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INTRODUCTION

The burgeoning of tracking and stable isotope
studies of seabirds and other marine predators since
the 1990s has provided a wealth of information on
numerous aspects of their ecology and life-history,
including the striking variation in movement pat-
terns and foraging behaviour of individuals (Phillips
et al. 2008, Wakefield et al. 2009a). Until relatively
recently, this variation was examined largely by test-
ing for effects of factors such as species, colony, sex,
age, year, season (breeding vs. nonbreeding period),
breeding phase or breeding status. Much less atten-

tion was paid to the residual variation among individ-
uals after accounting for these group effects. This
residual variation was considered to define ‘individ-
ual specialization’ in the seminal review by Bolnick
et al. (2003) and is also the focus of research on ‘be -
havioural syndromes’ or ‘animal personalities’ in the
field of animal behaviour (Dall et al. 2012). Research
on individual variation has burgeoned in the last
decade, spurred partly by reductions in cost and
mass of tracking devices, allowing larger sample
sizes, and by the increasing use of more powerful sta-
tistical techniques (Carneiro et al. 2017, this Theme
Section). 
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Most seabirds show striking changes in distribu-
tion associated with stage of the annual cycle. Many
species are migratory, making directed movements
from breeding to nonbreeding grounds to exploit
seasonal peaks in prey abundance or to avoid
inclement weather, with implications for survival and
subsequent fecundity (Daunt et al. 2014, Reiertsen et
al. 2014). The changing degree of central-place con-
straint during the breeding period—from pre-laying
through incubation, brood-guard and later chick-
rearing (post-guard)—can lead to major shifts in dis-
tribution, activity patterns or diet within individuals
(Hedd et al. 2014, Quillfeldt et al. 2014). There may
be within-breeding-season (date-related) differences
in distribution or diet, which reflect extrinsic changes
in the environment (Phillips et al. 2009b). In addition,
some seabirds (particularly albatrosses and petrels)
adopt a bimodal (or dual) foraging strategy during
chick-rearing, in which adults alternate between
 foraging close to the colony and increasing feeding
frequency for the benefit of the chick, and foraging
further afield to recover their own body condition
(Chaurand & Weimerskirch 1994, Weimerskirch et
al. 1994).

There is mounting evidence that movements and
distributions of seabirds are influenced by age and
breeding status. Failed breeders often depart on their
migration sooner than successful ones (Phillips et al.
2005, Bogdanova et al. 2011, Hedd et al. 2012), and
they may spend the late breeding season in the same
areas as deferring (sabbatical) breeders, but be par-
tially or completely segregated from active breeders
(Phillips et al. 2005, González-Solís et al. 2007, Reid
et al. 2014). In this way, nonbreeders (failed or defer-
ring) may be avoiding competition with breeders
(Clay et al. 2016). Juvenile and immature seabirds
avoid competition with adults—possibly to compen-
sate for poorer foraging skills—by using less produc-
tive habitats and increasing their foraging time
(Daunt et al. 2007b, Fayet et al. 2015). Their distribu-
tions frequently differ from those of adults, often
markedly so during the nonbreeding period even
though adults are no longer limited by the central-
place foraging constraint (but see Péron & Grémillet
2013, Gutowsky et al. 2014, de Grissac et al. 2016).

Age effects on foraging ability are often apparent
amongst breeders: younger or less experienced birds
may forage less efficiently, with implications for breed-
ing success (Daunt et al. 2007b, Limmer & Becker
2009, Harris et al. 2014a, Le Vaillant et al. 2016), or
feed at lower trophic levels (Le Vaillant et al. 2013).
Inferior foraging success among younger individuals
is thought to reflect the poorer skills in identifying or

catching prey or in selecting suitable locations,
weaker motor control or physiological fitness (e.g.
cardiovascular or muscular performance) of young
birds or the selective disappearance of poor pheno-
types among the adult population. Although there is
evidence that foraging ability can decline in old age
(Catry et al. 2006), changes in behaviour may not be
detectable—despite physiological ageing (Elliott et
al. 2015)—or are apparent only in particular environ-
ments (Lecomte et al. 2010, Froy et al. 2015). More-
over, differences between old and young animals can
be difficult to interpret, because lower activity (e.g.
more time on the water recorded by a leg-mounted
immersion logger) might indicate either inferior
physiological function or greater efficiency allowing
more discretionary time to be spent resting (Catry et
al. 2011).

Sexual segregation and other between-sex differ-
ences in foraging behaviour are apparent in many
seabirds. This may reflect habitat specialization or
avoidance of competition in sexually dimorphic spe-
cies and sex role specialization or sex-specific nutri-
ent requirements in monomorphic or dimorphic spe-
cies (Lewis et al. 2002, Phillips et al. 2004, 2011). Sex
differences in distribution and behaviour of seabirds
tend to be more apparent during particular periods,
for example during pre-laying (presumably related
to sex-role partitioning of nest defense), affecting
attendance patterns (Hedd et al. 2014, Quillfeldt et
al. 2014). However, such effects are far from univer-
sal; despite a degree of spatial segregation, activity
patterns of male and female albatrosses are compa-
rable during the breeding and nonbreeding periods,
suggesting little difference in prey type or foraging
method (Mackley et al. 2011, Phalan et al. 2007).
Similarly, in the 2 recent studies that recorded sex
differences in the proportions of residents and mi -
grants, the effects were in opposite directions (Pérez
et al. 2014, Weimerskirch et al. 2015).

Variation among and within individuals in foraging
distribution and behaviour has major implications
for our understanding of seabird ecology because it
affects the use of resources, level of intra-specific
competition and niche partitioning (Phillips et al.
2004, de Grissac et al. 2016). In addition, it deter-
mines the responses of individuals and populations to
environmental drivers (including climatic change)
and the overlap with, and hence susceptibility to
major anthropogenic threats, including fisheries and
pollutants (Phillips et al. 2009a, Granadeiro et al.
2014, Patrick et al. 2015). Individual variation is also
at the root of carry-over effects, whereby processes in
one season have consequences in subsequent sea-
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sons (Harrison et al. 2011). Surprisingly, however,
there are rarely demonstrable life-history conse-
quences of individual consistency in foraging strate-
gies per se despite the many studies of adult quality
(consistent individual differences in breeding per-
formance) in seabirds (Lescroël et al. 2009, Crossin et
al. 2014, but see Patrick & Weimerskirch 2017).

Here we review the intrinsic group effects under -
lying individual variation in foraging and migration
patterns of seabirds, including breeding stage, season
(breeding vs. nonbreeding period), breeding status,
age, sex and—after those have been accounted for—
the incidence, causes and consequences of the indi-
vidual effects that remain. We consider these last,
residual effects to be synonymous with individual
specialization sensu Bolnick et al. (2003) and expect
specialists to show repeatability or consistency in
 foraging distribution, behaviour or diet. We do not re-
view effects of colony, as these may reflect differences
in resource availability or habitat accessibility, nor
 effects of date or year per se, as these reflect environ-
mental variation and are extrinsic to individual deci-
sions and trade-offs. We explore whether the degree
of variation among and within individuals (i.e. both
groups effects and specialization) depends on phylo -
geny, biogeography or other factors and focus on the
consequences for life-histories and population dy-
namics and the implications for seabird conservation.
The impetus for this review and for this Theme
Section on ‘Individual variability in seabird foraging
and migration’ in Marine Ecology Progress Series was
the session on ‘Individual variation in movement
strategies’ at the 2nd World Seabird Conference in
Cape Town, South Africa, 27−30 October, 2015. 

EFFECTS OF THE ANNUAL CYCLE

Breeding stage and season 
(breeding vs. nonbreeding period)

Changes in seabird diet across the annual cycle,
particularly over different stages of the breeding
period, have been studied for several decades (Bar-
rett et al. 2007), but until the advent of suitable track-
ing technologies, information on year-round forag-
ing behaviour of seabirds was scarce. Subsequently,
many studies have recorded foraging distribution
and behaviour of individuals over extended periods,
showing that these vary markedly throughout the
annual cycle; some of these changes reflect differ-
ences in food availability or the underlying biophysi-
cal environment, and others are directly related to

changes in reproductive demands and central-place
foraging (Phillips et al. 2008, González-Solís & Shaf-
fer 2009). Energy requirements and breeding duties
change across the annual cycle, limiting foraging in
time and space (including to the most productive
habitats) to different extents. 

During pre-laying, birds visit the colony frequently
or remain there for a prolonged period for pair bond-
ing and nest defence, but they are still free from
parental duties and may have time available for long
trips. Although the constraints for males and females
may differ, individuals typically forage further from
the colony and in more productive waters than in
later stages (Phillips et al. 2006, Paiva et al. 2008,
Pinet et al. 2012, Hedd et al. 2014). During incuba-
tion, most seabirds alternate incubation bouts, with
one parent incubating the clutch while the other is at
sea. In penguins, albatrosses, petrels and alcids,
birds may fast for several weeks on the nest while the
partner engages in foraging trips that are longer and
further afield than during chick rearing (Hull 2000,
Phalan et al. 2007, Ito et al. 2010, Péron et al. 2010,
Hedd et al. 2014). Nevertheless, trips usually shorten
when hatching approaches, allowing the chick to be
fed within a few days (Weimerskirch et al. 1997,
González-Solís 2004). In gulls and skuas, however,
incubation bouts are relatively short, and the forag-
ing range during that phase can be similar or shorter
than during chick rearing (Carneiro et al. 2014, Cam-
phuysen et al. 2015). 

During brooding, the parents alternate foraging
with guarding the chicks, which are rarely left unat-
tended in order to reduce exposure to the elements or
predators. In pelagic seabirds, this is often regarded
as the period with the greatest energy requirements,
since an adult must forage both to meet its own
 demands during the subsequent brooding stint and
those of the chicks (Ricklefs 1983). In some species
(including albatrosses, petrels and penguins), parents
are forced to forage closer to the colony than in any
other stage (Hull 2000, Charrassin & Bost 2001,
Phillips et al. 2004, González-Solís et al. 2007), even
though the areas visited may not be optimal, leading
to progressive deterioration in parental body condition
(Weimerskirch & Lys 2000, Green et al. 2009). In addi-
tion, the requirements of the chick in terms of prey
 energetic or nutritional content, size or di gestibility
may necessitate a change in foraging behaviour of the
adult (Davoren & Burger 1999, Isaksson et al. 2016).
Several studies have shown that parents feed their
chicks with a high-quality diet, for example selecting
lipid-rich fishes (Wilson et al. 2004, McLeay et al.
2009, Bugge et al. 2011, Dänhardt et al. 2011), and a
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failure to do so may reduce chick survival (Annett &
Pierotti 1999, Grémillet et al. 2008). Alternatively, se-
lection of high quality prey may reflect the need to
maximise net energy gain per unit foraging effort for
parents that are unable to carry more than one item in
their bill (Wilson et al. 2004). In species delivering
mainly undigested food, chicks are limited in terms
of the size of prey they can swallow, and parents are
typically forced to seek small items, steadily increas-
ing the size with chick age, which may require parents
to change prey types and foraging areas over the
chick-rearing period (Pedrocchi et al. 1996, Rodway &
 Montevecchi 1996, McLeay et al. 2009).

In many species there is a post-brooding period
(crèche in penguins) when parents leave chicks unat-
tended except when delivering meals so that they can
increase trip length. Initially, the foraging range usu-
ally remains more constrained than during incubation
(Phillips et al. 2004, Saraux et al. 2011, Froy et al.
2015), presumably because chicks have a lower fast-
ing capability than incubating adults until the mid- to
late chick-rearing phase (Phillips & Hamer 1999). Trip
duration tends to increase and parents forage further
away from the colony as the chick-rearing period pro-
gresses (Weimerskirch & Lys 2000, Dall’Antonia et al.
2001, Rishworth et al. 2014b). These longer trips are
likely prompted by the chicks’ increased fasting capa-
bility and energetic demand, as well as a deterioration
in food availability or an increase in foraging con-
specifics enhancing density-dependent competition
near the colony (Rishworth et al. 2014b). The ability to
increase intervals between feeding is limited by the
maximum payload, which is inversely related to adult
body mass in Procellariiformes (Phillips & Hamer
2000). Food delivery rates also depend on whether the
adults forage in coastal or inshore waters and deliver
food that is fresh and carried in the bill (terns and
 alcids), partially-digested in the stomach (gulls, pen-
guins and other taxa) or further digested to an energy-
dense stomach oil in the proventriculus (Procellari-
iformes; except diving petrels, Pelecanoididae); in this
last group, the single chick stores extensive fat re-
serves, allowing the adults to exploit more remote ar-
eas (Ricklefs 1983, Phillips & Hamer 1999). Changes
in trip duration during breeding can be detected using
stable isotopes, and an increase in foraging range
may be associated with an expansion of the  isotopic
niche (Ceia et al. 2014).

For breeding, seabirds need land that is free of ter-
restrial predators. Such breeding grounds may be
distant from productive foraging sites. One mecha-
nism for coping with low food availability close to the
breeding colony is to adopt a so-called ‘dual forag-

ing’ strategy, when parents alternate between short
and long foraging trips to balance their own ener-
getic requirement with that of the chick (Chaurand &
Weimerskirch 1994, Weimerskirch et al. 1994). Dur-
ing these short trips, parents forage within shorter
distances, maximising provisioning rates; however,
this apparently reduces their body condition, causing
the adult to switch to more distant and more produc-
tive waters with predictable food resources (frontal
zones, neritic areas, etc.) to restore its own reserves.
The dual foraging strategy is seen in many alba-
trosses, shearwaters and other petrels, but there is a
great deal of variability among species and popula-
tions, potentially related to differences in foraging
strategies and resource distribution around colonies
or between years (Granadeiro et al. 1998, Baduini &
Hyrenbach 2003, Phillips et al. 2009b). A similar but
less flexible strategy has also been postulated for
penguins (Ropert-Coudert et al. 2004, Saraux et al.
2011). Dual foraging has also been described in auks
(Welcker et al. 2009), possibly because the energetic
cost of transit in this group is particularly high (Costa
1991, Thaxter et al. 2010).

Changes in foraging behaviour also occur in the
nonbreeding period. After breeding, most species of
seabirds migrate to more suitable habitats, avoiding
low temperatures, shorter days and reduced food
availability around colonies. In some populations,
individuals move to a post-breeding, stopover area,
presumably offering good foraging opportunities at
that time of year, where they may spend considerable
time before departing for their main wintering grounds
(Anker-Nilssen & Aarvak 2009, Frederiksen et al.
2012, Bogdanova et al. 2017, this Theme Section).
Both conventional diet (stomach content analysis)
and stable isotope studies indicate that wintering
seabirds can change their diet or widen their trophic
niche, since individuals are no longer central-place
foragers and are free to select their favoured habitat
or prey (Cherel et al. 2007, Karnovsky et al. 2008,
Hedd et al. 2010, Harris et al. 2015). It is important to
note that we lack knowledge for most seabirds of
their prey during the winter; although stable isotope
studies offer a partial solution, ideally these need to
control for changes in isotopic baselines because of
the scale of seabird movements (Meier et al. 2017). 

Activity levels decrease during part of or the entire
nonbreeding period in Procellariiformes (Mackley et
al. 2011, 2010, Cherel et al. 2016), sulids (Garthe et al.
2012), skuas (Magnusdottir et al. 2014, Carneiro et al.
2016) and alcids (Mosbech et al. 2012). Reasons for
this decrease may include lower energetic de mands,
freedom from parental care duties and removal of the
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central-place foraging constraint, higher food avail-
ability or lower costs of thermoregulation. In addition,
productive nonbreeding grounds may al low for a sit-
and-wait foraging strategy that is more  energy-
efficient, or food availability may be en hanced by the
activities of subsurface predators or fisheries (Péron
et al. 2010). Seabirds generally, but not always, moult
in the nonbreeding period to avoid overlap with
other energetically de manding processes, such as re-
production or migration (Bridge 2006, Catry et al.
2013b). This may result in flight im pair ment, which
would explain a decrease in activity levels in the win-
ter in some species (Cherel et al. 2016), or in flight-
lessness, which may drive movements (particularly
by auks) to specific moulting areas (Linnebjerg et al.
2013, Frederiksen et al. 2016). 

Lower activity during the nonbreeding period is
far from universal, and species that breed in high
 latitudes, are resident year-round, or have limited
capacity to migrate, cope with winter conditions by
increasing their activity levels. Indeed, foraging time
of cormorants or shags breeding at high latitudes
peaks in mid- to late winter, possibly due to reduced
prey availability or high energetic costs associated
with thermoregulation (Grémillet et al. 2005, Daunt
et al. 2006, Lewis et al. 2015), and penguins some-
times dive longer and deeper to exploit less accessi-
ble prey during winter (Moore et al. 1999, Charrassin
& Bost 2001, Green et al. 2005).

Breeding status

Studies of seabird foraging and movements during
the breeding season usually focus on breeding adults
because of the relative ease with which they can be
caught for logger deployment and retrieval. How-
ever, an important component of the breeding popu-
lation comprises individuals that are not breeding or
have failed in their breeding attempt, and an increas-
ing number of studies aim to quantify the foraging
dynamics of these groups and to test whether they
show different behaviours compared to breeding
adults. Much of the attention has been directed at
failed breeders, whose failure may have been natu-
ral, a consequence of the deployment, or induced as
part of a manipulative experiment (Phillips et al.
2005, Bogdanova et al. 2011, Ponchon et al. 2014,
2015). Failed breeders often continue to associate
with the colony, operating as central-place foragers
but expanding their foraging areas (González-Solís
et al. 2007). The spatial overlap with breeders varies
among populations; it can be high (Ponchon et al.

2014), moderate (Phillips et al. 2008), or there may be
marked segregation (Jaeger et al. 2014, Reid et al.
2014, Clay et al. 2016). Further, failed breeders may
make visits to other colonies when breeders are still
actively rearing chicks; this behaviour is interpreted
as prospecting potential new breeding sites and may
be motivated by having failed at the current location
(Fijn et al. 2014, Ponchon et al. 2014, 2015). In con-
trast, successful breeders do not undertake prospect-
ing trips or only do so after breeding is finished (Fijn
et al. 2014, Ponchon et al. 2014, 2015).

Quantifying differences in foraging and movements
between breeding and nonbreeding individuals (the
latter including deferring breeders and older pre-
breeders, but not failed breeders) during the breeding
season is hampered by the difficulty in capturing
nonbreeders to deploy data loggers. There is consid-
erable indirect evidence from observations at breed-
ing sites that nonbreeders often attend the co lo ny in
the breeding season and act as central-place foragers,
suggesting that foraging overlap with breeders would
be substantial (Aebischer 1986, Harris & Wanless
1997). This has been confirmed by tracking black-
browed albatross Thalassarche mela no phris at South
Georgia (Phillips et al. 2005), but in the same species
elsewhere and in Cory’s shear water Calonectris bo-
realis, deferring adults segregate isotopically from
breeders, indicating differences in their foraging
niche (Campioni et al. 2015). Some of the most com-
pelling evidence for spatial segregation based on
breeding status during the breeding season is for bi-
ennial breeders such as the wandering albatross
Diomedea exulans and grey-headed albatross Tha-
lassarche chrysostoma, in which a pro portion of indi-
viduals spend the sabbatical period entirely at sea,
thousands of kilometres from the colony (Weimers -
 kirch et al. 2015, Clay et al. 2016).

At the end of the breeding season, timing of depar-
ture from breeding colonies is strongly dependent on
breeding status, with failed and deferred breeders
typically leaving significantly earlier than successful
breeders (Phillips et al. 2005, 2007, Bogdanova et al.
2011, Hedd et al. 2012, Catry et al. 2013a). Carry-
over effects of breeding status on migration may
 persist into the nonbreeding period, with evidence
that failed breeders arrive at wintering grounds early
and depart the wintering grounds later or earlier,
depending on the study species (Phillips et al. 2005,
Catry et al. 2013a, Bogdanova et al. 2017). There may
also be differences in migration destination; in black-
legged kittiwakes Rissa tridactyla, failed breeders
wintered further from the breeding colony on aver-
age than successful breeders (Bogdanova et al.
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2011), and evidence from stable isotope analyses
suggested that failed wandering albatrosses differed
from successful and deferred breeders in terms of
distribution in the following winter (Jaeger et al.
2014). Such differences are not always apparent,
however, and high overlap of individuals of differing
breeding status during the winter has been observed
in other studies (Phillips et al. 2005, 2007, Hedd et al.
2012, Clay et al. 2016).

EFFECTS OF AGE

Age-specific foraging and movements

Comparisons of juveniles and adults

A long-standing theory in avian ecology is that
juveniles have reduced survival probability because
they have a lower foraging proficiency, resulting
from a lack of experience or physical ability; this the-
ory is supported by widespread empirical evidence
across many avian species (Marchetti & Price 1989,
Wunderle 1991). These are topics of particular inter-
est in seabirds because of their slow maturity, which
suggests that the development of foraging is complex
and requires an extended period of learning. A list of
studies that tested for differences in foraging and
migration between juveniles, immatures and adult
seabirds is provided in Table 1. Early work on sea-
birds, based primarily on visual observations of feed-
ing individuals or flocks, provided clear evidence
that juveniles had lower foraging success than adults
(Orians 1969, Dunn 1972, Burger & Gochfeld 1981,
Porter & Sealy 1982, Greig et al. 1983, MacLean 1986).
Comparisons of multiple age classes showed pro-
gressive improvement in performance in the pre-
breeding years (Orians 1969, Porter & Sealy 1982,
MacLean 1986), and more recent studies indicate
that foraging effort and skills develop rapidly after
fledging (Yoda et al. 2004, Daunt et al. 2007b, Guo et
al. 2010, Orgeret et al. 2016); however, the foraging
proficiency of juveniles throughout their first winter
remains lower than that of adults, linked to a lower
survival probability (Daunt et al. 2007b, Orgeret et al.
2016). Indeed, in terms of survival prospects, the crit-
ical period is around independence, which, depend-
ing on the species, may occur at fledging or be a
gradual process as parents progressively reduce post-
fledging provisioning rate (Daunt et al. 2007b, Riotte-
Lambert & Weimerskirch 2013, Orgeret et al. 2016).

Biologging and biotelemetry have been instrumen-
tal in the study of movements during the juvenile

phase (Table 1). It has long been apparent from ring-
ing recoveries that juvenile seabirds often disperse
long distances and generally have a wider distri -
bution than adults (Weimerskirch et al. 1985), but at-
tachment of loggers to chicks has enabled the critical
months after fledging to be investigated in detail.
Fledglings typically undertake rapid and large-scale
movements in the first few months and (in flying sea-
birds) appear to target favourable wind patterns,
sometimes delaying departure until these become
available (Kooyman et al. 1996, Åkesson & Weimers -
kirch 2005, Trebilco et al. 2008, Alderman et al. 2010,
Riotte-Lambert & Weimerskirch 2013, Blanco et al.
2015, de Grissac et al. 2016, Weimerskirch et al. 2016).
Such movements can lead to striking segre gation
from adults in the nonbreeding period (Kooyman et
al. 1996, Jorge et al. 2011, Riotte-Lambert & Weimers -
kirch 2013). However, this is not universal, and the
degree of segregation seems largely to stem from
among-species variation in adult movements, with
the greatest segregation in species where adults stay
close to colonies throughout the year (Grémillet et al.
2015, de Grissac et al. 2016). Juveniles often forage in
less productive waters than adults, which may be key
to explaining their lower survival probability (Thiebot
et al. 2013, Gutowsky et al. 2014, Jaeger et al. 2014).

Detailed analyses suggest that it may take juve-
niles several months to attain the flight ability of
adults (Riotte-Lambert & Weimerskirch 2013). In asso-
ciation with this, the structure of their movements
also differs markedly from adults, with evidence of
longer, more sinuous pathways in juveniles (Péron &
Grémillet 2013, Riotte-Lambert & Weimerskirch 2013,
Missagia et al. 2015, de Grissac et al. 2016). There is
considerable interest in how individuals are able to
navigate during this juvenile period (Guilford et al.
2011, Fayet et al. 2015, de Grissac et al. 2016). How-
ever, understanding the mechanisms is challenging
because of the lack of information on potential cues
(ocean features, presence of conspe cifics, etc.), but
detailed analyses of movements suggest extensive
variation among species in the relative importance of
inheritance, cultural mechanisms and acquired mem-
ory through exploration (Guilford et al. 2011, Péron &
Grémillet 2013, de Grissac et al. 2016).

The immaturity period between the juvenile (first
winter) phase and adulthood is also a challenge to
study. Device deployments are restricted to the few
species where immatures can be captured (generally
at colonies), as loggers and transmitters deployed on
feathers on the last occasion when these birds were
accessible on land (at or before fledging) remain
secure only until the first moult, and those attached
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to leg rings require the individual to be recaptured
after return to the colony (Daunt et al. 2007b, de Gris-
sac et al. 2016). Tracking has demonstrated that
immatures show limited or no segregation from
adults during the nonbreeding season until the point
when adults return to colonies in preparation for
breeding (Petersen et al. 2008, Péron & Grémillet
2013). Older immatures may also associate with colo -
nies and operate as central-place foragers, al though
trip structure, trip duration and resource use differ
from those of breeding adults (Votier et al. 2011,
Riotte-Lambert & Weimerskirch 2013, Campioni et
al. 2015). However, immatures also undertake pros -
pecting movements, where they visit multiple colo -
nies either during the breeding season or autumn
migration, resulting in seasonal segregation from
breeding adults from the same site (Votier et al. 2011,
Péron & Grémillet 2013). In addition to these spatial
differences associated with key age-specific behav-
iours, immatures exhibit lower foraging efficiency
than adults (Fayet et al. 2015), supporting the theory
that the acquisition of foraging skills is a lengthy and
complex process in seabirds that may in part explain
the long immaturity phase.

Adults

An increase in reproductive success with age is
widespread among iteroparous breeders (Clutton-
Brock 1988, Newton 1989, Forslund & Pärt 1995).
One of the principal mechanisms underpinning this
pattern is an improvement in foraging performance
with age (Curio 1983). Seabirds show marked changes
in foraging performance in early life, and for some
species, the immature period may be sufficiently
long that individuals have reached full for aging
capability by the time they recruit into the breeding
population (Weimerskirch et al. 2005). Alternatively,
individuals may require additional skills or experi-
ence to forage successfully both for themselves and
their young (Haug et al. 2015).

Despite growing evidence of differences in forag-
ing performance between young and older breeders
(Table 2), there have been few definitive studies of
the underpinning mechanisms. Young breeders
may be less successful at foraging because they are
poorer at locating prey, physically less capable
(Curio 1983) or because they are showing restraint
because of their higher residual reproductive value
(Williams 1966). A further challenge is to establish
whether individuals improve their foraging perform-
ance with age, and if the higher average perform-

ance of older age classes is due to differential sur-
vival rates of individuals of differing foraging abili-
ties (Smith 1981, Nol & Smith 1987, Reid et al. 2010).
Longitudinal studies are therefore essential to es -
tablish the relative importance of within-individual
improvements and natural selection (Limmer &
Becker 2009). In addition, it has proved difficult to
tease apart age from experience, since the two are
closely correlated (Pärt 1995). Finally, most seabirds
breed seasonally, and younger individuals usually
breed later in the year and less successfully; as such,
intrinsic performance is potentially confounded by a
deterioration in environmental conditions later in the
season, and experimental approaches are required to
tease these processes apart (Daunt et al. 1999, 2007a).

Habitat use and foraging behaviour and efficiency
may vary among different age classes. Although pro-
gressive changes in habitat type with age during the
nonbreeding season have been detected using stable
isotope analyses (Jaeger et al. 2014), in another recent
study, there were no significant differences in migra-
tion destinations or strategies between adult age
classes (Pérez et al. 2014). More attention has focussed
on age-related foraging performance during the
breeding season (Table 2). In line with theory, young
breeders often obtain less food than older breeders
(Daunt et al. 2007a, Limmer & Becker 2009, Le Vaillant
et al. 2013), and their diet may be of lower quality
(Navarro et al. 2010), with impacts on chick growth
rates and reproductive success (Daunt et al. 2001,
Limmer & Becker 2009). Such patterns may result
from age-specific differences in foraging efficiency
(Daunt et al. 2007a, Limmer & Becker 2009). Older
breeders may have greater experience in locating
profitable feeding areas, as shown in Cory’s shearwa-
ter where site fidelity to productive areas was higher
in experienced age classes (Haug et al. 2015). Older
individuals may also have physical advantages; for
example, Le Vaillant et al. (2012, 2013) showed that
they dive deeper, experience reduced underwater
drag and undertake more prey pursuits than younger
breeders. Older breeders may increase foraging effort
to maximise chick provisioning rates, in particular
when environmental conditions are poor (Daunt et
al. 2007a). Alternatively, they may reduce foraging
 effort, potentially to maximise time spent on other
 activities such as resting or guarding the young
(Weimerskirch et al. 2005, Zimmer et al. 2011, Harris
et al. 2014a, Lewis et al. 2015, Le Vaillant et al. 2016).
Young individuals may increase foraging effort to
compensate for their reduced efficiency; for example,
Weimerskirch et al. (2005) showed that younger and
older breeders expended similar foraging effort dur-
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ing daylight, but younger breeders foraged more at
night. However, interpretation of foraging effort is
challenging in the absence of data on foraging effi-
ciency (requiring data on energy expenditure, mass
and quality of prey, etc.), since it is not clear whether
increased effort might be a compensation for poor ef-
ficiency or, alternatively, if it maximises energy gain
when efficiency is high. Further, such patterns are
probably context dependent, with age-specific patterns
in  foraging effort and efficiency likely to be more pro-
nounced during poor environmental conditions (Daunt
et al. 2007a).

Considering the opposite end of the breeding life-
span, there is widespread evidence that senescence
leads to a decline in breeding success in the oldest
age classes (Froy et al. 2013, Nussey et al. 2013). Al-
though the mechanisms underpinning these patterns
are poorly understood, the most frequent explanation
is a reduction in foraging performance with age due
to physiological declines, reducing the resources that
can be allocated to reproduction. Accordingly, studies
have shown marked differences in the foraging per-
formance of the oldest breeding age classes in com-
parison with middle-aged birds (Table 2). Catry et al.
(2006) showed that old grey-headed albatrosses un-
dertook longer trips and gained less mass than mid-
dle-aged birds. Similarly, old male wandering alba-
trosses undertook longer trips to remote foraging
grounds and showed less foraging activity (Lecomte
et al. 2010). In little penguins Eudyptula minor, there
is spatial segregation be tween old and middle-aged
breeders during foraging, and the oldest age classes
show reduced diving effort (Zimmer et al. 2011, Pel-
letier et al. 2014). Differences in effort were also
 apparent in a study of Cory’s shearwaters, where old
individuals undertook fewer take-offs and landings
(which are energetically expensive) and spent more
time resting on the water (Catry et al. 2011).

Some studies have linked differences in activity
budgets and foraging patterns between young and
old birds to physiological declines (Catry et al. 2011),
but others have found no physiological changes and
instead interpreted this variation in terms of differ-
ences in foraging efficiency (Lecomte et al. 2010,
Weimerskirch et al. 2014). However, for reasons dis-
cussed above with regard to comparisons between
young and old individuals, interpretation of indices
of foraging effort is not straightforward in the
absence of information on energy gain. Low foraging
effort in old birds may indicate poor physical fitness,
resulting from physiological senescence, or may be
due to high foraging efficiency, linked to experience
(Catry et al. 2011, Froy et al. 2015). Furthermore,

age-related declines in foraging performance are not
universal; foraging behaviour of old Brünnich’s
guillemots Uria lomvia did not differ from younger
adults, despite evidence for physiological senescence
(Elliott et al. 2015). Age-related effects can also vary
with region; in contrast to results from wandering
albatrosses tracked in the Indian Ocean (Lecomte et
al. 2010), there was very limited evidence for age-
related variation in foraging in the same species in
the southwest Atlantic, which was attributed to po -
tential differences in oceanographic conditions (Froy
et al. 2015). The ability to tease apart the effects of
age from those of extrinsic conditions would be
enhanced considerably by longitudinal approaches
that examine within-individual changes over time
(Limmer & Becker 2009, Daunt et al. 2014).

Implications for population dynamics 
and  conservation

Despite limited evidence to date, age-specific varia-
tion in foraging and migration is likely to have impor-
tant effects on individual fitness. In turn, heterogene-
ity in fitness among age classes will have profound
consequences for population dynamics (Caswell 2001).
One important mechanism underpinning these links
is the interaction with extrinsic effects, whereby very
young or very old individuals may be disproportion-
ately impacted by poor environmental conditions be-
cause of lower foraging efficiency (Sydeman et al.
1991). These differences may arise from age-specific
variation in susceptibility, or differences in distribution
or scheduling of migration of very young or old indi-
viduals, leading to heterogeneity in environments ex-
perienced. A key factor in quantifying effects on pop-
ulation dynamics is the extent to which age-related
variation in foraging and migration is due to ageing
effects (longitudinal changes in individuals), or pro-
gressive appearance and disappearance of different
phenotypes in the population (Limmer & Becker 2009,
Reid et al. 2010). Long-term deployments of loggers
provide opportunities to distinguish these possibilities
(Daunt et al. 2014). Effects of ageing and its inter -
action with the environment may have important
 im pli cations for conservation. Age-specific variation
in migration destinations could lead to differential ex-
posure to anthropogenic effects such as pollution or
fisheries. Equally, marine protection could benefit
some age classes more than others. Conservation and
management initiatives could potentially target those
individuals that make the highest contribution to pop-
ulation growth rate (Moreno 2003).
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EFFECTS OF SEX

General patterns and drivers

Sexual segregation of male and female birds dur-
ing foraging and migration is widespread and occurs
at a range of temporal and spatial scales (Catry et al.
2005). One of the earliest studies highlighting sexual
segregation in seabirds was on the wandering alba-
tross, based on at-sea distributions of birds sexed by
plumage (Weimerskirch & Jouventin 1987); this find-
ing was later confirmed using satellite-telemetry
(Prince et al. 1992, Weimerskirch et al. 1993). Sexual
segregation can also involve a preference by one sex
for a particular microhabitat (Table 3). In many bird
families, males winter closer and return sooner to the
breeding grounds than females (Cristol et al. 1999,
Catry et al. 2005). An extensive, but non-exhaustive
review of the recent literature on sex differences in
foraging and migration since the review by Phillips et
al. (2011) is provided in Table 3. Note that due to the
nature of the literature search (where sex, seabirds,
foraging or migration were included in the search
topic in Web of Science), there may be a bias towards
those studies that found positive sex differences.

Male and female seabirds may differ in scheduling
of migration. Female black-browed albatrosses began
migration 1 to 2 wk earlier than males and wintered
further north (Phillips et al. 2005). The same pattern
appears to be consistent across years in brown skuas
Stercorarius antarcticus (Carneiro et al. 2016). In
3 species of crested penguins Eudyptes sp., males
began migrating back to the breeding colonies ear-
lier than females (Thiebot et al. 2014b). Recent tech-
nological advances have facilitated similar studies on
smaller seabirds, which usually show a lower degree
of sexual size dimorphism or are monomorphic
(Table 3). 

There are within-pair effects that appear to be
unrelated to sex; for example if there is assortative
mating of partners with similar strategies according
to arrival dates. In the Scopoli’s shearwater Calonec-
tris diomedea, pair members do not migrate together
but spend a similar number of days travelling to and
from similar (but not identical) terminal nonbreeding
areas (Müller et al. 2015). This was attributed to
shared genes, given that pairs breeding in close
proximity within the same colony (which were pre-
sumed to be more closely-related) also appeared to
have similar migration strategies. In addition, paired
Kerguelen shags showed some similarity in distribu-
tion and behaviour (Camprasse et al. 2017c, this
Theme Section). Further, there was pair-wise segre-

gation in wintering niche (spatial and isotopic) in the
southern rockhopper penguin Eu dyptes chrysocome
but no clear sexual segregation (Thiebot et al. 2015).

The general consensus is that sexual segregation
arises either from social dominance and competitive
exclusion by the dominant (often larger) sex, or by
habitat or niche specialization due to differences in
morphology or reproductive role (Peters & Grubb
1983). Social dominance and competitive exclusion
are particularly prevalent in dimorphic species where
one sex has an obvious physical advantage, but there
is increasing evidence for sex differences in mono -
morphic species as well (Lewis et al. 2002, Pinet et al.
2012, Hedd et al. 2014). A classic example of social
dominance is where larger, male giant petrels Macro -
nectes spp. dominate scavenging opportunities at seal
and penguin carcasses on land, where interference
competition clearly occurs, forcing females to prima-
rily forage at sea (González-Solís et al. 2000). In con-
trast, male and female black-browed and grey-headed
albatrosses are highly segregated during incubation
but not during brood-guard or post-chick rearing;
given that there were sex-specific differences in
flight performance but no obvious role of competitive
exclusion by the larger males, the seasonal segre -
gation was attributed to niche divergence (Phillips et
al. 2004).

In a recent review exploring the potential drivers or
correlates of sexual segregation, stable isotope ratios
rarely differed between males and females in mono -
morphic species, implying a link between sexual size
dimorphism and segregation in diet or distribution
(Phillips et al. 2011). Also, differences in δ13C (reflect-
ing carbon source) in albatrosses in the Southern
Ocean suggested the underlying mechanism was re-
lated to habitat specialization, whereas in other size-
dimorphic species (both male- and female-biased),
sex differences were more commonly in δ15N than
δ13C, which is more consistent with size-mediated
competitive exclusion or dietary specialization. Man -
cini et al. (2013) found no correlation between indices
of sexual size dimorphism and differences in mean
δ15N or δ13C values in males and females for 6 tropical
and 5 polar seabird species, yet their review indicated
that 70% of studies on di morphic seabird species from
temperate and polar  regions showed some degree of
trophic or spatial  segregation between sexes, com-
pared to only 20% of studies on dimorphic species in
the tropics. Therefore, sexual size dimorphism ap-
pears to facilitate trophic or spatial segregation, par-
ticularly in high latitude seabirds (potentially related
to more intense competition for resources during the
shorter breeding season); however, even in those re-
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Taxon Mean adult Dimorphism Wintering Timing of Foraging 
mass (kg) of index location migration location

males (females)a

Charadriiformes
Brown skua Stercorarius antarcticus 1.765 (1.973) [17] −0.056 N Y

1.765 (1.973) [17] −0.056 N
1.765 (1.973) [17] −0.056 N Y

Audouin’s gull Larus audouinii 0.580 (0.492) [18] 0.082 Y*
Lesser black-backed gull Larus fuscus 0.941 (0.776) 0.096 Y
Black-legged kittiwake Rissa tridactyla 0.400 (0.400) [7] 0.000 Y N
Brünnich’s guillemot Uria lomvia 0.990 (1.000) [7] −0.005
Atlantic puffin Fratercula arctica 0.480 (0.510) [7] −0.030 Y
Pelecaniformes
Christmas Island frigatebird Fregata andrewsi 1.400 (1.550) [7] −0.051 Y**, Y*
Australasian gannet Morus serrator 2.600 (2.520) [12] 0.016 N

2.510 (2.690) −0.035 Y
2.600 (2.520) [12] 0.016

Northern gannet Morus bassanus 2.956 (3.209) −0.041 N Y*
2.930 (3.070) [7] −0.023 N Y
2.810 (3.021) −0.036 Y

Cape gannet Morus capensis 2.705 (2.715) [13] −0.002
Masked booby Sula dactylatra 2.059 (2.470) −0.091
Imperial shag Phalacrocorax atriceps 2.810 (2.210) 0.120 Y

2.285 (1.929) [14] 0.084 Y
2.285 (1.929) 0.084

2.810 (2.210) [15] 0.120
2.285 (1.929) [14] 0.084 Y

South Georgia shag Phalacrocorax georgianus 2.600 (2.160) 0.092
Kerguelen shag, Phalacrocorax verrucosus 2.429 (2.133) 0.065 N
European shag Phalacrocorax aristotelis 1.928 (1.636) [16] 0.082 N

1.940 (1.600) [7] 0.096 Y
1.928 (1.636) 0.082

Procellariiformes
Wandering albatross Diomedea exulans 9.768 (7.686) [6] 0.119

9.768 (7.686) [6] 0.119 Y
9.768 (7.686) [6] 0.119 Y
9.768 (7.686) [6] 0.119
9.768 (7.686) [6] 0.119 Y Y
9.768 (7.686) [6] 0.119 Y
9.768 (7.686) [6] 0.119 Y
9.768 (7.686) [6] 0.119 Y

Black-browed albatross Thalassarche 3.650 (2.970) 0.103 Y
melanophris

Southern giant petrel Macronectes giganteus 5.190 (3.940) [7] 0.137 Y Y
Northern giant petrel Macronectes halli 5.000 (3.800) [7] 0.136 Y Y
Barau’s petrel Pterodroma baraui 0.380 (0.380) 0.000 Y*
Scopoli’s shearwater Calonectris diomedea 0.676 (0.569) [8] 0.086 Y Y

0.676 (0.569) 0.086 Y
Cory’s shearwater Calonectris borealis 0.880 (0.810) [9] 0.041 Y

0.880 (0.810) [9] 0.041 Y
Streaked shearwater Calonectris leucomelas 0.549 (0.482) [10] 0.065 Y

0.549 (0.482) [10] 0.065 Y
Sooty shearwaters Ardenna grisea 0.897 (0.881) 0.009 N Y*
Balearic shearwater Puffinus mauretanicus 0.509 (0.495) [11] 0.014 N
Sphenisciformes
King penguin Aptenodytes patagonicus 13.981 (12.782) 0.045
Adélie penguin Pygoscelis adeliae 5.350 (4.740) [1] 0.060
Chinstrap penguin Pygoscelis antarctica 4.980 (4.470) [1] 0.054
Gentoo penguin Pygoscelis papua 5.500 (5.060) [1] 0.042

5.500 (5.060) [1] 0.042 N
Southern rockhopper penguin Eudyptes c. 3.917 (3.869) 0.006 Y
chrysocome 3.917 (3.869) [2] 0.006 N Y

3.917 (3.869) [2] 0.006 Y
Eastern rockhopper penguin Eudyptes 3.050 (2.980) [3] 0.012 Y
chrysocome filholi

Northern rockhopper penguin Eudyptes 2.960 (3.120) [1] −0.026
chrysocome moseleyi 2.960 (3.120) [1] −0.026 Y

Macaroni penguin Eudyptes chrysolophus 4.650 (4.890) [1] −0.025 Y
4.650 (4.890) [1] −0.025 Y Y

African penguin Spheniscus demersus 3.452 (2.996) 0.071 Y**
Magellanic penguin Spheniscus magellanicus 3.800 (3.000) 0.118

4.490 (3.709) [4] 0.095
4.490 (3.709) [4] 0.095 N

Humboldt penguin Spheniscus humboldti 4.100 (3.200) 0.123
Little penguin Eudyptula minor 1.172 (1.048) [1] 0.056 N

1.247 (1.119) [5] 0.054

Table 3 (this and the next page). Studies testing for sex differences in foraging and migration strategies in seabirds since 2011.
Dimorphism index = (mean male mass − mean female mass)/(mean male mass + mean female mass), where positive values in-
dicate sexual size dimorphism (SSD), and negative values indicate reverse sexual size dimorphism (RSD). Diet (trophic level) 

aMean adult body mass was taken from the reference in the final column (if available); otherwise, it was extracted from the
following sources: [1]Borboroglu & Boersma (2015), [2]Ludynia et al. (2013), [3]J.B. Thiebot pers. comm., [4]Forero et al. (2001),
[5]Salton et al. (2015), [6]Tickell (1968), [7]Schreiber & Burger (2002), [8]Müller et al. (2015), [9]Ramos et al. (2009), [10]Ochi et al.
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Timing Diving Flight Diet Diet Breeding No. Reference
of charac- (trophic (carbon stage years 

foraging teristics level) source) in study

NB 2 Carneiro et al. (2016)
BR 1 Carneiro et al. (2014)

Y NB 3 Krietsch et al. (2017), this Theme Section
N N BR 1 García-Tarrasón et al. (2015)

BR 4 Camphuysen et al. (2015)
NB 1 Bogdanova et al. (2011)

Y Y* BR 1 Elliott & Gaston (2015)
NB 7 Fayet et al. (2016)

BR 2 Hennicke et al. (2015)
N N BR 3 Machovsky-Capuska et al. (2014)

BR 1 Wells et al. (2016)
Y~ BR 3 Machovsky-Capuska et al. (2016)
Y Y NB, BR 3 Stauss et al. (2012)

NB 2 Fifield et al. (2014)
Y Y BR 3 Cleasby et al. (2015)

Y BR 2 Rishworth et al. (2014b)
Y Y BR 1 Sommerfeld et al. (2013)

Y** BR 3 Quillfeldt et al. (2011)
N Y N BR 1 Quintana et al. (2011)
Y* NB, BR 1 Harris et al. (2013)

Y Y NB, BR 3 Michalik et al. (2013)
BR 4 Harris et al. (2014b)

Y BR 3 Ratcliffe et al. (2013)
N N N BR 2 Camprasse et al. (2017a)

NB 3 Grist et al. (2014)
BR 3 Soanes et al. (2014)

Y* NB, BR 3 Lewis et al. (2015)

N Y*** NB, BR 1 Ceia et al. (2012)
NB 1 Åkesson & Weimerskirch (2014)
BR 1 Carravieri et al. (2014)

Y Y NB, BR 1 Jaeger et al. (2014)
Y Y NB, BR 24 Weimerskirch et al. (2014)

NB 15 Weimerskirch et al. (2015)
BR 6 Cornioley et al. (2016)
BR 22 Jiménez et al. (2016)
BR 1 Patrick et al. (2014)

NB, BR 1 Thiers et al. (2014)
NB, BR 1 Thiers et al. (2014)

Y NB*, BR 3 Pinet et al. (2012)
NB 3 Müller et al. (2014)
NB 3 Müller et al. (2015)
NB 6 Pérez et al. (2014)
NB 3 Pérez et al. (2016)

NB*, BR 1 Yamamoto et al. (2011)
NB 5 Yamamoto et al. (2014)

NB, BR 1 Hedd et al. (2014)
BR 4 Meier et al. (2015)

Y Y N BR 1 Le Vaillant et al. (2013)
N N NB* 3 Gorman et al. (2014)
Y N NB* 3 Gorman et al. (2014)
Y N NB* 3 Gorman et al. (2014)

N Y N BR 1 Camprasse et al. (2017b), this Theme Section
Y BR 1 Ludynia et al. (2013)
N N NB 1 Thiebot et al. (2015)

Y Y Y BR 3 Rosciano et al. (2016)
NB 2 Thiebot et al. (2014b)

Y* Y* BR 1 Booth & McQuaid (2013)
NB 2 Thiebot et al. (2014b)
NB 2 Thiebot et al. (2014b)

N N NB Thiebot et al. (2014a)
Y BR 2 Pichegru et al. (2013)
Y BR 1 Rey et al. (2013)

N Y*** NB 1 Silva et al. (2014)
N N N BR 3 Rosciano et al. (2016)
Y BR 1 Rey et al. (2013)
N N N BR 1 Pelletier et al. (2014)

N Y~ Y** BR 9,17 Chiaradia et al. (2016)

based on δ15N, unless indicated otherwise by ‘~’ representing conventional diet analysis. Diet (carbon source) based on δ13C. BR =
breeding season; NB = nonbreeding season; NB* = pre-laying. Asterisks after (Y) indicate that sex specific differences only oc-
curred (*) during certain periods of the reproductive stage, (**) in certain years, (***) in some tissues (blood, bones or feathers)

(2010), [11]Genovart et al. (2003), [12]G. E. Machovsky-Capuska pers. comm., [13]Rishworth et al. (2014a), [14]Harris et al. (2013),
[15]Quillfeldt et al. (2011), [16]Lewis et al. (2015), [17]Phillips et al. (2002), [18]Ruiz et al. (1998)
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gions, this pattern is not ubiquitous (Phillips et al.
2007, Young et al. 2010, Mancini et al. 2013) (Table 3).

Sexes may also segregate by exploiting prey at
 different depths, as shown in early studies on cor-
morants or shags Phalacrocorax spp., in which males
made deeper and longer dives than females (Wanless
et al. 1995, Kato et al. 2000). More recently, Quintana
et al. (2011) used GPS and dive recorders simultane-
ously and found that female imperial shags Phalacro-
corax atriceps foraged in shallow coastal waters,
whereas males preferred deeper offshore waters.
The authors suggested that this finding reflected the
preference by each sex for foraging at depths that
maximised their respective foraging efficiencies. In
line with this hypothesis, sex differences in foraging
behaviour and dive depths in northern gannets
Morus bassanus appear to indicate sex-specific habi-
tat segregation, but in this case, males foraged
mostly in mixed, shallow coastal waters and females
in stratified, deeper offshore waters (Lewis et al.
2002, Cleasby et al. 2015).

The sexes may also segregate temporally by under-
taking foraging trips at different times of the day. In
sexually dimorphic cormorants, males preferentially
forage in the afternoon (Wanless et al. 1995, Kato et
al. 2000, Harris et al. 2013). Links between time of
day and foraging patterns are also evident in mono -
morphic species, including the Brünnich’s guillemot
Uria lomvia, which exhibits strong sex-specific diur-
nal schedules, with one sex foraging mostly at night
and the other mostly at midday (Jones et al. 2002,
Paredes et al. 2008, Elliott et al. 2010). Diurnal pat-
terns of foraging in this species also resulted in spa-
tial segregation, as males (which mostly forage at
night) made shallower dives than females (in the
late afternoon), presumably because males specialize
on shallow prey normally found at night (Elliott &
Gaston 2015).

As with effects of age, the effects of sex may be
apparent only in some years. Sex differences in for-
aging location and diving behaviour were detected
in one year in the sexually dimorphic Japanese cor-
morant, Phalacrocorax capillatus, but not in the fol-
lowing year when food was abundant, suggesting
that segregation is more likely during intense intra-
specific competition (Ishikawa & Watanuki 2002).
More recently, Quillfeldt et al. (2011) showed in a
multi-year study during chick rearing that larger
male imperial shags dived deeper than females in
some years but not others, though the mechanism
was unclear. 

Similarly, sex-specific foraging differences may
vary with environmental conditions within years.

Smaller female European shags, Phalacrocorax aris-
totelis, foraged for longer than males during strong
onshore winds, but not at lower wind speeds (Lewis
et al. 2015). In contrast, there was no evidence that
tide or weather influenced foraging behaviour of
either sex in the Brünnich’s guillemot (Elliott & Gas-
ton 2015). In other taxa, sexual segregation appears
to be related more obviously to sex differences in
reproductive roles (see following section).

Interactions between sex and stage of the
annual cycle

Although males and females share their breeding
duties to a similar extent in most seabirds, intersex-
ual competition for food, differences in energetic or
nutritional requirements, or different parental roles
can lead to sexual differences in foraging behaviour
during specific periods. Sex differences in stable iso-
tope ratios are more likely during the pre-laying and
later breeding periods than during the nonbreeding
period (Phillips et al. 2011). Tracking studies also
show that the sexes may segregate by location (Stauss
et al. 2012) or time of day (Harris et al. 2013) during
the breeding but not the nonbreeding season. These
results imply that sex differences in foraging strate-
gies are more likely when males and females have
different reproductive roles and when potential com-
petition and partitioning of resources between sexes
are probably higher (but see Silva et al. 2014).

During the pre-laying period, males and females
frequently differ in their diet or distribution, as indi-
cated, for example, by sexual differences in isotope
ratios (Phillips et al. 2011). Males (which usually per-
form a greater role in nest defence) often forage more
locally and visit the colony more frequently, whereas
females often go on a pre-laying exodus, engaging in
longer foraging trips in more productive waters to
meet energetic or other nutritional requirements for
the clutch (Lewis et al. 2002, Yamamoto et al. 2011,
Hedd et al. 2014, Quillfeldt et al. 2014, Pistorius et al.
2015). Indeed, changing energetic or nutritional
requirements during the breeding cycle would ex -
plain why sex differences are apparent only at cer-
tain stages in mono morphic species such as Barau’s
petrel Pterodroma baraui (Pinet et al. 2012) or why
late-incubation trips by male southern rockhopper
penguins are longer, as they do all the early chick-
guarding (Ludynia et al. 2013). In theory, such differ-
ences seem less likely if the male courtship feeds the
female, potentially contributing substantially to
clutch formation as in terns, gulls and skuas (Becker
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& Ludwigs 2004), but this does not seem to be the
case in the brown skua, as a higher proportion of
females than males undertake a pre-laying exodus
(Carneiro et al. 2016). In contrast, in some species
(including gadfly petrels), males perform longer for-
aging trips than females, perhaps to prepare them-
selves for the typically-long fasting bout post-laying
(Pinet et al. 2011, Rayner et al. 2012), and in the
black-legged kittiwake, males are more likely than
females to perform a pre-laying excursion, although
the reason for this is unclear (Bogdanova et al. 2011).

Sexual differences in foraging patterns may extend
into the incubation period, possibly due to the re -
quirement for females to replenish the energy, essen-
tial nutrients or minerals spent in clutch formation.
Hence, females may perform particularly long or dis-
tant foraging trips after laying (Lewis et al. 2002,
Phillips et al. 2004). The emperor penguin Apteno -
dytes forsteri is an ex treme example; the male incu-
bates the egg until hatching (60−70 d), while the
female forages to recover from egg formation and to
gather food to feed the chick just after hatching
(Williams 1995). After hatching in some penguins
and alcids, males brood the chick while the females
forage to pro vide meals for the offspring (Clarke et
al. 1998, Tremblay & Cherel 2003, Paredes et al. 2006,
Green et al. 2009); the reverse occurs in some terns
(Becker & Ludwigs 2004).

During chick-rearing, some species show sexual
differences in chick provisioning rates. Usually,
these differences involve more frequent visits or
larger meals from the male (Catry et al. 2005, Thax-
ter et al. 2009, Welcker et al. 2009), perhaps reflect-
ing de ferred costs of egg production in females or
sex-specific allocation of foraging effort between
parents and offspring (Monaghan et al. 1998, Thax-
ter et al. 2009). In Cape gannets Morus capensis,
females undertake a greater proportion of long trips
than males (Pistorius et al. 2015). In the Manx
shearwater Puffinus puffinus, only females adopt
the dual foraging strategy, whereas males perform
short foraging trips and provision chicks at a higher
rate (Gray & Hamer 2001). In several alcids, the role
of males in provisioning chicks increases during
later rearing or in the post-fledging period, when
males forage closer to the colony, dive longer and
deeper per day and are forced to forage at lower-
quality prey patches than females (Harding et al.
2004, Thaxter et al. 2009, Elliott et al. 2010, Burke et
al. 2015). Although sex differences usually decrease
or disappear after the breeding period, with males
and females showing similar distribution and forag-
ing behaviour, in some species, sexual segregation

in trophic niches persists year-round (Phillips et al.
2005, 2011). Males and females can differ in moult-
ing strategies (Hunter 1984, Weimerskirch 1991),
which in theory might result in different dietary
needs or foraging behaviour, but this has not been
investigated so far.

Interactions between sex and other factors

Sex-specific patterns of migration and foraging
may involve interactions with various other intrinsic
factors. For example, trip duration in the common
guillemot Uria aalge during incubation was longer
in low-quality females, i.e. those with consistently
lower long-term breeding success (Lewis et al. 2006).
There can also be interactions with age; older female
king penguins Aptenodytes patagonicus conducted
shorter trips, dived deeper and performed more prey
pursuits during the chick rearing phase and also had
higher blood δ15N than younger females (Le Vaillant
et al. 2013). As adults, male but not female wander-
ing albatrosses forage progressively farther south
with increasing age (Lecomte et al. 2010, Jaeger et
al. 2014).

Implications for population dynamics and
 conservation

If sexual segregation in foraging or migration
behaviour has fitness consequences and if such
behaviour is heritable, there may be important
evolutionary consequences (Grémillet & Char-
mantier 2010). However, as far as we are aware,
no seabird study has determined the heritability of
sex-specific foraging and migration strategies. Sex-
ual segregation can have important implications
for population dynamics and conservation if there
are fitness costs associated with foraging location.
One principal mechanism is that segregation leads
to differing foraging efficiencies, with demographic
consequences (Jaeger et al. 2014). Sex-specific
variation in demographic rates could also arise from
differential association with anthropogenic factors
that have impacts on survival rates. Sexual segre-
gation of wandering and other albatrosses affects
the relative vulnerability of males and fe males to
bycatch by pelagic longline fleets (Bugoni et al.
2011, Jiménez et al. 2014, Gianuca et al. 2017).
Sexual segregation can also affect the relative risk
of exposure to organic contaminants (Carravieri et
al. 2014).
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INDIVIDUAL SPECIALIZATION

Patterns of individual specialization: 
incidence and types

Individual specialization is generally regarded as
the variation among individuals, in terms of distribu-
tion, behaviour, diet or other aspects of resource
acquisition, that remains after accounting for the
group effects outlined above (Bolnick et al. 2003, Dall
et al. 2012). Specialization is often used to describe
consistency in some aspect of the behaviour of an
individual, but there is no consensus as to the mini-
mum period over which that has to be maintained or
the extent to which it may just reflect stability in the
environment. The advantages and disadvantages of
different approaches commonly used to detect and
quantify individual specialization using conventional
diet, stable isotope or tracking data are reviewed by
Carneiro et al. (2017). To illustrate the diversity of
research and to explore taxonomic, biogeographic
and other patterns, we carried out a non-exhaustive
review of studies that tested for individual specializa-
tion (Table 4). This expands on a previous review by
Ceia & Ramos (2015) and includes studies examining
fidelity to foraging sites, staging areas or routes
 during the breeding or nonbreeding seasons, and
consistency in breeding-season trip characteristics,
migration schedules, diving patterns and other aspects
of at-sea activity, habitat use, diet or trophic level in
the short or long term (Table 4).

Prior to the last decade, statistical analyses of char-
acteristics that might reflect individual specialization
were rare, although a number of studies documented
consistent spatial segregation among individuals that
were tracked for a sufficient length of time during the
breeding (Irons 1998, Hedd et al. 2001) or nonbreed-
ing seasons (Croxall et al. 2005). For example, in a
study on grey-headed albatrosses, all were success-
ful breeders from the same subcolony but showed
diverse movement strategies during the 16 mo non-
breeding period, from largely resident in the south-
west Atlantic Ocean to repeated use of the southwest
Indian Ocean or more distant regions in successive
winters (Croxall et al. 2005). As devices have become
smaller and cheaper, many more seabird studies
have shown that individuals repeatedly use the same
foraging areas (i.e. show high site fidelity) in succes-
sive trips during the breeding season or in multiple
nonbreeding seasons, or show consistency in depar-
ture bearing or other trip characteristics (Table 4).
High nonbreeding site fidelity at a fine scale has also
been determined using colour-ring resightings (Grist

et al. 2014). Few studies have examined site fidelity
among rather than within breeding seasons (but see
Wakefield et al. 2015, Patrick & Weimerskirch 2017).
During the nonbreeding season, individuals of most
species tracked to date (15 of 20; see Table 4) showed
a very high degree of foraging site fidelity at the
regional level, with the notable exceptions of a small
proportion of Cory’s shearwaters, sooty shearwaters
Ardenna grisea, long-tailed skuas Stercorarius longi -
caudus and 2 species of guillemots (Dias et al. 2011,
Hedd et al. 2012, McFarlane Tranquilla et al. 2014,
van Bemmelen et al. 2017, this Theme Section).

Site fidelity is usually considered to arise in sea-
birds either through a ‘win-stay, lose-shift’ strategy
that is optimal if there is high spatio-temporal corre-
lation in resource availability or through the benefit
of site familiarity (Irons 1998, Wakefield et al. 2015).
The incidence of site fidelity appears to be lower
in the breeding than in the nonbreeding season
(Table 4), but this is at least partly an issue of spatial
scale and accuracy of different tracking devices: GPS
loggers or satellite-transmitters for breeding birds
and geolocators for nonbreeding birds. In around
half of the species tracked in multiple years, site
fidelity of nonbreeding birds was much lower at the
mesoscale than the regional level, and there was
often little or no consistency in the use of staging
areas and migration routes (Table 4). Black-browed
albatrosses from South Georgia were consistent in
the centroid of their terminal wintering area, but
not in the use of staging sites (Phillips et al. 2005);
Scopoli’s shearwaters showed significant repeatabil-
ity in wintering region and some (but not all) aspects
of migration schedule but not in the most westerly
longitude reached during the return journey (Müller
et al. 2014); long-tailed skuas were generally faith-
ful to staging and wintering area and to migration
routes, but as the winter progressed, a small but in -
creasing number of individuals began to deviate
from their route in previous years (van Bemmelen et
al. 2017). Migration schedules (i.e. timing of depar-
ture and return to the colony and timing of major
movements during the winter) were usually consis-
tent within individuals across years, having excluded
the influence of changes in breeding success or
 status (see Table 4). Migration timing can be affected
by extrinsic factors; relative consistency in date of
arrival at the colony among individual Desertas
petrels Pterodroma deserta was attributed to poten-
tial delays because unfavourable winds increased
return time from more distant regions or because
birds waited for a bright moonlight night before
departing (Ramirez et al. 2016).
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All studies that tested for individual consistency in
foraging behaviour have found evidence for this in
terms of diving depth, diving or flight bout duration,
proportion of daylight and darkness spent in flight,
landing rate, etc. (Table 4). However, this may reflect
a positive publication bias. The degree of individual
variability can also change seasonally; in the impe-
rial shag, there is an effect of photoperiod (and
hence daylight available for foraging) and degree of
constraint associated with breeding or moulting, on
the relative consistency in the time that foraging
begins and ends each day (Harris et al. 2013,
2014b). Results from conventional stomach contents
or stable isotope ratios indicate significant consis-
tency within individuals in many species in habitat
use, prey type or trophic level in the short or long
term (days to weeks, between the breeding and
nonbreeding seasons or annual); however, there
were exceptions, particularly among the albatrosses
and petrels (Table 4).

Drivers of individual specialization: 
influence of species and sex

Individual specialization in some form has been
recorded in all orders of seabirds (Sphenisciformes,
Procellariiformes,Pelecaniformes andCharadriiformes)
but only half of the families (Spheniscidae, Dio -
medeidae, Procellariidae, Sulidae, Phlacrocoracidae,
Stercorariidae and Laridae, but not Pelecanoididae,
Hydrobatidae, Fregatidae, Phaethontidae, Sternidae
and Rhynchopidae) (Table 4). This likely reflects a
research bias, with fewer studies on tropical seabirds
and less tracking of smaller species because of the
greater impacts of devices on these birds. The corre-
spondence between the presence or absence of indi-
vidual specialization and phylogeny or region is
therefore unclear; nevertheless, all 10 studies to date
that tested for individual specialization in diverse
aspects of movement and foraging behaviour of cor-
morants and shags have found evidence for its exis-
tence, suggesting that it is the dominant pattern in
those taxa (Table 4).

Several studies have compared the degree of site
fidelity or behavioural consistency between males
and females, but results do not show a clear pattern.
Long-term consistency in habitat use was greater in
male than in female wandering albatrosses, possibly
because females shift distribution to the north to
reduce competition with males in the nonbreeding
period (Ceia et al. 2012). Female imperial shags were
less variable in the timing of foraging and other trip

characteristics, attributed to the lower costs of forag-
ing in males and hence their greater discretionary
time for accommodating the female, which typically
takes the first foraging shift each day (Harris et al.
2013, 2014b). In Kerguelen shags Phalacrocorax ver-
rucosus, males were less specialized in diving behav-
iour than females (Camprasse et al. 2017a). Similarly,
males showed more variability in dive depths in
South Georgia shags Phalacrocorax georgianus, pos-
sibly because maximum dive depth is more closely
correlated with body mass in females (Ratcliffe et al.
2013). Female Audouin’s gulls Larus audouinii for-
aged at sea throughout the week, whereas males
switched from foraging at sea during weekdays to
inland coastal habitats (rice fields) on weekends,
when fisheries discards were unavailable (García-
Tarrasón et al. 2015). In other studies, there were no
differences in behavioural consistency or wintering
site fidelity between sexes (Grist et al. 2014, Potier et
al. 2015), or there were sex differences in consis-
tency, but the direction depended on the parameter
(Müller et al. 2014).

Extrinsic explanations for individual specialization:
influence of prey predictability

Individual specialization appears to be widespread
in cormorants and shags (Table 4). This seems likely
to be related to their exploitation of benthic prey,
which may be constrained in terms of seabed habi-
tat. Such habitats contain numerous static features,
en abling foraging birds to memorize topographic
cues to improve encounter rate. Differing degrees of
spatial and temporal predictability of resources
might also explain relative fidelity to foraging sites
in more pelagic seabirds, as particular areas (shelf,
shelf breaks, fronts, etc.) reliably hold more prey
resources, and individuals return there in successive
trips. Indeed, this was the suggested explanation for
consistent differences in trip bearings and repeata-
bility in travel distances of individual northern gan-
nets only at the Bass Rock and not Great Saltee, UK,
on the basis that predictability of resources was
higher in the North Sea than in the Irish Sea (Hamer
et al. 2001). However, specialization does not always
relate to resource predictability; black-browed alba-
tross, shy albatross Thalassarche cauta and razorbill
Alca torda were not consistent in site or habitat use
although they all fed in neritic waters (Hedd et al.
2001, Granadeiro et al. 2014, Shoji et al. 2016). In
ad dition, although it is intuitive that specialization
would be less likely in tropical waters, given the

133



Mar Ecol Prog Ser 578: 117–150, 2017134

Species Breeding colony Foraging site Foraging trip Fidelity to 
fidelity within or bearing or dis- nonbreeding site, 

between breeding tance (breeding route or staging 
seasons season) areaa

King penguin Falklands W - X √
Aptenodytes patagonicus 

Macaroni penguin South Georgia
Eudyptes chrysolophus

Southern rockhopper penguin Falklands
Eudyptes c. chrysocome

Adélie penguin Syowa Station, W - (√)
Pygoscelis adeliae Antarctica

Little penguin Penguin Island, 
Eudyptula minor Australia

Yellow-eyed penguin Oamaru, W - √
Megadyptes antipodes New Zealand

Black-browed albatross South Georgia N - √, R/S - X
Thalassarche melanophris

Falklands
Kerguelen W - (√), B - (√) √

Grey-headed albatross South Georgia N - √
Thalassarche chrysostoma

Shy albatross Tasmania W - X, B - X √
Thalassarche cauta

Light-mantled albatross South Georgia
Phoebetria palpebrata

Wandering albatross South Georgia
Diomedea exulans

Crozet N - √
White-chinned petrel South Georgia
Procellaria aequinoctialis

Yelkouan shearwater Malta N - √
Puffinus yelkouan

Short-tailed shearwater Tasmania N - √
Ardenna tenuirostris

Sooty shearwater Kidney Island N - (√), R/S - (√)
Ardenna grisea (Falklands)

Streaked shearwater Sangan, Mikura, N - √, R/S - √
Calonectris leucomelas Awa Islands, Japan

Cory’s shearwater Selvagem Grande N - (√), R/S - X
Calonectris borealis (Madeira)

Berlenga (Portugal)
Canary Islands W - √

Scopoli’s shearwater Sicily (Italy) N - √, R/S - X
Calonectris diomedea

Desertas petrel Madeira N - √
Pterodroma deserta

Thin-billed prion New Island, 
Pachyptila belcheri Falklands

Broad-billed prion Rangatira, 
Pachyptila vittata Chatham Islands

Northern gannet Bass Rock (UK) W - √, B - √ √
Morus bassanus

Great Saltee (UK) W - X X
Grassholm (UK) W - √ √

and Brittany (France)
Alderney W - X √

Various colonies, Canada N - √
North Norway W - X (√)

Table 4 (this and the next 3 pages). Evidence for significant individual specialization in distribution, movements, activity or
diet of seabirds. √: significant effect; (√): some evidence but with exceptions; X: study tested explicitly for specialization but
found no evidence; W: within breeding season; B: between breeding seasons; N: nonbreeding site; R/S: route or staging area; 

Dep: at departure; Dur: during; Ret: at return; ST: short-term (days to weeks); LT: between seasons or annual
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Consistent Consistent Consistent Consistent Reference
migration activity or habitat usec diet or trophic 
scheduleb diving in short- leveld in short- 

pattern or long-term or long-term

Baylis et al. (2015)

√ LT - √ Green et al. (2005), 
Horswill et al. (2016)

LT - √ LT - √ Dehnhard et al. (2016)

Watanuki et al. (2003)

√ Ropert-Coudert et al. 
(2003)

Mattern et al. (2007)

Dur - √, Ret - √ √ Phillips et al. (2005), 
Mackley et al. (2010)

ST - X ST - X Granadeiro et al. (2014)
ST - √ Patrick & Weimerskirch 

(2014b, 2017)
√ Croxall et al. (2005), 

Mackley et al. (2010)
Hedd et al. (2001)

√ Mackley et al. (2010)

√ ST - √, LT - √ ST - √, LT - X Mackley et al. (2010), 
Ceia et al. (2012)

Weimerskirch et al. (2015)
√ Mackley et al. (2011)

Dep - √, Dur - √, Ret - √ Raine et al. (2013)

Yamamoto et al. (2015)

Dep - (√), Dur - (√) Hedd et al. (2012)

Dep - √, Dur - √ Yamamoto et al. (2014)

Dep - √, Dur - √, Ret - √ Dias et al. (2011), 
Dias et al. (2013)

ST - (√) ST - (√) Ceia et al. (2014)
Navarro & González-Solís 
(2009)

Dep - X, Dur - √, Ret - X Müller et al. (2014)

Dep - √, Ret - √ LT - √ LT - √ Ramirez et al. (2016)

ST - √, LT - X ST - √, LT - X Quillfeldt et al. (2008)

LT - X LT - X Grecian et al. (2016)

√ ST- √, LT - √ ST - √, LT- √ Hamer et al. (2001, 2007), 
Wakefield et al. (2015)

Hamer et al. (2001)
√ ST - √ ST - √ Votier et al. (2010), 

Patrick et al. (2014)
Soanes et al. (2013)

Dur - √, Ret - √ Fifield et al. (2014)
Pettex et al. (2012)

(table continued on next 2 pages)
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greater variability and patchiness of resources
(Weimerskirch 2007), streaked shear waters Calo -
nectris leucomelas, which migrate to tropical waters,
showed a high degree of fidelity to nonbreeding
destination and migration route (Yamamoto et al.

2014). Availability and predictability can also vary
over time in the same habitats, which might partly
explain why the degree of consistency in diet or iso-
topic niche in the same species can depend on
breeding stage and year (Ceia et al. 2014).
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Great cormorant Chausey Islands, W - √, B - √
Phalacrocorax carbo France

European shag Isle of May (UK)
Phalacrocorax aristotelis

Imperial shag Argentina W - √ √
Phalacrocorax atriceps

South Georgia shag South Georgia
Phalacrororax georgianus

Kerguelen shag Kerguelen W - √ √
Phalacrocorax verrucosus

Crozet shags Possession Island, 
Phalacrocorax melanogenis Crozet

King cormorant Macquarie Island
Phalacrocorax purpurascens

Pelagic cormorant Gulf of Alaska W - √
Phalacrocorax pelagicus

Double-crested Cormorant Oneida Lake, W - √
Phalacrocorax auritus New York, USA

Japanese cormorants Teuri Island, Japan W - √ √
Phalacrocorax capillatus

Razorbill Alca torda Skomer (UK) W - X X
Atlantic puffin Skomer N - √, R/S - √
Fratercula arctica

Great skua Bjørnøya N - √
Stercorarius skua Shetland, UK W - √

Brown skua South Georgia
Stercorarius lonnbergi South Shetland Islands N - √

South polar skua King George Island N - √
Stercorarius maccormicki

Long-tailed skua Sweden, Svalbard, N - (√), R/S - (√)
Stercorarius longicaudus and Greenland

Lesser black-backed gull North Norway N - √
Larus fuscus

Yellow-legged gull Gulf of Cadiz, Spain
Larus michahellis

Dolphin gull Falkland Islands W - √
Leucophaeus scoresbii

Black-legged Kittiwake Prince William Sound, W - √
Rissa tridactyla Alaska

Pribilof Islands N - (√), R/S - (√)
Pigeon guillemot Prince William Sound, Alaska
Cepphus columba

Brünnich’s guillemot Various colonies, Canada N - (√)
Uria lomvia

Nunavut, Canada

Common guillemot Various colonies, Canada N - (√)
Uria aalge Newfoundland, Canada W - √ √

aStudies only included if 2 or more individuals tracked in multiple years. bWhere possible, studies were excluded that did not 
control for differences in breeding success between years. cIncludes results from tracking and stable isotope studies. 
dIncludes conventional diet and stable isotope studies

Species Breeding colony Foraging site Foraging trip Fidelity to 
fidelity within or bearing or dis- nonbreeding site, 

between breeding tance (breeding route or staging 
seasons season) areaa

(Table 4 continued)
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Development of individual specialization: 
the role of learning

Individual specialization is expected to offer a selec-
tive advantage where resources are to some extent

predictable; under these circumstances, birds can in-
crease foraging efficiency by reducing search times or
develop proficiency in locating or handling particular
types of prey. Specialization, particularly site fidelity,
likely develops largely from experience gained
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√ Grémillet et al. (1999), 
Potier et al. (2015)

√ Daunt et al. (2014)

√ Harris et al. (2013, 2014b)

√ LT - √ LT - √ Bearhop et al. (2006), 
Ratcliffe et al. (2013)

√ ST - √, LT - √ ST - √, LT - √ Bearhop et al. (2006), 
Camprasse et al. (2017a)

√ Cook et al. (2006)

√ Kato et al. (2000)

√ Kotzerka et al. (2011)

Coleman et al. (2005)

√ Ishikawa & Watanuki (2002)

Shoji et al. (2016)
Dur - √ Guilford et al. (2011), 

Fayet et al. (2016)
Magnusdottir et al. (2012)

ST - √, LT - √ Votier et al. (2004)
LT - √ LT - √ Phillips et al. (2007)

Dep - √, Ret - √ √ Krietsch et al. (2017), this 
Theme Section

Kopp et al. (2011)

van Bemmelen et al. (2017),
this Theme Section

Helberg et al. (2009)

√ Navarro et al. (2017), 
this Theme Section

ST - √ Masello et al. (2013)

Irons (1998)

Orben et al. (2015b)
LT - √ Golet et al. (2000)

Dep - X, Ret - X √ McFarlane 
Tranquilla et al. (2014)

√ ST - √ ST - √, LT - √ Woo et al. (2008), 
Elliott et al. (2009)

Dep - (√), Ret - √ √ McFarlane 
Tranquilla et al. (2014)
Regular et al. (2013)

Consistent Consistent Consistent Consistent Reference
migration activity or habitat usec diet or trophic 
scheduleb diving in short- leveld in short- 

pattern or long-term or long-term
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(learned) when seabirds are immature. During these
formative years, individuals show high variability in
dispersal and movement patterns (Thiers et al. 2014, de
Grissac et al. 2016), in which the roles of genetics and
experience are not well understood. Whether individ-
ual wandering albatrosses are partial or full migrants
does not appear to be heritable (Weimerskirch et al.
2015). However, because fledgling seabirds migrate
for the first time without parents, initial dispersal direc-
tion—and potentially the distance travelled—may be
heritable as in other birds (Piersma et al. 2005).

Although intrinsic factors will also play a role, in
the absence of a central-place foraging constraint,
the subsequent timing of movements and areas vis-
ited by immatures is probably dictated to a consider-
able extent by local conditions (including weather)
and the availability, patchiness and predictability of
prey (Mueller & Fagan 2008). Individual migration
pattern probably becomes fixed according to experi-
ence (Guilford et al. 2011, Péron & Grémillet 2013, de
Grissac et al. 2016). There is no effect of age per se on
the nonbreeding strategy in the wandering albatross
(Weimerskirch et al. 2015) nor on the likelihood of an
adult shifting its winter destination in the Cory’s
shearwater (Dias et al. 2011). Indeed, Cory’s shear-
waters may switch back and forth between different
regions (Dias et al. 2013), and long-tailed skuas may
switch between different routes in successive migra-
tions (van Bemmelen et al. 2017), indicating that these
changes are not the result of accidental displacement
by severe weather conditions. Hence, knowledge of
the previous experience of the individual is key to
understanding the navigation process, and the devel-
opment of individual specialization in movements in
general.

Learning may also be responsible for development
of individual specializations in diving behaviour, par-
ticularly as benthic feeders such as shags and cor-
morants would benefit from local knowledge of bottom
topography and currents (Table 4). Learning could
also explain consistency in at-sea activity patterns (in-
cluding in flights and landings), trophic level or diet,
even in pelagic species, as individuals may specialize
in locating or handling particular types of prey (Table 4).
Indeed, learning seems the likeliest explanation for
 dietary specializations in highly op portunistic species
with diverse diets, such as great skua Stercorarius skua,
brown skua and dolphin gull Leucophaeus scoresbii,
which presumably need to develop particular skills to
successfully pursue different foraging modes, whether
that is kleptoparasitism, predation of selected species
or scavenging, etc. (Votier et al. 2004, Phillips et al.
2007, Masello et al. 2013).

Implications of individual specialization

Links to physiology and life-history

Many studies have related differences between
individuals in distribution, timing, foraging success,
etc. to body condition, past experience or future
breeding performance (Bogdanova et al. 2011, Orben
et al. 2015a). By comparison, only a few studies have
examined the physiological correlates of specializa-
tion or the energetic or life-history consequences.
Specialization should in theory be advantageous if an
individual has fixed on a particular strategy that is
more profitable than the alternatives. Positive evi-
dence for an advantage of specialization is particu-
larly apparent among predatory seabirds. Specialist
western gulls Larus occidentalis that maintained
feeding territories within colonies of other seabirds
had higher reproductive success and similar or higher
survival rates compared to non-specialists (Spear
1993). Pairs of slaty-backed gulls Larus schistisagus
that delivered more depredated seabird chicks raised
more fledglings, and their chicks grew faster than
those of pairs that mainly delivered fish, possibly
because of the differences in energy value of the
meals (Watanuki 1992). Individual specialization has
also been linked to potential fitness advantages in
other seabirds. There were significant relationships
between repeatability in some dive characteristics of
great cormorants Phalacrocorax carbo and  foraging
efficiency (Potier et al. 2015). In the black-browed
albatross, foraging trip characteristics were less vari-
able in successful than unsuccessful male breeders
and in females that were more faithful to foraging
sites but not necessarily to habitat (water depth) had
higher reproductive success (Patrick & Weimerskirch
2014a, 2017). Pairs of pigeon guillemots Cepphus
columba that were dietary specialists fledged more
chicks than the diet generalists, apparently because
they delivered larger individual prey items (Golet et
al. 2000).

Individual specialization has been linked to carry-
over effects in a number of studies. Individual Euro-
pean shags showed consistent differences in daily
 foraging times during winter, and the shorter foraging
times were associated with earlier and more success-
ful breeding, demonstrating a clear carry-over effect
(Daunt et al. 2014). In this context, it is important to
note that carry-over effects may be evident in only a
proportion of colonies (Bogdanova et al. 2017); it is also
often hard to exclude the possibility that a cross-sea-
sonal correlation is unrelated to specialization and in-
stead due to stable within-individual performance, i.e.
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consistently good or poor performance or decision-
making year-round (Harrison et al. 2011). The mecha-
nisms underlying carry-over effects are not always
clear, but it seems that stress (reflected in feather corti-
costerone levels) affects energy or nutrient acquisition
and hence physiological condition, which has impacts
on behaviour and performance in the subsequent
 season (Young et al. 2017, this Theme Section).

Intuitively, consequences of individual specializa-
tions might be most obvious when examining effects
of migration distance, as those individuals that travel
the furthest incur greater energy or time costs, reduc-
ing the time available for feeding and resting en
route or delaying the return to the colony. Late return
has repercussions for nest defence, mating opportu-
nities or re-establishment of the pair bonds and, ulti-
mately, timing of laying, which is typically closely
correlated with breeding performance. Yet, 2 studies
did not find evidence of a substantial energetic advan-
tage for individuals that remained closer to the colony,
having accounted for flight time to and within alter-
native wintering areas and for thermoregulatory
costs associated with resting on the water (Garthe et
al. 2012, Fort et al. 2013). Similarly, Ramirez et al.
(2016) did not detect differences in the level of in -
dividual repeatability in at-sea activity patterns of
Desertas petrels that migrated to different wintering
areas. In theory, the choice of a short- or  long-distance
migration strategy may be neutral, reflect individual
optima or vary in terms of advantages or disadvan-
tages for survival or reproduction depending on the
year. If so, individual specialization in the form of
high nonbreeding-site fidelity may not affect subse-
quent body condition, survival or fitness unless there
is a major deterioration in the environment.

Various studies have not detected any convinc -
ing selective advantage of individual specialization.
Northern gannets that associated consistently with

fishing vessels were not in better body condition than
those which avoided vessels (Patrick et al. 2015);
short- and long-term consistency in trophic level or
carbon source was not related to body mass index in
wandering albatrosses (Ceia et al. 2012); there were
no effects of foraging area or site fidelity on chick
feeding frequency or meal mass in Adélie penguins
Pygoscelis adeliae (Watanuki et al. 2003) nor on
breeding success in European shags (Daunt et al.
2014); although Brünnich’s guillemots that were gen-
eralists tended to deliver slightly more energy per
day, specialists and generalists did not differ in any
other aspect of fitness (Woo et al. 2008); great skuas
that were bird specialists consistently laid earlier, had
larger clutch volumes and improved chick condition
but did not have higher breeding success or survival
than specialist fish predators (Votier et al. 2004);
lastly, consistency within or among years in trip or
dive characteristics did not influence body condition
in northern gannets (Wakefield et al. 2015). The lack
of a clear fitness benefit in many cases may be re lated
to changes over time in the predictability of re sources,
which could fluctuate within and between breeding
seasons. Specialists may be at an advantage when
predictability is high in certain areas, whereas gener-
alists likely benefit when resource availability is less
predictable and more heterogeneous.

Links to population dynamics and conservation

An understanding of variation both among and
within individuals allows the characterization of
 populations and has implications for their resilience
in the face of environmental change (Nussey et al.
2007). Unless there is time for selection to act, popu-
lations that lack variability and individuals that lack
plasticity in movements and foraging behaviour are

Fig. 1. Use of different resources or habitats (represented by different shading) for more or less generalist or specialist 
populations
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likely to be at a considerable disadvantage. This is
illustrated by the schematic based on Bolnick et al.
(2003), which illustrates different hypothetical situa-
tions of resource (or habitat) use in Fig. 1: (1) gener-
alist individuals from a generalist population all
 target multiple alternative resources (type A); (2)
specialist individuals from a generalist population
consistently target one of multiple alternative re -
sources (type B); and (3) specialist individuals from a
specialist population all consistently target the same
resource. The implications are that in the absence of
a change in behaviour, the loss or deterioration of
one resource or habitat would be catastrophic for the
specialist population (and for the specialists in the
generalist population that targeted that resource) but
of less consequence for the generalists, depending on
density-dependent competition for the resources that
remain. This can have implications in the design of
marine protected areas, since population-based ap -
proaches may not identify important areas used by a
relatively low proportion of specialized individuals,
or these areas may not be prioritized for manage-
ment. However, those areas, and the specialists that
use them, may buffer population-level impacts of a
deterioration in habitats used by the majority of birds.
The same principle applies to a localized in crease in
pollutants, competition with fisheries or fisheries
bycatch, etc. Indeed, many threats show extensive
spatial heterogeneity, such as fisheries bycatch risk
(Phillips et al. 2009a, Thiers et al. 2014) and exposure
to pollutants, including plastics, mercury, persistent
organic pollutants and hydrocarbons (Young et al.
2009, Montevecchi et al. 2012, Leat et al. 2013, Tartu
et al. 2013).

The importance of assessing the extent and dura-
tion of specialization can be illustrated by consider-
ing exposure to fisheries. In the Falklands, there
were significant differences between 2 study colo -
nies of black-browed albatrosses in the degree of
bird association with vessels, despite equal distances
to fishing areas (Granadeiro et al. 2011, 2014). Those
studies showed that a minority of individuals repeat-
edly followed vessels, suggesting they specialized in
the short-term on fisheries waste, but tracking in a
subsequent year and stable isotope analyses sug-
gested that any fisheries specialism did not persist. In
contrast, individual northern gannets did show spe-
cialization in following vessels or feeding on fisheries
waste (Patrick et al. 2015). Hence, in the absence of
any mitigation, fisheries bycatch represents a con-
stant risk to black-browed albatrosses that would be
maintained indefinitely if a proportion of the general-
ist population is attracted to vessels at random, but a

particular risk for a specific group of specialist north-
ern gannets that might be removed and not replaced.
The demographic implications of these and other
threats depends on the diversity of strategies (from
specialist to generalist) in the population, the proba-
bility of individuals encountering adverse conditions,
the degree of individual plasticity and the hetero-
geneity in vital rates associated with among-individual
specialization. Seabirds are clearly highly adaptable
in response to environmental pertubation, and some
specializations can be relatively short-lived (Wake-
field et al. 2015). Movement of individuals during the
breeding and nonbreeding seasons are clearly flexi-
ble, but other aspects of behaviour (such as depar-
ture bearings of fledglings) or timing of some events
may be innate, possibly responding to magnetic cues
or stimuli that are highly predictable, such as photo -
period; however, even then, there may be some
capacity for fine-tuning in response to environmental
factors (Helm et al. 2013).

CONCLUSIONS

As this review has shown, many intrinsic factors (in-
cluding stage of the annual cycle, breeding status,
age and sex) drive individual differences in movement
patterns and behaviour of seabirds. Understanding
the nature, drivers and consequences of this variation
is revealing in terms of ecology and life-histories and
determines the response of individuals, populations
and species to environmental changes, including an-
thropogenic threats. In addition, the effects of in trinsic
factors and their interactions with each other and with
the environment need to be considered in sampling
design and analyses, and before drawing conclusions
about underlying processes and mechanisms. They
also need to be taken into account when evaluating
evidence for individual specialization and its causes
and consequences. Effects of factors such as sex, stage,
age, as well as individual specializations are common
in terms of distribution, habitat use, diving, diet and
other components of foraging strategies at sea, but
their roles and extents are highly variable. Site fidelity
is scale-dependent for migrants, greater at the re-
gional level than in the use of staging areas and
routes, and can be low during the breeding season
(Table 4). Timing of movements during the nonbreed-
ing period is often consistent, but with some flexibility
in response to local conditions. As might be expected,
seabirds retain the  flexibility to respond to local envi-
ronmental conditions or cues and intrinsic factors
(body condition, physiological constraints, etc.).
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There is much scope for more studies on the time -
scale or periods in which effects of sex, age and spe-
cialization are apparent (from days to years) and the
drivers underpinning these factors (resource avail-
ability and predictability, density-dependent compe-
tition, intrinsic characteristics, learning). Adults clearly
use memory (Regular et al. 2013) to guide subse-
quent decisions; under what conditions (i.e. changes
in resource availability or habitat suitability) they
might re-enter an exploratory phase as adults and
refine their movement and foraging strategies is
unknown. Although the papers in this Theme Section
have increased our understanding of the implications
of individual variation and specialization, there are
still many gaps in our knowledge. With regard to
individual specialization in particular, we would rec-
ommend research on the circumstances in which it
offers a selective advantage, the degree of genetic or
cultural transmission, the level of plasticity in re -
sponse to the environment, the energetic and other
physiological consequences and effects (immediate
or carry-over) on survival and reproduction. This is
particularly important in a rapidly changing world, as
the degree of plasticity of individuals affects the
capacity of populations to respond to changes in
 conditions.
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