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Abstract

Changing amplitude of the seasonal cycle of atmospheric CO2 (SCA) in the northern 

hemisphere is an emerging carbon cycle property. Mauna Loa (MLO) station (20oN, 156oW), 

which has the longest continuous northern hemisphere CO2 record, shows an increasing 

SCA before the 1980s (P < 0.01), followed by no significant change thereafter.  We analyzed 

the potential driving factors of SCA slowing-down, with an ensemble of dynamic global 

vegetation models (DGVMs) coupled with an atmospheric transport model. We found that 

slowing-down of SCA at MLO is primarily explained by response of net biome productivity 

(NBP) to climate change, and by changes in atmospheric circulations. Through NBP, climate 

change increases SCA at MLO before the 1980s and decreases it afterwards. The effect of 

climate change on the slowing-down of SCA at MLO is mainly exerted by intensified 

drought stress acting to offset the acceleration driven by CO2 fertilization. This challenges 

the view that CO2 fertilization is the dominant cause of emergent SCA trends at northern 

sites south of 40°N. The contribution of agricultural intensification on the deceleration of 

SCA at MLO was elusive according to land-atmosphere CO2 flux estimated by DGVMs and 

atmospheric inversions. Our results also show the necessity to adequately account for 

changing circulation patterns in understanding carbon cycle dynamics observed from 

atmospheric observations and in using these observations to benchmark DGVMs. 
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1 | INTRODUCTION

The seasonal amplitude of atmospheric carbon dioxide (CO2) mole fraction (hereafter SCA) refers 

to the peak-to-trough magnitude of the detrended seasonal cycle of CO2 for each calendar year. It 

results primarily from the convolution of seasonal variations in atmospheric transport and of 

seasonal variations in terrestrial CO2 fluxes fixed by photosynthesis and released by respiration 

and disturbances (Bacastow, Keeling, & Whorf, 1985; Keeling, Chin, & Whorf, 1996). Although 

the seasonality of ocean CO2 fluxes and fossil fuel emissions also affect the SCA, their 

contributions are expected to be much smaller (Graven et al., 2013; Keeling et al., 1996). As a 

result, the SCA is viewed as an integrated signal for studying the response of the terrestrial carbon 

cycle to global change (Buermann et al., 2007; Dargaville et al., 2002; Forkel et al., 2016; Graven 

et al., 2013; Heimann et al., 1998; Keeling et al., 1996; Piao et al., 2018; Zeng et al., 2014).

A global network of more than 20 atmospheric CO2 monitoring stations was established in the 

1980s. During the past three decades, data from this network have shown the SCA increases in the 

high northern latitudes, but does not increase at mid and low latitude stations (Forkel et al., 2016; 

Piao et al., 2018). A longer perspective on the SCA trend can be gained from observations made at 

the Mauna Loa station (MLO), located at 19.5°N, 155.6°W and an elevation of 3397 meters in the 

Pacific Ocean, which has been recording data since 1958 (Keeling et al., 1996). Data from MLO 

show a significant increase in SCA before the 1980s, but this increment then slows down (Figure 

1; Figure S1), with the trend after the 1980s being similar to other northern mid-latitude stations 

(Graven et al., 2013). Less attention has been paid to this deceleration of SCA at MLO (Buermann 

et al., 2007) than the continuous SCA rise in the Arctic (Bacastow et al., 1985; Graven et al., 

2013). Understanding the deceleration of SCA at MLO is important because the SCA trend is one 

of the few emergent properties used to constrain future projections of the global carbon cycle 

(Wenzel, Cox, Eyring, & Friedlingstein, 2016), and the deceleration of SCA at MLO may also 

offer some indications on whether the persistent increase of SCA at higher latitudes will continue 

in the future (Bacastow et al., 1985; Keeling et al., 1996).

In this paper, we simulated the SCA trend at MLO in different time windows during 1959-2016 

using an ensemble of land carbon cycle models, ocean carbon cycle models and fossil fuel CO2 

emissions dataset with an atmospheric transport model. We separated the contribution of terrestrial 

and ocean carbon fluxes, land use emissions, fossil fuel emissions and atmospheric circulation to A
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the SCA trend and trend change. The effect of climate change and CO2 fertilization on the 

contribution of terrestrial carbon fluxes were also quantified.

2 | MATERIALS AND METHODS

2.1 | Datasets

2.1.1 | CO2 data

The weekly in situ carbon dioxide (CO2) mole fraction data at Mauna Loa (MLO) for the period 

March 1958 to December 2018 were obtained from the Scripps CO2 Program 

(http://scrippsco2.ucsd.edu/data/atmospheric_co2/mlo) (Keeling et al., 2001). Since calculation of 

the CO2 amplitude should only use full year records, only data for the period January 1959 to 

December 2018 were used in this study. We also used monthly CO2 dry air mole fractions data for 

other sites from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network 

(ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/) (Dlugokencky et al., 2018). 20 sites 

with data for at least 25 years in northern latitudes were used.

2.1.2 | Palmer Drought Severity Index (PDSI)

PDSI is a widely used standardized index to describe drought severity. Lower values of PDSI 

indicate drier conditions (Dai & Trenberth, 2002). We used the Self-calibrating Palmer Drought 

Severity Index provided by the Climatic Research Unit (CRU), University of East Anglia 

(https://crudata.uea.ac.uk/cru/data/drought/) (Osborn et al., 2017; Van Der Schrier et al., 2013). 

Monthly PDSI for the period 1901 to 2016 was calculated from the CRU TS 3.26 monthly climate 

data which has a spatial resolution of 0.5º×0.5º.

2.1.3 | Dynamic global vegetation models (DGVMs)

Land-atmosphere CO2 exchange (net biome productivity, NBP) was provided by 12 dynamic 

global vegetation models (DGVMs) (Table S1). All the model simulations were performed 

following the TRENDY inter-comparison protocol for the common period of 1901–2016 

(TRENDYv6) using the same climate drivers obtained from CRU-NCEP v8 (Harris, Jones, 

Osborn, & Lister, 2014; Wei et al., 2014), atmospheric CO2 values from a combination of ice core 

records and atmospheric observations, and land use change from the HYDE data set (Le Quéré et 

al., 2018). Simulations were performed for three scenarios (S1, S2, S3) to facilitate isolating the A
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effects of increasing CO2 mole fraction, climate change, and land use (Sitch et al., 2015). In S1, 

only atmospheric CO2 mole fraction changed with time, while climatology without any trend was 

used as climate forcing and other factors were kept constant. In S2, both atmospheric CO2 mole 

fraction and climate varied over time, while S3 considered varying atmospheric CO2 mole 

fraction, climate, and land use. The varying climate accounts for the historical change of radiation, 

precipitation, surface air temperature, surface pressure, air humidity and wind speed. The 12 

DGVMs use some (depending on the requirement of model inputs) of these climate variables to 

drive the simulation of NBP. Consequently, the effects of CO2, climate, and land use could be 

estimated from S1, S2-S1 and S3-S2, respectively. Monthly net biome productivity (NBP), gross 

primary productivity (GPP) and total ecosystem respiration (TER) in S1, S2, S3 and soil moisture 

in S2 were used in this study. Note that we used the soil moisture output from all of the models 

except for CLASS-CTEM due to the missing soil moisture output. Climate forcing of the DGVMs 

was provided by CRU-NCEP v8, which is a globally gridded (0.5º×0.5º) data set based on 

meteorological observations and climate reanalyses (Harris et al., 2014; Wei et al., 2014), for the 

period 1901-2016. This data set also provided values of monthly mean temperature, total rainfall 

and downward shortwave radiation for the period May to September for the analyses of the 

correlation between interannual variations of climate variables and carbon fluxes (NBP, GPP and 

TER).

2.1.4 | Fossil fuel CO2 emissions

The gridded monthly fossil fuel CO2 emission data from the Carbon Dioxide Information Analysis 

Center (CDIAC) spanning the period between 1959 and 2013 was used in this study, as it is also 

used by the Global Carbon Project for estimating fossil fuel emissions. The fossil fuel emissions 

include emissions from solid, liquid and gas fuels, and the seasonal cycles were estimated by using 

a proportional-proxy method (Andres, Gregg, Losey, Marland, & Boden, 2011). For 21 countries 

(covering about 80% of total global emissions), fossil fuel CO2 emission data were obtained from 

available monthly fossil fuel consumption data. For the other countries, for which such monthly 

data were not available, the seasonal cycle of fossil fuel emissions were represented by the 

available data in view of climatic and economical similarities (also geographic proximity for 

several countries). For some years there were gaps in the data, and to fill these, Monte Carlo 

methods were used to create values from years with known monthly fractions (Andres et al., 

2011). Since the CDIAC data were only available until 2013, they were extrapolated to 2016 by A
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using global fuel consumption data provided by the Open-source Data Inventory for 

Anthropogenic CO2 (ODIAC) for 2014-2016 (Oda, Maksyutov, & Andres, 2018). To assess the 

impacts of uncertainties associated with estimates of fossil fuel emissions on the SCA trend 

change, we also used two alternative gridded fossil fuel CO2 emission datasets: CEDS (Hoesly et 

al., 2018) and PKU (Wang et al., 2013).

2.1.5 | Ocean-atmosphere CO2 exchange

The ocean-atmospheric CO2 exchange was simulated by the PlankTOM5 model combined with 

the NEMO model (Buitenhuis, Rivkin, Sailley, & Le Quéré, 2010). PlankTOM5 is a 

biogeochemical model forced by compounds in rivers, sediments and dust (Aumont, 

Maier-Reimer, Blain, & Monfray, 2003; Cotrim da Cunha, Buitenhuis, Le Quéré, Giraud, & 

Ludwig, 2007); NEMO is a global ocean general circulation model, forced by daily wind and 

precipitation data from the National Center for Environmental Prediction (NCEP) reanalysis 

(Kalnay et al., 1996). To assess the impacts of uncertainties associated with ocean fluxes on the 

SCA trend change, we also used six other ocean models from the global carbon project (Le Quéré 

et al., 2018), namely: CCSM-BEC, CSIRO, MPIOM, NEMO-PISCES_CNRM, NorESM and 

RECOM.

2.1.6 | Global atmospheric transport model

We estimated the atmospheric CO2 mole fraction at MLO by forcing the global atmospheric 

transport model of the Laboratoire de Météorologie Dynamique version 5 (Hourdin et al., 2006; 

Locatelli et al., 2015) (LMDZv5) with the inputs of land-atmosphere CO2 exchange, fossil fuel 

CO2 emissions and ocean-atmosphere CO2 exchange fluxes. The LMDZ transport model was run 

on a 1.875º×3.75º (latitude × longitude) horizontal grid, with 39 layers between the surface and the 

top of the atmosphere. LMDZ was nudged to European Centre for Medium-Range Weather 

Forecasts (ECMWF) reanalyzed winds, and was run in an off-line mode in which transport mass 

fluxes were read from pre-computed archives from the same model rather than computed online. 

The physical convection scheme used in this study is also used in the LMDZ5A model in the 

CMIP5 experiments. Note that the time span of each ECMWF wind product did not cover the 

whole study period of 1959-2016. Therefore we used two ECMWF reanalysis products covering 

different periods, i.e. ERA-20C for 1959-2010, and ERA-Interim for 1979-2016 

(https://www.ecmwf.int/en/forecasts/datasets). The ERA-20C and ERA-Interim products differ in A
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their spatial resolution, model orography, assimilated data, assimilation methodology, etc., so that 

the wind fields in ERA-20C and ERA-Interim are also different (Poli et al., 2016). We compared 

the modeled CO2 seasonal amplitudes during 1980-2010 from simulations using ERA-20C (MEC) 

and ERA-Interim (MEI) wind data sets. Figure S2 shows that the modeled CO2 seasonal 

amplitudes are very close to each other and are not sensitive to the choice of the ECMWF product. 

Therefore, for each transport simulation (see below for details), we combined the modeled CO2 

seasonal amplitudes using ERA-20C for 1959-1979 and those using ERA-Interim for 1980-2016 

to form a full time series of modeled SCA from 1959 to 2016. The analysis of the southern 

boundary of the Hadley cell shows no drastic change in the combination of the two-reanalysis 

products (Figure S3). 

We were careful to ensure that the use of the two different wind field products did not lead to a 

trend change of SCA. Firstly, we verified that the SCA values calculated with the different wind 

fields were consistent for the overlapping time period (1980-2010) when both wind field data sets 

were available (Figure S2). Secondly, we found that the change in the trend of SCA was also 

detected when the ERA-20C transport was used (Figure S4). Moreover, when we changed the start 

year for using ERA-Interim to a year in the late 1980s or early 1990s, such as 1990, we found that 

the SCA trend change still occurred in the 1980s (Figure S4). The matrices of SCA trend change 

(the orange patches in Figure S4) did not move to 1990 to match the change in the ERA-Interim 

start year. These results indicate that the contribution of the change in atmospheric circulation to 

the SCA trend change is not induced by use of the two wind field products to generate the single 

SCA time series. 

To estimate the robustness of the trend change of SCA induced by the atmospheric circulation, we 

used reanalyzed wind fields, from both ECMWF and NCEP (Kalnay et al., 1996; Kistler et al., 

2001) in the transport simulations. However, the Simulation T1 used time-varying fluxes and 

NCEP R1 wind field forcing (T1NCEP), simulated a SCA trend of 0.01 ppm yr-1 (P = 0.05), largely 

underestimating the observed SCA increase of 0.04 ppm yr-1 (P < 0.01) during 1959-1984 (Figure 

S5a), and much lower than the simulated SCA trend from the Simulation T1 (0.03 ppm yr-1, P < 

0.01) forced with the ECMWF wind field (T1). This result illustrates the fact that circulation 

changes in the data-sparse period before the 1980s are more uncertain than in recent decades 

(Fujiwara et al., 2017) and the SCA trend seems to be highly sensitive to the atmospheric A
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circulation changes. The differences in the wind field between ECMWF and NCEP R1 before the 

1980s may come from many sources, such as forecast models, input data sets and data assimilation 

systems for example. Although it is difficult and beyond our scope to evaluate the reanalyzed 

wind fields, we hypothesize that differences in the input sea surface temperature (SST) could be 

an important driver for wind field differences between the two reanalyses: The HadISST used by 

ECMWF represents a major improvement over its predecessor GISSST, which is used by NCEP 

R1, in forcing tropical atmospheric circulations (Rayner et al., 2003). Differences between 

HadISST and NCEP R1 are mainly found before the 1980s (Rayner et al., 2003). Since the 

observed change in the SCA trend can only be reproduced by the simulation using the wind 

products from ECMWF (T1), and not by the simulation using NCEP R1 (T1NCEP), the analysis of 

the impact of atmospheric circulation in this study is based only on the ECMWF data. We also 

simulated CO2 mole fraction to estimate SCA for other 20 sites coving a range of northern 

latitudes.

2.2 | Analysis approach

2.2.1 | Design of transport experiments

To separate the effects of six factors that can affect the CO2 seasonal amplitude trends: changes of 

atmospheric CO2 (‘CO2’), climate (‘CLIM’), land use (‘LU’), fossil fuel (‘FF’), ocean carbon flux 

(‘Ocean’) and atmospheric circulation (‘Wind’), seven transport simulations (T1-T7) were 

designed, using global transport models coupled with DGVMs (Table 1). The first (T1) used 

time-varying S3 monthly NBP, fossil fuel CO2 emissions, and ocean-atmosphere CO2 exchange, 

coupled with the use of time-varying wind fields in the LMDZv5. The T1 simulation thus 

integrates the effects of all six factors. The second simulation (T2) is driven by time-varying S1 

monthly NBP and constant fossil fuel CO2 emissions and ocean-atmosphere CO2 exchange, 

coupled with the LMDZv5 transport model with variable winds, which reflects the combined 

effects of ‘CO2’ and ‘Wind’. The third simulation (T3) is driven by time-varying S2 monthly 

NBP, while the other factors remain the same as in T2. T4 is driven by time-varying S3 monthly 

NBP, with the other factors kept the same as in T3. Simulation T5 is forced by historical varying 

wind, but uses constant CO2 fluxes (land-atmosphere CO2 exchange, fossil fuel CO2 emissions, 

and ocean-atmosphere CO2 exchange) with values from 1959. In Simulations T6 and T7, only 

fossil fuel CO2 emissions and ocean-atmosphere CO2 exchange are varying respectively, both 

coupled with the varying winds in LMDZv5. Therefore, the difference between two specific A
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simulations indicates the effect of one factor. That is, the effects of these factors atmospheric CO2 

(‘CO2’), climate (‘CLIM’), land use (‘LU’), fossil fuel (‘FF’) and ocean carbon flux (‘Ocean’), 

can be calculated by T2-T5, T3-T2, T4-T3, T6-T5 and T7-T5, respectively. The effect of 

atmospheric transport (‘Wind’) is simply obtained from T5.

To investigate the impact of fossil fuel emissions on the change in the trend of SCA, we run 

additional T5 and T6 simulations with three gridded fossil fuel CO2 emission maps: CDIAC (used 

in the reference simulation), CEDS and PKU. In these additional simulations, we only used LPX 

for the land NBP fluxes. For the ocean, we used 7 models from the global carbon project, namely: 

CCSM-BEC, CSIRO, MPIOM, NEMO-PISCES_CNRM, NEMO-PlankTOM5 (used in the 

reference simulation), NorESM and RECOM. We ran additional T5 and T7 simulations using 

different ocean fluxes. 

To investigate the impact of agriculture on the SCA at MLO, we conducted additional experiments 

by using a cropland mask for the year 2014 from MODIS (MCD12C1 v006, 

https://lpdaac.usgs.gov/products/mcd12c1v006/). In each grid box of the transport model, if the 

fraction of cropland is larger than 30% (in most grid boxes, cropland is the dominant land cover 

type), the grid box is treated as “cropland”. For the 12 DGVMs, we run additional simulations 

(TC) where the fluxes in the cropland grid boxes cycle with the 1959 monthly fluxes, while the 

fluxes in the other grid boxes are the same as for Simulation T1. Therefore, the modeled SCA 

trend from TC simulation is not contributed by the cropland, that is, agricultural flux. The 

difference between the T1 and TC simulations is, the DGVMs’ simulated impact of agriculture. In 

addition, we also investigate the impact of agriculture, based on inversion results, namely: 

Jena_s57X (Rödenbeck, Zaehle, Keeling, & Heimann, 2018a), Jena sEXT (Rödenbeck, Zaehle, 

Keeling, & Heimann, 2018a), Jena s85 (Rödenbeck, Zaehle, Keeling, & Heimann, 2018b) and 

CAMS (https://apps.ecmwf.int/datasets/data/cams-ghg-inversions/) using the same cropland mask. 

Jena_s57X and Jena_sEXT cover the period from 1957 to the present day, while Jena_s85 and 

CAMS only start in 1985 and 1979 respectively. We run the transport model, both with the actual 

fluxes provided by the inversions (TI), and with the fluxes in the cropland grid boxes cycling 

through the 1959 monthly fluxes while the fluxes in the other grid boxes are the same as in 

Simulation TI (TIC). Since atmospheric inversions were driven by atmospheric CO2 observations, 

which convoluted all land-atmosphere CO2 exchange, if agricultural intensification contributes to A
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SCA trend, it should be manifested by the contribution of NBP over agricultural zone to SCA 

change, represented by difference between TI and TIC.

2.2.2 | Estimation of seasonal CO2 amplitude (SCA) and SCA trend

SCA derived from the MLO observatory and simulated data was calculated using a standard tool, 

CCGCRV (Thoning, Tans, & Komhyr, 1989). The long term curves and annual oscillation of 

atmospheric CO2 were firstly obtained by fitting a function to the raw data. The function consists 

of a quadratic polynomial for the long-term trend, and four-harmonics for the annual cycle. Then a 

50-day cutoff value short term filter and a 667-day cutoff value long term filter were applied to the 

residuals between the raw data and the fitted function, so that any short term variations or annual 

cycles that are still present in the residuals after fitting the function are removed (Thoning et al., 

1989). The detrended seasonal cycle is obtained by adding the filtered residuals using the short 

term cutoff value to the annual cycle. The peak-to-trough amplitude was calculated as the 

difference between the maximum and the minimum CO2 mole fraction of the CO2 seasonal cycle 

in each calendar year. In general, the maximum and minimum of the CO2 seasonal cycle at MLO 

appeared in May and at the end of September or early October, respectively, which is consistent 

with the results of previous studies (Buermann et al., 2007; Graven et al., 2013). As we focus on 

the change of SCA, the anomalies of SCA rather than actual values were used in the analysis. 

To ensure that the observed slow-down in the increasing trend of SCA was not an artifact 

introduced in some way by the specific tool used to extract the seasonal trend, we repeated the 

SCA time series extraction process using two other algorithms: Seasonal Trend decomposition 

using LOESS (STL, where LOESS is an abbreviation for locally weighted scatterplot smoothing, 

available at https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stl.html) and HPspline 

(Pickers & Manning, 2015). STL uses a moving average algorithm to fit the seasonal cycle, 

whereas the HPspline algorithm involves fitting data to a harmonic function, a polynomial 

equation, and a stiff cubic spline. The full details of the three algorithms, and of their different 

performances in extracting long-term trends and seasonal cycles, are discussed in the previous 

study (Pickers & Manning, 2015). The use of STL or HPspline to extract the SCA time series did 

not lead to any change in the observed deceleration of the SCA at MLO (Figure S6).

We tested the impacts of different breakpoints and anomalous years on the estimation of SCA A
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trend. Different breakpoints from 1983 to 1986 and exclusion of anomalous years were 

considered. Anomalous years are identified as El Niño years (i.e., 1983-1984, 1987-1988, 

1997-1998 and 2015-2016), La Niña years (i.e., 1970-1971, 1974-1975 and 2010-2011) and years 

when there are large volcanic eruptions (i.e., 1963, 1980, 1982, 1991 and 2011). In this sensitivity 

test, we remove SCA of all possible combinations of anomalous years (from any single year to all 

the years) in trend derivation (Figure 2). The frequency distribution of trends is obtained from 

5000 bootstrap analyses. In addition, we fit linear trends to the SCA at MLO, using at least a 

20-year time span, with different combinations of start years (ranging from 1959 through 1997), 

and end years (ranging from 1978 through 2016) (Figure 3).

2.2.3 | CO2 source region (footprint) analysis

To identify the CO2 flux regions that affect the change of SCA at MLO, we calculated the 

sensitivity of the monthly mean CO2 mole fraction in September at MLO to 

land-atmosphere/ocean-atmosphere CO2 exchange between May and September (footprint) by 

using the adjoint code of LMDZv5 (Chevallier et al., 2005). Because the seasonal amplitude is 

computed as the difference between the monthly mean CO2 mole fraction in September and that in 

May, which is a result of the cumulative sink of the terrestrial and oceanic biosphere during this 

period, this footprint represents the amount by which the monthly mean CO2 mole fraction will 

drop from the May CO2 mole fraction, when the land-atmospheric/ocean-atmospheric CO2 

exchange decreases by 1 kg C m-2 h-1 (here decrease means a larger sink in the biosphere) for each 

day from May to September. The adjoint code analytically computes the partial derivatives of all 

processes within LMDZv5 following the chain rule and thus allows us to obtain partial derivatives 

of monthly mean CO2 mole fraction with respect to the land-atmosphere/ocean-atmosphere CO2 

exchange for all grid points. The footprints in units of mole fraction (ppm) per unit flux (kg C m-2 

h-1) were computed every year for all global grid-point fluxes of the transport model at the daily 

scale since May 1st. We then summed the footprints for all the days from May 1st to September 

30th in each year between 1959 and 2016 to get a total footprint of the flux regions affecting the 

CO2 drawdown, and hence the SCA, at MLO from May to September. The main CO2 source 

regions estimated using LMDZv5 are similar to those found by using TM2 (Kaminski, Giering, & 

Heimann, 1996). 
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To examine whether the identified terrestrial CO2 source regions are indeed the regions mostly 

responsible for the trend change of SCA at MLO, we perform a separate transport experiment: 

Simulation T8. In T8, we keep the NBP of lightly contributing regions (those with mean surface 

flux sensitivity less than 150 ppm per kg C m-2 h-1) constant at their 1959 values throughout the 

1960-2016 simulation period, while allowing the NBP of the more heavily contributing regions 

(with mean surface flux sensitivity larger than 150 ppm per kg C m-2 h-1) to vary according to the 

NBP simulated by the 12 DGVMs. By comparing T8 and T2, we found that the identified source 

regions almost fully explain the SCA trend change at MLO between 1959-1984 and 1985-2016. 

On the other hand, in some regions, the reversal of trend of NBP driven by climate change 

(NBPclim) can also contribute the trend change of SCA at MLO (Figure 4f). To better understand 

the contribution of regions where the climate change induced reversal of the NBP trend to the 

trend change of SCA at MLO, we performed another transport experiment: T9. In this case, NBP 

only varied over pixels with NBPclim trend reversal (NBP trend decreases under the impact of 

climate change) between 1959-1984 and 1985-2016, with the NBP of other pixels kept constant at 

their 1959 values throughout the 1960-2016 simulation (Figure 4f). The contribution of NBPclim 

trend reversal regions to the trend change of SCA at MLO can be derived by comparing 

Simulation T9 and Simulation T2. To quantify potential contribution from the NBPclim trend 

reversal regions of South America, we performed another transport experiment T9S.Am to estimate 

the contribution of NBP trend in NBPclim trend reversal regions of South America to the SCA 

trend change at MLO. In this transport experiment, similar with Simulation T9, we allowed NBP 

of south America where NBPclim trend has decreased since the 1980s to vary, and kept NBP of 

other land area constant at their 1959 values throughout 1960-2016 simulation period. By 

comparing T9S.Am and T2, we obtained the contribution from NBPclim trend reversal regions of 

South America to SCA trend change at MLO. 

To evaluate whether the oceanic contribution to seasonal CO2 mole fraction at MLO has changed, 

due to changes in the atmospheric circulation during the period 1959-2016, we calculated the area 

weighted sum of sensitivity of CO2 at MLO to the ocean flux (ocean footprint) and that to the land 

flux (land footprint), respectively. The ratio of the ocean footprint to the land footprint is 

calculated for the period 1959-2016 for the following regions: the entire globe; the footprint 

regions where the mean surface flux sensitivity was larger than 150 ppm per kg C m-2 h-1 ; and for 

each latitudinal band.A
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2.2.4 Model weights in the averaging

The model average was derived using two approaches: arithmetic model averaging (AMA) and 

Bayesian model averaging (BMA). In AMA, each model was given equal weight, without 

considering the ability of each model to accurately reproduce the observations. In BMA, in 

contrast, the weight assigned to each model (listed in table S1) was determined by the ability of 

the model to reproduce the observations, with the sum of the weights being equal to one. In our 

case, models (Simulation T1), having higher correlations with the observations, were assigned 

with higher weights in the BMA scheme. The better the agreement of the amplitude anomalies of a 

model with the observed data, the greater the weight assigned. The optimal probability density 

function was calculated by Monte Carlo Markov chains (Vrugt, Diks, & Clark, 2008). Three 

models (LPX, ISAM and CABLE) had high weights up to 90% (table S1). To investigate the 

robustness of BMA, weights of simulated SCA using BMA were derived from other independent 

observations: the interannual variability of CO2 amplitude and the mean CO2 seasonal cycle. 

Simulated SCA trend using BMA and the correlation between the observed SCA and simulated 

SCA were estimated. Uncertainties of the BMA-based SCA trends were estimated by 5000 

bootstrap estimates. First, a bootstrap sample set of size 1000 was composed of SCA trends from 

12 individual DGVMs. The number of samples for each model is based on its BMA weight. For 

example, the weight of CABLE is 0.12 (table S1), so 120 samples were taken with the SCA trend 

estimated by the CABLE model. Then, we resample this bootstrap sample set 5000 times and 

calculate the standard deviation of those bootstrap estimates. Note that when the trend of one 

model during 1959-1984 was sampled, the trend of the same model during 1985-2016 was 

sampled simultaneously.

3 | RESULTS

3.1 | Observed and simulated SCA trend at MLO

SCA at MLO increased by 1.2 ppm over past six decades (Figure 1), but the increasing trend is not 

homogeneous. The increasing trend was 0.04±0.01 ppm yr-1 (P < 0.01) from 1959 to the 

mid-1980s, but reduced by 50% to 0.02±0.01 ppm yr-1 (P > 0.05) from the mid-1980s to 2018 

(Figure 1). To assess the robustness of the slow-down in SCA trend at MLO since the 1980s, we 

test the histograms of SCA trend before and after the 1980s considering different breakpoints 

(Figure 2; Figure S1). Although trend estimates might be affected by few extreme values, for A
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example, the historically high values of SCA in 2015 and 2016 (Figure 1) (Bastos et al., 2018), 

whether including these two extreme years does not change the conclusion that SCA trend at MLO 

slows down (Figure 2; Figure S1). This also holds true when SCA of the recent two years (2017 

and 2018), whose SCA drops down below that of 2014, were excluded (Figure 1; Figure 2). In 

order to systematically estimate the impact of extreme values on trend estimates, we perform 

bootstrap analyses by randomly excluding anomalous years in deriving the trend. The SCA trend 

significantly slows down by 0.02±0.01 ppm yr-1 (P < 0.01) after the mid-1980s (Figure 2). We 

also fit linear curves to the SCA at MLO, using windows with at least 20 years and as shown in 

Figure 3a, the SCA trend during the first three decades is significantly positive (> 0.03 ppm yr-1, P 

< 0.01), but, after the 1980s, the trends become insignificantly different from zero, or even 

negative. In addition, three different methods to extract SCA from observed CO2 mole fraction at 

MLO (frequency based time series decomposition (CCGCRV), seasonal trend decomposition 

using locally weighted scatterplot smoothing (STL), and time series decomposition combining 

harmonic functions, polynomial and cubic spline (HPspline)) show similar slow-down of SCA 

trend at MLO since the mid-1980s (Figure S6). We conclude that the slow-down in the SCA trend 

at MLO is robust to potential artifacts induced by breakpoints, anomalous events and methods to 

extract SCA.

To understand the mechanisms behind the deceleration of the SCA at MLO, we compiled gridded 

estimates of ocean CO2 fluxes, terrestrial CO2 flux (or net biome productivity, NBP) and fossil 

fuel emissions, and computed the pertaining CO2 mole fraction using the LMDZv5 tracer transport 

model (Chevallier et al., 2005). Uncertainties in the spatiotemporal patterns of NBP, which control 

SCA, are addressed by using monthly NBP from the TRENDYv6 dynamic global vegetation 

models (DGVMs) (Table S1) (Le Quéré et al., 2018). This 12-model NBP ensemble contains 

factorial experiments executed by each DGVM. Seven transport model simulations (T1-T7) were 

performed to isolate the contributions to SCA trends of the driving factors: terrestrial NBP 

(changes in atmospheric CO2, climate and land use), fossil fuel emissions, ocean CO2 fluxes, and 

atmospheric circulation (Table 1, Table S2).

First, we examined whether SCA simulated using NBP derived from all factors (Simulation T1) 

can reproduce the observed SCA trend. To attribute the observed trend change, we used model 
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ensemble output calculated using Bayesian Model Averaging (BMA), which has been proved to 

result in more robust prediction than the arithmetic mean of the model ensemble (AMA). Unlike 

simple model averaging, our BMA ensemble gives more weight to those models better 

reproducing the observed variations in SCA (Figure 1 and Figure S7). The BMA model ensemble 

of the 12 models can reproduce the deceleration of SCA since the 1980s (Figure 3b), and is also 

able to reproduce the latitudinal gradients of the observed SCA trend (Figure S8). The model 

weights in the BMA ensemble can also be derived based on the model’s performance in 

reproducing either the detrended interannual variations of SCA or the mean seasonal cycle of 

atmospheric CO2 at MLO. In these two alternative methods of weight-deriving, using different 

characters of SCA, the alternative BMA ensembles perform similarly to the original BMA 

ensemble (Figure S9), illustrating the robustness of using BMA to hindcast and attribute the SCA 

change. Therefore, the BMA of the model ensemble was used to explore the contribution of each 

potential driving factor to the deceleration of SCA based on factorial transport simulations (Table 

1, Table S2). 

3.2 | Drivers of SCA slowing-down

3.2.1 | Climate change

The impact of the response of NBP to climate change on SCA was derived from the difference 

between Simulation T3 and Simulation T2 (Table 1, Table S2). The BMA of the DGVMs shows 

that the trend in NBP response to climate change drove SCA to increase significantly (> 0.01 ppm 

yr-1, P < 0.05) from the 1960s to the 1980s, and that its effect then weakened or reversed (~ 0 ppm 

yr-1, P > 0.10) (Figure 3c). This decrease of SCA trend driven by climate change is consistent with 

the observations (Figure 3). When examining the performance of individual DGVMs, we found 

that the three models that are most successful in reproducing the variations of SCA (R2 > 0.31), 

i.e., the ones with larger weights in the BMA ensemble (Table S1), consistently show a stall or 

decrease of climate-driven SCA since the 1980s (Figure S10).

To diagnose regions, and possible mechanisms, responsible for this climate-induced deceleration 

of SCA, we examine the change of NBP driven by climate change (NBPclim), over the land areas 

which play the most important role in the SCA at MLO: East Asia and western North America 

(Figure 4a,b). We found a significant reversal of the NBPclim trend over western North America 

and Eastern China (Figure 4d,e; Figure S11b). By performing another transport experiment A
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(Simulation T9, Table 1), we found that the NBPclim trend reversal over these regions, which is 

particularly obvious in East Asia and western North America, can almost fully explain the climate 

change-induced slow-down in the SCA trend at MLO since the 1980s (Figure S11). Furthermore, 

we found that the reversal of the NBPclim trend over western North America is consistent with the 

aggravated drought stress on NBP there during the past two decades (Méndez & Magaña, 2010; 

Schwalm et al., 2012). Indeed, trends in the Palmer Drought Severity Index (PDSI, low values 

indicate drier conditions) (Osborn, Barichivich, Harris, Van Der Schrier, & Jones, 2017; Van Der 

Schrier, Barichivich, Briffa, & Jones, 2013) and simulated soil moisture changed from increasing 

to decreasing over the western USA after the 1980s (Figures 5). Over most of Eastern and 

Northeast China, changes in PDSI and simulated soil moisture also consistently show intensified 

drought during the last three decades (Figures 5), in parallel with a faster warming trend and a stall 

or decrease in precipitation since the 1980s (Figure S12). Despite relatively low surface flux 

sensitivity in South America, the significant reversal of NBP trend in South America may also 

contribute the deceleration of SCA at MLO (Figure 4). Using a sensitivity simulation (T9S.Am), we 

confirm the sizeable contribution (-0.01±0.01 ppm yr-1) of regions where NBPclim trend reversed 

since the 1980s in South America to the decrease of SCA trend at MLO, which also coincides with 

the intensified drought stress since the 1980s (Figure 5). As the activity of vegetation during the 

growing season can be largely influenced by moisture availability (Figure S13), such increasing 

drought stress could have contributed to the decrease of photosynthetic uptake (gross primary 

productivity, GPP) since the 1980s (Figure S14), and thus of NBP over the footprint region of 

MLO (Figure 4f).

3.2.2 | Change in atmospheric circulations

In addition to NBP response to climate change, we find that changes in atmospheric circulation 

could also have contributed to the trend change of SCA at MLO by shifting the origin of the CO2. 

This mechanism is investigated by using LMDZv5 transport model simulations with an 

inter-annual varying wind field and constant CO2 flux from 1959 (Simulation T5, Table 1). From 

the 1960s to the 1980s, the changing atmospheric circulation contributed to the trends in SCA of 

between 0.01 ppm yr-1 and 0.02 ppm yr-1 (Figure 3h). The change was due to a northward 

movement of the regions influencing MLO in the early 1980s (Figure S15). However, after the 

1980s, the change in atmospheric circulation led to a significant decrease of the SCA at MLO (~ 

-0.01 ppm yr-1) (Figure 3h; Figure S15a). During 1959-1984, atmospheric circulation change A
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contributed by 0.01 ppm yr-1 to the SCA trend, while contributed by -0.01 ppm yr-1 during 

1985-2016. Therefore, the impact of change in atmospheric circulation acts as strong as that of 

climate change on trend change of SCA at MLO. The negative contribution of the decadal 

variations in atmospheric circulation is robust to patterns of NBP simulated by DGVMs, since 8 of 

the 12 models, accounting for more than 95% of the weight in the BMA model ensemble, 

consistently suggest a circulation-induced reduction in SCA (Figure S16). Two processes are 

potentially responsible for the circulation-induced change in SCA. The first is the changing 

relative contribution of oceanic and terrestrial carbon fluxes to the CO2 mole fraction at MLO. We 

found that the contribution of land carbon fluxes to the CO2 mole fraction at MLO, particularly 

that between 30°N and 50°N, increased before the 1980s (Figure S17), which would contribute to 

the increasing SCA at MLO, since a larger contribution from northern temperate terrestrial carbon 

fluxes induces a larger seasonal amplitude (Lintner, Buermann, Koven, & Fung, 2006; Piao et al., 

2020). The second process is the north-south movement of the CO2 source regions of the MLO. 

To explore this process, we plotted the year-to-year variations in the wind field (Figure S15a). The 

results show a noticeable southward movement of the CO2 source region (footprint) of MLO since 

the 1980s (Figure 4c; Figure S15a), probably caused by the expansion of the Hadley cell (Figure 

S3), making it less affected by higher northern latitudes. Since lower latitude lands have less 

seasonality in NBP (Figure S15b), the southward movement in the source regions, bringing more 

air mass from lower latitudes, tends to decrease the SCA at MLO, an effect which has been 

neglected by previous studies. In addition to the wind fields analyzed by ECMWF, we also 

explored the contribution of circulation changes using the wind fields from the NCEP R1 

reanalysis (Kalnay et al., 1996; Kistler, Kalnay, Collins, Saha, & White, 2001). Despite 

uncertainties in the wind field before the 1980s, the circulation-induced trend of SCA since the 

mid-1980s is similar with different wind fields (Figure S5), partly supporting the wind field is 

indeed a driver to deceleration of SCA since the mid-1980s.

3.2.3 | CO2 fertilization effects

CO2 fertilization in the increase of SCA can be used to project future photosynthesis (Wenzel, 

Cox, Eyring, & Friedlingstein, 2016). Increasing CO2 mole fraction in the atmosphere was found 

to be a dominant driver for the increase of SCA at northern hemisphere sites south of 40°N 

(Forkel et al., 2016). We also found a contribution of increasing CO2 mole fraction to the SCA 

trend at MLO. The contribution of increasing CO2 mole fraction did not lead to a deceleration of A
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the SCA, but instead slightly increased the positive trend of SCA over the past three decades 

(trend increased by 0.01 ppm yr-1 during 1985-2016 compared to that during 1959-1984) (Figure 

3d). The accelerated increase of CO2 mole fraction enhanced the GPP but less affected the 

seasonality of respiration (Keenan et al., 2016), resulting in more cumulative NBP during the net 

carbon uptake period and the increase of SCA trend since the 1980s.

3.2.4 | Land use change, ocean carbon fluxes and fossil fuel emission

Based on the BMA ensemble of the DGVMs, we found that land use change makes no significant 

contribution to decadal variations of SCA at MLO (Figure 3e), with its magnitude of contribution 

is less than 0.001 ppm yr-1
. Previous studies (Gray et al., 2014; Zeng et al., 2014) indicate that 

agricultural intensification, as a component of land use change, was a key driver of the SCA 

increase at MLO. Due to under-representation of cropland managements in current DGVMs, the 

DGVM simulated agricultural contribution to SCA trend at MLO is largely uncertain (Zhao et al., 

2016). Here, we further performed two additional transport experiments (TI and TIC) with NBP 

from long-term atmospheric inversion models to quantify the contribution of agriculture zones to 

SCA trend change at MLO (Table 1, Table S2). The results indicate that the contribution of 

agriculture zones to SCA trend at MLO has ranged between 0.006 ppm yr-1 and 0.008 ppm yr-1 

during 1959-1984 (16-22% of the observed SCA trend), which did not change significantly during 

1985-2014 (between 0.004 ppm yr-1 and 0.007 ppm yr-1, 25-44% of observed SCA trend) (Figure 

6). Thus, with the independent evidence from atmospheric inversions, we confirm the role of 

agricultural intensification in the increase of SCA, but it has little contribution (<0.002 ppm yr-1) 

to the deceleration of SCA at MLO (Figure 6).

The contributions from fossil fuel emissions and ocean carbon fluxes to SCA change at MLO is 

also not significant (Figure 3f,g; Figures S18, S19). The magnitude of the contributions from fossil 

fuel emissions to the SCA trend before 1984 is less than 0.001 ppm yr-1. The contribution from the 

ocean flux is less than 0.002 ppm yr-1. After the mid-1980s, land use change and ocean fluxes still 

contributed little to the SCA trend at MLO. Fossil fuel emissions could lead to a slightly larger 

increasing trend of SCA (0.004 ppm yr-1) after the mid-1980s than before.

4 | DISCUSSIONS
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The increase of SCA at MLO and BRW over the past six decades is a key fingerprint of the 

current perturbation of land carbon fluxes (Graven et al., 2013), however, the increase of SCA at 

MLO is not persistent. The differences in trends of SCA at low-latitude MLO (19.5°N) and 

high-latitude BRW (71.3 °N) over the recent 2-3 decades imply that there are emerging regional 

differences in ecosystem responses to climate change. Climate change has negative impact on 

NBP of the temperate northern hemisphere due to intensified drought stress, which induced by an 

increased vapor pressure deficit associated with the faster warming trend and a stall or decrease in 

water supply from precipitation. Either the lack of drought stress (Nemani et al., 2003), or the lack 

of drought stress intensification, in the higher northern latitudes can help to explain why the 

slow-down of the SCA trend took place in MLO but not in Point Barrow (BRW, 71.3 °N), where 

the trend of seasonal amplitude was mainly contributed by the boreal and Arctic regions (Graven 

et al., 2013; Piao et al., 2017). Our findings of a stall in photosynthetic carbon uptake in East Asia 

and western North America suggest that climate change could have profoundly altered how 

terrestrial ecosystems over the temperate northern hemisphere responds to external forcing. We 

might expect a stall in the future for the trends of photosynthesis and SCA at higher northern 

latitudes (e.g. BRW), if these northern ecosystems become more drought-stressed. Indeed, a 

weakening positive, or even emerging negative, impact of temperature on SCA has been observed 

at BRW over the last three decades, and this change in impact of temperature is probably 

explained by the co-occurring drought with heatwave (Peñuelas et al., 2017).

Since increasing SCA at MLO was primarily before the 1980s, while contribution of agricultural 

intensification to SCA increase at MLO was estimated to mainly occur after the mid-1980s (Zeng 

et al., 2014), it put into question whether agricultural intensification was indeed the dominant 

driver of SCA enhancement at MLO over past six decades. Our transport experiments based on 

NBP estimated from both DGVMs and atmospheric inversions do not support agricultural zones 

dominating SCA increment (Figure 6; Figure S20), though the estimates are partly limited by the 

prior land flux used in atmospheric inversions and the incomplete representation of agriculture 

practices in DGVMs. We also indicate that CO2 fertilization may not always be the most 

prominent factor driving the SCA trend. Climate change-induced intensified drought stress in 

temperate northern ecosystems explains a large part of deceleration of SCA at MLO since the 

1980s. For high latitude sites, climate change has exerted strong influence on the change of SCA 

through many other effects, like the structure change of biosphere (Forkel et al., 2016; Fung, A
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2013), reduced residence time (Jeong et al., 2018), seasonal compensation (Liu et al., 2020) and 

increased winter respiration (Commane et al., 2017). 

Analysis of the SCA trend and its change over the past six decades are one of a few ways to detect 

changes in the global carbon cycle from long-term CO2 records (Ballantyne, Alden, Miller, Tans, 

& White, 2012; Wang et al., 2014). These diagnostics from the measurements, and the models’ 

skill in reproducing them, can improve our understanding of the ecosystem response to climate 

change, and provide useful benchmarks for DGVMs, as long as the impact of atmospheric 

transport can be accurately considered. Additional long-term records at different latitudes from 

denser measurement networks over different continents could improve our capability to detect 

potential changes in the state of the carbon cycle (e.g., Peñuelas et al., 2017), reduce uncertainties 

in the regions and processes that contribute to the change, and enhance the signal to noise ratio for 

detecting decadal variations of the carbon cycle. They would allow us to more accurately attribute 

and project the evolution of the carbon cycle in a warmer world with higher atmospheric CO2 

mole fraction, higher surface temperatures and increasing frequency and intensity of droughts (Cai 

et al., 2014; IPCC, 2013).

In summary, with an ensemble of dynamic global vegetation models coupled with an atmospheric 

transport model, we perform transport experiments to hindcast the change of SCA and isolate the 

effects of major factors and regions driving this change. We found the deceleration of SCA since 

the mid-1980s largely resulted from the response of land carbon cycle to climate change and from 

changes in atmospheric circulation. Climate change increased SCA at MLO before the 1980s but 

decreased it afterwards, which is probably associated with the intensified drought stress since the 

1980s over the temperate Northern Hemisphere. The critical role of change in atmospheric 

circulations highlights the long-dismissed necessity to adequately account for changing circulation 

patterns in understanding carbon cycle change from atmospheric observations and benchmarking 

of the DGVMs, whose accuracy in hindcasting carbon cycle change remains to be further 

improved. 
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Figure Captions:

FIGURE 1  Anomalies of atmospheric seasonal CO2 amplitude (SCA) at Mauna Loa (MLO). 

The observed anomaly in the SCA at MLO (black line) was derived from the Scripps CO2 

Program during 1959-2018. The modeled SCA anomaly for 1959-2016 was estimated from a 

global atmospheric transport model run (Simulation T1) with net biome productivity, fossil fuel 

CO2 emission and ocean-atmosphere CO2 exchange fluxes. Simulated SCA, driven by the NBP 

from twelve DGVMs, was averaged using two approaches: arithmetic model averaging (AMA) 

(blue line) and Bayesian model averaging (BMA) (yellow line), respectively. The shaded areas 

represent the 1 SD uncertainty across models.

FIGURE 2  Distribution of observed seasonal CO2 amplitude (SCA) trends at Mauna Loa 

(MLO) before and after the 1980s and of relative change of SCA trend between two periods. In 

panel (a), the histograms indicate the results of SCA trend merging distributions with different 

breakpoints (1983-1986). In panel (b), relative change of SCA trend is the ratio of calculated 

difference between SCA trend after the 1980s and SCA trend before the 1980s to SCA trend 

before the 1980s. Anomalous years are randomly removed in the trend estimation.

FIGURE 3  Matrices of seasonal CO2 amplitude (SCA) trend at Mauna Loa (MLO). The 

matrices of the SCA trend at MLO during periods with different combinations of start and end 

year are shown in panel (a) (observations) and (b) (model ensemble with Bayesian model 

averaging). Panels (c)-(h) show the trend matrices based on BMA at MLO under the effects of six 

different factors. In each panel, the magnitudes of the trends are shown in the upper left part and 

the corresponding P values are shown in the lower right part. The individual effects of change in 

climate (‘CLIM’) (c), atmospheric CO2 (‘CO2’) (d), land use (‘LU’) (e), fossil fuel (‘FF’) (f), 

ocean-air carbon flux (‘Ocean’) (g), and atmospheric transport (‘Wind’) (h), on trends of SCA 

were estimated from transport simulations by an atmospheric transport model fed with land/ocean 

carbon fluxes.

FIGURE 4  Spatial pattern of the trend in net biome productivity (NBP) of the carbon uptake 

period (May-September) during 1959-1984 and 1985-2016. Panels (a) and (b) show the mean 
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footprint for MLO during the two periods and panel (c) shows its change. Modeled trends in NBP 

under the effect of climate change (‘CLIM’) (d, e), rising CO2 mole fraction (‘CO2’) (g, h) and 

land use change (‘LU’) (j, k) were estimated by the multi-model averaged results using Bayesian 

model averaging (BMA) from factorial simulations by twelve dynamic global vegetation models. 

Changes in the trends of NBP between the two time periods under the effect of CLIM, CO2 and 

LU are shown in panels (f), (i) and (l), respectively. In panels (d)-(l), white scatters indicate that 

the signs of the NBP trend derived from less than eight models are consistent with the BMA trend. 

For better clarity, the sign was plotted on a 1 degree grid with each cell containing four 0.5 degree 

pixels. We compared the NBP trend between 1959-1984 and 1985-2016 because a piecewise 

regression (Toms & Lesperance, 2003; Wang et al., 2011) of SCA at MLO shows that the trend 

change occurs in 1984. The shaded area indicates terrestrial regions where the mean surface flux 

sensitivity is less than 150 ppm per kg C m-2 h-1, and ocean. The grey areas over land in panels 

(d)-(l) indicate the regions where NDVI is lower than 0.1.

FIGURE 5  Trend of Palmer Drought Severity Index (PDSI) and simulated soil moisture in the 

carbon uptake period (May-September) during 1959-1984 and 1985-2016. The soil moisture used 

here is the average of TRENDY models using BMA. The time span in panel (a) and (b) is from 

1959 to 1984, and that in panel (c) and (d) is from 1985 to 2016. Change in the trend of PDSI and 

soil moisture between 1985-2016 and 1959-1984 is shown in panel (e) and (f), respectively. 

Shaded area indicates regions where mean surface flux sensitivity is less than 150 ppm per kg C 

m-2 h-1 and ocean. The grey areas over land indicate the regions where NDVI is lower than 0.1. 

Lower PDSI indicates drier condition.

FIGURE 6  Contribution of agricultural intensification to seasonal CO2 amplitude (SCA) 

anomaly (b) and trend (c). Spatial distribution of cropland (yellow) is shown in panel (a). The 

contribution of cropland to SCA anomaly (red line) was estimated with two long-term inversion 

models, Jena_s57X and Jena_sEXT from the difference between simulation TI and TIC (panel b). 

The uncertainty of SCA anomaly from inversion models was estimated as the range of two models 

(b). Observed SCA trend (black bars) and SCA trend contributed by cropland from inversion A
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models (red and orange bars) at Mauna Loa (MLO) for two periods, 1959-1984 and 1985-2014 are 

shown in panel (c). Change of SCA trend indicates trend in 1985-2014 minus that in 1959-1984. 

The uncertainty of the SCA trend was estimated as the standard error of the linear regression 

coefficient, and the uncertainty of change in SCA trend was estimated using bootstrap analysis. 

The white areas over land in panel (a) indicate the regions where NDVI is lower than 0.1.
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TABLE 1  Summary of transport simulations performed

Land-atmosphere CO2 exchange
Transport 

Simulation CO2 Climate Land use

Fossil fuel
Ocean-atmosphere 

CO2 exchange
Wind

T1 Vary (NOAA ESRL) Vary (CRU-NCEPv8) Vary (HYDE 3.2) Vary (CDIAC)
Vary (NEMO- 

PlankTOM5)

Vary 

(LMDZv5-ECMWF1)

T2 Vary (NOAA ESRL)
Climatology without 

any trend

Constant (pre-industrial 

land use)

Constant as 

1959
Constant as 1959

Vary 

(LMDZv5-ECMWF)

T3 Vary (NOAA ESRL) Vary (CRU-NCEPv8)
Constant (pre-industrial 

land use)

Constant as 

1959
Constant as 1959

Vary 

(LMDZv5-ECMWF)

T4 Vary (NOAA ESRL) Vary (CRU-NCEPv8) Vary (HYDE 3.2)
Constant as 

1959
Constant as 1959

Vary 

(LMDZv5-ECMWF)

T5 Constant as 1959
Constant as 

1959
Constant as 1959

Vary 

(LMDZv5-ECMWF)

T6 Constant as 1959 Vary (CDIAC) Constant as 1959
Vary 

(LMDZv5-ECMWF)

T7 Constant as 1959
Constant as 

1959

Vary (NEMO- 

PlankTOM5)

Vary 

(LMDZv5-ECMWF)
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T8
Vary (NOAA ESRL) 

in footprint regions2

Vary (CRU-NCEPv8) 

in footprint regions

Constant (pre-industrial 

land use)

Constant as 

1959
Constant as 1959

Vary 

(LMDZv5-ECMWF)

T9

Vary (NOAA ESRL) 

in NBPclim trend 

reversal regions

Vary (CRU-NCEPv8) 

in NBPclim trend 

reversal regions

Constant (pre-industrial 

land use)

Constant as 

1959
Constant as 1959

Vary 

(LMDZv5-ECMWF)

T9S.Am

Vary (NOAA ESRL) 

in NBPclim trend 

reversal regions of 

South America

Vary (CRU-NCEPv8) 

in NBPclim trend 

reversal regions of 

South America

Constant (pre-industrial 

land use)

Constant as 

1959
Constant as 1959

Vary 

(LMDZv5-ECMWF)

TI Vary (Jena_s57X and Jena sEXT) Vary (CDIAC)
Vary (NEMO- 

PlankTOM5)

Vary 

(LMDZv5-ECMWF)

TIC Vary (Jena_s57X and Jena sEXT) excluding agriculture zone3 Vary (CDIAC)
Vary (NEMO- 

PlankTOM5)

Vary 

(LMDZv5-ECMWF)

TC

Vary (NOAA ESRL) 

excluding agriculture 

zone

Vary (CRU-NCEPv8) 

excluding agriculture 

zone

Vary (HYDE 3.2) 

excluding agriculture 

zone

Vary (CDIAC)
Vary (NEMO- 

PlankTOM5)

Vary 

(LMDZv5-ECMWF)

1 LMDZ transport model was nudged to ECMWF analyzed winds. 2 Regions where mean surface flux sensitivity is larger than 150 ppm per kg C m-2 

h-1. 3 Regions where the fraction of cropland is larger than 30%.
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