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We study the development of caustics in shift-symmetric scalar field theories by focusing on simple
waves with an SOðpÞ-symmetry in an arbitrary number of space dimensions. We show that the pure
Galileon, the DBI–Galileon, and the extreme-relativistic Galileon naturally emerge as the unique set of
caustic-free theories, highlighting a link between the caustic-free condition for simple SOðpÞ-waves and
the existence of either a global Galilean symmetry or a global (extreme-)relativistic Galilean symmetry.
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I. INTRODUCTION AND OVERVIEW

The notion of causality is anchored at the root of any
respectful quantum field theory. In standard Lorentz-
invariant theories in flat spacetime, causality if preserved
so long as all fields propagate within the same well-defined
light cone. When gravity is included or different notions of
metrics come into play these concepts become murkier and
much debate still prevails in the literature.
In generic theories, the “characteristics curves” are used

to describe the high frequency limit of a signal when the
evolution of the background is negligible, see for instance
[1–4] for relevant discussions in the case of scalar field with
noncanonical kinetic terms. For a canonical scalar field in
flat spacetime, the characteristic curves represent the field
light cone which direction is identical everywhere. In more
generic theories, the effective metric of the field may vary
from one point to another. In general relativity it is well-
known that the precise opening and tilt of the light cone
may differ from one point to another. In noncanonical
theories, the modification in the kinetic term implies that
the fluctuations can feel an effective metric which depend
on the field background and hence on spacetime. The
associated characteristic curves in a noncanonical field
theory can therefore differ from straight parallel lines.
Even a small shift in these curves may cause them to
intersect leading to caustic singularities. See for instance
Refs. [1,5–8] for more discussions on these effects and on
the seminal works of Lax, Jeffrey, Tanuti, Deser, McCarthy
and Sarioglu [9–12] for discussions on caustic-free
propagations.
In practise, without the existence of a finite UV com-

pletion of the theory, caustic singularities can never be
trusted since the second derivatives of the field becomes
infinite, and the effective field theory leaves its regime of
validity. The existence of caustic hence signals the need for
new physics to describe the system at that point. Whether

and how the new physics involved would resolve the
singularity is unknown, but within the effective field theory
all one can deduce is that the description breaks down.
Nevertheless, even if the caustics could in principle

be resolved by appropriate UV completions, their mere
existence overcast some shadow on the reliability of some
theories. For instance in some models of modified gravity,
the creation of caustics has been shown to be unavoidable
for generic and physically well-motivated initial conditions,
with a time scale for the formation which is comparable or
smaller than the relevant time scale of system [13,14].
The formation of caustics was studied in a large

variety of modified gravity models and scalar-field theories,
including TeVeS ([15]) in [13], in Horava-Lifshitz ([16,17])
in [14,18], Dirac-Born-Infeld (DBI) in [1,19]. More
recently this effect was investigated for generic scalar field
theories with a global shift symmetry, dubbed as PðXÞ
models, [3,4] in plane wave configurations. In these types
of theories it was shown that the standard canonical scalar
field and DBI are special models for which no caustics form
when dealing with simple plane waves. The symmetry of
the configurations considered implies that operators with
higher derivative without ghost (i.e. generalized Galileon
operators [20,21]) play no role for the evolution and fate of
plane waves.
When dealing with spherical waves [or as we shall see

generic SOðpÞ-waves], the constraints remain exactly
identical as that of planar waves for PðXÞ theories.
Beyond PðXÞ theories, i.e. when including generalized
Galileon operators, those operators can play an important
role for spherical waves and are constrained by the absence
of caustics. In what follows we show that among all the
generalized Galileon operators allowed, only those
endowed with a specific additional global symmetry are
always caustic-free (as far as spherical waves of arbitrary
dimensions are concerned). That global symmetry can be
seen to be related to a Poincaré invariance in higher
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dimensions and provides a natural geometric picture from
where those theories emerge.
We point out that throughout this analysis we restrict

ourselves to a single scalar field theory living on flat space-
time. An important question is whether the flat space-
time approximation remains a valid one. When including
interactions with gravity, a single scalar field can be
covariantized.1 as a generalized covariant Galileon [34]
which can be seen to be equivalent to a Horndeski theory
[35,36]. However an alternative perspective is to consider
these types of scalar-field models as emerging from the
low-energy limit of a infrared modified theory of gravity as
proposed in [20]. Within that perspective, the “covarian-
tization” of generalized Galileons lie instead with the DGP
model [37] as shown in [38], or within massive gravity [39]
(or its extensions) as shown in [40]. Within these fully
gravitational theories, the additional mode only effectively
behaves as a scalar within some low-energy limit, and its
behavior may depart significantly from an isolated scalar at
higher energy (as would be the case in the offset of any
caustic). This implies that we do expect higher energy
effects to kick in on the onset of caustics. The exact effects
of gravity is beyond the aim of this work, and we restrict
ourselves to the case where the fields can be considered to
living on flat space-time, for instance by working in an
appropriate decoupling limit of the full gravitational theory.
The onset of caustics would then signal the breakdown of
that decoupling limit.
The rest of the manuscript is organized as follows: In

Sec. IIwe review the characteristic analysis forPðXÞ theories
mainly following the approaches of [3,4] and extend it to
spherical waves of arbitrary dimensions. We then explore
the formation of caustics in generalized Galileon theories
which affect the propagation of spherical waves in Sec. III
and highlight the pure Galileon, the DBI–Galileon, and the
extreme-relativistic Galileon, or what we will call the
cuscuta-Galileon, which is Galilean generalization of cus-
cuton [41–43], as the uniquemodelswhich are free of caustic
formations in arbitrary simple waves configurations. We
further prove inSec. IV that these theories are the unique ones
that satisfy a (non/extreme-)relativistic Galileon invariance
that can be seen as being inherited from a higher dimensional
Poincaré invariance when considering a probe-brane
approximation hence emphasizing the geometrical origin
of these special class of models. After summarizing our
results and presenting some outlooks in Sec. V, we provide
further details about the simplification of Lagrangians for
the DBI-Galileon and the cuscuta-Galileon obtained from
probe-brane approximation, and show that they are included
in generalized Galileon in Appendix A.

II. CAUSTICS AND CHARACTERISTIC
ANALYSIS FOR PðXÞ THEORIES

In this section we review the results recently presented
in [3,4] for the formation of caustic in PðXÞ theories. While
those analysis were performed for (simple) plane waves, we
show that it is entirely generalizable to any simple wave
with SOðpÞ symmetry where p ≤ d, in a D ¼ ðdþ 1Þ–
dimensional spacetime. Consider a PðXÞ single scalar-field
theory in flat spacetime,

S ¼
Z

dDxPðXÞ; ð2:1Þ

with X ¼ ð∂ϕÞ2, where all indices are raised and lowered
with respect to the flat Minkowski metric. Obviously, the
PðXÞ theory enjoys the shift symmetry

ϕ → ϕþ c; ð2:2Þ

where the parameter c is constant. We shall see that
imposing caustic-free condition for simple SOðpÞ waves
naturally single out theories that enjoy additional global
symmetry.

A. SOðpÞ-waves
We now consider waves with an SOðpÞ symmetry, so

that the field only depends on the coordinates t and on the
distance r ¼ ðx21 þ � � � þ x2pÞ1=2 in the p-dimensional sub-
space. The case of planar symmetry considered in [3,4]
therefore corresponds to the special case where p ¼ 1.
Assuming the SOðpÞ symmetry, we then have X ¼
− _ϕ2 þ ϕ02, where dots represent derivatives with respect
to t and primes represent derivatives with respect to the
variable r.
The equations of motion for ϕ are hence simply given by

Zμν∂μ∂νϕþ p − 1

r
ϕ0P0ðXÞ ¼ 0; ð2:3Þ

where Zμν is conformally related to the effective metric and
independent on p,

Zμν ¼ P0ðXÞημν þ 2P00ðXÞ∂μϕ∂νϕ

¼
�
−P0 þ 2P00 _ϕ2 −2P00 _ϕϕ0

−2P00 _ϕϕ0 P0 þ 2P00ϕ02

�
: ð2:4Þ

The two eigenvalues of Zμ
ν are P0ðXÞ and 2XP00ðXÞ þ

P0ðXÞ and so the speed of sound is given by

c2s ¼
P0ðXÞ

2XP00ðXÞ þ P0ðXÞ : ð2:5Þ

It is clear from the equations of motion (2.3) that the
only difference between a plane wave (p ¼ 1) and other

1There is some potential freedom in covariantizing the theory
without leading to ghostlike instabilities, see Refs. [22–32] for
recent discussions as well as Ref. [33] for a geometrical approach
for different covariantizations.
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SOðpÞ–wave is in the contribution from the second term
in (2.3) which only involves first order derivatives on the
field. As a result the parameter p cannot affect the causal
structure of the field, and neither can it change when caustic
can be generated. It therefore directly follows that all the
results derived in [3,4] in the case of p ¼ 1 are directly
applicable for arbitrary p. However one significant differ-
ence between planar waves and waves involving more
spatial directions is that the Galileon interactions are only
relevant for p > 1, and by looking at waves beyond the
planar symmetry one can also isolate special types of
Galileons interactions that are caustic-free for these types
of waves. Before including the Galileon interactions, it is
useful to establish how the argument for the generation of
caustic applies in the case of PðXÞ theories and to establish
the connection with a characteristic analysis.

B. Characteristic analysis

The characteristic analysis focuses on the highest deriva-
tive terms, which are therefore the second derivatives in the
equation of motion (2.3). As a result, the parameter p is
therefore irrelevant in this analysis. First we notice that at
high energy, the stability condition imposes detZ < 0, we
therefore restrict ourselves to this case in what follows.
Then focusing on the high energy terms, we can use the

substitution ∂μ → kμ and at high energy the vector kμ is
parallel to

kð�Þ
μ ¼ Aðt; rÞ

8>>>>>>>><
>>>>>>>>:

ðξ�;−1Þ; if Z00 ≢ 0;�
−1; Z00

Z11 ξ�
�
; if Z11 ≢ 0;�

−1; 2Z01

Z11

�
; ð−1; 0Þ; if Z00 ¼ 0;

ð0;−1Þ;
�
−1; Z00

2Z01

�
; if Z11 ¼ 0;

ð2:6Þ

where Aðt; rÞ is an overall factor, and we have used the
notation,

ξ� ¼ Z01 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detZ

p

Z00
¼ v� cs

1� vcs
; ð2:7Þ

with v ¼ − kr
kt

and with the speed of sound cs given in
Eq. (2.5). The overall factor Aðt; rÞ is determined by the
integrability condition ∂tkr ¼ ∂rkt, with which one guar-
antees the existence of an integral function σðt; rÞ satisfying

∂μσ� ¼ kð�Þ
μ : ð2:8Þ

The constant-σ� surface defines the characteristic sur-
face (or curve in 1þ 1 dimension), whose tangent vector

given by Zμνkð�Þ
ν ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− detZ
p ð1; ξ�Þ is the direction of

propagation. Since the light cone is defined by Zμνkð�Þ
ν , it is

sufficient to analyze the vectors ð1; ξ�Þ to determine the

causal structure of the theory and in particular establish the
existence of caustics.
In terms of ξ�, the equation of motion (2.3) for the scalar

field ϕ can be written as

∂σ�kt þ ξ∓∂σ�kr ¼ 0; ð2:9Þ

or

�
dkt
dkr

�
�
¼ −ξ∓; ð2:10Þ

and one can use the expression (2.7) for ξ� in terms of
the speed of sound to determine the speed of sound for a
given ξ,

c2s ¼
�
v − ξ

1 − vξ

�
2

: ð2:11Þ

Following the analysis of Ref. [4], one can consider
Z00 ≢ 0 (while still focusing on detZ < 0 for stability
reasons as mentioned previously). The case where
Z00 ¼ 0 can be considered separately but does not lead
to any different result as explained in [4]. Then focusing

on the first solution in (2.6), one can take kð�Þ
μ ∼ ðξ�;−1Þ.

A vector orthogonal to kð�Þ
μ is given by ð1; ξ�Þ, which

corresponds to ∂σ� ∝ ∂t þ ξ�∂r in [4], and precisely

coincides with the direction of the vector Zμνkð�Þ
ν . The

surfaces tangent to ∂σ� then define the C�-characteristics.

C. Caustics

Generically, caustics arise when two (or a set of) Cþ-
characteristics or C−-characteristics are able to intersect
(see Refs. [1–12]). At those points where characteristics
converge, the first derivative of the field is not well-defined,
and its second derivative diverges, signaling the breakdown
of the effective field theory. In an EFT approach, caustics
should not be understood as real singularities since they
“only” signal the need for new physics to provide the
correct description of the system at those points. However
one could still raise the question of whether there exists
systems for which the absence of caustics is automatically
guaranteed (at least for simple waves). For arbitrary waves,
or arbitrary spacetime backgrounds, the answer is likely
to be uniquely restricted to canonical fields [3], however
restricting ourselves to SOðpÞ waves, and particularly
simple waves, we see that DBI takes on a special place.
Indeed, asking for the absence of caustics to be guar-

anteed for simple SOðpÞ waves is equivalent to asking
for the characteristics to be parallel in the ðkt; krÞ plane [4],
i.e. requiring the existence of constant coefficients a and b
so that

kt ¼ akr þ b: ð2:12Þ
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As proven in Ref. [4], this linearity condition is actually
equivalent to the exceptional condition pointed out in [12].
We can therefore infer that

X ¼ −k2t þ k2r ¼ ð1 − a2Þk2r − 2abkr − b2: ð2:13Þ

From the relations v ¼ −kr=kt and ξ∓ ¼ −dkt=dkr ¼ −a
we can use the expression (2.11) to deduce that the absence
of caustics implies that the speed of sound should be linear
in X

c2sðXÞ ¼ 1þ αX; ð2:14Þ

with

α≡ g
f
≡ 1 − a2

b2
: ð2:15Þ

Using rescaling the field, without loss of generality we
consider the following cases: ðf; gÞ ¼ ð�1; 0Þ; ð1;�1Þ;
ð0;�1Þ, namely, α ¼ 0;�1;�∞.
We can now compare this expression for the speed of

sound with the one given in (2.5) for a PðXÞ model and
infer the following differential equation for PðXÞ so as to
avoid caustics:

d
dX

logP0ðXÞ ¼ 1

2X

�
1

c2sðXÞ
− 1

�

¼ −
α

2
ð1þ αXÞ−1: ð2:16Þ

This analysis was derived in [4], and we simply reproduce
it here to simplify the discussion when including Galileons.
Notice however that once again, this result is not only
valid for simple plane waves, but also for simple spherical
waves, cylindrical waves or any simple wave with a
SOðpÞ–symmetry. In other words, simple spherical and
cylindrical waves do not impose any additional conditions
compared to plane waves as far as caustics are concerned in
PðXÞ models.
Demanding that for any b there exists an a such that

the differential equation (2.16) be identically satisfied for
anyX (or vice versa for a and b), we infer that there are only
three possible relevant systems, namely, the canonical scalar
field forα ¼ 0 [or ðf; gÞ ¼ ð1; 0Þ], DBI for finite values ofα,
and the cuscuton for infinite α. Indeed we obtain

PðXÞ ¼

8>><
>>:

X for α ¼ 0; ðor ðf; gÞ ¼ ð�1; 0ÞÞffiffiffiffiffiffiffiffiffiffiffiffi
1� X

p
for α ¼ �1; ðor ðf; gÞ ¼ ð1;�1ÞÞ;ffiffiffiffiffiffiffiffi�X

p
for α → �∞; ðor ðf; gÞ ¼ ð0;�1ÞÞ:

ð2:17Þ

The pure Galileon PðXÞ ¼ X and DBI model PðXÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
1� X

p
appear as the unique theory among generic PðXÞ

models [4] from the caustic formation point of view. In
addition, when taking the extreme limit of DBI (α → ∞) we
recover the cuscuton model PðXÞ ¼ ffiffiffiffiffiffiffiffi�X

p
introduced in

[41–43], whose speed of sound is infinite and kinetic term
reduces to a total derivative for homogeneous configuration
in flat spacetime. In the case of the cuscuton, the theory
makes sense for either a timelike or a spacelike field.

D. Additional global symmetries

Interestingly, the three caustic-free models (2.17) enjoy
the additional global symmetry apart from shift symmetry.
First, DBI is of course also well-known to be a privileged
class within generic PðXÞ-models for other reasons. Indeed
in addition to the shift symmetry it enjoys an addition
global symmetry. The DBI action is invariant under the
following transformation ϕ → ϕþ δϕ, with

δϕ ¼ cþ vμxμ þ ϕvμ∂μϕ; ð2:18Þ
where the parameters c and vμ are constant. Indeed, under
this transformation the DBI Lagrangian transforms as a
total derivative,

δð ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p Þ ∼ δXffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p

∼
vμ∂μϕð1þ XÞ þ ϕvμ∂μ∂νϕ∂νϕffiffiffiffiffiffiffiffiffiffiffiffi

1þ X
p

∼ vμ∂μðϕ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ X

p Þ;
and the DBI action is thus invariant. DBI can be seen to
arise as the motion of a probe-brane in a higher dimensional
spacetime. Within that picture, the previous symmetry
(2.18) is simply reminiscent of invariance under the
higher-dimensional rotations and boosts.
On the other hand, the pure Galileon PðXÞ ¼ X and the

cuscuton PðXÞ ¼ ffiffiffiffi
X

p
enjoy slightly different form of the

symmetry, which are some limit of (2.18) from higher-
dimensional point of view. Indeed, it is well-known that the
pure Galileon PðXÞ ¼ X enjoys the global symmetry

δϕ ¼ cþ vμxμ; ð2:19Þ

which can be viewed as nonrelativistic limit of the
transformation (2.18) in higher-dimensional description.
Similarly, one can check that the cuscuton model is
invariant under

δϕ ¼ cþ ϕvμ∂μϕ; ð2:20Þ

which amounts to extreme–relativistic limit of the trans-
formation (2.18). Therefore, all three caustic-free classes
(2.17) enjoy the additional global symmetry, which is
inherited from a higher-dimensional description.
While the exact link is not entirely flushed out, it is

very likely that the higher-dimensional origin of these
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symmetries is the reasons why the models are protected
against caustics, at least as far as simple SOðpÞ-waves
are concerned. With this in mind, it is therefore likely
that other theories which also enjoy a natural higher-
dimensional geometrical probe-brane origin could be
protected against the same type of caustics. In what
follows we will therefore study the emergence of caustics
in generalized Galileon theories (as derived in [21]), and
establish that the pure Galileon, the DBI-Galileon, and a
Galilean generalization of the cuscuton dubbed the
cuscuta-Galileon, which also come from a similar
higher-dimensional description, satisfy the same proper-
ties as models (2.17), at least as far as caustics for simple
SOðpÞ-waves are concerned.
Before moving to generalized Galileons, it is worth

mentioning that while DBI appears to be special with
respect to caustic formation, when it comes to quantum
corrections, the global symmetry (2.18) is not sufficient
to fully protect the theory (unless the quantization
prescription also makes use of the symmetry). See
[44] for more details.
We also emphasize that given DBI has a speed of

sound c2s ¼ 1þ X, we can automatically infer that there
are always configurations where the model is super-
luminal. Indeed while the speed is subluminal for a
timelike field (X < 0), the speed is always superluminal
for a spacelike field (X > 0). Had we chosen a negative
α, we would have observed the opposite. On the other
hand, since α → �∞, so long as X ≠ 0, the cuscuton has
an infinite speed of sound, or is incompressible, which
leads to an instantaneous propagation. Yet, the super-
luminalities and instantaneous propagation do not nec-
essarily automatically imply the existence of closed
timelike curve or acausalities (see [2,41,42,45–55] for
more discussions).

III. CAUSTICS IN GENERALIZED GALILEONS

A. Generalized Galileons

We now extend the analysis to include the generalized
Galileon operators [20,21] given in D ¼ dþ 1–spacetime
dimensions by

Ln ¼ GnðXÞδμ1���μn−2ν1���νn−2Φ
ν1
μ1 � � �Φνn−2

μn−2

¼ GnðXÞGn−2½Φ�; ð3:1Þ

with n ¼ 2;…; Dþ 1, Φμν ¼ ∂μ∂νϕ and where we use the
notation

δμ1���μkν1���νk ¼ Eμ1���μDEν1���νDδ
νkþ1
μkþ1

� � � δνDμD ð3:2Þ

Gk½Φ� ¼ δμ1���μkν1���νkΦ
ν1
μ1 � � �Φνk

μk ; ð3:3Þ

for 0 ≤ k ≤ d and where Eμ1���μD is the Levi-Civita tensor.

It will also be convenient to introduce the functional
tensor Xμν

n defined as [39,40,53]

Xμν
n ½Φ� ¼ 1

nþ 1

δ

δΦμν
Gnþ1½Φ�

¼ ηνβδμα1���αnββ1���βnΦ
β1
α1 � � �Φβn

αn ; ð3:4Þ

for 0 ≤ n ≤ d, so that

Gn½Φ� ¼ ΦμνX
μν
n−1½Φ�: ð3:5Þ

In particular we have Xμν
−1½Φ� ¼ 0, Xμν

0 ½Φ� ¼ ημν, Xμν
1 ½Φ� ¼

□ϕημν −Φμν and the symmetric tensor Xμν
n satisfies the

following useful properties (see Refs. [39,53])

∂μX
μν
n ¼ 0; ∀ n ≥ 0 ð3:6Þ

Xμν
n ½Φ� ¼ −nΦμ

αXαν
n−1 þΦαβX

αβ
n−1η

μν;

∀ 1 ≤ n ≤ D − 1: ð3:7Þ

To maintain the shift symmetry, we restrict ourselves to
functions Gn that only depend on X and not on the field ϕ
itself. For concreteness, we note that L2 is nothing other
than a standard PðXÞ model, L3 corresponds to the
generalized cubic Galileon, etc.,

L2 ¼ G2ðXÞ; ð3:8Þ

L3 ¼ G3ðXÞ□ϕ; ð3:9Þ

L4 ¼ G4ðXÞ½ð□ϕÞ2 − ð∂μ∂νϕÞ2�; ð3:10Þ

L5 ¼ G5ðXÞ½ð□ϕÞ3 − 3□ϕð∂μ∂νϕÞ2 þ 2ð∂μ∂νϕÞ3�;
ð3:11Þ

up to an irrelevant overall dimensionless constant. For
arbitrary functions GnðXÞ the theories only enjoy a shift
symmetry ϕ → ϕþ c, which is broken if an explicit ϕ
dependence is introduced in Gnðϕ; XÞ.
We recover the standard Galileon interactions when

the functions GnðXÞ take the particular form GnðXÞ¼X,
and these are the unique set of interactions (without an
Ostrogradsky ghost) which enjoy an additional nonrela-
tivistic Galilean global symmetry (2.19) [20]. If GnðXÞ
takes on another very particular form, we shall see
that the theory enjoys instead the relativistic Galilean
symmetry (2.18) or the extreme-relativistic Galilean
symmetry (2.20).

B. Equations of motion for SOðpÞ-wave
We now consider a configuration with an SOðpÞ-

symmetry as in Sec. II A, where the field solely depends
on the time t and on the p-dimensional distance
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r ¼ ðx21 þ � � � x2pÞ1=2, where p is an arbitrary integer with 0 ≤ p ≤ d. Under those configurations, the generalized Galileon
interactions for 1 < n < pþ 3 then take the form

Ln ¼ GnðXÞ
� ðp− 1Þ!
ðpþ 1− nÞ!

�
ϕ0

r

�
n−2

þ ðn − 2Þðp− 1Þ!
ðpþ 2− nÞ!

�
ϕ0

r

�
n−3

ðϕ00 − ϕ̈Þ þ ðn− 2Þðn− 3Þðp− 1Þ!
ðpþ 3− nÞ!

�
ϕ0

r

�
n−4

ð _ϕ02 − ϕ̈ϕ00Þ
�
:

ð3:12Þ

We directly see as expected from the symmetry that the Lagrangian identically vanish for SOðpÞ waves with p < n − 3 and
is a total derivative for p ¼ n − 3. This naturally explains why no Lagrangian with n ≥ 3 is relevant to the study of plane
waves with p ¼ 1, but start becoming relevant for more general SOðpÞ waves.
The equations of motion for the generalized Galileon can then be written in the form

P
nEn ¼ 0, with

En ¼
ðp − 1Þ!
ðp − nÞ!

�
ϕ0

r

�
n−1

Gn;X þ ðp − 1Þ!
ðpþ 1 − nÞ!

�
ϕ0

r

�
n−2

Zμν
n ∂μ∂νϕ

þ ðn − 2Þðp − 1Þ!
ðpþ 2 − nÞ! ½ðn − 1ÞGn;X þ 2Gn;XXX�

�
ϕ0

r

�
n−3

ð _ϕ02 − ϕ̈ϕ00Þ; ð3:13Þ

where Zμν
n is the generalization of the effective metric (2.4)

for the Galileon of order n, given by

Zμν
n ¼ ðn − 1ÞGn;XðXÞημν þ 2Gn;XXðXÞ∂μϕ∂νϕ: ð3:14Þ

The eigenvalues for each Zn
μ
ν are now ðn − 1ÞGn;X and

ðn − 1ÞGn;X þ 2XGn;XX leading to the following expres-
sion for the speed of sound for each separate rank of
Galileon:

c2nðXÞ ¼
ðn − 1ÞGn;X

ðn − 1ÞGn;X þ 2XGn;XX
; ð3:15Þ

which is a direct generalization of (2.5) to Galileons.
Once again, we can read this as a differential equation
for GnðXÞ in terms of cnðXÞ,

d
dX

logGn;X ¼ n − 1

2X

�
1

c2nðXÞ
− 1

�
; ð3:16Þ

which is also the direct generalization of (2.16).

C. Caustic-free condition

We are now in measure to check the formation of caustic
for simple SOðpÞ-waves in generalized Galileons on flat
spacetime. First notice that for every Galileon, the first
term in (3.13) only contains first order derivatives acting
on the field, and this first term is thus irrelevant when
performing a characteristic analysis. Second, for simple
waves the combination _ϕ02 − ϕ̈ϕ00 vanishes identically (see
[3,4]). As a result only the second term in (3.13) dictates the
formation of caustic in generalized Galileons and all that
matters is the light cone dictated by the effective metric
Zμν
n , as expected. Interestingly, the effective metric Zμν

n does
not depend2 on the parameter p, and so the theories that

avoid caustics are the same independently of that param-
eter, as far as simple SOðpÞ-waves are concerned.
Note that in the equation of motion (3.13), the coefficient

of the term Zμν
n vanishes for n ≥ pþ 2, which means that

the characteristic analysis applies only for 2 ≤ n ≤ pþ 1.
This is precisely the reason why going beyond the planar
wave configuration can allow us to study caustics for
higher-order Galileon Lagrangians. As mentioned earlier,
so long as one considers planar waves (p ¼ 1), the caustic-
free condition constrains L2 only [i.e. PðXÞ-types of
theories]. The SOðpÞ-wave with p > 1 allows us to
constrain n > 2 Galileon Lagrangians.
We can now apply the same analysis as was performed

for PðXÞ theories in Sec. II B. Focusing again on the high-
energy limit and performing the substitution ∂μ → kμ, the

relevant solution for the vector k is kð�Þ
μ ¼ ðξn;�;−1Þ

(assuming again Z00
n ≠ 0) with

ξn;� ¼ Z01
n � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− detZn
p
Z00
n

¼ v� cn
1� vcn

; ð3:17Þ

and once again with v ¼ − kr
kt
and with the speed of sound

now given in Eq. (3.15). The characteristics follows the
equations of motion (3.13) with ξn�, namely,

dkt þ ξn;�dkr ¼ 0: ð3:18Þ

The rest of the analysis is a natural generalization of [4].
Imposing as before the linear dependency, which is the only
general condition one can impose that would manifestly

2To be more exact, the dependence in p only enters the
conformal factor of the effective metric and hence does not affect
the light cone.
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prevent the formation of caustics, kt ¼ akr þ b, and using
the relation X ¼ −k2t þ k2r ¼ ½ð1 − a2Þk2r − 2abkr − b2�=2,
the speed of sound is given once again in terms of a and b
as in (2.14), namely

c2nðXÞ ¼ 1þ αX; ð3:19Þ

with the same definition (2.15) of α, which can be used
in (3.16) to give an expression for the functions GnðXÞ that
do not generate caustics in simple SOðpÞ-waves.
Once again there are only three relevant cases corre-

sponding to (2.17) that we shall consider in turn
(i) α ¼ 0 or ðf; gÞ ¼ ð�1; 0Þ: pure Galileon.

The first case corresponds to α ¼ 0 or g ¼
1 − a2 ¼ 0 for any f ¼ b2 ≠ 0, then we recover a
trivial sound speed, c2n ¼ 1, which corresponds to
the standard Galileon that satisfies the shift and
Galilean symmetry (2.19),

GnðXÞ ∼ X: ð3:20Þ

One could of course add a constant contribution
to GnðXÞ but that contribution would be irrelevant
as it would be a total derivative in the action.
Without loss of generality we can consider only
ðf; gÞ ¼ ð1; 0Þ.

(ii) α ¼ 1 or ðf; gÞ ¼ ð1;�1Þ: DBI-Galileon.
For the second case, assuming α ≠ 0, i.e.

f ¼ b2 ≠ 0 and g ¼ 1 − a2 ≠ 0, we can take
c2n ¼ 1� X (after appropriate rescaling α into ϕ)
and the differential equation for Gn is simply
∂X logGn;X ¼ −ðn − 1Þ=2ð1� XÞ, leading to

GnðXÞ

¼
	
anð1�XÞ3−n2 ; for 2 ≤ n ≤ Dþ 1 and n≢ 3;

an logð1� XÞ; for n ¼ 3;

ð3:21Þ

where the overall coefficient an is independent on
the field and its derivatives. We shall see that this
class is the unique theory that enjoys the relativ-
istic Galilean symmetry (2.18) in Sec. IV, and
equivalent to DBI-Galileon introduced in [56] in
Appendix A.

(iii) α → �∞ or ðf; gÞ ¼ ð0;�1Þ: Cuscuta–Galileon.
The third case is α → �∞, i.e. f ¼ b2 ¼ 0 for

any g ¼ 1 − a2 ≠ 0. In this case we have infinite
speed of sound so long as X ≠ 0, and obtain

GnðXÞ¼
	
anð�XÞ3−n2 ; for 2≤n≤Dþ1 andn≢3;

an logð�XÞ; for n¼3:

ð3:22Þ

This corresponds to the extreme-relativistic Galileon
introduced in [33], or cuscuta-Galileon as it is a
natural Galilean generalization of the cuscuton
[41–43]. Indeed, the cuscuta-Galileon has the same
property of the cuscuton, i.e. the infinite speed of
sound and the kinetic term reducible to a total
derivative for homogeneous configuration in flat
spacetime. Specifically, for n ¼ 3,

logX□ϕ ∼ ϕ̈ log _ϕ ∼
d
dt

ð _ϕ log _ϕÞ; ð3:23Þ

and for n ≥ 4, generalized Galileon Lagrangians
identically vanish for homogeneous configuration
due to their ant-symmetry. Therefore, the equation of
motion for ϕ does not involve ϕ̈ and hence the scalar
field is a nondynamical auxiliary field “parasitizing”
the dynamics of fields that it couples to. We shall
see that the cuscuta-Galileon is the unique theory
that enjoys the extreme-relativistic Galilean sym-
metry (2.20) in Sec. IV, and equivalent to the model
considered in [33] in Appendix A.

Even though we have only focused on a specific type of
simple waves, the absence of caustic entirely constrained the
covariant form of the action. For the second case with n ¼ 2,
we recover the DBI action, as pointed out in [4]. Actually,
there are wider class of theories that satisfy the caustic-free
condition. For the case α ≠ 0 with n > 2, we see that the
form of the generalized Galileon is very constrained just
as was the case of PðXÞ and, as we shall see below, the
corresponding theories are none other the DBI-Galileon that
can be obtained from a the Lovelock invariants in higher-
dimensional probe brane model. In addition, for the case
α → �∞, similar form of Lagrangians is obtained, which
generalizes the cuscuton to Galileon type interactions. We
shall see this cuscuta-Galileon corresponds to an extreme-
relativistic limit of the DBI-Galileon [33]. Again, it is
intriguing to note that all three models enjoy the shift
symmetry and an additional global symmetries, which are
inherited from a higher-dimensional description.

D. Linear combination of generalized Galileons

When combining multiple generalized Galileons of
different rank together

L ¼
XDþ1

n¼2

GnðXÞGn−2½Φ�; ð3:24Þ

the effective metric depends explicitly on p and ϕ0,

Zμν ¼
�XDþ1

n¼2

ðn − 1ÞGn;XðXÞðϕ
0
r Þn−2

ðpþ 1 − nÞ!
�
ημν

þ 2

�XDþ1

n¼2

Gn;XXðXÞðϕ
0
r Þn−2

ðpþ 1 − nÞ!
�
∂μϕ∂νϕ ð3:25Þ
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and so does the speed of sound,

c2s ¼
P

n
ðn−1Þ

ðpþ1−nÞ! ðϕ
0
r ÞnGn;XP

n
1

ðpþ1−nÞ! ðϕ
0
r Þnððn − 1ÞGn;X þ 2XGn;XXÞ

: ð3:26Þ

Since generalized Galileons of different rank n lead to
contributions with different powers of ϕ0

r and different
dependencies on p, the only way for the speed of sound
square to be linear in X is if the same differential equation

ðn − 1ÞGn;X

ðn − 1ÞGn;X þ 2XGn;XX
¼ 1þ αX; ð3:27Þ

be satisfied with exactly the same constant α for every
single GnðXÞ.
This implies that even when combining different gen-

eralized Galileons together, the absence of caustic for
simple SOðpÞ waves is only guaranteed for the following
three theories:

LGal ¼
XDþ1

n¼2

anXGn−2½Φ�; ð3:28Þ

for α ¼ 0 (where the coefficients an are arbitrary constant)
which corresponds to the standard “nonrelativistic”
Galileon introduced in [20],

LDBI−Gal ¼
XDþ1

n¼2

anð1� XÞð3−nÞ=2Gn−2½Φ�; ð3:29Þ

for finite α (after rescaling of the field) which corresponds
to the DBI-Galileon introduced in [56], and

Lcuscuta−Gal ¼
XDþ1

n¼2

anð�XÞð3−nÞ=2Gn−2½Φ�; ð3:30Þ

for α ¼ �∞ which is the Galilean generalization of the
cuscuton, and corresponds to the “extreme-relativistic”
Galileon introduced in [33]. For n ¼ 3, the term
ð1� XÞð3−nÞ=2 and ð�XÞð3−nÞ=2 should be understood as
logð1� XÞ and logð�XÞ.
To summarize, we started here with generalized Galileon

Lagrangians in D ¼ dþ 1 flat spacetime dimensions
with arbitrary functions GnðXÞ that enjoy the shift sym-
metry (2.2), and imposed the absence of the caustics for
simple SOðpÞ-waves. Interestingly, the caustic-free con-
dition seems to single out the models that are endowed with
an additional global symmetry. Indeed, all the Galileon
Lagrangians with Gn ∼ X enjoy the global Galilean sym-
metry given (2.19). The second class of models with Gn ∼
ð1� XÞð3−nÞ=2 as in (3.21) enjoy the global symmetry
provided (2.18) as shown in Sec. IV. The second class

of models with Gn ∼ ð�XÞð3−nÞ=2 as in (3.22) enjoy the
global symmetry (2.20) which we shall show in Sec. IV.
The consistency of these types of theories is therefore likely
tight with the existence of the additional symmetry.

IV. HIGHER-DIMENSIONAL
POINCARÉ INVARIANCE

The previous arguments have singled out a special class
of Galileon interactions simply based on the requirement
that simple SOðpÞ-waves are free of caustic in flat
spacetime3 In what follows we shall prove that these
interactions are actually the unique ones that are invariant
under the extreme-/relativistic Galilean transformation
reminiscent from higher dimensional Poincaré invariance
and are therefore equivalent to the cuscuta-/DBI-Galileon
interactions. The equivalence to the original form derived
in [33] and [56], respectively, shall be explicitly shown in
Appendix A.

A. DBI-Galileon global symmetry

In this section, we shall prove that the specific gener-
alized Galileon interactions found previously

Ln ¼ GnðXÞδμ1���μn−2ν1���νn−2Φ
ν1
μ1 � � �Φνn−2

μn−2 ; ð4:1Þ

with

Gn ¼ anðf þ gXÞ3−n2 ; ð4:2Þ

are the unique operators that are invariant under the
relativistic Galilean transformation

ϕ → ϕþ δϕ ð4:3Þ

δϕ ¼ cþ fvμxμ þ gϕvμ∂μϕ: ð4:4Þ

Without loss of generality, we can normalize f, g and
consider three cases: ðf;gÞ¼ð0;0Þ;ð�1;0Þ;ð1;�1Þ;ð0;�1Þ.
We shall see that these parameters f, g precisely coincide
with those appeared in the previous section.
The first case ðf; gÞ ¼ ð0; 0Þ is the shift symmetry, and

the generalized Galileon with arbitrary GnðXÞ is the most
general scalar tensor theory which enjoys the shift sym-
metry [21]. The second case ðf; gÞ ¼ ð�1; 0Þ is nonrela-
tivistic transformation, and the pure GalileonGn ¼ X is the
unique theory that enjoys the symmetry. Below we focus on
the latter two cases. In [56] it was indeed proven that the
invariance under the transformation (4.4) with ðf; gÞ ¼
ð1;�1Þ is reminiscent to a higher dimensional Poincaré
invariance in a higher-dimensional bulk. From this point of
view, the first case with ðf; gÞ ¼ ð�1; 0Þ, which is nothing

3This is not to say that such models would never develop
caustics for other types of waves.
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but the Galileon symmetry, is considered as a nonrelativ-
istic case, and the third case with ðf; gÞ ¼ ð0;�1Þ is
extreme-relativistic case introduced in [33] (see Table I).
Under the transformation (4.4), the field and its deriv-

atives transform as follows:

δð∂μϕÞ ¼ fvμ þ gvα∂μðϕ∂αϕÞ ð4:5Þ

δX ¼ 2vα∂αϕðf þ gXÞ þ gϕvα∂αX ð4:6Þ

δΦμν ¼ gvα∂α½ϕΦμν� þ gvα∂α½∂μϕ∂νϕ�; ð4:7Þ

with X ¼ ð∂ϕÞ2. For concreteness, we first start with
the case n ¼ 2 and then move to arbitrary n (with
2 ≤ n ≤ Dþ 1).

B. DBI and cuscuton

Now let us consider a theory with an arbitrary function
PðXÞ

L ¼ PðXÞ: ð4:8Þ

Under the transformation (4.4), a PðXÞmodel transforms as

δL ¼ 2P0ðXÞvα∂αϕðf þ gXÞ þ gϕvα∂αPðXÞ ð4:9Þ

¼ vα∂αϕ½2P0ðXÞðf þ gXÞ − gPðXÞ�; ð4:10Þ

where in the last line we ignored total derivatives.
Requiring δL to vanish leads to

PðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ gX

p
; ð4:11Þ

which is precisely the DBI action for ðf; gÞ ¼ ð1;�1Þ, and
the cuscuton for ðf; gÞ ¼ ð0;�1Þ. Therefore, as already
well-known, DBI is the unique PðXÞ model that enjoys the
additional global symmetry (4.4) with ðf; gÞ ¼ ð1;�1Þ. In
addition, we found that the cuscuton is the unique model
that enjoys the additional global symmetry (4.4) with
ðf; gÞ ¼ ð0;�1Þ. Notice that this result is entirely inde-
pendent of the particular configuration we choose to take
[i.e. at no point have we assumed an SOðpÞ-symmetry in
here] and independent of the number of dimensions. In
what follows we shall show that the DBI-Galileon and

the cuscuta-Galileon are the unique single scalar field
theories that have no ghost and also enjoy the global
symmetry (4.4).

C. DBI-Galileon and cuscuta-Galileon

We now turn to the generalized Galileon interactions
(4.1). As shown in [21], these are the most general single
scalar field theories that have no ghost and enjoy the shift
symmetry ϕ → ϕþ c.

1. Special relations

To simplify the derivation, it will first be convenient
to notice that the tensor Xμν

n defined in (3.4) satisfies the
following relation:

2Φα
μ∂νϕX

μν
n ¼ ∂μXX

μα
n ; ð4:12Þ

for any n ≥ 0, where we should not confused the scalar
X ¼ ð∂ϕÞ2 with the tensor Xμν

n . Indeed the relation (4.12) is
trivially satisfied for n ¼ 0 and for n ¼ 1. Now assuming
that the relation (4.12) is satisfied at order n − 1, one can
easily show that it is satisfied at order n, indeed, using (3.7),

2Φα
μ∂νϕX

μν
n ¼ 2Φα

μ∂νϕð−nΦμ
βX

βν
n−1 þΦβγX

βγ
n−1η

μνÞ
¼ −nΦα

μ∂βXX
βμ
n−1 þΦβγ∂αXXβγ

n−1

¼ ∂μXX
μα
n . ð4:13Þ

The relation (4.12) is therefore satisfied for all n.

2. Transformation

We now consider a generic generalized Galileon (3.1)
and apply the transformation (4.4),

δLn ¼ G0
nðXÞGn−2δX þ ðn − 2ÞGnðXÞXμν

n−3δΦμν: ð4:14Þ

Using the relations provided in (4.6) and (4.7), we have

δLn ¼ Gn−2½2G0
nðXÞvα∂αϕðf þ gXÞ þ gϕvα∂αGnðXÞ�

þ gGnðXÞ½ðn − 2ÞGn−2vα∂αϕþ ϕvα∂αGn−2�
þ gðn − 2ÞGnðXÞXμν

n−3v
α∂α½∂μϕ∂νϕ�: ð4:15Þ

TABLE I. Theories that enjoy the global symmetry (4.4). The last three theories are unique theories that enjoy the
shift symmetry and the additional symmetries listed. They are free from the formation of caustic singularity for
simple SOðpÞ waves.
f g Symmetry Theory GnðXÞ
0 0 Shift symmetry Generalized Galileon Arbitrary
�1 0 Shift sym. and 5D Nonrelativistic Pure Galileon X
1 �1 Shift sym. and 5D Relativistic DBI-Galileon ð1� XÞð3−nÞ=2
0 �1 Shift sym. and 5D Extreme-relativistic Cuscuta-Galileon ð�XÞð3−nÞ=2
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We first notice that the last term is a total derivative, indeed
using the relation (4.12) we have for any integers n and m,

GnðXÞXμν
m vα∂α½∂μϕ∂νϕ� ¼ 2GnðXÞvαΦα

μ∂νϕX
μν
m

¼ vαGnðXÞ∂μXX
μα
m

¼ vα∂μðGnðXÞÞXμα
m

¼ −vαGnðXÞ∂μX
μα
m ≡ 0; ð4:16Þ

where we used the notation G0
nðXÞ ¼ GnðXÞ.

Going back to the transformation (4.15) and performing
an integrations by parts we get

δLn ¼ vα∂αϕGn−2½2G0
nðXÞðf þ gXÞ þ gðn − 3ÞGnðXÞ�;

ð4:17Þ

which precisely matches the result for n ¼ 2 found in
(4.10) but is now valid for arbitrary n.
Requiring the action to be invariant under the trans-

formation (4.4) then imposes a very specific form for the
functionsGnðXÞ. Indeed since by itself vα∂αϕGn−2 is a total
derivative, for any constant vector vα, it follows that the
combination ½2G0

nðXÞðf þ gXÞ þ gðn − 3ÞGnðXÞ� should
be a constant for the action

R
Ln to be invariant. This

imposes

GnðXÞ ∼ ðf þ gXÞ3−n2 ; ð4:18Þ

up to an irrelevant constant (and for n ¼ 3, it is understood
that the solution is logarithmic). This is precisely the form
of the function obtained in (3.21) and (3.22) by requiring
the absence of caustic formation.
This establishes a link between the absence of caustic for

simple SOðpÞ-waves and the existence of an additional
global symmetry and hence the DBI-Galileon and the
cuscuta-Galileon arising from a higher dimensional
probe-brane setup. We can therefore conclude that the
pure Galileon, the DBI-Galileon and the cuscuta-Galileon
are the unique set of single field interactions which enjoy a
shift symmetry ϕ → ϕþ c and the additional symmetry
inherited from higher dimensional description, have no
Ostrogradsky ghost and are manifestly free of caustics as
far as simple SOðpÞ-plane waves are concerned. As
mentioned earlier, this is not to say that these models
are caustic-free for any type of configurations but it does
diagnose a link between the absence of caustic in some
configurations and the existence of a global symmetry, or
the link with a higher-dimensional Poincaré invariance, at
least in the case where the shift symmetry is preserved.

V. OUTLOOK

In most models with nonstandard kinetic term, the
formation of caustic in certain configurations is not
surprising as the effective metric evolves as a function

of the field and its own derivatives. While the onset of
caustic can themselves not be trusted, the existence is
certainly physically unappealing. For instance models
where caustics always inexorably appear in some physi-
cally motivated situations, (for instance during gravitational
collapse) leave little to say about themselves. Determining
precisely how generic caustics are to form in a given model
and whether one can bypass them without fine-tuning of the
initial conditions would be an ultimate goal, but in the
manuscript we took upon the lesser goal of determining
when caustics are guaranteed not to form in specific
configurations, namely when dealing with spherical simple
waves of arbitrary dimensions [or SOðpÞ waves, where
p ≤ d is an arbitrary integer and d is the number of space
dimensions].
For standard plane waves, it was shown recently in [3]

that the pure standard kinetic term with no other mod-
ifications to the kinetic term was the unique shift-
symmetric scalar field model manifestly caustic-free.
However when dealing with simple plane waves it was
recently shown in [4] that the exceptional condition
pointed out in [12] could allow for the DBI scalar field
model to avoid caustics. Interestingly the DBI model can
be seen as arising from extra dimensions using a probe-
brane approximation and enjoys an additional relativistic
global Galileon symmetry [56]. In this manuscript we
have solidified this link between the existence of a
(non/extreme-)relativistic global Galileon symmetry and
the total absence of caustics for simple spherical [or
SOðpÞ] waves of arbitrary dimensions when the shift
symmetry is preserved and have re-derived the full “pure”
Galileon, the full DBI-Galileon type of interactions, as
well as the cuscuta-Galileon as Galilean generalization of
the cuscuton, that arise from considering a probe-brane in
a Minkowski higher dimensional bulk. These results
highlight the link between the higher-dimensional picture
and the absence of caustics and could explain why the
(DBI-/cuscuta-)Galileon models are special.
We emphasize that the scalar field models presented here

will still generate caustics in some situations (for instance
when relaxing the simple wave configuration, or when
considering more generic setups and a curved background).
However the absence of caustic for simple spherical waves
make them appealing and may hint on some underlying
structure that these models preserve. The existence of
caustics per se does not invalidate a theory as a whole
as it simply indicates that new physics ought to be included
to describe the evolution of the system. It would however
be interesting to understand whether these types of theories
always leads to caustics unless very specially tuned initial
conditions are considered.
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APPENDIX: PROBE-BRANE IN HIGHER
DIMENSIONAL MINKOWSKI

When introduced in [56] from the probe-brane
approximation in higher-dimensional Minkowski, the
DBI-Galileon operators were presented in a slightly
different form. Also, the cuscuta-Galileon had similar
form when derived from probe brane in [33]. To confirm
that we are indeed dealing with exactly the same objects,
we show here the relation between their respective
expressions.
In the picture of [56], we consider a brane localized at

y ∼ ϕðxμÞ embedded within a Minkowski five dimen-
sional bulk. The probe-brane approximation assumes that
the backreaction of the brane on the five-dimensional
geometry is negligible, and we can thus keep treating the
five-dimensional bulk as Minkowski even though the
brane may carry a tension λ and an Einstein-Hilbert term
R. In addition to these contributions localized on the
brane, the five dimensional bulk carries a five-
dimensional curvature term and even possible a five-
dimensional Gauss-Bonnet term. These five-dimensional
contributions lead to Gibbon-Hawking boundary terms on
the brane, which are noting other than the trace of the
extrinsic curvature K for the five-dimensional Einstein
Hilbert term and a more complicated version for the
Gauss-Bonnet term which involves cubic order in the
extrinsic curvature. The induced metric on the brane can
be written as

gμν ¼ f1=4
�
ημν þ

g
f
∂μϕ∂νϕ

�
; ðA1Þ

where the dimensionless coefficients f and g have been
introduced to better compare with the theories we have
derived in this paper. In terms of this induced metric, we
can infer the contributions to the brane action from the
tension λ on the brane, which we denote as Sλ; the
Gibbon-Hawking boundary term on the brane associated
with the five-dimensional Einstein-Hilbert term, which
we denote as SK; the induced Einstein-Hilbert term on
the brane which we denote as SR and finally the Gibbon-

Hawking boundary term on the brane associated with the
five-dimensional Gauss-Bonnet term, which we denote
as SK . Those take the following expressions in terms
of ϕ [56]:

Sλ ∼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ gX

p
;

SK ∼
Z

d4x
�
½Φ�− ½Σ�

fþ gX

�
;

SR ∼
Z

d4x

� ½Φ�2− ½Φ2�
ðfþ gXÞ1=2þ

2ð½Σ2�− ½Φ�½Σ�Þ
ðfþ gXÞ3=2

�
;

SGB∼
Z

d4x

�
1

fþ gX
ð½Φ�3þ 2½Φ3�− 3½Φ2�½Φ�Þ

þ 3

ðfþ gXÞ2 ð2½Φ�½Σ2�− 2½Φ3�− ½Φ�½Σ�2þ½Φ�½Σ2�Þ
�
;

ðA2Þ

where we have use the notation X ¼ ð∂ϕÞ2, Φμν ¼
∂μϕ∂νϕ, Σn

μν ¼ ∂μϕ∂αϕΦnα
ν and where square brackets

represent traces of tensors. All the raising and lowering
of indices is taken with respect to the four-dimensional
Minkowski metric ημν.
Below we show these invariants are indeed equivalent to

generalized Galileon with (3.21) and (3.22), which as well
as the pure Galileon are obtained as the unique set that is
free from caustics as far as simple SOðpÞ waves are
concerned which were given in Sec. III by

Ln ¼ GnðXÞGn−2½Φ�; for n ≥ 2; ðA3Þ

with

Gk½Φ� ¼ δμ1���μkν1���νkΦ
ν1
μ1 � � �Φνk

μk ; ðA4Þ

and to satisfy the caustic-free conditions for simple SOðpÞ
wave configurations, it was shown in Sec. III that the
functions GnðXÞ had to take the following form [see
Eqs. (3.20), (3.21) and (3.22)]:

GnðXÞ ∼ ðf þ gXÞð3−nÞ=2; for g ≠ 0; ðA5Þ

where the log is understood for n ¼ 3 and GnðXÞ ¼ X
for g ¼ 0.
Focusing first on the case where g ≠ 0, for Sλ, we

directly see that Sλ is equivalent to the caustic-free
Lagrangian derived in (3.20), (3.21) and (3.22) depending
on the respective values of f and g for n ¼ 2.
For SK, we see the following correspondence (ignoring

the boundary terms in four dimensions),
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SK ∼
Z

d4x

�
□ϕ −

∂μ∂νϕ∂μϕ∂νϕ

f þ gX

�

∼
Z

d4x
∂μX∂μϕ

f þ gX

∼
Z

d4x∂μ logðf þ gXÞ∂μϕ

∼
Z

d4x logðf þ gXÞG1½Φ�: ðA6Þ

For SR, it is first convenient to notice that

Z
d4x

½Φ�2 − ½Φ2�
ðf þ gXÞ1=2 ¼

Z
d4x

½Φ�½Σ� − ½Σ2�
ðf þ gXÞ3=2 : ðA7Þ

From these relations we can easily show that SR corre-
sponds to the same operator found from the caustic-free
condition,

SR∼
Z

d4x

� ½Φ�2− ½Φ2�
ðfþgXÞ1=2þ2

½Σ2�− ½Φ�½Σ�
ðfþgXÞ3=2

�

∼
Z

d4x
½Φ�2− ½Φ2�
ðfþgXÞ1=2∼

Z
d4xðfþgXÞ−1=2G2½Φ�: ðA8Þ

The same goes through for the term SGB after noticing
that

Z
d4x

G3½Φ�
f þ gX

∼
Z

d4x
1

ðf þ gXÞ2 ð2½Φ�½Σ2� − 2½Σ3�

− ½Φ�2½Σ� þ ½Φ2�½Σ�Þ; ðA9Þ

so that the term SGB can be written as

SGB ∼
Z

d4x
G3½Φ�
f þ gX

; ðA10Þ

hence matching the relation (3.21) and (3.22) for n ¼ 5.
We could of course reproduce the procedure in arbitrary
dimensions and recover all the operators found in (3.21)
and (3.22) by allowing the higher order Lovelock invari-
ant both on the brane and in the bulk, with their respective
boundary terms on the brane. It is clear that higher
Lovelock invariants come along with more powers of
curvatures, i.e. higher powers of Φμν as well as more
powers of inverse metric, i.e. higher powers ðf þ gXÞ−1=2
leading to precisely the correct scaling in terms of
ðf þ gXÞð3−nÞ=2 as found in (3.21) and (3.22).
The case where g → 0 can be understood as the non-

relativistic limit of the previous DBI-Galileon Lagrangians
and were shown in [56] to lead to the standard pure
Galileons, which is precisely what was found in (3.20)
when g ¼ 0.
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