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Abstract. Stocks of soil organic carbon represent a large

component of the carbon cycle that may participate in cli-

mate change feedbacks, particularly on decadal and centen-

nial timescales. For Earth system models (ESMs), the abil-

ity to accurately represent the global distribution of exist-

ing soil carbon stocks is a prerequisite for accurately pre-

dicting future carbon–climate feedbacks. We compared soil

carbon simulations from 11 model centers to empirical data

from the Harmonized World Soil Database (HWSD) and

the Northern Circumpolar Soil Carbon Database (NCSCD).

Model estimates of global soil carbon stocks ranged from

510 to 3040 Pg C, compared to an estimate of 1260 Pg C

(with a 95 % confidence interval of 890–1660 Pg C) from the

HWSD. Model simulations for the high northern latitudes

fell between 60 and 820 Pg C, compared to 500 Pg C (with

a 95 % confidence interval of 380–620 Pg C) for the NC-

SCD and 290 Pg C for the HWSD. Global soil carbon varied

5.9 fold across models in response to a 2.6-fold variation in

global net primary productivity (NPP) and a 3.6-fold varia-

tion in global soil carbon turnover times. Model–data agree-

ment was moderate at the biome level (R2 values ranged

from 0.38 to 0.97 with a mean of 0.75); however, the spa-

tial distribution of soil carbon simulated by the ESMs at the

1◦ scale was not well correlated with the HWSD (Pearson

correlation coefficients less than 0.4 and root mean square er-

rors from 9.4 to 20.8 kg C m−2). In northern latitudes where

the two data sets overlapped, agreement between the HWSD

and the NCSCD was poor (Pearson correlation coefficient

0.33), indicating uncertainty in empirical estimates of soil

carbon. We found that a reduced complexity model depen-

dent on NPP and soil temperature explained much of the 1◦

spatial variation in soil carbon within most ESMs (R2 values

between 0.62 and 0.93 for 9 of 11 model centers). However,

the same reduced complexity model only explained 10 % of

the spatial variation in HWSD soil carbon when driven by

observations of NPP and temperature, implying that other

drivers or processes may be more important in explaining

observed soil carbon distributions. The reduced complexity

model also showed that differences in simulated soil car-

bon across ESMs were driven by differences in simulated

NPP and the parameterization of soil heterotrophic respira-

tion (inter-model R2 = 0.93), not by structural differences

between the models. Overall, our results suggest that despite

fair global-scale agreement with observational data and mod-

erate agreement at the biome scale, most ESMs cannot re-

produce grid-scale variation in soil carbon and may be miss-

ing key processes. Future work should focus on improving

the simulation of driving variables for soil carbon stocks and

modifying model structures to include additional processes.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Soil organic carbon is the largest carbon pool in the ter-

restrial biosphere (Jobbagy and Jackson, 2000), and losses

of soil carbon due to climate change could contribute to

rising atmospheric CO2 concentrations. Loss rates for soil

carbon through heterotrophic respiration depend on tem-

perature (Davidson and Janssens, 2006; Lloyd and Taylor,

1994), moisture (Orchard and Cook, 1983; Ryan and Law,

2005), and disturbance regimes such as land use change

(Post and Kwon, 2000) and fire (Harden et al., 2000). The

sensitivity of many of these drivers to climate change cre-

ates the potential for feedbacks that may accelerate or de-

celerate the buildup of greenhouse gases in the atmosphere

(Young and Steffen, 2009).

Although field studies and atmospheric–ocean carbon

measurements suggest that the terrestrial biosphere is cur-

rently a net sink for carbon dioxide (Houghton, 2007; Lund

et al., 2009; Le Quéré et al., 2009), it is unclear if this sink

will persist as climate changes. Projections from recent Earth

system models (ESMs) suggest that the magnitude of the sink

is likely to decline in response to climate change over the

21st century (Cramer et al., 2001; Friedlingstein et al., 2006;

Koven et al., 2011). However, this response is highly uncer-

tain (Friedlingstein et al., 2006) and depends, in part, on the

strength of feedbacks from the nitrogen cycle (Thornton et

al., 2009) and the impact of drought stress on net primary

production (NPP), tree mortality, and fires (Goulden et al.,

2011; Huntingford et al., 2008; Phillips et al., 2009).

In northern ecosystems, permafrost soils contain large

stocks of carbon (Tarnocai et al., 2009) that are particularly

vulnerable to loss with climate change (Schuur et al., 2008;

Zimov et al., 2006), given the large temperature increases ex-

pected for the region (Giorgi, 2006). Models of permafrost

soil carbon have only recently been integrated into ESMs

(Koven et al., 2011) and further improvements in the rep-

resentation of thermokarst dynamics, peat accumulation, and

soil hydrology are needed to reduce uncertainties related to

climate–carbon feedbacks in northern biomes.

Because future climate projections depend on the carbon

cycle, ESMs must be capable of accurately representing the

pools and fluxes of carbon in the biosphere, particularly in

soils that store a large fraction of terrestrial organic carbon.

However, there have been few quantitative assessments of

ESM skill in predicting soil carbon stocks, contributing to

uncertainty in model simulations. To help reduce this uncer-

tainty, we analyzed simulated soil carbon from ESMs par-

ticipating in the 5th Climate Model Intercomparison Project

(CMIP5). If ESMs can accurately represent current soil car-

bon stocks, then we might have more confidence in their

ability to predict future stocks under a changing climate

(Luo et al., 2012).

Our analysis had three specific goals: (1) quantify the vari-

ation in ESM representation of soil carbon stocks, (2) under-

stand the driving factors regulating soil carbon distribution in

ESMs, and (3) compare the ESM soil carbon stocks to em-

pirical data. We conducted these analyses at grid (1◦ × 1◦),

biome, and global scales across models to assess spatial

variability in the data and model simulations. We compared

model outputs to the global Harmonized World Soil Database

(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and the Northern

Circumpolar Soil Carbon Database (Tarnocai et al., 2009).

We used an additional data set at high latitudes because these

areas contain a large percentage of global soil carbon but

are difficult to model and to measure empirically. We ex-

pected ESMs to represent high latitude soils poorly because

many of the terrestrial decomposition models were devel-

oped for mineral soils, as opposed to the organic soils found

in many high latitude ecosystems (Koven et al., 2011; Neff

and Hooper, 2002; Ping et al., 2008). More generally, we ex-

pected that the global distribution of soil carbon in the ESMs

would be primarily driven by NPP, soil temperature, and soil

moisture. We also anticipated that ESMs with more soil car-

bon pools would be capable of representing a wider range

of soil carbon dynamics, and thus would yield more accurate

simulations when compared to observations.

2 Materials and methods

We examined soil carbon stocks in 16 ESMs (Tables 1 and

S1 in Supplement) from the 5th Climate Model Intercom-

parison Project (CMIP5). The model simulations were com-

pared with the Harmonized World Soil Database (HWSD)

(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and high latitude

soil carbon stocks from the Northern Circumpolar Soil Car-

bon Database (NCSCD) (Tarnocai et al., 2009). We analyzed

the underlying drivers of soil carbon variability with a set of

reduced complexity models.

2.1 Earth system models

ESMs from CMIP5 use common simulation and output pro-

tocols, enabling direct comparisons between models. One of

the goals of CMIP5 is to facilitate benchmarking of ESMs

through the historical simulation protocol, which has a pre-

scribed time series of atmospheric CO2 mixing ratios and

land use change (Taylor et al., 2011). ESMs were selected

from the CMIP5 repository based on the availability of soil

carbon and other key output variables for the historical sim-

ulation, as well as consultation with modeling centers.

The model structure for soil carbon across ESMs was rel-

atively uniform (Table 1). The soil carbon sub-models in all

ESMs represented decomposition as a first-order decay pro-

cess involving 1–9 dead (soil or litter) carbon pools. The tem-

perature sensitivity of decomposition in most ESMs was de-

scribed by the Q10 or Arrhenius equations, which are func-

tionally similar (Davidson and Janssens, 2006; Lloyd and

Taylor, 1994). In the Q10 form of the temperature sensitiv-

ity function, the decomposition rate is modified as a function
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Table 1. Summary of soil carbon models including Earth system model names, history of model development, number of litter and soil pools,

temperature and moisture functions, and representation of nitrogen cycling.

Model name Soil model history Litter Soil Temperature Moisture Nitrogen

BCC-CSM1.1 AVIM2; Huang et al. (2007), Ji et al. (2008) 2 6 Hilla Hill Yes

Wu et al. (2013) CEVSA; Cao and Woodward (1998)

CENTURY; Parton et al. (1987, 1993)

CanESM2 CTEM1; Arora and Boer (2005), 1b 1b Qc
10 Hill No

(CMIP5 output) Arora (2003), Arora et al. (2011)

CCSM4 CLM4; Oleson et al. (2008) 3 3 Arrhenius Increasing Yes

Gent et al. (2011) CN; Thornton et al.(2007)

Biome-BCG 4.1.2 Kimball et al. (1997),

Thornton and Rosenbloom (2005), Thornton (1998),

Thornton et al. (2002), Olson (1963),

Veen and Paul (1981), Veen et al. (1984)

GFDL-ESM2G LM3 (LM3p7 cESM, M45) – 2 Hill Increasing No

(CMIP5 output) Shevliakova et al. (2009)

ED; Moorcroft et al. (2001),

Bolker et al. (1998)

CENTURY; Parton et al. (1987)

GISS-E2-H NCAR-CSM1.4; Doney et al. (2006) – 9 Increasing Increasing No

GISS-E2-R NASA-CASA; Potter et al. (1993),

(N. Kiang, Randerson et al. (1997)

personal communication, 2012)

HadGEM2-ES Martin et al. (2011), Collins et al. (2011) – 4 Q10 Hill No

HadGEM2-CC TRIFFID; Cox (2001)

Jones et al. (2011)

INM-CM4 Volodin (2007) – 1b Qc
10 Hill No

Volodin et al. (2010) LSM; Bonan (1995, 1996), Bunnell et al. (1977)

IPSL-CM5A-LR ORCHIDEE (http://orchidee.ipsl.jussieu.fr/) 3 4 Q10 Increasing No

IPSL-CM5B-LR STOMATE; Krinner et al. (2005)

(http://icmc.ipsl.fr, 2012) CENTURY; Parton et al. (1988)

MIROC-ESM SEIB-DGVM; Sato et al. (2007) – 2 Arrhenius Increasing No

MIROC-ESM-CHEM Roth-C; Coleman and Jenkinson (1999)

Watanabe et al. (2011) DEMETER-1; Foley (1995)

CENTURY; Parton et al. (1987, 1992)

MPI-ESM-LR JSBACH; Raddatz et al. (2007) 1 1 Q10 Increasing No

(CMIP5 output) BETHY; Knorr (2000)

CENTURY; Parton et al. (1993)

NorESM1-ME CLM4; Oleson et al. (2008) 3 3 Arrhenius Increasing Yes

NorESM1-M CN; Thornton et al. (2007)

Tjiputra et al. (2012) Biome-BCG 4.1.2; Kimball et al. (1997),

Thornton and Rosenbloom (2005),

Thornton (1998), Thornton et al. (2002),

Olson (1963), Veen and Paul (1981),

Veen et al. (1984)

a We define a hill function as a function that increases to a maximum and then decreases. b Turnover parameterization dependent on biome or vegetation type. c Q10 value
dependent on temperature.

of temperature (T ) relative to a baseline (T0), such that

f (T ) = Q
(T −T0)/10
10 . In this equation the Q10 value is often

set to between 1.5 and 2.5 based on estimates inferred from

ecosystem flux measurements (Mahecha et al., 2010; Raich

and Schlesinger, 1992) or the annual cycle of atmospheric

CO2 (Kaminski et al., 2002; Randerson et al., 2002). In some

of the models, the temperature sensitivity of decomposition

follows neither a Q10 nor Arrhenius relationship. For ex-

ample, in BCC-CSM1.1 and GFDL-ESM2G, decomposition

rate increases up to some optimal temperature and then de-

creases (Ji et al., 2008; Parton et al., 1987; Shevliakova et

al., 2009). For the GISS-E2 model, the soil respiration re-

sponse to temperature is a linear fit to data from Del Grosso

et al. (2005) up to 30 ◦C, with a plateau above 30 ◦C. In all

of the models, decomposition either increases monotonically

with increasing soil moisture or increases up to some opti-

mum moisture level and then decreases. Three ESMs include

nitrogen interactions with soil carbon: CCSM4, NorESM1,

and BCC-CSM1.1.
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We downloaded soil organic carbon, litter carbon, annual

NPP, 2 m air temperature, soil temperature, and total soil wa-

ter from the historical simulation, where available, for each

ESM (cSoil, cLitter, npp, tas, tsl, and mrso, respectively,

from the CMIP5 variable list). The monthly means for all

variables from 1995–2005 were averaged for each grid cell

to generate an overall mean for comparison to the HWSD and

to use as drivers for our reduced complexity models (see be-

low). We combined litter and soil carbon for our analysis and

refer to the sum as soil carbon. Coarse woody debris (cCwd

from the variable list) was not included in the sum since there

is no respiration from this pool in the two models that report

it (CCSM4 and NorESM1). Global turnover times for soil

carbon were calculated by dividing total soil carbon by to-

tal terrestrial NPP from each ESM. INM-CM4 did not report

NPP directly, so we derived NPP from gross primary produc-

tion and autotrophic respiration (gpp and ra from the variable

list). Soil temperatures were reported for each soil layer, but

only the top 10 cm mean was used in this analysis. Land area

was calculated from the grid area modified by the land cover

for each model (areacella and sftlf from the variable list, re-

spectively). All ensemble members were averaged for each

model; however, not all variables were available for each en-

semble member. For example, GISS-E2-R reported cSoil but

not tsl for ensemble member r1i1p1 at the time of download.

We performed a hierarchical cluster analysis and found

that ESMs from the same climate center generated very sim-

ilar distributions of soil carbon for 1995–2005 (see Supple-

ment Fig. S1). Clusters were constructed using complete

linkage of the Euclidian distances between the global 1◦-

gridded soil carbon distributions for each model. Models

from the same climate center always showed more than 90 %

relative similarity and included the following pairs: GISS-

E2 H and R, HadGEM2 ES and CC, IPSL-CM5 (LR) A

and B, MIROC-ESM and MIROC-ESM-CHEM, and finally

NorESM1 ME and M. As a result, these model pairs were

averaged. We were left with 11 independent simulations, one

representing each modeling center, that were evaluated using

the approaches described below.

ESMs do not report the depth of carbon in the soil pro-

file to CMIP5, making direct comparison with empirical es-

timates of soil carbon difficult. Although many soil models

were originally constructed to represent C dynamics at an ap-

proximate depth range of 0 to 20 cm (e.g., Kelly et al., 1997),

we assumed that all simulated soil carbon was contained

within the top 1 m to simplify comparison with data sets.

We recommend that future model intercomparison projects

request soil carbon output from model simulations with spe-

cific depth ranges (for example, soil carbon above 1 m and

below 1 m) to allow for more accurate and direct comparison

to survey data.

Fig. 1. Carbon density [kg m−2] in the top 1 m of soil from the

Northern Circumpolar Soil Carbon Database (NCSCD) (Tarnocai

et al., 2009) and Harmonized World Soil Database (HWSD)

(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012).

2.2 Data sets

2.2.1 Soil carbon

The HWSD provided empirical estimates of global soil

carbon stocks to validate ESM simulations. The HWSD

is a product of the Food and Agriculture Organization of

the United Nations and the Land Use Change and Agri-

culture Program of the International Institute for Applied

Systems Analysis. The HWSD aggregates data from the

European Soil Database (ESDB, 2004), the Soil Map of

China (Shi et al., 2004), regional soil and terrain databases

(Sombroek, 1984), and the FAO-UNESCO Soil Map of

the World (FAO/UNESCO, 1981). Soil carbon stocks were

calculated from bulk densities and organic carbon con-

centrations given in the HWSD for the top 1 m of soil

at a 0.5◦ × 0.5◦ resolution (Fig. 1). Bulk density esti-

mates in the HWSD were derived from soil texture; how-

ever, this approach is not appropriate for high carbon

soils (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012; Saxton et al.,

1986). Therefore, we replaced Histosol and Andisol bulk

densities with values from the World Inventory of Soil Emis-

sion Potentials (Batjes, 1996).

Because high latitude soils contain a large fraction of

global soil carbon, we also validated ESM simulations of soil

carbon in high latitudes with the NCSCD, which is an inde-

pendent survey of soil carbon (Tarnocai et al., 2009). The

NCSCD covers 18.8 × 106 km2, including areas with differ-

ent geological histories and stages of soil development. We

used the 1◦ × 1◦ soil carbon data product for the first meter

Biogeosciences, 10, 1717–1736, 2013 www.biogeosciences.net/10/1717/2013/
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of soil (Fig. 1). The spatial and soil data used to develop this

database were collected during the last 60 yr and originated

from a variety of sources.

Quantitative uncertainty analyses for the HWSD and NC-

SCD have not been performed and would be a challenge to

construct because of the diverse data sources involved. How-

ever, some estimate of uncertainty was essential to enable

quantitative comparisons with the CMIP5 models. To gen-

erate such a range for total soil carbon from both data sets,

we constructed preliminary 95 % confidence intervals (CI95)

using a qualitative approach. These estimates must be inter-

preted with caution because they are not based on formal er-

ror propagation methods. Furthermore, these estimates only

apply to database totals, and uncertainties for individual grid

cells are likely to be larger.

For the HWSD, the major sources of error were related

to analytical measurement of soil carbon, variation in car-

bon content within a soil type, and mapping of soil types.

Analytical measurements of soil carbon concentrations are

generally precise, but measurements of soil bulk density are

more uncertain and may contribute to CI95 values that are

±15 % of the mean carbon content for a given soil profile.

Soil types in the HWSD are defined based on Food and Agri-

culture Organization soil taxonomic units that are assumed

to experience similar histories of soil forming factors such as

climate, vegetation, disturbance, topography, and parent ma-

terial. Batjes (1997) reported quartiles of soil carbon content

for 23 soil taxonomic units based on 18 to 1270 soil profiles

per unit. These quartiles suggest that soil carbon content is

approximately log-normally distributed, allowing for calcu-

lation of CI95 values for each soil unit following log transfor-

mation. When back transformed, CI95 ranged from 6 to 33 %

below the median to 6 to 48 % above the median, with an av-

erage CI95 of 14 % below to 17 % above the median across

all 23 units.

Another major source of HWSD uncertainty was related

to the mapping of soil units and scaling of soil maps to

0.5◦. Soil taxonomic units and associated carbon contents

were spatially extrapolated using expert knowledge informed

by topography, geology, and vegetation (usually based on

aerial photography). Original soil maps were scaled up in

the HWSD by classifying each 0.5◦ grid cell according to

its dominant soil unit. We assumed that the uncertainty as-

sociated with mapping and scaling was similar in magnitude

to measurement error and spatial variation, with a CI95 of

approximately ±15 % of the mean. To estimate an overall

CI95 for the HWSD, we assumed that variation in soil carbon

content within soil taxonomic units already included analyt-

ical error, and that median carbon content within a soil unit

is extrapolated by multiplying by the area of the unit. Thus

the CI95 values representing variation in soil carbon content

and mapping uncertainty were summed to yield an overall

CI95 of 29 % below the mean to 32 % above the mean, or a

range of 890 to 1660 Pg C with a mean of 1260 Pg C. This es-

timate is broadly consistent with other empirical estimates of

global soil carbon (Eswaran et al., 1993; Jobbagy and Jack-

son, 2000; Sombroek et al., 1993).

For the NCSCD, the uncertainties varied by geographic re-

gion. The North American portion of the data set was based

on analysis of 1169 pedons producing a medium to high con-

fidence rating (66–80 %). Thus we estimated the CI95 for the

North American portion of the NCSCD to be 165 ± 17 Pg C,

corresponding to ±10 % of the mean. In Eurasia, soil car-

bon estimates were based on fewer pedons (591) plus 90

peat cores, producing a low to medium confidence rating

(33–66 %). Therefore we estimated the CI95 for the Eurasian

region to be 331 ± 99 Pg C, or ± 30 % of the mean. Car-

bon in Yedoma deposits and river deltas was estimated inde-

pendently using surveyed depth information where available.

This deeper soil carbon had the lowest confidence rating but

contributed only ∼ 1 % or 5 Pg of the database total; there-

fore we allowed for a CI95 of 5 ± 5 Pg C on this estimate.

Together, these uncertainty estimates yielded an overall CI95

of roughly 500 ± 120 Pg C for the first meter of soil.

2.2.2 Net primary productivity and temperature

To assess model skill in simulating key driving variables that

could affect soil carbon stocks, we compared ESM outputs

to temperature data from the Climate Research Unit (CRU)

and to NPP data from a literature synthesis and from the

Moderate Resolution Imaging Spectrometer (MODIS). The

CRU and MODIS data also were used in parameter estima-

tion for the reduced complexity models (Eqs. 1–2) to explain

the spatial variation in observed global soil carbon with ob-

served temperature and NPP. We used a 0.5◦ × 0.5◦ gridded

air temperature data set from the CRU, specifically the 1995–

2005 mean of the tmp variable from CRU TS 3.10 (Jones

and Harris, 2008). For NPP, we used the 0.008◦ × 0.008◦

gridded MODIS product MOD17A3 from 2000–2011 (Zhao

and Running, 2010). We also compared ESM-simulated NPP

to Ito’s (2011) value of 54 ± 11 Pg C yr−1 (mean ± stan-

dard deviation). This estimate was based on empirical models

that used environmental parameters to extrapolate field mea-

surements of NPP to the global scale. We considered ESM-

simulated NPP values to be consistent with empirical data if

they fell within 2 standard deviations of Ito’s (2011) estimate.

2.2.3 Biome map

To evaluate ESM soil carbon across biomes, we aggre-

gated HWSD estimates and model simulations of soil carbon

within biomes. The biome map was based on the MODIS

land cover product MCD12C1 (Friedl et al., 2010; NASA LP

DAAC, 2008) (Fig. S2). We assigned one of 16 land cover

types to each 1◦ × 1◦ grid cell by taking the most common

land cover from the original underlying 0.05◦ × 0.05◦ data.

Each 1◦ × 1◦ grid cell was assigned to one of 9 biomes: tun-

dra, boreal forest, tropical rainforest, temperate forest, desert

and shrubland, grasslands and savannas, cropland and urban,

www.biogeosciences.net/10/1717/2013/ Biogeosciences, 10, 1717–1736, 2013
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Table 2. Soil carbon totals across all grid cells in each ESM, grid cells present in the HWSD and ESM, and grid cells present in the NCSCD

and ESM. Database totals include 95 % confidence intervals based on qualitative uncertainty analysis, shown in brackets. Values are rounded

to the nearest 10 Pg C.

Soil carbon [Pg C]

Original Number of Ensembles HWSD NCSCD

Database or grid size model per and ESM and ESM

model name ◦ lat. × ◦ long. versions version Global total shared shared

HWSD 0.5 × 0.5 – – 1260 1260 290

[890, 1660]

NCSCD 1 × 1 – – 500 480 480

[380, 620]

CCSM4 0.94 × 1.25 1 6 510 510 60

NorESM1 1.89 × 2.50 2 3, 1 550 530 60

BCC-CSM1.1 2.81 × 2.81 1 3 1050 990 240

HadGEM2 1.25 × 1.88 2 1, 2 1120 1090 200

IPSL-CM5 1.89 × 3.75 2 5, 1 1310 1250 390

GFDL-ESM2G 2.01 × 2.50 1 1 1410 1360 690

CanESM2 2.79 × 2.81 1 5 1540 1460 370

INM-CM4 1.50 × 2.00 1 1 1680 1630 280

GISS-E2 2.00 × 2.50 2 15, 16 1900 1820 520

MIROC-ESM 2.79 × 2.81 2 3, 1 2570 2490 810

MPI-ESM-LR 1.86 × 1.88 1 3 3040 2930 340

snow and ice, or permanent wetland. Details for the biome

construction can be found in Fig. S2 in the Supplement.

2.3 Regridding approach

All model outputs and data sets were regridded to 1◦ × 1◦ for

biome- and grid-scale comparisons. Our regridding approach

assumed conservation of mass and that a latitudinal degree is

proportional to distance for close grid cells. Regridding the

outputs to 1◦ × 1◦ downscaled the models while upscaling

the data (Table 2).

2.4 Assessing driving variables for soil C stocks

We developed several reduced complexity models to evalu-

ate the drivers of simulated soil carbon variability and facil-

itate comparisons between ESMs. These reduced complex-

ity models consisted of a single pool of soil carbon at each

grid cell driven by locally varying NPP, soil temperature, and

soil moisture (Figs. S3, S4, S5 in Supplement) and globally

uniform parameters including a decomposition rate constant,

Q10 value, and moisture coefficient. By applying the same

simple model, we were able to compare parameters across

ESMs and assess which variables had the strongest control

over soil carbon. Driving variables for the reduced complex-

ity models were taken from ESM annual means of NPP, soil

temperature (T , top 10 cm mean), and total soil water content

(W ) over the period 1995–2005.

Our reduced complexity models assumed that the soil car-

bon pool (C) in grid cell i was at steady state, such that NPP

inputs equaled outputs from heterotrophic respiration (R):

0 =
dCi

dt
= NPPi − Ri .

Carbon pools were not expected to be exactly at

steady state for 1995–2005, and mean grid differences be-

tween NPP and R across the ESMs ranged from 0.01 to

0.12 kg m−2 yr−1, or between 1 % and 20 % of the mean grid

NPP for this period. Thus the ESMs were close to steady

state, and we assumed steady state to simplify our analysis.

For the simplest reduced complexity model, we assumed that

soil heterotrophic respiration was directly proportional to the

soil carbon pool with a spatially uniform decomposition rate

constant k (Olson, 1963; Parton et al., 1987):

Ri = kCi .

Combining the two above equations yielded the simplest

reduced complexity model, Eq. (1), in which soil carbon was

proportional to NPP and inversely proportional to a global

decomposition rate (k):

Ci =
NPPi

k
. (1)

We formulated a second reduced complexity model, Eq.

2, in which soil respiration in each grid cell also depended

on soil temperature (T ) according to a Q10 function with a

baseline temperature of 15 ◦C (Lloyd and Taylor, 1994):

Ci =
NPPi

kQ
(Ti−15)/10
10

. (2)
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A third reduced complexity model, Eq. (3), included a mois-

ture modifier that increased with total soil water content (Wi)

normalized to maximal soil water content for each ESM (Wx)

according to an exponential function, where b was a positive

scaling exponent:

Ci =
NPPi

kQ
(Ti−15)/10
10

(

Wi

Wx

)b
. (3)

The parameters k, Q10, and b in each reduced complex-

ity model were optimized using ESM soil carbon and driv-

ing variables across all grid cells. We used a constrained

Broyden–Fletcher–Goldfarb–Shanno optimization algorithm

(Byrd et al., 1995), a quasi-Newtonian method, as imple-

mented in R 2.13.1 (R Development Core Team, 2012). This

algorithm was selected for parameter fitting because of its ro-

bust convergence and short run time. We ran the optimization

with the following constraints: k ∈
(

10−4, 10
)

, Q10 ∈ (1, 4),

and b ∈ (0, 3). The initial parameter estimates were k = 0.1,

Q10 = 1, and b = 0. We used the root mean square error

(RMSE) as the measure function. The optimization was per-

formed only on grid cells with non-zero soil carbon values.

We conducted an additional analysis to assess the causes

of variation in simulated soil carbon across ESMs (Eqs. 4–

7). For this analysis, we used a modified version of Eq. (2) to

predict total global soil carbon (C) for each ESM:

C =

∑

i

NPPi

kQ
(Ti−15)/10
10

, (4)

where the Q10 and k parameters were derived from fitting

Eq. (2) to the spatial distribution of soil carbon (at 1◦ reso-

lution) from each ESM as described above. Grid-scale NPP

outputs (NPPi) and soil temperatures (Ti) from each ESM

were used as drivers in Eq. (4) to calculate soil carbon in

each grid cell i. Soil carbon was then summed across all

grid cells in each ESM to calculate the global soil carbon

pool (C). Thus Eq. (4) represents the contribution of both

model parameterization (Q10 and k) and soil carbon drivers

(NPPi and Ti) to the global soil carbon pool. To isolate the

effect of ESM parameterization on C, we substituted multi-

model mean values for NPP (NPPi) and temperature (T̄i) into

Eq. (4) for each grid cell i:

C =

∑

i

NPPi

kQ
(T̄i−15)/10
10

. (5)

To isolate the effect of ESM driving variables on C, we

substituted multi-model mean values for Q10 (Q̄10) and k

(k̄) into Eq. (4):

C =

∑

i

NPPi

k̄Q̄
(Ti−15)/10
10

. (6)

Finally, we substituted only the multi-model mean tempera-

ture into Eq. (4) to isolate the effect of NPP on inter-model

variation in C:

C =

∑

i

NPPi

kQ
(T̄i−15)/10
10

. (7)

Using regression analysis, we compared the predicted C

from Eqs. (4)–(7) to the totals simulated by the ESMs.

These regressions measure the contribution of parameteriza-

tion (Eq. 5) versus driving variables (Eqs. 6 and 7) to varia-

tion in soil carbon totals across ESMs. We excluded GISS-E2

from this inter-model analysis because Eq. (2) could not be

fit to this model, and therefore Q10 and k were not available.

2.5 Statistical analyses

ESM simulations were compared to data sets using Pear-

son correlation coefficients, RMSE, and Taylor scores in

R 2.13.1 (R Development Core Team, 2012). The Tay-

lor score (TS) combines the Pearson correlation coefficient

(r) and standard deviation (σ) of the model results (m)

compared to the data (d):

TS (d, m) =
4[1 + r (d, m)]

[

σ(m)
σ(d)

+
σ(d)
σ (m)

]2
[1 + rmax]

,

where rmax is the maximum correlation attainable, assumed

to be 1 in this case (Taylor, 2001). Biome-aggregated totals

were compared to observations using linear regression.

3 Results

3.1 Global soil carbon stocks and turnover times

The mean (±SD) global soil carbon reported across all ESMs

was 1520 ±770 Pg, whereas the global soil carbon in the

HWSD was 1260 Pg with a CI95 of 890 to 1660 Pg (Table 2,

Fig. 2). CCSM4 reported the lowest total at 510 Pg C and

MPI-ESM-LR the highest at 3040 Pg C. Examining only the

area shared by all ESMs and the HWSD reduces the global

carbon totals but does not substantially change the rank or-

der of the models (Table 2). CCSM4 and NorESM1 under-

estimated global soil carbon stocks by about 50 %, whereas

GISS-E2, MIROC-ESM, and MPI-ESM-LR overestimated

global soil carbon stocks anywhere from 50 % to 140 %. The

other models predicted global soil carbon totals that were

within 35 % of the HWSD global mean and fell within its

preliminary CI95.

Soil carbon in the high northern latitudes (as defined by

grid cells in the NCSCD) was underestimated by most ESMs

relative to the NCSCD (Table 2, Fig. S6). In addition, the

rank order of ESM soil carbon totals in this region differed

from the rank order based on global totals. CCSM4 and

NorESM1 simulated just over 10 % of the total soil carbon
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Fig. 2. Global soil carbon (top), net primary production (middle), and soil carbon turnover times (bottom) for observations and ESMs.

Turnover times were calculated as HWSD carbon divided by MODIS NPP for the observations, and simulated global soil carbon divided by

simulated global NPP for the ESMs. The gray hashed area on the top panel represents the 95 % confidence interval for global soil carbon

in the HWSD based on a qualitative uncertainty analysis (see text). The hashed area on the middle panel represents ±2 standard deviations

around the mean global NPP estimate from Ito (2011) based on empirical models. The hashed area on the bottom panel indicates the range

of turnover times for global soil carbon found in the literature (Amundson, 2001; Raich and Schlesinger, 1992). For soil carbon and NPP,

each global estimate is separated into individual biome components according to the legend shown in the top panel.

observed in the NCSCD. HadGEM2, BCC-CSM1.1, INM-

CM4, MPI-ESM, and CanESM2 also simulated soil carbon

totals below the preliminary CI95 for the NCSCD. In con-

trast, GFDL-ESM2G and MIROC-ESM overestimated high

latitude soil carbon stocks by 45–60 %. Only IPSL-CM5 and

GISS-E2 soil carbon fell within the CI95 for the NCSCD.

Variation in global soil carbon stocks simulated by ESMs

could be driven by variation in modeled NPP, and we found

that global terrestrial NPP varied by a factor of 2.6 across the

models (Fig. 2). CCSM4, BCC-CSM1.1, CanESM2, INM-

CM4, GISS-E2, and MIROC-ESM all predicted global NPP

values within 2 standard deviations of the Ito (2011) estimate

of 54 Pg C yr−1, ranging from 46 to 73 Pg C yr−1, whereas

the remaining 5 models fell outside this range. NPP from

MODIS was similar to Ito (2011) at 52 Pg C yr−1. At high

northern latitudes, NPP estimates from the ESMs were more

variable (1.7 to 10.1 Pg C yr−1), compared to a MODIS esti-

mate of 4.7 Pg C yr−1 (Fig. S6 in Supplement).

Turnover times for global soil carbon from the ESMs var-

ied by a factor of 3.6, between 10.8 and 39.3 yr, using global
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Table 3. Goodness-of-fit measures by grid cell for each ESM including soil carbon versus the HWSD, soil carbon versus NCSCD, soil carbon

versus HWSD without NCSCD grid cells (HWSD − NCSCD), NPP versus MODIS NPP, and land 2 m air surface temperature versus CRU

2 m air temperature. TS = Taylor score; r = Pearson correlation coefficient; RMSE = root mean square error. RMSE has units of kg C m−2

for the soil carbon comparisons, kg C m−2 yr−1 for NPP, and ◦C for temperature.

HWSD NCSCD HWSD − NCSCD MODIS NPP CRU temperature

Ts r RMSE Ts r RMSE Ts r RMSE Ts r RMSE Ts r RMSE

HWSD NA NA NA 0.60 0.33 20.0 NA NA NA NA NA NA NA NA NA

CCSM4 0.21 0.18 11.3 0.05 −0.04 27.7 0.29 0.26 9.1 0.87 0.75 0.25 0.98 0.96 3.8

NorESM1 0.24 0.17 11.2 0.05 −0.07 27.7 0.33 0.25 9.1 0.81 0.71 0.28 0.97 0.96 4.3

BCC-CSM1.1 0.51 0.33 9.4 0.21 0.03 22.2 0.53 0.34 8.0 0.85 0.71 0.25 0.97 0.95 4.4

HadGEM2 0.56 0.31 9.7 0.18 −0.03 23.5 0.63 0.31 8.6 0.71 0.73 0.35 0.97 0.95 4.5

IPSL-CM5 0.68 0.38 9.7 0.33 0.19 18.1 0.67 0.39 8.1 0.77 0.64 0.34 0.97 0.95 4.7

GFDL-ESM2G 0.50 0.26 16.0 0.51 0.04 23.6 0.61 0.22 10.1 0.79 0.64 0.32 0.97 0.95 4.4

CanESM2 0.62 0.25 12.3 0.50 0.03 22.6 0.62 0.25 10.2 0.75 0.56 0.34 0.97 0.94 4.6

INM-CM4 0.65 0.29 11.3 0.34 −0.10 23.4 0.66 0.36 10.3 0.81 0.74 0.28 0.96 0.95 4.9

GISS-E2 0.34 0.06 20.7 0.46 −0.07 25.0 0.29 0.01 19.4 0.72 0.48 0.36 0.97 0.93 4.8

MIROC-ESM 0.48 0.39 19.8 0.52 0.06 27.7 0.54 0.37 14.3 0.77 0.55 0.30 0.95 0.93 5.1

MPI-ESM-LR 0.41 0.06 20.7 0.44 −0.03 23.2 0.34 0.10 22.0 0.70 0.67 0.39 0.97 0.94 4.5

stocks and NPP estimates from each model (Fig. 2). Using

MODIS NPP, we calculated a turnover time of 24 yr for soil

carbon in the HWSD. This estimate is consistent with the

range of 18 to 32 yr reported in other studies (Amundson,

2001; Raich and Schlesinger, 1992). However, CanESM2

and INM-CM4 were the only two ESMs with turnover times

that also fell within this range (Fig. 2). At high northern lat-

itudes, 5 of the 11 models had turnover times that were con-

siderably lower than the observations, whereas only 2 of the

models had turnover times exceeding observational estimates

(Fig. S6 see Supplement). Turnover times for high northern

latitudes were 101.2 yr for the NCSCD and 60.8 yr for the

HWSD.

3.2 Spatial distribution of soil carbon

The spatial distribution of soil carbon stocks varied widely

among the ESMs (Fig. 3). CCSM4 and NorESM1 had the

lowest overall soil carbon densities, but showed relatively

high densities in northern South America, central Africa,

eastern Asia, and eastern North America. HadGEM2, BCC-

CSM1.1, and INM-CM4 showed a broader range of soil car-

bon densities with high densities in North America, western

South America, central Africa, Southeast Asia, and north-

central Eurasia. HadGEM2 also showed elevated soil carbon

in southeastern South America. CanESM2 predicted high

soil carbon in northeastern North America, northern Europe,

northeastern Asia, central Africa, and eastern South America.

GFDL-ESM2G and MIROC-ESM showed uniformly high

carbon densities across all high northern latitudes and around

the Tibetan Plateau. GISS-E2 predicted a region of high soil

carbon across the northern latitudes of North America and

Europe, as well as another area of high soil carbon from

northeastern to southwestern Asia. MPI-ESM-LR showed

an inverse pattern compared with the other ESMs; soil car-

bon peaked in the mid-latitudes across Asia, western North

America, eastern Africa, southern South America, and south-

ern coastal Australia.

There was generally poor agreement between the ESMs

and the HWSD soil carbon distribution at the 1◦ scale (Ta-

ble 3). Compared to the HWSD, ESMs had Pearson correla-

tion coefficients between 0.06 and 0.39, RMSE between 9.4

and 20.7 kg C m−2, and Taylor scores ranging from 0.21 to

0.68. Omitting the high latitude portion of the HWSD that

overlapped with the NCSCD modestly improved these per-

formance metrics for most but not all ESMs (Table 3). Model

agreement with NCSCD soil carbon was poor with Pearson

correlation coefficients between −0.10 and 0.19, RMSE be-

tween 18.0 and 27.7 kg C m−2, and Taylor scores between

0.05 and 0.52. Agreement between the HWSD and NCSCD

also was also low in the areas where the two data sets over-

lapped (Pearson correlation coefficient of 0.33, RMSE of

20.0 kg C m−2, and Taylor score of 0.60), although better

than the agreement between any individual ESM and the NC-

SCD.

ESM agreement with the HWSD generally improved at

the biome level (Fig. 4). BCC-CSM1.1 and CanESM2 stood

out as being highly correlated with the HWSD (R2 > 0.90,

p < 0.01), though CanESM2 overestimated soil carbon in

boreal forests and grasslands and savanna. Biome simula-

tions from HadGEM2, IPSL-CM5, INM-CM4, and MIROC-

ESM also had relatively high levels of agreement with the

HWSD (0.90 > R2 > 0.75, p < 0.01), but most regression

slopes and intercepts diverged from 1.0 and zero, respec-

tively (Fig. 4). HadGEM2 overestimated soil carbon in grass-

lands and savanna. IPSL-CM5 generally overestimated tun-

dra but underestimated desert and shrublands. INM-CM4

overestimated grasslands and savanna, boreal forests, crop-

lands, and urban. MIROC-ESM overestimated all biomes ex-

cept wetlands. Both CCSM4 and NorESM1 were moderately
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Table 4. Coefficients of determination (R2) and global-scale parameters (1/k and Q10) from reduced complexity models of ESM soil

carbon distributions. Eq. (1): dependence on NPP; Eq. (2): dependence on NPP and soil temperature; Eq. (3): dependence on NPP, soil

temperature, and soil moisture. Parameters are shown from Eq. (2) with 1/k analogous to turnover time. HWSD-MODIS-CRU represents

reduced complexity models based on observational data. The reduced complexity model for CanESM2 was the only one improved by

including soil moisture and had a turnover time (1/k) of 8.20 yr, Q10 of 1.48, and moisture exponent of 0.46 based on Eq. (3). All R2 values

were statistically significant (R2 > 0.05, p < 0.01) unless otherwise indicated (NS).

C = NPP/(k Q
(T −15)/10
10 )

R2 Eq. (2)

C= NPP/k C= NPP/k(T) C= NPP/k(T, W) 1/k

Model name Eq. (1) Eq. (2) Eq. (3) (yr) Q10

HWSD-MODIS-CRU NS 0.10 – 16.0 1.75

CCSM4 0.65 0.88 0.88 11.5 1.55

NorESM1 0.61 0.88 0.88 14.9 1.65

BCC-CSM1.1 NA 0.89 0.89 16.8 2.05

HadGEM2 0.27 0.79 0.85 13.5 1.52

IPSL-CM5 NS 0.93 0.93 13.2 1.61

GFDL-ESM2G NS 0.85 0.89 10.9 2.61

CanESM2 NS 0.56 0.73 22.5 1.74

INM-CM4 NS 0.72 0.72 20.7 2.19

GISS-E2 NS NS NS – –

MIROC-ESM NS 0.62 0.62 37.1 1.98

MPI-ESM-LR NS 0.32 0.32 29.8 1.45

correlated with the HWSD (0.70 > R2 > 0.65, p < 0.01), but

consistently underestimated biome totals particularly in tun-

dra, boreal forest, and desert and shrubland. Biome totals

from MPI-ESM-LR were also moderately correlated with

the HWSD (R2 = 0.62, p < 0.01), but this model overes-

timated most biome totals, particularly grasslands and sa-

vanna. GFDL-ESM2G and GISS-E2 were weak to moder-

ately correlated with the HWSD on the biome level (R2 =

0.38 and R2 = 0.51, respectively). GFDL-ESM2G overes-

timated biome totals from tundra and boreal forests while

underestimating the other biomes. GISS-E2 overestimated

biome totals in desert and shrublands, grasslands and sa-

vanna, tundra, and boreal forests while underestimating trop-

ical rainforests.

3.3 Drivers of soil carbon distributions and

global stocks

The spatial variability in 8 of the 11 ESMs was well ex-

plained by the reduced complexity model driven by NPP

and soil temperature (Eq. 2) with R2 values between 0.72

and 0.93 (Table 4). Consistent with our global-scale calcula-

tions (Fig. 2), the turnover times (1/k) for global soil carbon

inferred from Eq. (2) (at a baseline temperature of 15 ◦C)

varied from 11 to 37 yr, and Q10 values ranged from 1.5 to

2.6 (Table 4). The reduced complexity model for CanESM2

was the only one significantly improved by the addition of

soil moisture (Eq. 3), with the R2 value increasing from 0.56

to 0.73. Soil carbon outputs from GISS-E2 (R2 < 0.01) and

MPI-ESM-LR (R2 = 0.32) were not well explained by any

of the reduced complexity models.

Given the strong relationships between soil carbon, tem-

perature, and NPP illustrated by our reduced complexity

models, model skill in simulating driving variables could

strongly influence simulated soil carbon stocks (Table 3).

ESMs varied in their ability to capture the observed 1◦ spatial

distribution of NPP (Pearson correlation coefficients from

0.48 to 0.75, biome regression R2 values from 0.86 to 0.99;

Table 3, Fig. S7 in the Supplement). In contrast, models

performed better at simulating surface air temperature ob-

servations (correlations from 0.93 to 0.96, biome regression

R2 values from 0.93 to 0.97; Fig. S8 in the Supplement).

Although air temperature is not directly comparable to soil

temperature, particularly in areas with thick organic soils,

the biome level correlation between soil and air tempera-

ture was high across all ESMs (R2 values higher than 0.97;

Fig. S9). INM-CM4, GISS-E2, BCC-CSM1.1, CCSM4, and

NorESM1 all showed warmer soil temperatures compared to

air temperatures in northern biomes (Fig. S9). In contrast

to the strong relationships we found between soil carbon,

NPP, and temperature in the ESMs, the 1◦ spatial distribu-

tion of soil carbon from the HWSD was not well explained

by MODIS NPP and CRU surface air temperature data using

the same reduced complexity model (R2 value of 0.10 for

Eq. (2); Table 4).

The reduced complexity models that explained within-

model spatial variation of soil carbon also captured most

of the variation in global soil carbon totals across ESMs
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Fig. 3. Soil carbon densities [kg m−2] from Earth system models. These soil carbon densities represent 1995–2005 means from the historical

simulations of the Climate Model Intercomparison Project 5.

(Fig. 5). Reduced complexity models using ESM-specific

values for k and Q10 and ESM-derived driving variables

were able to explain 98 % the variation in total soil carbon

across ESMs (Fig. 5a). Most of the variation in soil carbon

across ESMs could be attributed to differences in parameter-

ization as represented by Eq. (5) (R2 = 0.64, Fig. 5b). There

was no significant cross-ESM variation due to differences in

driving variables alone as represented by Eq. (6) (Fig. 5c).

However, driving variables must interact with parameters,

since the variances explained by drivers alone (13 %, not sig-

nificant) and parameters alone (64 %) did not sum to 98 %

(Fig. 5a–c). NPP was likely the main driving variable in this

interaction, since using the multi-model mean temperature at

each grid cell (Eq. 7) still allowed us to explain 93 % of the

variation in global soil carbon across ESMs (Fig. 5d).

4 Discussion

Accurate models of the soil carbon cycle are essential for pre-

dicting carbon–climate feedbacks in the future because soil

carbon stocks are sensitive to climate change and large rel-

ative to the atmospheric CO2 reservoir. As far as we know,

our analysis is the first to benchmark soil carbon outputs

from ESMs against empirical data at the global scale, and

the first to explore the possible factors contributing to differ-

ences among models. We found that although some models

simulated reasonable global soil carbon totals, fewer were

able to match biome totals, and none were able to reproduce

grid-scale distributions of soil carbon. There are a number of

factors that may have contributed to the divergence between

ESM simulations and observational data. These factors in-

clude (1) uncertainties in the data, (2) incorrect representa-

tion of environmental drivers in the models (e.g., NPP, tem-

perature, and soil moisture), and (3) incorrect model structure
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Fig. 4. Linear regression of ESM versus HWSD soil carbon totals [Pg C] for the 8 major biomes. The gray line indicates a 1 : 1 relationship

and the black line is the linear regression.

or parameterization of the decomposition response to driv-

ing variables. Better performance at the global and biome

scales may be due to aggregation of environmental variation

that was not captured by the models at finer spatial scales.

For instance, topographic controls on soil texture, moisture,

and anoxia regulate soil carbon accumulation in peatlands

and other organic soil types (e.g., Fan et al., 2008) but are

poorly represented in many ESMs. Addressing these issues

will be essential for increasing confidence in ESM simula-

tions of terrestrial carbon in the future.
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Fig. 5. Relationship between global soil carbon totals from ESMs and global soil carbon totals predicted by reduced complexity models

(Eqs. 4–7). The reduced complexity model in (A) used ESM-specific parameters and drivers (Eq. 4); (B) used ESM-specific parameters with

multi-model mean NPP and soil temperature (Eq. 5); (C) used multi-model mean parameters and ESM-specific NPP and soil temperature

(Eq. 6); (D) used ESM specific parameters and NPP but multi-model mean soil temperature (Eq. 7). The gray line indicates a 1 : 1 fit and the

black line is the linear regression.

4.1 Data uncertainties

Our ability to evaluate model performance relies on high

quality empirical data with associated estimates of uncer-

tainty. Whether model simulations diverge from the data is

difficult to assess without a formal analysis of uncertainty

in the data. Despite their comprehensiveness, the HWSD and

NCSCD lack quantitative uncertainty estimates, thereby con-

straining our ability to use these data sets for benchmarking

ESMs. Our preliminary analyses based on a qualitative as-

sessment indicated that the uncertainty in empirical estimates

of soil carbon stocks could exceed 770 Pg C at the global

scale, an amount similar to the entire pool of atmospheric

carbon.

At high northern latitudes, there was substantial disagree-

ment between the two data sets. NCSCD estimates of CI95

were between 380 and 620 Pg C, whereas the corresponding

HWSD estimate was only 290 Pg C. However, the HWSD did

not include regional uncertainty information, meaning that

the two estimates may agree once a formal uncertainty anal-

ysis has been performed. Such an analysis requires quantifi-

cation of uncertainty in both measurement and scaling pro-

cesses used to construct the spatial distribution of soil car-

bon. Uncertainty in the measurement of soil properties such

as bulk density and carbon concentration must be integrated

with errors involved in extrapolating data from individual soil

profiles to the regional scale. Detailed analysis of the accu-

racy of soil maps will likely be essential for quantifying the

uncertainty in this extrapolation process.

4.2 Driving variables

Accurate observational data are important but will not re-

solve the differences in simulated soil carbon that we ob-

served among the ESMs. These differences must be due

to differential model skill in simulating soil carbon drivers

or in representing the response of soil carbon to drivers

through model parameterization and structure. Our reduced
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complexity models showed that differences in NPP con-

tributed significantly to differences in soil carbon across

ESMs (Fig. 5). NPP was also a significant driver of soil car-

bon within ESMs (Table 3), suggesting it should be a focal

variable for improving soil carbon estimates. Given the large

range of global NPP across ESMs (Fig. 2) and the low Taylor

scores observed for some models in comparison to MODIS

NPP (Table 3), it may be possible to improve soil carbon

simulations by revising photosynthesis and autotrophic res-

piration algorithms in some of the ESMs so that NPP is more

consistent with contemporary observations.

In contrast to NPP, differences in soil temperature did not

contribute significantly to differences in soil carbon stocks

across ESMs (Fig. 5). However, our reduced complexity

models indicated that soil temperature was important for

explaining soil carbon variation within models (Table 4).

Therefore, simulation of soil temperature could also be a fo-

cal area for model improvement, especially since other stud-

ies suggest that soil temperature is not consistently well rep-

resented in ESMs. For example, the physical coupling be-

tween surface air temperature and soil temperature at high

latitudes differs considerably across ESMs, which influences

the spatial distribution of permafrost (Koven et al., 2012;

Slater and Lawrence, 2013). Even if ESMs can simulate av-

erage air temperatures consistent with observations (Table 3,

Fig. S8), fine-scale differences in the ability to represent

soil temperatures (Fig. S9) and permafrost could have con-

sequences for soil carbon distributions.

Soil moisture did not play an important role as a driv-

ing variable for soil carbon in our reduced complexity mod-

els, indicating that for most models this variable did not

strongly control spatial patterns in soil carbon stocks (Ta-

ble 4) or differences among models (Fig. 5). This result

was unexpected because soil moisture affects decomposition

rates in all ESMs (Table 1). Furthermore, other studies have

shown that soil carbon stocks depend on the response of het-

erotrophic respiration to soil moisture in global models, al-

though NPP and soil temperature were also important drivers

of soil carbon (Falloon et al., 2011). It is possible that soil

moisture influences soil carbon stocks in ESMs, but our re-

duced complexity model was unable to statistically distin-

guish the soil moisture effect from the NPP effect because

these two drivers often covary.

Alternatively, the exponential form of the moisture func-

tion in our reduced complexity model might have been inap-

propriate if decomposition rates decline at high soil moisture.

Based on empirical data, a substantial fraction of global soil

carbon likely resides in areas where poor soil drainage im-

pedes organic matter oxidation (Gorham, 1991). It is likely

that the interaction of topographic controls and soil texture

with soil moisture is not well represented in the current gen-

eration of ESMs. New approaches may be needed to deter-

mine which grid cells are poorly drained, and the rate at

which organic soils form in these area (Ise et al., 2008). We

also recommend that future CMIP archives require soil mois-

ture information for different soil layers to facilitate bench-

marking studies on the response of carbon to moisture in the

soil profile.

Although our reduced complexity models indicated that

soil carbon simulated by ESMs was driven primarily by NPP

and temperature, this relationship was much weaker with ob-

servational data. According to the same reduced complex-

ity model used for the ESMs, MODIS NPP and CRU sur-

face air temperatures were only able to explain 10 % of

the spatial variation in HWSD soil carbon stocks. Thus the

variables that drive soil carbon stocks in ESMs may differ

from those that determine observed carbon stocks. For ex-

ample, soil temperatures in organic-rich soils may be weakly

coupled to air temperatures (Koven et al., 2011; Slater and

Lawrence, 2013), in contrast to the strong coupling predicted

by most ESMs (Fig. S9). Alternatively, the mathematical

form of our reduced complexity model may have been in-

appropriate for the observational data, even though it was

appropriate for most ESM outputs. Regardless, our results

imply that ESMs may need to incorporate a broader range

of environmental drivers and processes to improve model–

data agreement. Even if simulations of NPP and soil temper-

ature can be improved in ESMs, these drivers have a limited

ability to explain spatial patterns in global soil carbon with

current model structures.

4.3 Parameterization and model structure

We found that parameterization was a major source of varia-

tion in ESM soil carbon simulations (Fig. 5). In some of the

ESMs such as CCSM4, soil carbon turnover may be too fast,

whereas in other models such as MIROC-ESM, turnover may

be too slow (Fig. 2). To address these issues, ESMs could

use terrestrial radiocarbon observations (both the total in-

ventory and vertical distribution of 14C in different biomes)

to help constrain rates of soil carbon turnover (Torn et al.,

1997; Trumbore, 2009). Another avenue of improvement for

ESM parameterization could focus on processes that operate

on fine spatial scales. Differences in soil texture and topog-

raphy may lead to non-linear effects on soil carbon storage

that are not well described by the average characteristics of

a grid cell. For instance, relatively small-scale topographic

variations are associated with peatland formation, and it is

unclear how to scale these effects globally (Gorham, 1991;

Koven et al., 2011). A multi-scale approach is required to

determine which processes are important at the global scale

and how to represent them.

Improving empirical data sets, model driving variables,

and model parameterization could substantially increase

model–data agreement for present-day soil carbon stocks.

However, matching current soil survey data is a necessary but

not sufficient condition for validating the accuracy of Earth

system models. In order to have confidence in future simu-

lations, the models must correctly represent the mechanisms

and drivers of soil carbon change, such that they are right for
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the right reasons. For example, models with incorrect mech-

anisms or drivers could be tuned to correctly simulate current

soil carbon stocks, but might incorrectly simulate soil carbon

stock changes in the future.

We initially hypothesized that models with more pools

would have greater flexibility and capture more of the spa-

tial variation in soil carbon. However, the structural fea-

tures that we examined did not clearly relate to differences

in ESM agreement with empirical data (Tables 1, 3). We

saw no pattern in ESM-data agreement with respect to num-

ber of soil carbon pools, temperature and moisture sensitiv-

ity functions, or presence of a nitrogen component. Further-

more, our reduced complexity model (Eq. 3) explained most

of the spatial variation within 9 of 11 models (0.62 < R2 <

0.93). This result confirmed that, despite different simulated

stocks of soil carbon, most of the models share a similar

underlying structure. Such similarity means that the mod-

els likely make similar assumptions about the mechanisms

regulating soil carbon cycling. If these underlying assump-

tions are incorrect or incomplete, the resulting errors will be

present in all of the models.

CanESM2, MPI-ESM-LR, and GISS-E2 are three excep-

tions that were not well explained by our reduced complexity

model (Eq. 2) driven by NPP and soil temperature (Table 4),

and thus may be examples of models with structural differ-

ences. CanESM2 was the only model in which soil water

content contributed to the explanatory power of the reduced

complexity model (R2 value improved from 0.57 to 0.74).

This dependency on soil water content may be partly ex-

plained by the biome-specific turnover time in CanESM2.

Since biomes are partially determined by precipitation and

soil moisture status, biome-specific turnover times might

have resulted in a tighter relationship between soil carbon

and moisture in our reduced complexity model. Outputs from

MPI-ESM-LR were only moderately explained by our re-

duced complexity models (R2 value 0.32). We do not have

a good explanation for the poor fit since there was no signif-

icant deviation in documented model structure, and driving

variables were roughly in line with other model simulations.

GISS-E2 outputs were not explained at all by the reduced

complexity model (R2 value less than 0.01). Unlike other

models, GISS-E2 showed a unique disconnect between NPP

and soil carbon which could be due to differences in the way

plant biomass is allocated to litter in the model. However, we

cannot offer a definitive explanation for the poor fit.

All ESMs may be missing key processes governing long-

term carbon storage that affect model–data agreement. De-

composition models currently used in all ESMs are built on

the assumption that carbon substrates have intrinsic chemi-

cal decomposition rates (Parton et al., 1993). However, there

is an emerging consensus that key abiotic and biotic factors

have a stronger governing role in decomposition than the

carbon compounds themselves (Schmidt et al., 2011). These

key governing components may include aggregate interac-

tions (Six et al., 2000), microbial dynamics (Todd-Brown et

al., 2012), cryoturbation (Koven et al., 2011), syngenetic

soil formation (Fan et al., 2008; Shur et al., 2004), extra-

cellular enzyme dynamics (German et al., 2011), and rare

substrate formation (Allison, 2006). Representing these pro-

cesses in the structure of soil carbon models remains a ma-

jor challenge. However, smaller-scale decomposition mod-

els have begun to explore several of these mechanisms

(Manzoni and Porporato, 2009).

Recent advances in the theory of microbial decomposi-

tion could provide a foundation for major changes in the

structure of soil carbon models used in ESMs. Schimel and

Weintraub (2003) proposed a model in which decomposition

was mediated by soil enzymes and microbial biomass. Later

models expanded this framework to include microbial func-

tional groups that preferentially decompose specific substrate

types (Moorhead and Sinsabaugh, 2006). In contrast to cur-

rent substrate pool models used in ESMs, biomass-mediated

decomposition models would likely include non-linear pro-

cesses such as Monod uptake or Michaelis–Menten enzyme

kinetics. These non-linear effects could produce very dif-

ferent behaviors at daily, annual, and centennial timescales.

Compared to substrate pool models, models driven by mi-

crobial biomass predict smaller losses of soil carbon under

warming due to declines in microbial growth efficiency with

higher temperature (Allison et al., 2010).

5 Conclusions

Overall, we found that some ESMs simulated soil carbon

stocks consistent with empirical estimates at the global and

biome scales. However, all of the models had difficulty rep-

resenting soil carbon at the 1◦ scale. Despite similar overall

structures, the models do not agree well among themselves or

with empirical data on the global distribution of soil carbon.

Differences across ESMs are primarily due to differences in

the representation of NPP and the parameterization of soil

decomposition sub-models, not due to differences in model

structure. However, all model structures may have serious

shortcomings since NPP and temperature strongly influenced

soil carbon stocks in ESMs but not in observational data.

Fully reconciling this disagreement will require a range of

approaches, including better prediction of soil carbon drivers,

more accurate model parameterization, and more compre-

hensive representation of critical biological and geochemi-

cal mechanisms in soil carbon sub-models. There is also a

need for better quantification of the uncertainty in empiri-

cal estimates of soil carbon stocks that are used to bench-

mark ESMs. If this uncertainty is too high for rigorous model

comparison, additional measurements of soil carbon stocks

may be required in some regions of the world. Addressing

these issues will improve our ability to predict the response

of the carbon cycle to climate change and inform policymak-

ers about the potential impacts of carbon emissions.
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Supplementary material related to this article is

available online at: http://www.biogeosciences.net/10/

1717/2013/bg-10-1717-2013-supplement.pdf.
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Mendoza, C., Morel, A., Neill, D. A., Nepstad, D., Patiño, S.,
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