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Abstract

Background: Detecting adverse drug reactions (ADRs) is an important task that has direct implications for the use of that drug.
If we can detect previously unknown ADRs as quickly as possible, then this information can be provided to the regulators,
pharmaceutical companies, and health care organizations, thereby potentially reducing drug-related morbidity and saving lives
of many patients. A promising approach for detecting ADRs is to use social media platforms such as Twitter and Facebook. A
high level of correlation between a drug name and an event may be an indication of a potential adverse reaction associated with
that drug. Although numerous association measures have been proposed by the signal detection community for identifying ADRs,
these measures are limited in that they detect correlations but often ignore causality.

Objective: This study aimed to propose a causality measure that can detect an adverse reaction that is caused by a drug rather
than merely being a correlated signal.

Methods: To the best of our knowledge, this was the first causality-sensitive approach for detecting ADRs from social media.
Specifically, the relationship between a drug and an event was represented using a set of automatically extracted lexical patterns.
We then learned the weights for the extracted lexical patterns that indicate their reliability for expressing an adverse reaction of
a given drug.

Results: Our proposed method obtains an ADR detection accuracy of 74% on a large-scale manually annotated dataset of tweets,
covering a standard set of drugs and adverse reactions.

Conclusions: By using lexical patterns, we can accurately detect the causality between drugs and adverse reaction–related
events.

(JMIR Public Health Surveill 2018;4(2):e51) doi: 10.2196/publichealth.8214
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Introduction

Background
An adverse drug reaction (ADR) is defined as “an appreciably
harmful or unpleasant reaction, resulting from an intervention

related to the use of a medicinal product, which predicts hazard
from future administration and warrants prevention or specific
treatment, alternation of the dosage regimen, or withdrawal of
the product” [1-4]. It is estimated that approximately 2 million
patients in the United States are affected each year by serious
ADRs, resulting in roughly 100,000 fatalities [5]. In fact, ADRs
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are the fourth leading cause of death in the United States,
following cancer and heart diseases [6]. Treating patients who
develop ADRs results in significant health costs to nations
throughout the world. For example, it has been estimated that
US $136 billion is spent each year on treatments related to ADRs
in the United States [7,8].

In an ideal world, all adverse reactions associated with a drug
need to be detected before marketing, and the drug label
modified accordingly. However, this is not feasible due to
several reasons. First, the number of human subjects
participating in a clinical trial of a premarketed drug is often
small, which limits the statistical power to detect ADRs,
particularly those which may be uncommon. In fact, rare ADRs
are usually not detected during the premarketing phases of drug
development. Second, as many of the clinical trials are
short-lasting, ADRs which are delayed will not be detected.
Third, some ADRs show up only when a drug is being taken
together with other drugs, leading to an adverse drug-drug
interaction. Considering that the number of combinations of
drugs is potentially large, it is impractical to test for all of the
possible combinations during a clinical trial. Fourth, drug
repurposing [9]—the practice of off-label usage of drugs for
treating diseases for which they were not originally
intended—could lead to unforeseen ADRs.

Due to these challenges in detecting ADRs during the
premarketing phase, identification of ADRs in the postmarketing
phase remains hugely important. The cornerstone of
postmarketing pharmacovigilance remains the spontaneous
reporting schemes such as the Yellow Card Scheme [10] in the
United Kingdom and the MedWatch system [11] in the United
States. Such schemes allow hospitals, medical practitioners,
and patients to report ADRs. Unfortunately, the reporting rates
are generally poor. For example, only 10% of serious ADRs
and 2% to 4% of nonserious ADRs are reported [12].

Although patients experience ADRs, they may be reluctant to
report their experiences through official reporting systems for
various reasons. For example, patients might be unfamiliar with
or unaware of the ADR reporting schemes, or might find it
difficult to understand the terminology used in the forms, or
might not be aware of the importance of reporting ADRs. Even
when ADRs have been reported via such spontaneous reporting
systems, the time required from the first report to any regulatory
action may be long, which is problematical in protecting public
health from iatrogenic conditions.

An alternative approach for detecting ADRs in a timely manner
on a larger scale is to use social media. Social media platforms
such as Twitter [13], Facebook [14], Instagram [15], and
Pinterest [16] have been used extensively for market analysis
of various products. Social media provides a convenient and
direct access to consumers’ opinions about the products and
services they use. In comparison with a clinical study, which
inevitably is limited to a small number of participants, in social
media we can access comments from a massive number of
diverse groups of people. Due to its potential value, the
pharmacovigilance community has already started to exploit
social media as a potential reporting tool for obtaining
information about ADRs [17]. For example, the WEB-RADR

[18] project funded by the Innovative Medicines Initiative was
funded to evaluate the usefulness of social media as a reporting
tool for ADRs.

However, compared with spontaneous reporting systems where
patients or health care practitioners explicitly report ADRs,
detecting ADRs from social media poses several challenges.
Because social media is not perceived by most patients as an
official reporting tool for ADRs, a drug and its associated ADRs
might not be completely expressed in a single social media post.
This issue is further aggravated by the limitations imposed on
the length of a post in social media platforms. For example, in
Twitter, a single post (aka a tweet) is limited to a maximum of
140 characters. Even in social media platforms where such
limitations do not exist, such as Facebook, the users might not
always provide comprehensive reports containing all the
information that would normally be completed on a Yellow
Card. Furthermore, social media users often interact with social
media platforms through specialized apps on mobile devices
such as mobile phones, which do not possess physical keyboards
that facilitate the entering of longer texts.

In addition to the brevity and incompleteness of social media
posts as a medium for reporting ADRs, the reliability of the
information expressed through social media is also a concern.
It is often difficult to authenticate the information disseminated
through social media. For example, in Twitter, the same user
can create multiple accounts under different names including
aliases. False information might be expressed intentionally or
unintentionally in social media, which makes it difficult to verify
the information extracted from social media. Unlike in the
Yellow Card system, where it is possible to contact a reporter
to obtain further information, in social media it is difficult to
obtain additional information from users due to anonymity and
privacy settings. All of these challenges introduce various levels
of noise to ADR signal that can be captured from social media.
Consequently, methods that detect ADRs from social media
need to overcome these challenges.

An approach for detecting significant signals indicating adverse
reactions to drugs in social media is to measure the correlation
between a drug and an event. If many social media posts or
users mention a drug and an event, then the likelihood that the
drug causes an adverse reaction increases. Indeed, numerous
measures have been proposed in previous work to measure the
degree of association between a drug and an adverse reaction
[19-26]. Although co-occurrence measures do not completely
solve all of the above-mentioned challenges of using social
media, they provide a practical and a highly scalable mechanism
for detecting ADRs from social media.

A fundamental drawback of co-occurrence-based approaches
for detecting ADRs is that they ignore the context in which a
drug and an ADR co-occur in social media. Co-occurrence does
not always indicate causality. Although a drug and an event that
could suggest an ADR might be mentioned frequently in social
media, the co-occurrence may be because the drug is used as a
remedy for that symptom. Moreover, the drug may have been
taken by 1 person, but the social media post mentions the ADR
in a different person. However, the context in which a drug and
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an ADR co-occur can provide useful clues that can be used to separate causality from co-occurrence.

Figure 1. Three tweets mentioning a drug (shown in blue boldface fonts) and symptoms (shown in red italic font).

To illustrate the usefulness of contextual information for ADR
detection, consider the 3 tweets shown in Figure 1. T1 is
suggestive of an association with a drug and a potential adverse
reaction. T2 may reflect that the patient’s disease improving or
that an ADR occurred but is waning following dose reduction.
T3 is unlikely to be an ADR; Ibuprofen is being taken by this
patient to potentially relieve the pain and have some sleep. These
examples show that there are useful hints we can extract from
the tweets such as about to (feel an ADR), I still have (ADRs)
that we can use to evaluate the causality relationship between
a mentioned drug and an adverse reaction.

Why is solving this problem critical for systems that attempt to
extract ADRs from social media? The standard practice in the
pharmacovigilance community for detecting ADRs from patient
reports is to apply disproportionality measures that consider
only co-occurrence (and occurrence) counts. Unfortunately,
disproportionality measures by design are agnostic to the
linguistic context in social media and are therefore unable to
utilize the clues that appear in social media to determine whether
an ADR is truly caused by the drug. However, given a tweet
containing a drug and a potential adverse reaction, if we can
first develop a classifier that predicts whether this tweet is
describing a causality relationship, we then can use
disproportionality measures on the tweets that are identified as
positive by the classifier for further analysis. This preprocessing
step is likely to improve the accuracy of the ADR detection
process. Moreover, given the noise and the low level of
reliability in social media as opposed to patient reports in
spontaneous reporting schemes, it is vital that we perform some
form of preprocessing to guarantee the reliability of the
identified ADRs.

In this paper we, therefore, consider the following problem:
given a tweet T containing a drug D and an ADR A, whether T
describes an instance where A is caused by D, as opposed to A
and D co-occurring for a different reason (or randomly without
any particular relation between A and D). Our experimental
results show that the proposed method statistically significantly
outperforms several baseline methods, demonstrating its ability
to detect causality between drugs and ADRs in social media.

Related Work
The number of co-occurrences between a drug and an ADR can
be used as a signal for detecting ADRs associated with drugs.
Various measures have been proposed in the literature that
evaluate the statistical significance of disproportionally large
co-occurrences between a drug and an ADR. These include
Multiitem Gamma Poisson Shrinker [24,26-28],
Regression-Adjusted Gamma Poisson Shrinker [23], Bayesian

Confidence Propagation Neural Network (BCPNN) [20-22],
Proportional Reporting Rate [19,28], and Reporting Odds Ratio
[19,28]. Each of these algorithms uses a different measure of
disproportionality between the signal and its background.
Information component is applied in BCPNN, whereas empirical
Bayes geometric mean is implemented in all variants of the
Gamma Poisson Shrinker algorithm. Each of the measures gives
a specific score, which is based on the number of reports
including the drug or the event of interest. These count-based
methods are collectively referred to as disproportionality
measures.

In contrast to these disproportionality measures that use only
co-occurrence statistics for determining whether there is a
positive association between a drug and an event, in this paper,
we propose a method that uses the contextual information
extracted from social media posts to learn a classifier that
determines whether there is a causality relation between a drug
and an ADR. Detecting causality between events from natural
language texts has been studied in the context of discourse
analysis [29,30] and textual entailment [31,32]. In discourse
analysis, a discourse structure for a given text is created,
showing the various discourse relationships such as causality,
negation, and evidence. For example, in Rhetorical Structure
Theory [33], a text is represented by a discourse tree where the
nodes correspond to sentences or clauses referred to as
elementary discourse units (EDUs), and the edges that link those
textual nodes represent various discourse relations that exist
between 2 EDUs. Supervised methods that require manually
annotated discourse trees [34] as well as unsupervised methods
that use discourse cues [35] and topic models [36] have been
proposed for detecting discourse relations.

The problem of determining whether a particular semantic
relation exists between 2 given entities in a text is a well-studied
problem in the natural language processing (NLP) community.
The context in which 2 entities co-occur provides useful clues
for determining the semantic relation that exists between those
entities. Various types of features have been extracted from
co-occurring contexts for this purpose. For example, Cullotta
and Sorensen [37] proposed tree kernels that use dependency
trees. Dependency paths and the dependency relations over
those paths are used as features in the kernel. Agichtein and
Gravano [38] used a large set of automatically extracted
surface-level lexical patterns for extracting entities and relations
from large text collections.

To address the limitations of co-occurrence-based approaches,
several prior studies have used contextual information [39].
Nikfarjam et al [40] annotated tweets for ADRs, beneficial
effects, and indications and used those tweets to train a
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Conditional Random Field. They use contextual clues from
tweets and word embeddings as features. Their problem setting
is different from ours in the sense that we do not attempt to
detect/extract ADRs or drug names from tweets but are only
interested in determining whether the mentioned ADR is indeed
relevant to the mentioned drug. A tweet can mention an ADR
and a drug, but the ADR might not necessarily be related to the
ADR. Huynh et al [41] proposed multiple deep learning models
by concatenating convolutional neural network (CNN) and
recurrent neural network architectures to build ADR classifiers.
Specifically, given a sentence, they would like to create a binary
classifier that predicts whether the sentence contains an ADR
or otherwise. Their experimental results show CNNs to be the
best for ADR detection. This observation is in agreement with
broader text classification tasks in NLP where CNNs have
reported the state-of-the-art performance [42]. However, one
issue when using CNNs for ADR detection is the lack of labeled
training instances, such as annotated tweets. This problem is
further aggravated if we must learn embeddings of novel drugs
or rare ADRs as part of the classifier training.

To overcome this problem, Lee et al [43] proposed a
semisupervised CNN that can be pretrained using unlabeled
data for learning phrase embeddings. Bidirectional Long
Short-Term Memory (bi-LSTM) units were used [44] to tag
ADRs and indicators in tweets. A small collection of 841 tweets
was manually annotated by 2 annotators for this purpose.
Pretrained word embeddings using skip-gram on 400 million
tweets are used to initialize the bi-LSTM’s word representations.
This setting is different to what we study in this paper because
we do not aim to tag ADRs and indicators in a tweet but to
determine whether a tweet that mentions an ADR and a drug
indicator describes an ADR event related to the drug mentioned
in the tweet.

Methods

Overview
In this section, we presented our proposed method for detecting
the causality between a drug and an event. First, in the section
on “Problem Definition”, we formally define the problem of
causality detection between a drug and an event from social
media posts. Next, we explain techniques for aggregating social
media posts related to drugs and events. Next, we explain the
method we use for extracting various lexical patterns that
described the relationship between a drug and an event in social
media posts. Finally, we present a machine learning approach
that uses a manually annotated dataset containing social media
posts as to whether they are describing a relationship between
a drug and an adverse reaction for learning the reliability of the
lexical patterns we extract. We have not assumed any specific
properties or meta-data available in a particular type of social
media platform such as retweets, favorites in Twitter, or likes
or comments in Facebook. Although such platform-specific
metadata can provide useful features for a machine learning
algorithm, such metadata are not universally available across
all social media platforms or cannot be retrieved due to privacy
settings. The fact that the proposed method does not rely on
such metadata was attractive because it made our proposed

method applicable to a wide range of social media posts and
does not limit it to a particular platform.

Problem Definition
Let us consider a social media post T, which explicitly mentions
a drug D and an adverse reaction R. We model the problem of
detecting causality between D and R in T as a binary
classification problem where we would like to learn a binary
classifier h (T, D, R; w) parametrized by a d-dimensional

real-valued weight vector w ∈ d as shown in equation 1:

(1) If T mentions that D causes R, then h( T, D,
R;w)=1 and otherwise it is 0.

Here, we assume that the social media post T is already given
to us and the drug and adverse reaction have already been
detected in T. Detecting drug names can be done by matching
against precompiled drug name lists (gazetteers) or using Named
Entity Recognition [45]. A particular challenge when matching
drug names in social media is that the drug names mentioned
in social media might not necessarily match against the drug
names listed in pharmacology databases [17]. The same drug
is often sold under different labels by different manufacturers,
and the label names continuously change, which makes it
difficult to track a particular drug over time in social media.
Similar challenges are encountered when matching ADRs in
texts. Although the MedDRA [46] hierarchy assigns unique
codes to preferred terms (PTs) that describe various ADRs such
as “oropharyngeal swelling” or “systemic inflammatory response
syndrome,” such terms are used rarely by the majority of the
social media users who might not necessarily be familiar with
the MedDRA code names [47]. Although we acknowledge the
challenges in detecting mentions of drug names and adverse
reactions, we consider it to be beyond the scope of this paper,
which focuses on a signal detection problem.

Social Media Aggregation
Although the problem definition described in Section 3.1
assumes that we are already provided with a set of social media
posts, obtaining a large collection of social media posts relevant
to drugs and events can be challenging for several reasons.

The vast majority of social media posts are not relevant to drugs
or ADRs. One effective method for filtering out such irrelevant
social media posts is to use the keyword-based filtering
functionalities provided by the major social media application
programming interfaces (APIs). As a specific example of such
an API, we discuss the use of Twitter streaming API [48]. The
Twitter streaming API allows registration of a set of keywords,
and if there are any tweets that contain at least one of those
keywords, then the corresponding tweet will be filtered and sent
to the querying user. In our case, we used drug names and PTs
(and their lexical variants) as keywords to filter the relevant
tweets. Moreover, the streaming API also enabled us to limit
the tweets to a particular geographical area or a language, which
is useful if we want to monitor drugs that are specifically used
in a particular country or a region.

Twitter’s streaming API allowed us to aggregate tweets from
2 main types of data streams: public streams and user streams.
Public streams are publicly available tweets by a specific group
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of users or on a topic. Hash tags in twitter are useful for
streaming such public tweets on a particular topic. For example,
by including the hash tag #epilepsy, we can retrieve tweets that
are relevant to epilepsy. On the other hand, user streams allow
us to obtain tweets from a single twitter user, containing roughly
all of the data corresponding with that user’s view (timeline)
on Twitter. Despite the used aggressive filtering, streaming API
returned a large number of tweets. Therefore, we stored the
filtered tweets in a MongoDB [49] database in JavaScript Object
Notation format for efficient retrieval.

Lexical Pattern Extraction
To represent the relationship between a drug and an ADR in a
tweet, we extracted lexical patterns from the tweet. Let us
illustrate the lexical pattern extraction process using the example
tweet shown in Figure 2. We first identified the drug and event
in the tweet and split the tweet into 3 parts. The part from the
beginning of the tweet to the first-mentioned entity (either the
drug or event) is named as the prefix, the part from the
first-mentioned entity to the second-mentioned entity is named
as the midfix, and the part from the second-mentioned entity to
the end of the tweet is named as the postfix. Prior work on
information extraction has shown that, in English, the midfix
provides useful clues related to the relationship between 2
entities that co-occur in some context [50,51]. Indeed, from the
example shown in Figure 2, we see that words such as feeling
that appear in the midfix indicate that this twitter user is
experiencing a side effect from the drug. However, it has also
been shown that prefix and postfix terms also provide useful
information when determining the relationship between 2
entities. For example, we see that the word took that appears in
the prefix in the tweet (Figure 2), indicating that this twitter
user has indeed taken this drug and not simply reporting an
adverse reaction experienced by a different person. Such
information is useful to estimate the reliability of the
relationships mentioned in social media, which can often be
noisy and unreliable. Therefore, in this work, we use all prefix,
midfix, and postfix sections in tweets for extracting lexical
patterns. We experimentally evaluate the significance of prefix,
midfix, and postfix for ADR detection later in Section 4.

We extracted skip-grams from prefix, midfix, and postfix
separately as lexical patterns for representing the relationship
between a drug and an event. A skip-gram is an extension of
n-gram. Unlike, n-grams that require us to consider all
consecutive n words in a sequence, skip-grams allow us to
generalize the n-gram patterns by skipping one or more words
in a sequence. For example, trigram (n=3) lexical patterns
extracted from the midfix shown in Figure 2 would be while
ago and, ago and now, and now feeling, now feeling very.

On the other hand, skip-gram patterns also let us match any
word (indicated by the wildcard “*”) in an n-gram pattern. For
example, the skip-gram pattern * ago, which is a generalization
of the bigram pattern while ago will match various other time
indicators such as hours ago, days ago, and months ago. Unlike,
n-gram patterns that might not match exactly in numerous other
tweets, skip-gram patterns flexibly match different tweets,
thereby leading to a dense feature space. More importantly,

skip-gram patterns subsume n-gram patterns. Therefore, all
tweets that can be represented using n-gram patterns can be
matched by the corresponding skip-gram patterns.

Considering the fragmented, ungrammatical, and misspelled
texts frequently encountered in social media, skip-gram lexical
patterns provide a robust and flexible feature representation.
Moreover, extracting skip-grams is computationally efficient
compared with, for example, part-of-speech tagging or
dependency parsing social media, considering the volume of
the texts we must process. Note that the drug name or the event
are not part of the skip-gram lexical patterns. In other words,
we replace the drug name and event, respectively, by place
holder variables D and R. This is important because we would
like to generate patterns that not only match the existing drugs
and adverse reactions but can generalize to future drugs and
their (currently unknown) adverse reactions. In our experiments,
we use skip-gram lexical patterns for n=1, 2, and 3 and allowed
a maximum of 1 wildcard in a pattern.

Learning Pattern Weights
We built a binary classifier that could predict whether an event
R mentioned in a tweet T alongside a drug D was actually related
to D. As explained later in Section 4.1, we used a manually
annotated collection of tweets where each tweet contained a
drug and an event, and a human annotator annotates whether
the mentioned ADR is relevant to the drug (positively labeled
instance) or otherwise (negatively labeled instance). We

represent a tuple (T, D, R) using a feature vector f (T, D, R)∈ d,
where each dimension corresponds to a particular skip-gram
lexical pattern, which we extracted following the procedure
described in Section 3.3. The value of the i-th dimension in the
feature vector is set to 1 if the skip-gram lexical pattern Iili, D,
R) is represented by a boolean-valued feature vector over the
set of skip-gram lexical patterns we extracted from all of the
training instances. Using the above notation, let us denote this

training dataset by Dtrain={(f (Tn, Dn, Rn), yn)}
N

n=1. Here, (Tn,
Dn, Rn) indicates the n-th training instance out of N total
instances in the dataset, and yn∈{−1,+1}.

Unfortunately, not all skip-gram lexical patterns are equally
important when determining whether there exists a relationship
between a drug and an event. For example, in Figure 2, the
pattern while ago can appear in various contexts, not necessarily
in the context where an adverse reaction is described. Therefore,
we assigned some form of a confidence weight to each skip-gram
pattern before we used those patterns to make a decision about
the relationship between a drug and an event. For this purpose,
we assigned a weight w and R in T using the linear binary
classifier given by equation 2:

(2) h(T, D, R; w)=sgn(w Tf(T,D,R))

Here, w∈ d is a d-dimensional real-valued weight vector where
the i-th dimension represents the confidence weight wi and the
sign function sgn is defined in equation 3:

(3) sgn(x)=1 if x>0 and −1 otherwise
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Figure 2. Extracting lexical patterns from a tweet that describes an adverse reaction (dizziness) caused by a drug (Atenolol). The tweet is split into 3
parts—prefix, midfix, and postfix, and various lexical patterns are extracted from each part. See text for the details of the pattern extraction method.
Best viewed in color.

Figure 3. Support vector machine—optimization problem.

Given the training dataset Dtrain, our goal was to learn w such
that it can be used in equation 2 to predict whether the R
mentioned in a T with D was indeed related to D. For this
purpose, we used linear kernel support vector machines (SVMs)
[52] with slack variables ξn≥0 noise in training instances. Given
the scale of the annotation task, it is unavoidable that some of
the instances will be incorrectly labeled by the human
annotators, introducing some labeling noise to the training
dataset. Second, slack variables can shift some of the training
instances closer to the decision hyperplane, thereby artificially
making the dataset to be linearly separable.

Although nonlinear kernels such as polynomial, radial basis
function (RBF), or sigmoid can be used with SVMs, we limited
our analysis to linear kernels for the following reason. Under
the linear kernel, the weight associated with a particular feature
can be seen as the influence imparted by that feature on the
classification decision. This property is useful because we can
identify the most discriminative lexical patterns that indicate a
positive association between a drug and an event. We can use
such lexical patterns, for example, to create extraction rules in
the form of regular expressions to extract adverse reactions of
drugs from social media. Because we are using a linear classifier
in this work, it is important to handle the instances that violate
the decision hyperplane using slack variables.

The joint learning of slack variables and weights can be
formulated as the constrained convex optimization problem
given by equation 4 in Figure 3.

Here, C>0, cost factor, is a hyperparameter that determines how
much penalty we assigned to margin violations. The
optimization problem given in equation 4 can be converted into
a quadratic programming problem by introducing Lagrange
multipliers. Efficient implementations that scale well to large
datasets with millions of instances and features have been
proposed [53].

Once we have obtained the weights wi, equation 2 can be used
to predict the relationship between D and R in T.

Results

We trained and evaluated the proposed method using a manually
annotated dataset. The details of the dataset are presented in
Section 4.1. Next, to evaluate the proposed method we compared
it with several baseline methods. The baseline methods and
their performances are described in Section 4.

To create a training and testing dataset for our task, we manually
annotated a set of social media posts collected from the Twitter
and Facebook between August 2015 and October 2015. Using
the social media aggregation techniques described in Section
3.2, we filtered social media posts that contained a single
mention of a drug and an event. The number of tweets that
contain both a PT and a drug name was 94,890.

We then asked a group of annotators, who are familiar with
ADRs of drugs, to annotate whether the event mentioned in the
social media post is caused by the drug mentioned in the same
post (a positively labeled instance) or otherwise (a negatively
labeled instance).

The final annotated dataset contained 44,809 positively labeled
instances and 50,081 negatively labeled instances. We perform
5-fold cross-validation on this dataset, selecting 80% of the
positive and negative instances in each fold as training data,
and the remainder as the testing data. In addition to the
above-mentioned social media posts, we set aside 1000
positively and 1000 negatively labeled social media posts as
developmental data, for tuning the hyperparameter C. In total,
we extracted 168,663 skip-gram patterns from this dataset. We
used classification accuracy defined by equation 5 as the
evaluation measure:

(5) Classification Accuracy=Total number of correctly
predicted instances/Total number of instances in the
dataset

Discussion

Baselines
We compared the proposed method with several baseline
methods using the classification accuracy on the testing data as
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shown in Table 1. Next, we describe the different methods
compared in Table 1.

Majority Baseline
Note that our training and test datasets were unbalanced in the
sense that we have more negatively labeled instances than
positively labeled instances. This situation is natural, given that
most social media posts might not necessarily describe an
adverse reaction of a drug even though it mentioned both the
drug and an event. The training and test datasets we used in our
evaluations closely simulate this situation. However, if a dataset
is unbalanced, then by simply predicting the majority class (in
our case this is the negative label) can still result in classification
accuracies greater than 50%. The majority baseline shows the
level of performance that was obtained by such a majority
classifier.

Bag-of-Words Classifier
Our proposed method used skip-gram patterns for representing
social media posts. An alternative approach would be to ignore
the word order in the text and represent a text using the set of
words contained in it. Specifically, we would represent each
text by a binary-valued feature vector where the feature values
for the unigrams that appear in the text are set to 1, and 0
otherwise. We then trained a binary SVM classifier with a linear
kernel. By comparing against the bag-of-words (BOW)
classifier, we can empirically evaluate the usefulness of the
proposed skip-gram lexical patterns.

Prefix Only
This is a scaled-down version of the proposed method that used
skip-gram patterns extracted only from the prefix. By evaluating
against the prefix only baseline, we evaluated the importance
of the information contained in the prefix. There are 50,021
prefix skip-gram patterns in total.

Midfix Only
This is a scaled-down version of the proposed method that uses
skip-gram patterns extracted only from the midfix. By evaluating
against the midfix only baseline, we evaluated the importance
of the information contained in the midfix. There are 53,057
midfix skip-gram patterns in total.

Postfix Only
This is a scaled-down version of the proposed method that uses
skip-gram patterns extracted only from the postfix. By
evaluating against the postfix only baseline, we evaluated the
importance of the information contained in the postfix. There
are 65,585 postfix skip-gram patterns in total.

Prefix+Midfix
In this baseline method, we used both prefix and midfix for
extracting skip-gram patterns. This baseline demonstrates the
effectiveness of combining contextual information from both
the prefix and the midfix.

Prefix+Postfix
In this baseline method, we used both prefix and postfix for
extracting skip-gram patterns. This baseline demonstrates the

effectiveness of combining contextual information from both
the prefix and the postfix.

Midfix+Postfix
In this baseline method, we use both midfix and postfix for
extracting skip-gram patterns. This baseline demonstrates the
effectiveness of combining contextual information from the
midfix and the postfix.

Convolutional Neural Network
We use the state-of-the-art short text classification method
proposed by Kim [42] to train an ADR classifier. Each word in
a tweet is represented using 128 dimensional word embeddings,
where each dimension is randomly sampled from a uniform
distribution in range (−1,1). The word embeddings are
concatenated to represent a tweet. Next, a one-dimensional CNN
with a stride size of 3 tokens and a max pooling layer is applied
to create a fixed 20-dimensional tweet representation. We use
Adaptive Subgradient Method [54] for optimization with initial
learning rate set to 0.01 and the maximum number of iterations
set to 1000. Finally, logistic sigmoid unit is used to produce a
binary classifier.

Proposed Method
This is the method proposed in this paper. We use prefix, midfix,
and postfix for extracting skip-gram patterns.

Using the development data, we found the cost parameter C for
each setting. For the BOW classifier, the optimal C value was
found to be 0.01, whereas for all the variants of the proposed
method, it was 1.0.

The classification accuracies obtained for the 5-fold
cross-validation task for the above-mentioned methods are
shown in Table 1. From Table 1, we see that the majority
baseline achieves an accuracy of 63.19%. Our task here is binary
classification, and to compute confidence intervals for
accuracies, we must compute binomial confidence intervals.
There are several ways to compute this and one approach is the
use of Clopper-Pearson confidence intervals [55]. By using
confidence intervals, we can easily compare the statistical
significance between methods, without having to conduct
numerous pairwise comparisons between different methods.
We compared all other methods against the accuracy reported
by the majority baseline using Clopper-Pearson confidence
intervals (P<.001) to test for statistical significance, which is
(61.70,65.65). Statistically significant accuracies over the
majority baseline are indicated by a superscripted letter a in
Table 1.

From Table 1, we see that the best performance is obtained by
the proposed method using the skip-gram patterns extracted
from all prefix, midfix, and suffix contexts. A skip-gram pattern
is an extension of n-gram patterns. Unlike n-gram patterns that
must contain consecutive tokens, skip-gram patterns can skip
one or more tokens when representing a subsequence. Among
the different context types, we see that midfix performs best,
whereas prefix and postfix perform relatively equally. This
result is in agreement with prior work on information extraction
for English, where midfix has been found to be useful. However,
to the best of our knowledge, such an analysis has not yet been
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conducted for ADR extraction. Interestingly, we see that by
adding the midfix to prefix and postfix we always perform better
than if we had used only prefix or postfix. The proposed method
uses all 3 contexts and obtains the best performance among the
methods compared in Table 1. In particular, the performance
reported by the proposed method is statistically significant over
both the majority baseline and the BOW classifier. We see that
the CNN-based ADR classifier is performing at the same level
as the BOW classifier. Compared with the typical sentence
classification datasets used to train such deep learning methods,
our twitter dataset is significantly smaller, and this lack of data
might have resulted in CNN-based ADR classifier to perform
poorly in our experiments.

To gain further insights into the skip-gram patterns that are
identified by the classifier to be useful for predicting whether
there is a positive relationship between a drug and an event in
a tweet, we plot the histogram of the feature weights in Figure
4. From Figure 4, we see that the majority of patterns have their
weights close to zero, and an almost identical spread in positive
and negative directions centered around zero. We counted
60,430 patterns to have weights exactly set to zero, meaning
that approximately 35.83% (60,430/168,663) of patterns are
found to be uninformative by the classifier. A randomly selected
subset of zero-weighted patterns is shown in Table 1. Although

there is a large number of patterns used as features, patterns that
are not discriminative for the purpose of detecting ADRs are
effectively pruned out by the SVM by assigning lower weights
as shown in Table 2. Therefore, even if we have a comparatively
larger feature space to the number of training instances, this
does not necessarily result in overfitting.

We list the top-ranked positively weighted and negatively
weighted skip-gram patterns in Table 3. From Table 3, we see
that skip-gram patterns that describe a positive relationship
between a drug and an ADR are correctly identified by the
proposed method. For example, the P+took+too indicates that
the user has actually took the drug. Moreover, we see many
negations in the top-ranked negatively weighted patterns. Such
clues could be used in several ways. First, we can use these
clues as keywords for filtering social media posts that describe
a potential positive relationship between drugs and ADRs. For
example, we could run disproportionality-based signal detection
methods using the disproportionality counts obtained from those
filtered social media posts, thereby increasing the reliability of
the detection. Second, these clues could be used to develop
extraction patterns/templates that can be used for matching and
extracting previously unknown ADRs for novel or existing
drugs.

Table 1. Classification accuracy of different baselines and the proposed method.

Classification accuracyMethod

63.19Majority baseline

69.31aBag-of-words classifier

69.26aConvolutional neural network

66.41aPrefix only

72.78aMidfix only

68.08aPostfix only

74.72aPrefix+midfix

71.07aPrefix+postfix

77.10aMidfix+postfix

77.70aProposed method

aStatistically significant values.

Table 2. A randomly selected sample of features with zero weights.

Postfix patternsMidfix patternsPrefix patterns

S+overM+bad+ideaP+trip+i

S+12+hoursM+a+breakfastP+news+:

S+conquestM+if+schoolP+dat+lean

S+pleaseM+medica_authoritiesP+@rroddger

S+bad!M+convicted+iP+fussiness+no
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Table 3. Top-ranked positively (left 2 columns) and negatively (right 2 columns) weighted features (skip-gram patterns) by the support vector machine.

WeightFeatureWeightFeature

−1.2304M+commercial1.2096Sc+als

−1.0398P+hate+being1.1314Mb+induced

−1.0000P+I’m+definitely1.0683Pa+oh+no

−1.0000P+clumsiness1.0000M+dstinks

−1.000P+hospitalization1.0000S+.+wooh

−0.9674S+lol+fml1.0000M+never+work

−0.9035S+wopps0.9006P+high+off

−0.8067P+rt+xanaaxhadme0.8449P+took+too

−0.7721P+don’t+think0.8378M+was+supposed

aP: prefix skip-gram patterns.
bM: midfix skip-gram patterns.
cS: postfix skip-gram patterns.
dFor bigrams, we have used “+” to separate the constituent unigrams.

Figure 4. Histogram of the weights of the features learned by the support vector machine (SVM) classifier.

Conclusions
We proposed a novel signal detection problem where given a
social media post T that contains a drug D and an event R, we
would like to determine whether R is related to D, or otherwise.
We have then proposed a method to solve this signal detection
problem utilizing the lexical contextual information in T.
Specifically, we extracted skip-gram patterns from the prefix,
midfix, and suffix in T, and trained a binary SVM using a

manually labeled training dataset. Our results show that the
proposed method significantly outperformed the majority
baseline and a BOW classifier. Moreover, we showed that the
discriminative patterns were ranked at the top by the trained
classifier. In the future, we plan to use the automatically
extracted patterns to develop an ADR extraction method for
previously unknown adverse reactions of drugs from social
media.
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