of interest
and edges between them indicate postulated direct causal influences. Such a causal
graphical model, referred to as a causal diagram, embodies the causal Markov
assumption (or local Markov): every node is statistically independent of its non-
effects (non-descendants), given its direct causes (parents). Therefore, the joint
probability distribution over all variables Vi on the graph can be factorised as a
product of independent conditional mechanisms64,65:

PðV1;V2; ¼ ;VNÞ ¼
YN

i¼1

PðV ijpaðV iÞÞ; ð3Þ

where pa(Vi) denotes the set of parents of variable Vi, i.e. the nodes with arrows
pointing toward Vi.

For those familiar with Bayesian networks, it appears that there is nothing new.
However, Bayesian networks only encode conditional independence relationships,
and they are thus not unique for a given observational distribution31. In fact,
although causal arguments often guide the construction of such models, any
alignment between arrows in Bayesian networks and causality is merely
coincidental. In particular, causal models differ from Bayesian networks in that,
beside representing a valid factorisation of the joint probability distribution, they
enable reasoning about interventions31. In causal graphs, the values for each node
are assumed to be determined via independent mechanisms (cf. independence of
cause and mechanism) given their direct causes. An intervention is defined as any
forced change to the value or distribution of a node, regardless of its direct causes,
and results in a modified graph wherein this node is disconnected from its parents,
though crucially all other mechanisms are unaffected. This can also be thought of
as replacing the mechanism generating a variable by a function independent of its
former direct causes (e.g. a constant). Incidentally, this is the principle behind
randomised controlled trials: a treatment is assigned at random (an intervention on
the ‘treatment’ variable), isolating its direct effect on the outcome by eliminating
the influence of confounding factors (i.e. cutting the edges from common causes of
treatment and outcome). Note that considering interventions on image and referral
decision is also what allowed us to determine the causal direction in the
example above.

Table 3 Step-by-step recommendations.

1. Gather meta-information about the data collection and annotation processes to reconstruct the full story of the dataset

2. Establish the predictive causal direction: does the image cause the prediction target or vice versa? If annotations are scarce and image → target,

semi-supervised learning may be futile, while data augmentation remains a viable alternative

3. Identify any evidence of mismatch between datasets (Table 1). When applicable, importance reweighting is a common mitigation strategy; see further

specific advice in the text

• If causal (image → target): population shift, annotation shift

• If anticausal (target → image): prevalence shift, manifestation shift

4. Verify what types of differences in image acquisition are expected, if any. Consider applying data harmonisation techniques and domain adaptation (if

test images are available)

5. Determine whether the data collection was biased with respect to the population of interest, and whether selection was based on the images, the

targets or both (Table 2). Refer to dataset shift guidance for mitigating the resulting biases

6. Draw the full causal diagram including postulated direction, shifts and selections

Annotation (Y4)
Image (X )

Disease

Train / test (D )

Patient
characteristics

(Y2)
Acquisition
conditions

Diagnosis (Y1)

Annotation
conditions

Anatomy (Z )

Selection (S )

Referral (Y3)

Population shift (causal)
Prevalence shift (anticausal)

Annotation shift

Acquisition shift

Sample selection

Predict?

Pr
ed

ict
?

Predict?

P
re
d
ic
t?

Fig. 5 A ‘scaffold’ causal diagram summarising typical medical imaging

workflows. We believe most practical cases can be adapted from this

generic structure by removing or adding elements. Here are represented a

variety of possible prediction targets (marked Y1–Y4): some anticausal

(Y1, Y2) and others, causal (Y3, Y4). ‘Annotation’ here refers to any image-

derived data, such as lesion descriptions, regions of interest, spatial

landmark coordinates, or segmentation maps. Note that annotators will

often be aware of the patients' records and diagnoses, in which cases there

could be additional arrows from Y1 or Y2 towards Y4.
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Building a causal diagram. The first step in constructing a causal model for a
given system is to elicit the relevant variables to represent, which may be observed
or not. These ought to be well defined: they should unambiguously correspond to
real or postulated entities of the system, and separate variables must not have
overlapping meanings66. In the medical imaging context, variables normally cor-
respond to the collected data elements, such as images, meta-information fields,
labels, patient records, etc. Not all important variables need to be concrete and
measurable, however. Other relevant abstract concepts can be instantiated if they
help in describing complex processes: e.g. ‘annotation policy’, ‘patient’s health
status’, ‘proprietary image post-processing pipeline’.

Secondly, the causal links between the defined variables must be determined.
While each added arrow between two nodes in the graph corresponds to assuming
causation, it is important to consider that the absence of an arrow also encodes a
strong assumption. Namely, that there is no direct causal effect—any marginal
association between those variables is fully explained via mediator variables or
common causes (see below). In addition, the granularity of ‘direct effects’ is only
relative to the chosen level of abstraction65. One may wish to detail the complete
chain of effects between two causally linked variables, or represent them by a single
arrow (e.g. A → B1 → B2 → C vs. A → C).

In what is called a selection diagram17, one also includes special indicator
variables that identify the ‘domain’ or ‘environment’, e.g. training vs. testing or
which hospital in a multi-site study. Their direct causal effects (outgoing arrows)
represent the specific mechanisms through which one assumes the observed
populations differ, whereas the absence of a link from a domain selector to a
variable implies the latter’s mechanism is invariant across environments17. Domain
indicators should normally be represented by root nodes in the diagram, with no
incoming edges, as they embody exogenous changes to the data distributions. A
causal diagram may additionally be augmented with selection variables, when the
dataset is subject to preferential subsampling from the population (e.g. inclusion
criteria for a clinical trial). The incoming arrows to such a node represent the
various selection criteria (deliberate or otherwise) that impacted the collection of
the dataset of interest.

Finally, note that this construction is an iterative process. Once a full version of the
diagram is written, one must verify that the assumptions implied by the graph match
the domain knowledge (see following notes on interpretation), and corrections should
be made as needed. Further, recall the diagram’s intent as a communication tool when
choosing its level of abstraction, as there is often a tradeoff to be made between
accuracy and clarity: the graph should be sufficiently detailed not to omit relevant
variables and pathways, though no more complex than necessary66.

Interpreting causal diagrams. Causal diagrams offer a clear language to describe
and communicate assumptions made about the underlying data-generating pro-
cesses. Direct and indirect causal links between variables can be read from a
diagram by following directed paths, while any missing connections between
variables are equally important indicators that no direct relationship is being
assumed. Careful interpretation of a diagram gives insights about potential biases
that are important to take into account when designing experimental studies and
when drawing conclusions from statistical analysis.

In causality, what is usually referred to as bias is any spurious correlation
between two variables, contributed by unblocked paths beside the relationship of
interest (Box 1). The ‘classic’ prototypical configurations inducing such biases are
confounding (unadjusted common cause; cf. Simpson’s paradox31) and collider
bias (conditioning on a common effect; cf. selection bias, Berkson’s paradox31), and
are widely studied in statistical literature30. This article in specific focused on how
dataset shift results from unblocked paths between domain indicators and relevant
variables, and on the consequences of (implicitly) conditioning on selection
variables. For example, in a multi-site study wherein age distributions vary across
sites, it would be useful to include age alongside the image as inputs to the
predictive model, to block the ‘site → age → image’ path causing population
shift. This is what is normally meant in the context of predictive modelling, as in
statistics and causal inference, by ‘adjusting/controlling for’ or ‘conditioning on’ a
variable. Though interpreting causal diagrams may require practice, it is a
worthwhile endeavour that may help with the identification and mitigation of
potential issues with the predictive model.
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