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Abstract 

This paper investigates the use of Boolean techniques in a systematic study of cause-effect 
relationships. The model uses partially defined Boolean functions. Procedures are provided to 
extrapolate from limited observations, concise and meaningful theories to explain the effect 
under study, and to prevent (or provoke) its occurrence. 

1. Introduction 

The main problem we plan to investigate in this paper is that of identifying the 

small subsets of plausible causes of a given effect, among a large set of factors 

including all the potential causes, along with many other (irrelevant) factors. 

Moreover, we shall present methods to describe all the combinations of possible 

causes which can be identified on the basis of a limited number of observations, 

as well as to build procedures for provoking or preventing the occurrence of a 

certain effect. It should be remarked from the very beginning that the proposed 

methods give a complete description of the cause-effect relationship only when 

the effect of all possible combinations of factors has been observed. In the usual 

case when only partial observations are available, no method can provide definite 

answers; however, even in this case, the cause-effect relationship can be narrowed 

down sufficiently to provide substantial guidance to a decision-maker. 

Models related to the one developed here have been considered in the artificial 

intelligence literature, mostly by researchers interested in machine learning and in 

inductive inference (see e.g. chapter XIV in [1]). In the terminology of [1], our 

paper deals with data driven techniques (apparented to version space techniques) 

for disjunctive concept learning. 

In this context, the main contribution of our work is its emphasis on the use of 

classical concepts from switching theoryl and, in particular, on the concept of 

partially defined Boolean function. We consider this viewpoint as extremely 

fruitful, since it opens the possibility to take direct advantage, in an artificial 

© J.C. Baltzer A.G. Scientific Publishing Company 



300 Y. Crama et al. / Cause-effect relationships 

intelligence framework, of an enormous body of known results concerning 

Boolean functions (see e.g. [2], [4-8], [10], etc.). 

Partially defined Boolean functions are usually refered to in the literature as 
Boolean functions with "don't care" conditions, reflecting the concern of special- 

ists in the area of switching circuit design to define circuits with prescribed 

behavior in certain 0-1 points, and with arbitrary behavior in the remaining 
points. In the applications we have in mind, the value of the function is known in 

certain observed points, and unknown, but relevant, in all other points (as a 

matter of fact, such values can always be obtained at the cost of performing 

additional observations). Consequently, our object, as opposed to that of circuit 

designers, is as much to gain an overview of the family of all functions agreeing in 

the observed points with the partially defined one, as to select an 'optimal'.' 
function among that family. 

Our work also displays connections with Valiant's learning model [9], but our 

focus is again different. Indeed, Valiant is mostly interested in circumscribing 

classes of "easily learnable" relationships, i.e. relationships (or Boolean functions) 

which can be induced, almost always and almost perfectly, by performing only a 

small (polynomial) number of observations and of computations. 

By contrast, many of the computational problems arising in our framework are 

NP-hard, or provably require an exponential number of steps in the worst-case 
(since, for example, the number of "'supporting sets", of "patterns", of '" thrifty 

theories" associated with a problem may be exponentially large-see sections 3, 4, 

6). Therefore, we expect our methods to be mostly applicable in such situations 

where the number of explanatory factors and of observations is reasonably small 

(which, we believe, is the case in most applications of interest). 

Still, interesting connections remain between the results presented in [9] and in 

the present paper. Some of the learnable classes considered in [9], for instance, 

also turn out to t~rovide the most tractable relationships from our viewpoint 

(positive and low order relationships; see sections 8.1, 8.3). 

The model on which we are going to illustrate the general problem will consist 

in an attempt to identify the combinations of food items which give headaches to 

a certain individual. The nutrient-headache relationship will be used for iUustra- 

tory purpose only, and should be taken with a grain of salt. Similar illustrations 

could have been built using other types of situations occurring in medical 

practice, scientific experimentation, or engineering. 

2. Headaches and Boolean formalism 

We shall start this section with a very simple example. 

EXAMPLE 1 

A physician would like to find out the combination of food items which cause 

a headache to one of his patients, and requests his patient to keep a record of his 
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Table 1 

Day Food item Headache 

1 2 3 4 5 6 7 8 

1 x x x x Yes 
2 x x X x No 
3 X X X No 
4 X X X X X No 
5 X X X X X Yes 
6 X X X No 
7 X X X X Yes 

diet. One week later, the patient returns to the doctor and brings in the record 

displayed in table 1. 

After a brief examination, the doctor concludes that on the days when the 

patient had no headache, he never consumed food # 2 without food # 1, but he 

did so on some of the occasions when he had a headache. Similarly, our clever 

doctor concludes that the patients has never consumed food # 4 without food # 6 

on the days when he had no headache; but he did so once, and he had a 

headache. He finally concludes that the two "pat terns"  noticed above explain 

every headache, and he puts forward the " theory"  that this patient 's headaches 

can always be explained by using these two patterns. 

Obviously, the doctor had to answer three questions in this process. 

(a) How to come up with a short list of food items sufficient to explain the 

presence or absence of headaches? In our example, foods # 1, 2, 4, 6 were already 

enough for this purpose. 

(b) How to detect patterns (i.e., combinations of food items) causing headaches? 

In our case, the doctor found two such patterns. 

(c) How to build theories (i.e., collections of patterns) explaining every ob- 

served headache? 

Fortunately, his patient was familiar with Boolean terminology (see e.g. 

Mendelson [6], Muroga [7]), and made the following suggestions. Let x 1, x2 , . . . ,  x ,  

Table 2 

Day Food item f ( x~ ..... x 8) 

X 1 X 2 X 3 X 4 X 5 X 6 X 7  X 8 

1 0 1 0 1 0 1 1 0 1 
5 1 1 0 1 1 0 0 1 1 
7 0 1 1 0 1 0 0 1 1 
2 1 0 1 0 1 0 1 0 0 
3 0 0 0 1 1 1 0 0 0 
4 1 1 o 1 o 1 o 1 o 

6 o o 1 o 1 o 1 o o 
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be 0-1 variables associated to the food items, with the interpretation that x; = 1 if 

and only if food # i  has been consumed on a particular day. Let f (xl ,  x 2 . . . . .  x,) 
be a Boolean function taking the value 1 on the days with headaches, and 0 on 

the other ones. Due to the limitations in record-keeping, the values of f are 

known only for a small subset of 0-1 vectors. In our example, we only know the 

values of f in 7 out of the 2 8 possible vectors. With our new notations, table 1 

becomes now table 2. 

If x is a variable taking values 0 and 1, then Y = 1 - x is called its complement. 
If x 1, x 2 . . . . .  x,, are Boolean variables, then the symbols xl, Yl, x2, ~2 . . . . .  x,, Y, 
are called literals. A product  of the form 

¢ =  I"I xi ]-[ xj ( M N N = 0 ' )  
i ~ M  j ~ N  

is an elementary conjunction (here and in the sequel, products over the empty set 

are taken equal to 1). A disjunction of elementary conjunctions is called a 

disjunctive normal form (or simply disjunctive form), Every disjunctive form 

defines a Boolean function; the same Boolean function can be defined by several 

disjunctive forms. 

The patterns noticed by the doctor tell that, whenever Ylx2 = t o r  x 4 x  6 -~- 1, 

the patient had a headache, and that whenever ~1x2 = x4~6 = 0, he did not. The 

doctor's theory is that the function ~p = Ylx2 v x4~ 6 explains all the headaches. 

Consequently, the list of variables x l, x2, x4, x6 can be called a supporting list of 

variables. 

Clearly, the doctor's theory is consistent with all the observed data. It  is only 

natural to ask whether a mathematical approach could construct such a valid 

theory, or possibly all valid theories consistent with the known facts. With this 

goal in mind, we shall introduce a few further definitions. 

Let T and F be two disjoint subsets of n-dimensional 0-1 vectors. The 

partially defined Boolean function on T U F is given by: 

1 if (xl ,  x2 . . . . .  x , , ) ~ T  

f (x l ,  x 2 , . . . , x , ) =  0 i f ( x l ,  x 2 . . . . .  x n ) ~ F .  

Partially defined Boolean functions will provide the mathematical model captur- 

ing the doctor's observations. This concept will be used throughout the paper. 

Every Boolean function (i.e., defined over all 2" 0-1 vectors) agreeing with f on 

T U F and taking arbitrary 0-1 values elsewhere will be called an extension of f. 
In particular, the completely defined Boolean functions f+  and f -  defined by: 

f + ( x l ,  x2 . . . . .  x.)=(tO if (x~, x2 . . . . .  x . ) ~ F  
if (x l ,  x2 . . . . .  x.)  E F 

and 

if (x l ,  x 2 , - - - , x . )  ~ T 

if (xl ,  x 2 , . . . ,  x . )  ~ T 
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are extensions of f ,  and any extension f '  of f is such that f-- ~< f '  ~< f+, meaning 

that f - ( x )  <~f ' ( x )  <~f f ( x )  for any x = (x 1, x2 . . . . .  x,) .  The unknown function 

describing the actual headache, or cause-effect relationship, is therefore one of 

the many extensions of the given partially defined function. 

3. Supporting sets of variables 

A set of variables, say (xl ,  x 2 . . . . .  x ,  }, is called supporting for the partially 

defined function f if f has an extension depending only on the variables 

xl ,  x 2 . . . . .  x k. Equivalently, { x 1, x2 , . . . ,  x k } is supporting if, for every pair of 

' ' x,~) and X . . . .  vectors X = ( x  1, x > . . . , x  k, Xk+l , . . . ,  =(Xl,  X2 , . . . ,Xk ,  X , + I , . . . ,  

X") in T U  F, f ( X ' )  = f ( X " ) .  A supporting set is called minimal  if it does not 

properly contain any other supporting set. 

In order to identify the minimal supporting sets, we shall introduce a new set 

of 0-1 variables, {Yl, Y>. . . ,  Y,). The vectors (Yl, Y2 . . . .  , y , )  will be interpreted 
as the characteristic vectors of subsets of variables, and we shall derive conditions 

under which such a vector corresponds to a supporting set of variables; minima- 

lity will be achieved by finding the optimal solutions of some associated set- 

covering problems. 

It is obvious that if (x(, x 2 . . . . .  x,',) ~ T, (x(',  x~', . . . .  x " )  ~ F, and Y =  

(Yl, Y2,--., Y,,) corresponds to an arbitrary supporting set, then there exists an 

index i for which x~ ~ x~' and Yi = 1 (since otherwise, for every j ,  Y2 = 1 would 

imply xj = xj' ,  in contradiction with the definition of a supporting set). There- 

fore, for every pair of vectors X'  ~ T and X "  ~ F, denoting by A (X ' ,  X " )  the 

set of indices where X'  and X"  differ, the vector Y will satisfy: 

£ y,- >/1. (1) 
i~zl( X',X") 

It can be seen immediately that Y is a supporting vector if and only if it satisfies 

(1) for every pair of vectors X '  ~ T and X "  ~ F. 

In conclusion, the minimal supporting sets are in one-to-one correspondence 

with the minimal 0-1 vectors satisfying system (1). This observation can already 

be found in Necula [8]. 

By appropriately choosing the coefficients c i in the set-covering problem (SCP): 

minimize ~ ciy i 
i = 1  

st. ~ y~>/1 f o r X ' ~ T ,  X " ~ F  
i~A( X',X") 

y i E  (0, 1} for i = 1 ,  2 . . . . .  n, 

one can identify particular types of minimal supporting sets. For example, the 

minimal supporting sets involving the smallest number of variables (which have 
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an obvious appeal for practitioners) can be found by taking all the ci's equal to 1. 
Similarly, any a priori knowledge (e.g. of a statistical nature) about the relative 
importance of the variables can be built into the selection of a minimal support- 
ing set by weighting the variables accordingly in (SCP). 

EXAMPLE 1 (continued) 

For the example of section 2, the generated constraints would be the following: 

Yl +Y2 +Y3 +Y4 +Y5 +Y6 

Y= 

Yl 

Y2 

Y2 

Yt +Y2 

Yl +Y2 +Y3 

Y~ +aVE 

)'2 +Y3 

Yl + Y3 

Y2 

+Ys 

+Y3 +Y4 +Y5 +Y6 

+Y3 +Y4 

+Y6 

Y5 +Y6 

+Y4 

+Y4 +Y6 

+Y4 +Y5 +Y6 

>/ I (2) 

+Y7 >/ 1 (3) 

+ Y7 q- Y8 >I 1 (4) 

>t 1 (5) 

+Y7 +)'8 >t 1 (6) 

+Y8 >/ 1 (7) 

>1 1 (8) 

+Y7 +)'8 >/ 1 (9) 

+Y7 +Y8 >/ 1 (10) 

+Y8 >1 1 (11) 

> / 1  (12) 

+Y7 -t--1;8 >/ 1 (13) 

which, after the elimination of the redundant constraints (2), (5), (6), (9), (10), 

(12), reduces to the system (3), (4), (7), (8), (11), (13). All the minimal solutions of 
this system in 0-1 variables are: 

~ = ( 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 )  

~ = ( 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 )  

~ = ( 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 )  

~ = ( 1 , 1 , 0 , 0 , 0 , 1 , 0 , 0 )  

~=(0,1,0,0,1,0,1,0) 
~=(0,1,0,0,0,1,0,1) 
~=(1,0,1,0,1,0,1,0) 
~=(1,o,o, 1,1,o,l,o) 

which define the following minimal supporting sets: 

s, = {x , ,  x~ } s~ = { ~ ,  x~, x~ } 

s3 = (x , ,  x2,  x ,  ) s ,  = ( x , ,  x~, x , ,  x7 } 

& = ( x , ,  x2, ~ , }  s ,  = ( x , ,  x , ,  x , ,  xT}.  

It can be easily seen that the variables in any of the sets above completely 
characterize the behavior of our function in all of the observed points. To take S 1 

as an example, we notice that the function 4, = x sx  8 v E528 is an extension of f.  
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4. Patterns and their detection 

A combination of present or absent factors appearing only in diets associated 

with headaches can be suspected to be a cause of the headache. For example, in 

every occasion that food # 2  was eaten without food # 5  and food #8 ,  a 

headache resulted. Therefore, the combination " # 2  present, # 5 absent, # 8 

absent" could be suspected to be conducive to a headache. However, in this 

explanation, food # 2 plays no role, since the simple absence of foods # 5 and 8 

has the same property. 

A minimal combination of the type described will be called a pattern. It is easy 

to notice that " the  absence of foods # 5 and # 8" is indeed a pattern. 

Mathematically speaking, a pattern is an elementary conjunction C of some of 

the literals xl, ~1, x2, ~2 . . . .  , x , ,  ~n, so that 

(i) C(X) = 0 for every X ~ F; 

(ii) C(X) = 1 for at least one vector X in T; 

(iii) for every conjunction C '  obtained by dropping a literal from C, there 

exists a vector X ~ F such that C ' ( X )  = 1. 

(Observe that, when T = ~, there is no pattern, and when F = g, the constant 1 is 

a pattern; we shall disregard these extreme cases in what follows). For instance, 

the pattern identified in the above example is C = x sx  s. 

Let us recall here that an elementary conjunction C is an iraplicant of the 

Boolean function ~k(X) if: 

C ( X )  = 1 ~ ¢ ( X ) - -  1 

for all Boolean vectors X. An implicant C is prime if no implicant of ~ can be 

obtained by deleting literals from C. 

It is now easy to see that: 

THEOREM 1 
Every pattern of a partially defined Boolean function f is a prime implicant of 

its extension f+. [] 

Detecting all patterns can be achieved in various ways by applying simple, 

albeit time-consuming, techniques. We propose below two such procedures. 

The first one is close in spirit to the procedure described in section 3 for 

obtaining minimal supporting sets of variables. We consider successively each 

vector X ~ T. For each such vector, the list Ya, Y2 . . . . .  Yk of minimal solutions of 

the system: 

),~>~1 for X '  ~ F 
i~A(X,X') 

is obtained. Let us associate now with each vector Yj the elementary conjunction 

cj-- I7 xu lq 
u ~  U j o E  I,'J 

where U j (resp. V j) is the set of indices i for which the i-th component of X is 

one (resp. zero) while the i-th component of Yj is one. 
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One easily checks that the conjunctions obtained in that way, for all possible 

vectors X ~ T, are exactly the patterns of f .  

EXAMPLE 1 (continued) 

For the example in table 2, when X is the vector associated with day 1, we get 

the system of inequalities (2), (3), (4), (5), the minimal solutions of which are: 

C 1 = XIX2 

C2 = Yves 

C 3 = X 2 X  7 

G = x2-/8 

C 5 = .~3x7 

Y,* = (1, 1, 0, o, 0, 0, 0, 0) 

Y? = 0 ,  0, o, o, 1, 0, 0, 0) 

Y3* = (0, 1, 0, 0, 0, 0, 1, 0) 

r4* =(0,  1, 0, o, 0, 0, o, 1) 

Y? = (0, o, a, o, 0, 0, a, 0) 

These determine the patterns: 

C6 ~ x 4 x  7 

C7 = xsx7 

C8- X 5 X 8  

C9 X 6 X  7 . 

~*=(0, o, 0,1,0, o, 1,0) 

~ = ( o ,  0, o, 0, a,0, a,0) 

~ * = ( 0 , 0 , 0 , 0 , 1 , 0 , 0 ,  a) 

~ * = ( 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 ) .  

The vectors associated with day 5 and with day 7, respectively, would generate 

more patterns in a similar way. 

The procedure described above generates all the possible patterns associated to 

a problem. It will be seen in the sequel that only a small subset of patterns will be 

used at any given moment, and it will be also clear that the most important 

patterns are those involving few literals. 

A second procedure can therefore be devised, which simply enumerates all the 

"short" elementary conjunctions and checks whether they are patterns. Various 

clever implementations can be designed to keep the amount of computations as 

low as possible. It is to be stressed that, when only patterns up to a given length 

(e.g. 2, or 3) are needed, then all these implementations are polynomial. 

5. Theories 

Due to the unavailability of complete data, the known facts can be given a 

variety of explanations, depending to a large degree on the interpreter's subjective 

viewpoint, but also respecting several generally accepted principles. 

Obviously, a theory has to satisfy two main criteria: 

(i) it has to be consistent with all the observations; 

(ii) it has to be able to predict the outcome of any (not yet necessarily 

encountered) combination of factors. 

From a formal point of view, a theory is therefore a Boolean function which 

agrees with the given partially defined function in every observed point. In other 
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words, a theory is simply an extension of the partially defined function, as 

introduced in section 2. 

Since the number of extensions/ theories can be very large, it is important  to 

devise additional principles to help us identify particularly appealing ones. The 

identification can be based on commonly accepted criteria of simplicity (e.g. 

limitation in the number of explanatory factors, use of easily understandable 

causal relationships, etc.), or on observed trends in the effects of different agents 

(e.g. the knowledge that causal effects can be always reduced to the interplay of 

consistently inducive or consistently inhibitive factors, or that all factors can be 

meaningfully ranked as to the importance of their impact, etc.). 

We shall examine in details, in the following sections, theories devised on the 

basis of such criteria. From a technical point of view, these sections will rely on 

the concepts and methods introduced in the previous sections, particularly on the 

detection of patterns and supporting sets of variables. 

6. T h r i f t y  t h e o r i e s  

Every cause-effect relationship can be described by listing various combina- 

tions of present or absent factors, such that each of these combinations produces 

the effect in question, and the effect is produced only by the combinations in the 

list. Once a list is available, various transformations can be performed on it, 

aimed at producing "simpler" lists, which still describe valid theories. More 

precisely, some combinations on a list may be redundant,  in the sense that the list 

obtained by omitting these combinations is still a theory. Other combinations 

may contain irrelevant factors, the elimination of which still maintains a possible 

theory. 

A theory will be called thrifty if it does not involve redundancies of either of 

the above two types. 

EXAMPLE 2 

Consider a problem with the following observed situations: 

Days Food items Headache 

1 2 3 4 

1 1 0 0 1 1 

2 0 1 1 0 1 
3 0 0 0 1 0 

A possible theory explaining all headaches is described by the following list of 

headache-causing combinations: 

Combinations Food items 

1 2 3 4 

A 1 
B 0 1 

C 1 
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(meaning that food items #1  and # 4  taken simultaneously cause a headache, 

food # 2 without food # 1 causes a headache, foods # 2 and # 3 together cause a 

headache, and the present theory assumes that these are the only headache-cans- 

ing combinations). 

It can be noticed that, by dropping C from the list, we still have a possible 

theory. Also, it can be seen that eliminating food # 4  from combination A 

produces a simpler theory. Finally, disregarding the role of food # 1 in combina- 

tion B simplifies the theory to the following thrifty one: 

Combinations Food items 

1 2 3 4 

h' 1 
B' 1 

To rephrase more formally the intuitive definition given before the example, 

we can say that a thrifty theory is an extension ¢ of the given partially defined 

function f ,  which has a disjunctive normal form 

= CI v C 2 v . . .  V C k (14) 

with: 

C,= I ~ x i  Iq  ~ ( ~ n : / = ~ ;  i = 1  . . . . .  k) (15) 
jEJ~ j~J,  

such that the expressions obtained from t/, either by dropping one of the 

elementary conjunctions Ci, or by dropping a literal from one of these conjunc- 

tions, do not define extensions of f .  

In order to relate this concept to the previously introduced ones, let us now call 

the expression 

17 = P1 v P2 v . . .  _v Pq (16) 

thrifty i f / 1 ,  P2 . . . . .  Pq are patterns, 17 is an extension of f ,  and the disjunctive 

normal forms obtained by dropping one of the Pi's from 17 are not extensions of 

f. 

THEOREM 2 

A theory is thrifty if and only if it has a thrifty expression. [] 

THEOREM 3 

I f / 7  = P1 V/'2 V --. V Pq is a thrifty expression, then P1, P2 . . . . .  Pq are prime 

implicants of the function ~ defined by /7 ;  moreover, a prime implicant P of ~k 

is a pattern if and only if there exists X ~ T such that P(X) = 1. rn 

The proofs are straightforward and therefore omitted. 
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EXAMPLE 3 

Consider the partially defined Boolean function described by the following 

table: 

Vectors Variables f 

X1 X 2 X 3 X4 

l 1 0 1 0 1 

2 0 1 1 0 1 
3 1 0 0 1 1 
4 0 0 0 0 0 

5 1 1 1 1 0 

A thrifty extension for f is defined by the expression /7 = .~1X2 V X2X3 V X2X4 . 

This extension admits the prime implicants Y~x 2, XEX3, ~2X4, XlX3, XlX4, the 

last one of which is not a pattern of f .  

An important question to be settled now is the selection of a thrifty theory, out 

of the large number of conceivable ones. The techniques to be described below 

will identify collections of patterns defining thrifty theories. We shall outline a 

(computationally demanding) method for generating a "shortest"  thrifty expres- 

sion, and a (more tractable) procedure for building at least one thrifty expression. 

In order to simplify our description, we shall say that a pattern P covers a 

vector X if P ( X ) =  1. A collection of patterns (P1 . . . . .  Pk)  will be called a 

minimal  cooer of the set T if every vector X ~ T is covered by a pattern in the 

collection, and the collection is minimal with this property. It is easy to notice 

that { P1 . . . . .  Pk } is a minimal cover if and only if P~ V . . .  V Pk is a thrifty 

expression. This observation shows that thrifty expressions are in one-to-one 

correspondence with the minimal 0-1 solutions of the system of inequalities: 

z j> l l  for all X ~ T ,  (17) 
i~Q(X) 

where {P1 . . . . .  Pt} is the set of all patterns, Q ( X )  c_ {1 , . . . ,  t} is the set of indices 

of the patterns covering X, and z i = 1 (0) means that pattern P~ is (not) selected 

in an expression. The thrifty expression involving the smallest number  of patterns 

can therefore be selected by minimizing the objective function Eti=lz i subject to 

the constraints (17). 

EXAMPLE 3 (continued) 

Consider again the partially defined function of example 3. Its patterns are 

PI = xl-~2, P2 = XlX2, P3 = XlX3, P4 = -~lX3, P5 = xlx4, P6 = -~2x3, P7 = x2-~4, P8 

-~" x2x4 ,  /09 = x3x4 ,  e lo  = x3x4 • T h e  corresponding set covering problem is: 

minimize z 1 + z 2 + • • • + Z~o 

s.t. z~ "~ Z 5 -~" Z 6 -'1- Z 9 ~ 1 

Z2dr Z4 + Zv'al-Zg ~ l 

z 1 + z 3 + z 8 + Zlo >~ 1 

z~ . . . . .  zl0 ~ (0 ,  1}.  
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One of its optimal solutions is given by zl = z2 = 1, z 3 . . . . .  zl0 = 0. There- 
fore, a thrifty theory involving only two patterns is defined by: 

/'~ = XIX 2 V X1X2 . (18) 

A second method of building a thrifty theory, without first producing all 
patterns, will initially generate a pattern, and will then label all points of T 

covered by this pattern. At this stage, a new pattern will then be generated, 
covering at least one of the unlabelled points in T, and all points covered by this 

new pattern will be also labelled. The process will be repeated until all points of 
T are labelled. Since the collection of patterns produced may be redundant, 

p~tterns will then be sequentially checked for redundancy and possibly eliminated, 
until a minimal cover is obtained. 

EXAMPLE 3 (continued) 

We first produce pattern /'6 = ~2x3 covering vector X1, and we label x~. Then 

pattern P2 = ~1x2 is produced, and vector X 2 is labelled. Next, P1 = x ~  2 is 

produced, and the last vector X 3 is labelled. Since the collection (P1, /'2, P6 } is 

not a minimal cover of T, we eliminate P6. This results in the same minimal cover 

(P1, P2 }, and the thrifty expression (18), found by the first procedure (although 

this second procedure is not guaranteed in general to yield a thrifty expression 
involving the smallest number of patterns). 

7. Basic theories 

Minimal supporting sets of variables were defined in section 3. An essential 

criterion in the description of cause-effect relationships is the number of factors 

on which they depend. This consideration leads naturally to building theories on 
minimal supporting sets. Such a theory will be called basic. 

Among basic theories, a very special role will be played by basic thrifty ones. 

These can be obtaindd by first selecting a minimal supporting set of variables, say 

S =  {xl ,  X2 , . . . ,Xk} ,  Out of the original set of variables {xl, x 2 . . . . .  x , } .  We 

shall define the contraction of the partially defined function f ( x l ,  x2 . . . . .  x , )  to 

the set S to be the partially defined function f , ( x  1 . . . . .  Xk), where: 

f~(x  1 . . . . .  x~) = f ( x D . . . ,  Xk, Xk+ , . . . . .  X, )  for all (x, . . . . .  x , )  in TU F. 

This definition is meaningful, because of the definition of supporting sets. 

Thrifty theories associated with fs can now be built as explained in the 

previous section. They will use as building blocks the patterns of fs. 

THEOREM 4 

Let S be a minimal supporting set of variables. Then every pattern of f s  is a 

pattern of f ,  and every thrifty theory of f s  is a basic thrifty theory of f .  [] 

This theorem allows the construction of theories for the original problem by 

simply working on a contraction of it, thus substantially reducing the computa- 

tional effort, while maintaining the thrifty nature of the result. 
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Table 3 

Xl X2 X5 ~3 

0 1 0 1 
1 1 1 1 
0 1 1 1 
1 0 1 0 
0 0 1 0 
1 1 0 0 

EXAMPLE I (continued) 

We have obtained in section 3 all the minimal  suppor t ing  sets of  the funct ion 

defined by  table 2. Let  us build for  example  the thrifty theories cor responding  to 

$3 = {xl,  x2, xs}.  The associated cont rac t ion  fs, of  f is given by  table 3. Its 

pat terns  can easily be seen to be /'1 =-~lX2, /'2 = x lxs ,  P3 = X2X5" The  corre-  

sponding  set covering problem, describing thrif ty theories as in section 6, is: 

minh-nize z~ + z 2 + z 3 

s.t. z l + z 2  >f 1 

z 3 > ~ l  

z 1 + z 3 1> 1 

zl, z2, z3 ~ (0, 1) .  

This problem has two opt imal  solutions:  (1, 0, 1) and (0, 1, 1), defining the thrif ty 

theories: 

Flla = ~ 1 x 2  V x 2 x  5 and H 2 = ~ 1 ~  V x 2 x  ~. 

For  the sake of  illustration, we list below a l l  the basic thrif ty theories for  

example 1. In  the list, F/j. s tands  for  the basic thrif ty theory  i on  the minimal  

suppor t ing  set S~: 

Table 4 

1-11 ~ X5X 8 ~/ X5X 8 

I'I 2 = x t X  7 V ~6~7 

1113 = ~1X2 V X2X5 

l-I] = ~ 5  v x 2 x  s 

I'Jr4 = XIX2 V X2~" 6 

I I  1 = X 2 X  5 V X 2 X  7 

H~ = x 2 x  5 v ~5x7 

H~ = x2~ 6 V x2~ s 

H~ = x2~ s v ~6xs 

H~ = .~l.~s V x3.~ 7 V x l x s ~  7 

//2 = ~1~5 v x3~ 7 v x l ~ 3 x  s 

/'/3 = x3~ 7 V ~3x7 V x l x s ~  7 

H~ = x3~ 7 v ~3x7 v Xl~aX s 

H 5 = x3Y, 7 v ~sx7 v x l x s ~  7 

I'~6./= X3.~ 7 V XSX7 M XIX3X 5 

/-/~ = ~1~5 V .~4~7 V x l x 4 x  5 

17 2 = ~ l~s  v ~ 4 ~  v x~xsY, ~ 

I-I~ = x 4 x  7 V ~.4~7 V x l x a x  5 

I"/8 4 = X4X 7 V XaX7 V X1X5.~ 7 

H~ = ~4~7 V .~5x7 V x l x a x  5 

1-/6 = ~4~7 V ~sx7 V x l x s ~  7 
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The fact that the list of all conceivable theories (2 249 of them in this example) 

has been reduced to a manageable size (21 here) will clearly help a practitioner in 

selecting a meaningful theory. Obviously, when the size of the problem increases, 

the corresponding number of thrifty theories may increase exponentially, making 

the production of a complete list impossible. In the general case, additional 

limitations imposed by the nature of the problem will help reduce the number of 

theories under consideration. Several natural classes of theories will be examined 

in the next section. 

8. Special theories 

8.1. POSITIVE THEORIES 

A natural assumption underlying much of the Boolean literature concerns the 

monotonically increasing character of the functions examined. Functions with the 

property that 

X ~  Y =  F(X)  ~ F(Y)  

where X ~< Y means x i ~< yi for i = 1 . . . .  , n, are called positive. 
Positive functions have an intuitively clear meaning in a variety of contexts. In 

the example of the headache, the interpretation will simply be that every food 

item has either no effect at all on the headache, or it may be a contributing factor 

(in certain combinations) to the headache. In other words, no food item is 

supposed to ever have an inhibitive effect on headache. 

Let us call an elementary conjunction positive if it does not contain any 

complemented variable. It is well known that a Boolean function is positive if and 

only if all its prime implicants are positive. In a similar way, one easily checks 

that: 

THEOREM 5 

A partially defined Boolean function f admits a positive extension if and only 

if the set of positive patterns of f covers all vectors in T. [] 

The set of positive patterns (if any) covering a fixed vector X ~ T can be 

described easily, by a simple modification of the first procedure given in section 4 

for finding all patterns. The only difference will be in the definition of the sets 

LI(X, X'), which will be replaced here by sets F(X, X')  given by: 

F(X,  X')  = ( i l x , =  1, x; = 0}. 

Accordingly, the positive patterns covering X will be in one-to-one correspon- 

dence with the minimal solutions of the following system of inequalities in 0-1 

variables: 

),,.>11 forall  X ' ~ F .  
iEF(X,X') 
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Observe that, for a fixed X, the above system is feasible if and only if F(X,  X ' )  

is nonempty for every X'  ~ F. Combining this remark with theorem 5, we get: 

COROLLARY (Zuev [10]) 

A partially defined Boolean function f admits a positive extension if and only 

if F( X, X ' )  is non-empty for all X ~ T, X '  ~ F. O 

Similar extensions of the techniques developed in the previous sections also 
allow us to handle minimal positive supporting sets of variables, positive thrifty 

extensions, etc. It has to be noticed that the existence of a positive extension 
guarantees the existence of a positive thrifty one, but does not guarantee the 

existence of a positive basic one. 

EXAMPLE 4 

The partially defined function given by T =  ((1, 0, 1), (0, 1, 1)} and F -~ 

{(1, 1, 0), (0, 0, 1)} has the unique positive thrifty extension: /7 = xlx  3 v x2x3; it 

has no positive basic extension, since its unique minimal supporting set is 
{xl, x2). 

EXAMPLE 1 (continued) 

To illustrate the different aspects of treating positive extensions, we return now 

to example 1. The minimal positive supporting sets are in correspondence with 

the minimal solutions of the set coveting problem (compare with (2)-(13)): 

Y2 +Y4 +Y6 >1 1 

Y2 q-Y7 >t 1 

Y7 >~ 1 

Y2 +Y4 +Y6 >/ 1 

YZ +Y4 +Y8 >/ 1 

Yl +Y2 +Ys >/ 1 

Y5 >/1 

Yl +Y2 +Y4 +Y8 >I 1 

Y2 +ys>~ 1 

Y2 +Y3 +Ys >/ 1 

Y3 +Y5 >/ 1 

Y2 +Y8 >~1 

yz E (0, 1 ) ( i  = 1 , . . . ,8)  
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which, after the elimination of redundant constraints shrinks to: 

Y2 +Y4 +.I'6 >/ 1 

Y7 >/ 1 

Y5 >/1  

)'2 +)'8 >/ 1 

y i ~  {0,1} ( i = 1  . . . . .  8). 

The three minimal solutions of this system define the minimal positive supporting 

sets $1" = {x2, xs, XT}, $2" = {x4, xs, x7, xs} and $3" = {xs, x6, x7, x8}. Since 
one of these sets (S~*) is also a minimal supporting set (see $5 in the list given in 

section 3), it follows that our problem has the positive basic thrifty extension: 

1-11 : X2X 5 V X2X7, 

which had already been found in table 4. 

In order to illustrate the procedure of finding a positive thrifty expansion on a 

minimal positive supporting set, we shall consider the supporting set $2". The 

contraction f *  of f to $2" is: 

X4 X5 X7 X8 f * 

1 0 1 0 1 

1 1 0 1 l 

0 1 0 1 1 

0 1 1 0 0 
1 1 0 0 0 

1 0 0 1 0 

The positive patterns of f *  covering the first vector in that table correspond to 

the minimal solutions of the problem: 

y4~1 

yT>~l 

74, 75, YT, Y8 ~ {0, 1}. 

The only such pattern is P1*= X4XT. In a similar way, the only positive pattern 

covering both the second and the third vectors in T is P2* = xsxs- Therefore, the 

unique positive thrifty theory on Sz* is/7~' = x4xv v xsxs. 

Also, the (unique) positive thrifty theory on :73* can be checked to be 

I-I~ = X s X  8 V X6X 7. 

8.2. UNATE THEORIES 

The expression q, = x~ can be transformed into the positive expression ~ '  = xy '  

by introducing a new variable y '  = y ;  no similar transformation can be found to 
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make the function xy v ~z positive. A function ~ is called unate if, for some 

subset V of variables, the change of variables: 

' { ~ x  i f x E V  
x = i f x ~  V 

transforms ~p into a positive function. 

The meaning of unateness in terms of the headache problem is that each item 

has a consistent effect; some items may have an inducive effect, meaning that 

their addition to a headache-causing diet can never prevent the headache; some 

items may have an inhibitive effect, so that their addition to a diet which does not 

provoke headaches cannot result in a headache-causing diet; some items (perhaps 

the vast majority) may have no effect at all. The important  fact about unateness 

is that each food item clearly belongs to one of the three classes. 

If our object is to find a unate theory, the procedure is straightforward. Given 

the set V, we start out by changing the variables as in the definition of unate 

functions, and then we simply attempt to build a positive theory for the resulting 

partially defined function, as explained in section 8.1. 

EXAMPLE 1 (continued) 

If we attempt to build theories on the minimal supporting subset S 3 = 

(x~, x 2, x 5 ), under the hypothesis that f o o d  # 1 is inhibitive of headache, while 

foods # 2  and # 5  are conducive of headache, then we change variable xa to 

x~ = ~a, and we consider the contraction f '  of the resulting function to 
t 

( ~ ,  x~, x~}: 

~; ~ ~ / '  

1 1 0 1 
0 1 1 1 
1 1 1 1 

0 0 1 0 
1 0 1 0 
0 1 0 0 

The unique positive thrifty extension of f '  is: 
t 

t~ I = X 1 X  2 V X 2 X  5 

(corresponding to the unate thrifty extension of f ,  /-/~ = ~lxz v x2xs, listed in 

table 4). 

From a computational point of view, the study of unateness does not appear to 

be more difficult than that of positivity. This is however only true when the 

nature (conducive or inhibitive) of every variable is known a priori. The more 

general question of deciding whether there exists a unate theory based on an 

unspecified dichotomy of variables can be  approached as described below. 

We first present a slight generalization of the discussions of supporting sets 

and positive supporting sets given in sections 3 and 8.1. To that effect, we 
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introduce two vectors Y = (Yl, Y2 . . . . .  y,)  and Z = (z 1, z2 . . . . .  z , )  of 0-1 varia- 

bles. Our immediate goal is to characterize pairs of vectors Y, Z with the 

following property: there is an extension of the given partially defined function 

and a disjunctive normal form of that extension, in which xi appears uncomple- 

mented if and only if y~ = 1, and x~ appears complemented if and only if z~ = 1. 

For  every pair of vectors X ~ T, X '  e F, let us define: 

/ " , (X ,  X ' )  = f / I x ,  = 1, x"--0} 
to(X,  x ' )  = = o, x; = 1). 

THEOREM 6 

The vectors ¥, Z have the property described in the previous paragraph if and 

only if they are a solution of the system: 

y; + ~ zi >/1 for all pairs X e T and X '  e F (19) 
ieI'm( X.X') iero( x,x ' )  

y , ~  {0, 1}, z i g  {0, 1}, i =  1, 2 . . . .  , n .  (20) 

Proof 

Consider an extension ~ of f and one of its disjunctive forms: 

4,= v c 2 v  - - -  vc. , ,  

where C j ( j =  1, 2 . . . . .  rn) are elementary conjunctions of some literals chosen 

from xl, 21, x 2, x2 . . . . .  x , ,  E,. Every Cj satisfies C j ( X ' ) =  0 for all X ' ~  F, and 

for each X ~ T, there is at least one Cj with Cj(X) = 1. Let y; = 1 if x i occurs 

uncomplemented in one of the Cj's, and Yi = 0 otherwise; let zi = 1 if x i occurs 

complemented in one of the Cj's, and z~ = 0 otherwise. It is straightforward that 

the vectors Y, Z satisfy (19)-(20). 

Conversely, consider any vectors Y and Z satisfying (19)-(20). By definition, 

for each X* ~ T, Y and Z satisfy 

y~+ ~ z ~ > l  f o r a l l X ' e F .  
iert(x*,x')  iero(X*,X') 

This implies that the conjunction Cx. defined by 

FI x, I-I 
i [y i=l  ilzl~l 
x7 = 1 x7 = 0 

satisfies C x . ( X * )  = 1 and C x . ( X ' )  = 0 for all X '  ~ F. Therefore, the extension 

q, with the following disjunctive form 

V 
X~T 

has the desired property. [] 
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Notice now that a function is unate if and only if it has a disjunctive normal 

form in which every variable appears either complemented, or uncomplemented, 

but not both. This leads to the following: 

THEOREM 7 

A partially defined Boolean function admits a unate extension if and only if 

the associated set of inequalities (19)-(20) has a solution (Y, Z)  such that 

yi+z~<~l f o r i = l ,  2 . . . . .  n. D (21) 

It is also easy to notice that the existence of a unate extension guarantees the 

existence of a unate thrifty one. However, similarly to the positive case, it does 

not guarantee the existence of a unate basic one. 

EXAMPLE 1 (continued) 

Corresponding to the inequalities (2)-(13) derived for the partially defined 

Boolean fucntion in table 2, we now have: 

zl +Y2 +z3 +Y4 +z~ +Y6 >/ 1 

Y2 + z5 +Y7 >i 1 

zl +Yv +z8 >/ 1 

Y2 +z3 +Y4 +z5 +Y6 >/ 1 

Y2 +z3  +Y4 +aT +Y8 >/ 1 

Yl +Y2 +z6 +Y8 >/ 1 

Y5 +z6 >i 1 

Yx +Y2 +Z3 +Y4 +Z7 +Y8 >~ 1 

z~ +Y2 +z7 +Y8 >/ 1 

Y2 -t-y3 +Z4 -t-z6 +Y8 >/ 1 

Zl +Y3 + e 4  +Y5 -l-Z6 ~ 1 

>/1  

(21) are: 

Y2 + z7 +Y8 

Some solutions (Y, Z)  also satisfying 

S( = (Y2 =Y5 =Y7 = 1; 0 otherwise) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(3o) 

(31) 

(32) 

(33) 

$4 = (zl = Y2 = Y5 = 1 ; 0 otherwise) 

S~ = (y4 = Y5 = Y7 = Y8 = 1 ; 0 otherwise) S~ = (z a = Y2 = z6  ~" 1 ;  otherwise) 

$3 = ( Y5 = Y6 = Y7 = Y8 = 1 ; 0 otherwise) S~ = (y2 = z6 = Y7 = Y8 = 1 ; otherwise). 

Solutions $1', S~ and $3' correspond to $I*, $2" and $3", respectively, in section 

8.1. These all give positive extensions as discussed therein. S~ gives the extension 

q/ already introduced in the beginning of this section. $5' and S~ respectively 

provide the unate extensions: 

q'5 = ~1x2 v x2~6 (=  174) 

~i~6 = X 2 X  7 V X6Xs. 
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S(, $2 and S; are basic as these extensions are found in the list of table 4. The 

other extensions are not basic, though all these are constructed from the solutions 

to (22)-(33), which are minimal in the sense that converting any y~ = 1 or z, = 1 

to 0 does not give a solution to (22)-(33). 

Therefore, the question of Whether a given partially defined Boolean function 

admits a unate extension can now be stated as follows: does the set of inequalities 

(19)-(20) have a solution (Y, Z) satisfying (21)? It is of course possible to answer 

this question by exhausting all possible 0-1 solutions (Y, Z)  of (19)-(20) and 

checking whether some of them satisfy (21). This is not practically feasible, 

however, unless the number of variables and the number of vectors in T W F are 

rather small. Unfortunately, the next theorem states that it is most unlikely that 

the abo~ve question can always be answered efficiently. 

THEOREM 8 

Deciding whether a partially defined function has a unate extension is NP- 

complete. [] 

The proof is rather technical and will be given in the appendix. For the concept 

of NP-completeness and the related complexity issues, the reader is referred, for 

example, to [3]. 

8.3. LOW-ORDER THEORIES 

The order O(C) of an elementary conjunction C is the number of literals 

occuring in it; e.g., x.P is of order 2, x is of order 1, the constant 1 is of order 0, 

etc. The order of a disjunctive normal form C 1 V C2 v . . .  v Ck is simply the 

maximum of O(Ci) for i = 1 . . . .  , k; e.g., the order of x V~zw is 3. 

It is. known that every Boolean function can be expressed as a (not necessarily 

unique) disjunctive normal form. Accordingly, we define the order of a Boolean 

function as the order of its expression(s) of lowest order; for example, the order 

of the function given by the expression f t  v ?x v xyz is 2, since the same function 

also admits the expression ~t v ?x v xy (and since it obviously has no expression 

of order 1). 

Theories of order 1 are the simplest ones; by analogy to the usual algebraic 

concept, such theories will be called linear. Similarly theories of order 2, or 

quadratic theories, can be written as unions of conjunctions involving at most two 

variables. A conjunction in two variables can be interpreted in a straightforward 

way. In general the lower the degree of a theory, the simpler its interpretation is. 

The interest in restricting our attention, whenever possible, to theories of low 

order, is therefore obvious. It turns out that this goal can be accomplished within 

the framework of thrifty theories, as shown by: 
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THEOREM 9 

If a partially defined function has an extension of order k, then it has a thrifty 

extension of order at most k. In particular, there exists an extension of lowest 

order which is thrifty. [] 

An extension of lowest possible order can therefore be simply built by 

modifying the second procedure of section 6, in the following way. At every stage, 

when a new pattern is chosen to cover one of the unlabelled points in T, this 

pattern is chosen as short as possible. 

It is easy to see that this "greedy" procedure always generates a thrifty 

expression of minimum order (although not necessarily one involving a minimum 

number of patterns). For  any given order k, it gives a polynomial-time construc- 

tive answer to the question of the existence of an extension of order at most  k. 

EXAMPLE 5 

Does the partially defined function f given by: 

xl x2 x3 x4 f 

1 1 1 1 1 

0 1 1 1 1 
1 1 0 1 1 

1 0 1 1 0 

0 1 1 0 0 
0 1 0 1 0 

have a quadratic thrifty theory? In order to answer the question, we determine a 

pattern of smallest order covering the first vector, e.g. x l x  z. The same pattern 

also covers the third vector. We try in turn to cover the second vector with a 

linear or quadratic pattern. Since this is impossible, we conclude that the answer 

to the above question is negative. However, the pat tern ~lx3x4 (or alternatively 

x2x3x4) covers the second vector. Hence, the function admits thrifty theories of 

order 3, for e xa mp le /7  = x l x  2 V x 1 x 3 x 4  . 

8.4. THRESHOLD THEORIES 

Some cause-effect relationships display the interesting feature that a constant 

"weight"  can be attributed to every possible cause, in such a way that the effect 

under study is triggered whenever the sum of the weights of the observed causes 

exceeds a certain " threshold".  

For  instance, "headaches"  or other symptoms may be associated with diets 

involving excessive amounts of a certain nutrient, found in varying quantities in 

usual food items. Also, an electrical circuit may fail whenever the intensities of 

several currents traversing a given component  add up to some critical value. 

Formally, a Boolean function ~b(xl , . . . ,  x , )  is called threshoM if there exist 

numbers w 1 . . . .  , wn, q such that: 

~k(xl , . . . ,  xn) -- 1 if and only if ~ w,x~ >1 q. (34) 
i=1  
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The problem of deciding whether  a partially defined Boolean funct ion admits  a 

threshold extension is easily settled. Indeed,  this will be the case if and only  if the 

following system has a solution (w t . . . . .  w,, q): 

~ wlxi>~ q fo r a l l  X ~ T  
i ~ l  

~ w ixi <~ q - 1  fo r a l l  X ~ F. 
i = l  

This system can  be solved using linear p r o g r a m m i n g  techniques.  

EXAMPLE 1 (continued) 

To  decide whether  the partially defined funct ion given by  table 2 has a 

threshold extension, we set up  the system: 

14' 2 -'~W 4 -{-W 6 +W 7 >i q 

W 1 +W 2 +W 4 +W~ +W 8 >/ q 

W2 +W3 +W5 +Ws >/ q 

Wl +W 3 +W 5 +W 7 ~< q - -  1 

W 4 + W 5 + W 6 ~< q - -  1 

W 1 +W z +W 4 +W 6 +W 8 ~< q - - 1  

W 3 + W 5 + W 7 ~< q -- 1 

A solution of  this system is for instance:  w 2 = 2, w 5 = w 7 = 1, w~ = w 3 = w 4 = 

w 6 =-w s = 0, q = 3. Via the relationship (34), these values define the Boolean 

funct ion H~ = x2x5 x/x2x7 (see table 4). Ano the r  solution of  the above  system 

would  be w I = w 6 = - 1, w 2 = 2, w i = 0 for all o ther  i, q = 1, co r respond ing  to 

the threshold extension / -~4 = -~lX2 V X2X 6. 

Notice  that, even when the procedure  described above identifies a threshold 

extension, it does not  p roduce  a disjunctive normal  fo rm of  that  extension,  but  

only  an implicit rep?esentat ion described by  the weights w I . . . . .  w, ,  the threshold 

value q, and the relation (34). Using that in format ion  to build a disjunctive form 

of  the extension may  still be a laborious task. 

Finally, it should be remarked  that  the existence of  a threshold theory  does not  

guarantee  the existence of  a thrifty, or  of  a basic, threshold theory.  

EXAMPLE 6 

Consider  the part ial ly defined Boolean funct ion given by T = ((1, 0, 1, 1), (1, 1, 

0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)} and  F = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 

0), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0)}. The  four  

extensions o f  this funct ion are: 

~1 = X1X2 V X I X 3 X 4 ~  

~2 = xlx2 V xix3x 4 V ~2x3xa, 

t~3 ~ X1X  2 V X i X 3 X  4 V X 2 X 3 X  4 ,  

1114 ~ X1X  2 "k/ X 3 X  4 . 
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Of these functions, only ~Pl and ~k3 are threshold. In particular, ~4, the unique 
thrifty extension of f ,  is not threshold. 

EXAMPLE 4 (continued) 

For the function given in example 4 (section 8.1), the extension/7 = x l x  3 v x2x  3 

is threshold. But the unique basic extension, /7 '  = x~22 v 21x2, is not threshold. 

9. Prevention 

Once a theory has been tentatively accepted, the next decision concerns its use 
for the prevention of further headaches (obviously, in other situations, our goal 

may be to provoke the phenomenon rather than to prevent it; in this case, the 

method proposed below works, after some obvious Boolean adjustments). 

A preventor associated with a theory ~p is a prime implicant of the complement 

d~ of the theory. As usual, ~p is the Boolean function which takes value 1 in 

exactly those vectors were ~p takes value 0. An implicant of ~ is then an 

elementary conjunction with the property that, when it is 1, then q, is 1, i.e., 

~p= 0. A prime implicant of ~p is an implicant with no redundant literals; 

intuitively, it can be viewed as a minimal list of instructions, listing food items to 

be eaten or to be avoided in order to prevent the headache. 

EXAMPLE 1 (continued) 

If the theory chosen for this example is/74 = 21x2 v x2~6, then 174 = 22 v xlx6,  

having as unique prime implicants 22 and x l x  6. The first preventor will simply 

forbid the consumption of food #2 .  The second preventor will not forbid any 

food, but will recommend the consumption of both foods # 1 and # 6. It is up to 

the doctor to choose between the two preventors, or even to recommend his 

patient to alternate between a diet not containing food # 2 ,  and one containing 

both foods # 1  and #6 .  
This is a good place to reiterate the fact that the unavailability of complete 

data makes the elaboration of foolproof theories impossible. A preventor will 

have a guaranteed effect if the chosen theory happens to describe precisely the 

phenomenon at hand. However, even when this is not the case, the preventor may 

prove effective in eliminating, or at least in reducing the occurence of headaches. 

EXAMPLE 1 (continued) 

We have seen that 22 is one of the preventors derived from theory /74. 

However, we can see from the list in table 4 that 22 will completely prevent 

headaches even if the correct theory is not /74,  but is one of the theories/713, H~ 
or/7~. FinaLly, if the correct theory turns out to be//32, //2 or//62, then 22 will 

still reduce the number of headaches, by preventing the occurrence of some of the 

patterns considered in these theories. 
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If a preventor turns out not to prevent all headaches, that obviously signals the 

fact that the wrong theory was chosen; in this situation, the addition of the new 

observations to the previous list can be used to build a new theory. 

Actually, in some situations, the decision maker may be unwilling to commit 

himself to a particular theory of the phenomenon at hand, and would therefore 

not be able to determine preventors as defined above. In such cases, an alterna- 

tive approach to the prevention problem can be described as follows. 

With a partially defined function f ,  taking value 1 on T and 0 on F, let us 

associate the partially defined function f (complement of f )  takin_g value 1 on F, 

0 on T, and unspecified elsewhere. Clearly, every extension of f is the comple- 

ment of an extension of f .  Combining this observation with theorem 1, it follows 
• : l  

xmmedlately that every pattern_of f is a preventor for some theory associated 

with f. The list of patterns of f constitutes therefore a list of preventors, which 

can be obtained independently of the choice of a theory for f .  

Similarly, minimal supporting sets of variables, thrifty theories, basic 

theories . . . .  can now be associated with f ,  just as they were earlier with f .  These 

tools allow a direct study of the prevention problem, as opposed to the "dual" 

approach outlined at the beginning of this section. 

10. Conclusions 

We would like to reiterate here, and emphasize, our ignorance in medical 

matters, and our awareness of the naivity of our analysis of the headache 

problem. We also want to emphasize the fact that headache served in this paper 

simply as a model to illustrate our view of cause-effect relationships. Our aim has 

been to analyze such relationships when only partial information was available, 

and to ignore characteristic features of human headaches, elevator failures, or 

other specific situations arising in chemistry, ecology, political science, etc. We do 

think that, in many of these situations, the ideas of minimal supporting sets of 

variables, of patterns, of basic, thrifty and other theories, of preventors, etc., can 

have a meaningful interpretation. 

We also feel that, among the general features of cause-effect relationships, 

there are many important ones which have not been examined in this paper. They 

can, and hopefully will, constitute the object of future research• Two of the most 

obvious directions in which further research is needed are the following. 

First, the underlying assumption of our work is that no information is available 

about the phenomenon under study, except for the list of observed situations• 

However, in most types of real problems, statistical and other exogeneous 

evidence can be, and is, used in elaborating theories. The design of general 

procedures incorporating such additional information may lead to substantial 

improvements in our current approach. 
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Second, any theory built on the basis of limited observations can only be 

accepted tentatively, and its validity has to be assessed by further experimen- 

tation. An efficient design of experiments has to aim at the rapid refutation of as 

many false theories as possible. It should also allow us to discriminate easily 

between alternative potential theories. Deriving such testing procedure is an 

important direction of research. 

However, the bottom line remains the same: a theory can sometimes be 

refuted, but almost never be fully confirmed. The present paper attempts to give a 

further confirmation of this theory. 

Appendix 

PROOF OF THEOREM 8 

We assume here that the reader is familiar with the concept of NP-complete- 

hess, and give only technical details. The following problem is known to be 

NP-complete. 

Satisfiability: Given a set of clauses C 1, j = 1, 2 . . . . .  m, each of which is a 

subset of L = { x 1, 21, x 2, 22 . . . . .  x,,, ~,, } containing at most one of x i and 2 i 

for each i, decide whether there is a subset C* of L with the following 

properties; for each i, exactly one of xj and 2 i belongs to C*, and 

C * t q C j ¢ ~ ,  j = l , 2  . . . . .  m.  

Given an arbitrary instance of satisfiability, we now construct the correspond- 

ing partially defined function f ,  such that the set of inequalities (19)-(20) derived 

from f has a solution (Y, Z)  satisfying (21) if and only if the original instance of 

satisfiability has a solution. This shows that satisfiability is reducible to our 

problem of deciding the existence of unate extensions. Since it is trivial to see that 

our problem belongs to the class NP, this implies that our problem is NP-com- 

plete. 
Now construct two vectors X j = (x~, x~ , . .  xi,, x ,+ l ,  j . . . ,  xi,+,,) and YJ= 

J . . ,  y,+,,,) corresponding to Cj, j = 1, 2 . . . . .  m, as follows: 

x [ = l a n d  y / = O  i f x  i ~ C  i 

x / = O  and y / = l  

x / =  1 and y / =  1 

x,,+i = Y~+J 1 

if xi ~ Cj 

if I <~ i <~ n and x i, ~i ~- C i 

xJ,+i= yJ,+i = O  if i >~ 1 and i ~ j .  

Similarly, for each j = 1 . . . . .  m, we introduce a vector Z j, with z / =  x [  for 

i :~ n + j  and z~+j = 0. 
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Then, define 

T = ( X J I j = I , 2 , . . . , m }  

F =  {Y  j, z J I j =  I, 2 . . . . .  m}.  

The set of inequalities (19)-(20) derived from these T and F can be classified as 

follows: 
(A) For X / ~ T and YJ ~ F (for the same j),  

E Yi + E z i > ~ l , j = l ,  2 , - - . ,m .  

(B) For X j ~ T and Z J E F (for the same j), 

y.+j>~l, j = l , 2  . . . . .  m. 

(C) Others. 

From the set of inequalities (B), we see that %,+/= 1 must hold for j =  

1, 2 . . . . .  m. This implies that the inequalities in (C) are all redundant since any 

inequality in (C) contains at least one y.+j in its left hand side. Therefore our 

problem becomes equivalent to deciding whether the set of inequalities (A) has a 

solution satisfying in addition the constraint (21). It is now obvious that such a 

solution exists if and only if the original instance of satisfiability has a solution. 
[] 
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