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Cautious Model Predictive Control using Gaussian

Process Regression
Lukas Hewing, Juraj Kabzan and Melanie N. Zeilinger

Abstract—Gaussian process (GP) regression has been widely
used in supervised machine learning due to its flexibility and
inherent ability to describe uncertainty in function estimation.
In the context of control, it is seeing increasing use for modeling
of nonlinear dynamical systems from data, as it allows the direct
assessment of residual model uncertainty. We present a model
predictive control (MPC) approach that integrates a nominal
system with an additive nonlinear part of the dynamics modeled
as a GP. We describe a principled way of formulating the chance
constrained MPC problem, which takes into account residual un-
certainties provided by the GP model to enable cautious control.
Using additional approximations for efficient computation, we
finally demonstrate the approach in a simulation example, as
well as in a hardware implementation for autonomous racing of
remote controlled race cars bluewith fast sampling times of 20 ms,
highlighting improvements with regard to both performance and
safety over a nominal controller.

Index Terms—Model Predictive Control, Gaussian Processes,
Learning-based Control, Model Learning, Autonomous Racing

I. INTRODUCTION

Many modern control techniques depend on accurate model

descriptions to enable safe and high performance control.

Identifying these models, especially for nonlinear systems,

is a time-consuming and complex endeavor. It is, however,

often possible to derive an approximate system model, e.g. a

linear model with adequate accuracy close to some operating

point, or a simple model description from first principles.

In addition, measurement data from previous experiments or

during operation is often available, which can be exploited to

enhance the system model and controller performance. In this

paper, we present a model predictive control (MPC) approach,

which improves such a nominal model description from data

using Gaussian Processes (GPs) to safely enhance performance

of the system.

The appeal of Gaussian Process regression for model learn-

ing stems from the fact that it requires little prior process

knowledge and directly provides a measure of residual model

uncertainty. In predictive control, GPs were successfully ap-

plied to improve control performance when learning periodic

time-varying disturbances [1]. The task of learning the system

dynamics as opposed to disturbances, has first been presented

in [2]. In [3] a piecewise-linear approximate explicit solution

for the GP-based MPC problem of a combustion plant was
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presented. Application of a one-step MPC with a GP model to

a mechatronic system was demonstrated in [4] and the use for

fault-tolerant MPC was presented in [5]. An application to high

performance driving using a sparse spectrum approximation

of the GP was shown in [6] and constrained tracking MPC

for robotic applications in [7], [8], where uncertainty of the

GP prediction is taken into account using confidence bounds.

Data efficiency of these formulations for learning controllers

was demonstrated in [9].

Unlike most previous approaches, we specifically consider

a hybrid model structure by combining a nominal system

description, which allows for rudimentary system operation

in order to collect data, with an additive GP part that can be

of different dimensionality and is used for learning specific

dynamical effects. The paper makes the following contribu-

tions. We discuss approximate propagation of system uncer-

tainty and the principled formulation of chance constraints

in terms of probabilistic reachable sets [10], resulting in a

deterministic approximation of the stochastic optimal control

problem suitable for numerical optimization. The nominal

system description allows for reducing the GP model learning

to a subspace of states and inputs, reducing the dimensionality

of the machine learning task. By introducing dynamic sparse

GPs based on inducing points as an approximation technique

tailored to MPC, we further reduce the computational burden

of the approach. Together, this results in an MPC formulation

which allows for the control of high performance systems at

sampling rates of few milliseconds, which we demonstrate

in two application examples. The first is a simulation of

an autonomous underwater vehicle, illustrating key concepts

and advantages in a simplified setting. Second, we present

a hardware implementation for autonomous racing of remote

controlled cars, showing the real-world feasibility of the ap-

proach for complex high performance control tasks. To the best

of our knowledge this is the first hardware implementation of a

Gaussian Process-based predictive control scheme to a system

of this complexity at sampling times of 20 ms.

II. PRELIMINARIES

A. Notation

The i-th element of a vector x is denoted by [x]i. Similarly,

[M ]ij denotes element ij of a matrix M , and [M ]·i, [M ]i·
its i-th column or row, respectively. We use diag(x) for

a diagonal matrix with entries given by the vector x. The

quadratic form xTMx is denoted by ‖x‖2M and ∇f(z)|z̄ is

the gradient of f evaluated at z̄. The Pontryagin set difference

is denoted A ⊖ B = {a |a+ b ∈ A ∀b ∈ B}. A normally
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distributed vector x with mean µ and variance Σ is given

by x ∼ N (µ,Σ) and the expected value of x is E(x). We

use Pr(E), (Pr(E |A)) to refer the probability of an event E

(given A). Realized quantities during closed loop control are

time indexed using parenthesis, i.e. x(k), while quantities in

prediction use subscripts, e.g. xi is the predicted state i-steps

ahead.

B. Problem formulation

We consider the control of dynamical systems that can be

represented by a discrete-time model of the form

x(k+1) = f(x(k), u(k))+Bd(g(x(k), u(k))+w(k)) , (1)

where x(k) ∈ R
nx is the system state and u(k) ∈ R

nu the

control inputs at time k. The model is composed of a known

nominal part f and additive term g that describes initially

unknown dynamics of the system, which are to be learned

from data and are assumed to lie in the subspace spanned by

Bd. We consider i.i.d. process noise w(k) ∼ N (0,Σw), which

is spatially uncorrelated, i.e. has diagonal variance matrix

Σw = diag([σ2
1 , . . . , σ

2
nd
]). We assume that both f and g are

differentiable functions. The system is subject to state and

input constraints Xk ⊆ R
nx , Uk ⊆ R

nu , respectively, which

are formulated as chance constraints

Pr(x(k) ∈ Xk) ≥ px ,

Pr(u(k) ∈ Uk) ≥ pu ,

where px, pu are the associated satisfaction probabilities.

C. Gaussian Process Regression

We use Gaussian processes regression to infer the noisy

vector-valued function g(x, u) in (1) using M data points

generated from previously collected measurements of states

and inputs xj , uj as

yj = B
†
d (xj+1 − f(xj , uj)) = g(xj , uj) + wj ,

where B
†
d is the Moore-Penrose pseudo-inverse. Note that the

measurement noise on the data points wj corresponds to the

process noise in (1). With zj := [xTj , u
T

j ]
T, the data set is

D = {y = [y0, . . . , yM ]
T ∈ R

M×nd ,

z = [z0, . . . , zM ]
T ∈ R

M×nz} .

Each output dimension is learned individually, meaning that

we assume the components of each yj to be independent, given

the input data zj . Specifying a GP prior on g in each output

dimension a ∈ {1, . . . , nd} with kernel ka(·, ·), prior mean

function ma(·) and conditioning on the data D results in a

predictive posterior distribution in each dimension a at a test

point z which is Gaussian with mean and variance

µd
a(z) = Ka

zz(K
a
zz

+ Iσ2
a)

−1
[y]·a , (2a)

Σd
a(z) = Ka

zz −Ka
zz(K

a
zz

+ Iσ2
a)

−1
Ka

zz . (2b)

Here Ka is the Gram matrix, i.e. [Ka
zz
]ij = ka(zi, zj),

[Ka
zz]j = ka(zj , z), Ka

zz = (Ka
zz)

T
, Ka

zz = ka(z, z) and

ma(z) = [ma(z0), . . . ,m
a(zM )]

T
. The choice of kernel

function ka and its parameterization is the determining factor

for the inferred distribution of g and is typically specified

using prior process knowledge and optimization [11], e.g.

by optimizing the likelihood of the observed data points.

Throughout this paper we consider the squared exponential

kernel function

ka(zi, zj) = σ2
f,a exp

(

−
1

2
(zi − zj)

T
L−1
a (zi − zj)

)

, (3)

where La is a positive diagonal length-scale matrix and σ2
f,a

the signal variance. While it is straightforward to use any

other (differentiable) kernel function, we have observed good

results in practice with this commonly employed kernel and

maximum likelihood hyperparameter tuning.

The resulting multivariate GP approximation of the un-

known function g(z) is then given by stacking the individual

output dimensions, i.e.

d(z) ∼ N
(

µd(z),Σd(z)
)

(4)

with µd = [µd
1, . . . , µ

d
nd
]T and Σd = diag([Σd

1, . . . ,Σ
d
nd
]T).

Evaluating mean and variance in (2) has cost O(ndnzM)
and O(ndnzM

2), respectively and thus scales with the number

of data points. For large amounts of data or fast real-time

applications this can limit the use of GP models.

D. Sparse Gaussian Processes

Various approximation techniques have been proposed to

reduce the computational complexity of GPs, for instance

sparse spectrum approximation [12], which was shown in the

context of MPC in [6]. In this paper, we make use of sparse

GPs using inducing inputs [13], for which we present an exten-

sion tailored to MPC in Section III-B. These approximations

make use of inducing targets yind, inputs zind and conditional

distributions to approximate the resulting prediction. Of the

many variants available, we apply the frequently used Fully

Independent Training Conditional (FITC) [14]. Given a selec-

tion of inducing inputs zind and using the shorthand notation

Qa

ζζ̃
:= Ka

ζzind
(Ka

zindzind
)
−1

Ka

zindζ̃
the approximate posterior

distribution is given by

µ̃d
a(z) = Qa

zz(Q
a
zz

+ Λ)
−1

[y]·a , (5a)

Σ̃d
a(z) = Ka

zz −Qa
zz(Q

a
zz

+ Λ)
−1

Qzz (5b)

with Λ = diag(Ka
zz

− Qa
zz

+ Iσ2
a). Several of the matrices

used in (5) can be precomputed, making the evaluation com-

plexity independent of the number of original data points.

With M̃ being the number of inducing points, this results

in O(ndnzM̃) and O(ndnzM̃
2) for the predictive mean and

variance, respectively.

There are numerous options for selecting the inducing

inputs, e.g. heuristically as a subset of the original data

points, by treating them as hyperparameters and optimizing

over their location [14], or letting them coincide with test

points [15], which is often referred to as transductive learning.

In Section III-B we make use of such transductive ideas

and propose a dynamic selection of inducing points, with a

resulting local approximation tailored to the predictive control

task.
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III. MPC CONTROLLER DESIGN

We consider the design of an MPC controller for system (1)

using the GP approximation d of the unknown function g:

xi+1 = f(xi, ui) +Bd (d(xi, ui) + wi) . (6)

At each time step, the GP approximation evaluates to a

stochastic distribution according to the residual model uncer-

tainty and process noise, which is then propagated forward

in time. A stochastic MPC formulation allows the principled

treatment of chance constraints by imposing a prescribed

maximum probability of constraint violation. The resulting

stochastic optimal control problem is defined as

min
Π

E

(

lf (xN ) +

N−1
∑

i=0

li(xi, ui)

)

(7a)

s.t. xi+1 = f(xi, ui) +Bd(d(xi, ui) + wi) (7b)

ui = πi(xi) (7c)

Pr(xi+1 ∈ Xi+1) ≥ px (7d)

Pr(ui ∈ Ui) ≥ pu (7e)

x0 = x(k) (7f)

for all i = 0, . . . , N−1 with terminal cost lf (xN ) and stage

cost li(xi, ui), where the optimization is carried out over

a sequence of input policies Π = {π0(x), . . . , πN−1(x)}.

Optimization over feedback policies Π(x) instead of an input

sequence can effectively reduce the predicted uncertainty over

the prediction horizon, but is in general an infinite dimensional

optimization problem and not computationally tractable. We

restrict the policy class to linear state feedback controllers

πi(xi) = Ki(µ
x
i − xi) + µu

i ,

where µx
i is the predicted mean of the state distribution.

Online optimization of the feedback gains Ki is typically

computationally prohibitive, such that we pre-select Ki and

optimize over the mean of the applied input µu
i . An equivalent

choice is given by linear disturbance feedback [16], which

is popular in particular for linear systems, where it allows

for convex optimization over the feedback gains [17]. The

adequate choice of linear feedback gains Ki is generally a

hard problem, especially if the system dynamics are highly

nonlinear. A useful heuristic is to consider a linearization of

the system dynamics around an approximate prediction trajec-

tory, which in MPC applications is typically available using

the solution trajectory of the previous time step. Feedback

gains for the linearized system can be derived e.g. by solving

a finite horizon LQR problem [18]. For mild or stabilizing

nonlinearities, a fixed controller gain Ki = K can be chosen

to reduce computational burden, or the linear feedback can be

omitted at the potential cost of added conservatism.

Due to the stochastic prediction model, optimization prob-

lem (7) is computationally intractable. In the following sec-

tions, we present techniques for deriving an efficiently solvable

approximation. Specifically, we show techniques for simple

approximate propagation of the system uncertainties in terms

of mean and variance and present a framework for reformu-

lating chance constraints deterministically, enabling the use of

standard nonlinear programming solvers.

A. Uncertainty Propagation

Because of stochastic process noise and the representation

by a GP model, future predicted states result in stochastic

distributions. Evaluating the posterior of a GP from an input

distribution is generally intractable and the resulting distribu-

tion is not Gaussian [19]. While under certain assumptions on

g, some strict over-approximations of resulting confidence sets

exist [20], they are typically conservative and computationally

demanding. We focus instead on computationally cheap and

practical approximations at the cost of losing strict guarantees.

Following a common approach, state, control input and

nonlinear disturbance are approximated as jointly Gaussian

distributed at each time step. Using a first-order Taylor ap-

proximation of the nominal dynamics f and posterior mean

function (2), similar to extended Kalman filtering, this permits

simple update equations for the state mean and variance based

on affine transformations of the Gaussian distributions. This

provides a good trade-off between approximation accuracy and

computational complexity, resulting in

µx
i+1 = f(µx

i , µ
u
i ) +Bdµ

d(µx
i , µ

u
i ) , (8a)

Σx
i+1 = ÃiΣ

x
i Ã

T

i +Bd(Σ
d(µx

i , µ
u
i ) + Σw)BT

d (8b)

with Ãi = ∇(f(x, µu
i +Kix) +Bdµ

d(x, µu
i +Kix))|µx

i
, while

the input variance is given by Σu
i = KiΣ

x
i K

T

i .

Due to the GP dynamics, the computational complexity

when evaluating these predictions scale directly with the input

and output dimensions, as well as the number of data points

and thus becomes expensive to evaluate in high dimensional

spaces. This presents a challenge for predictive control ap-

proaches with GP models, which in the past have mainly

focused on relatively small and slow systems [2], [5]. Using

a nominal model, however, it is possible to consider GPs that

depend on only a subset of states and inputs, such that the

computational burden can be significantly reduced. This is due

to a reduction in the effective input dimension nz , and more

importantly due to a reduction in necessary training points M

for learning in a lower dimensional space.

Remark 1: With slight notational changes the presented

approximation similarly applies to prior mean and kernel

functions that are functions of a subset of states and inputs.

A further significant reduction in computational complexity

can be achieved by employing sparse GP approaches as

outlined in Section II-D, for which we present a variant

tailored to predictive control in the following.

B. Dynamic Sparse GPs for MPC

Inducing points in sparse GP approximations are typically

chosen to optimize predictive quality globally, i.e. on the entire

domain of possible test points. Given knowledge about future

test points, however, one can instead aim to enhance the pre-

diction quality locally, resulting in good approximations in a

specific regions of interest. In MPC, some knowledge of these

test points is typically available in terms of an approximate

trajectory X̃ , Ũ in the state-action space. This trajectory can,

e.g., be given by the reference signal or a previous solution

trajectory of the MPC problem, since solution trajectories

in MPC typically do not change drastically between time
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steps, given a reasonably long prediction horizon and fast

sampling times. Ideally, the inducing inputs would therefore be

optimized to maximize predictive quality on the approximate

trajectory X̃ , Ũ , which, however, is not computationally

feasible in the targeted millisecond sampling times. Instead,

we place inducing inputs heuristically along the approximate

trajectory, resulting in a computationally cheap high fidelity

local approximation around X̃ , Ũ .

To illustrate the procedure, we consider a simple double

integrator system controlled by an MPC. Fig. 1 shows the

variance Σd(x) of a GP trained on the system states. Addi-

tionally, two successive trajectories from an MPC algorithm

are displayed. The solid red line is the current prediction, while

the dashed line is the prediction trajectory from the previous

iteration, which we use as X̃ , Ũ . The plot on the left displays

the original GP, with data points marked as crosses, whereas

on the right we have the sparse approximation resulting from

placing inducing points along X̃ , Ũ , indicated by circles. The

figure illustrates how the full GP and the sparse approximation

match closely along the predicted trajectory of the system,

while approximation quality far away from the trajectory

deteriorates. Since current and previous trajectory are similar,

however, local information is sufficient for computation of the

MPC controller.

C. Chance Constraint Formulation

The tractable Gaussian approximation of the state and input

distribution over the prediction horizon in (8) can be used

to approximate the chance constraints in (7d) and (7e). We

reformulate the constraints on state and input w.r.t. their means

µx, µu using constraint tightening based on the respective

errors exi = µx
i − xi and eui = Ki(µ

x
i − xi). For this purpose,

we make use of probabilistic reachable sets [10], an extension

x1

x
2

x1

x
2

2 4 6 8 10
0

0.2

0.4

i

√

Σ
d
(x

i
)

full GP

sparse GP

Fig. 1: Illustration of dynamic sparse approximation [21].

Contour plot of the posterior variance of the full GP (top

left) and dynamic sparse approximation (top right) with data

points as black crosses. Red lines show trajectories planned

by an MPC, while the dashed lines show the prediction at the

previous time step used in the approximation, with inducing

points indicated by black circles. The bottom plot shows the

respective variances along the planned trajectory.

of the concept of reachable sets to stochastic systems, which

is related to probabilistic set invariance [22], [23].

Definition 1 (Probabilistic i-step Reachable Set): A set Ri

is said to be a probabilistic i-step reachable set (i-step PRS)

of probability level p if

Pr(ei ∈ Ri | e0 = 0) ≥ p .

Given an i-step PRS Rx
i of probability level px for the state

error exi and similarly Ru
i for the input eui , we can define

tightened constraints on µx
i and µu

i as

µx
i ∈ Zi = Xi ⊖Rx

i , (9a)

µu
i ∈ Vi = Ui ⊖Ru

i , (9b)

where ⊖ denotes the Pontryagin set difference. Satisfaction

of the tightened constraints (9) for the mean thereby implies

satisfaction of the original constraints (7d) and (7e), i.e. when

µx
i ∈ Z we have Pr(xi = µx

i +exi ∈ X ) ≥ Pr(exi ∈ Rx) ≥ px.

Under the approximation of a normal distribution of xi,

the uncertainty in each time step is fully specified by the

variance matrices Σx
i and Σu

i . The sets can then be computed

as functions of these variances, i.e. Rx(Σx
i ) and Ru(Σx

i ).
We present two specific formulations for half-space and 2-

norm ball constraints in the following, concentrating on state

constraints, as input constraints can be treated analogously.

1) Half-space constraints: Consider the constraint set Xi

given by a single half-space constraint X hs
i :=

{

x
∣

∣hTi x ≤ bi
}

,

hi ∈ R
n, bi ∈ R+. The marginal distribution of the error in

the direction of the half-space hTi e
x
i ∼ N (0, hTiΣ

x
i hi) allows

the use of the quantile function of a standard Gaussian ran-

dom variable φ−1(px) at the needed probability of constraint

satisfaction px, such that

Rx(Σx
i ) :=

{

e

∣

∣

∣

∣

hTi e ≤ φ−1(px)
√

hTiΣ
x
i hi

}

is an i-step PRS of probability level px. In this case, evaluating

the Pontryagin difference in (9) is straightforward and we can

directly define the tightened constraint on the state mean as

Zhs
i (Σx

i ) :=

{

z

∣

∣

∣

∣

hTi z ≤ bi − φ−1(px)
√

hTiΣ
x
i hi

}

.

Remark 2: A tightening for slab constraints

X sl =
{

x
∣

∣|hTi x| ≤ bi
}

can be similarly derived as

Zsl
i (Σx

i ) :=

{

z

∣

∣

∣

∣

|hTi z| ≤ bi − φ−1

(

px+1

2

)

√

hTiΣ
x
i hi

}

.

2) 2-Norm Ball Constraints: Consider the constraint set Xi

given as a norm ball X b
i := {x |‖x− xc

i‖2 ≤ ri}, r ∈ R+.

Based on the approximate Gaussian distributions we define

Rell(Σx
i ) =

{

e
∣

∣

∣
(eT(Σx

i )
−1

e ≤ χ2
n(px)

}

,

where χ2
n(px) is the quantile function of the chi-squared

distribution with n degrees of freedom. In order to simplify

constraint tightening of X b
i , we define an outer approximation

by a ball Rb ⊇ Rell as

Rb(Σx
i ) =

{

e

∣

∣

∣

∣

‖e‖ ≤
√

λmax(Σx
i )χ

2
n(px)

}

,
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where λmax(·) is the maximum eigenvalue. The necessary

constraint tightening can then directly be expressed as

Zb
i (Σ

x
i ) = Xi ⊖Rb(Σx

i ) = {z |‖z − xc
i‖ ≤ r̃i (Σ

x
i )} , (10)

where r̃i
(

ΣXY
i

)

= ri −
√

χ2
n(px)λmax(Σx

i ).

D. Tractable MPC Formulation with GP Model

Given the approximate normal distribution of state and

input, many cost functions as in (7a) can be evaluated using

mean and variance information. The most prominent example

for tracking tasks is a quadratic cost on states and inputs,

further examples include a saturating cost [24], risk sensitive

costs [25] or radial basis function networks [9]. In addition,

evaluating the cost function l at the mean of state and input

can be a computationally cheap approximation of (7a). We

refer to an (approximate) evaluation of the expected cost as

E (li(xi, ui)) = ci(µ
x
i , µ

u
i ,Σ

x
i ) ,

and formulate a resulting tractable deterministic approximation

of the MPC problem (7) as

min
{µu

i
}

cf (µ
x
N ,Σx

N ) +
N−1
∑

i=0

ci(µ
x
i , µ

u
i ,Σ

x
i ) (11a)

s.t. µx
i+1 = f(µx

i , µ
u
i )+Bdµ

d(µx
i, µ

u
i ) (11b)

Σx
i+1 = ÃiΣ

x
i Ã

T

i +Bd(Σ
d(µx

i, µ
u
i )+Σw)BT

d (11c)

µx
i+1 ∈ Z(Σx

i+1) (11d)

µu
i ∈ V(Σx

i ) (11e)

µx
0 = x(k),Σx

0 = 0 (11f)

for i = 0, . . . , N−1. The resulting control law is obtained in a

receding horizon fashion as κ(x(k)) = µu∗
0 , where µu∗

0 is the

first element of the optimal control sequence {µu∗
0 , . . . , µu∗

N }
obtained from solving (11) at state x(k).

The presented formulation of the MPC problem with a GP-

based model results in a non-convex optimization problem.

Assuming twice differentiability of kernel and prior mean

function, second-order derivative information of all quantities

is, however, available. Problems of this form can typically be

solved to local optima using sequential quadratic programming

(SQP) or nonlinear interior-point methods [26].

In the following, we demonstrate the proposed algorithm

and its properties using one simulation and one experimental

example. The first is an illustrative example of an autonomous

underwater vehicle (AUV) which, around a trim point, is well

described by nominal linear dynamics but is subject to nonlin-

ear friction effects at larger deviations from the trim point. The

second example is a hardware implementation demonstrating

the approach for autonomous racing of miniature race cars,

which are described by a nonlinear nominal model. While

model complexity and fast sampling times require additional

approximations in this second example, we show that we can

leverage key benefits of the proposed approach in this highly

demanding real-world application.

IV. ONLINE LEARNING FOR AUTONOMOUS UNDERWATER

VEHICLE

We consider depth control of an AUV described by a

nonlinear continuous-time model at constant surge velocity as

ground truth and for simulation purposes [27]. Around a trim

point of purely horizontal movement, the states and input of

the system are

[x]
1

pitch angle relative to trim point [rad],

[x]
2

heave velocity relative to trim point [m/s],

[x]
3

pitch velocity [rad/s],

u stern rudder deflection around trim point [rad].

We assume a given approximate linear system model that is

discretized with sampling time Ts = 100ms resulting in

x(k+1) = Ax(k) +Bu(k) +Bd (g(x(k)) + w(k)) ,

which is in the form of (1). The nonlinearity results from

friction effects and therefore only affects the (continuous-time)

velocity states, i.e.

Bd =





0
T 2

s

2

Ts 0
0 Ts



 , g(x(k)) = g([x(k)]
2
, [x(k)]

3
) : R2 → R

2 .

Note that the eigenvalues of A are given by {1.1, 1.03, 0.727},

i.e. the linear system has two unstable modes.

In the considered scenario, the goal is to track reference

changes from the original zero set point to a pitch angle of

30°, back to zero and then to 45°. We furthermore consider a

safety state constraint on the pitch angle of at least 10° below

the reference, as well as input constraints corresponding to

±20° rudder deflection. In this example, we treat the case of

online learning, that is we start without any data about the

nonlinearity g, collect measurement data during operation and

enhance performance online.

A. GP-based Reference Tracking Controller

GP data D = {y, z} is generated by calculating the devia-

tion of the linear model from the measured states, as described

in Section II-C, where the input data is reduced to the velocity

states zj = [[xj ]2, [xj ]3]
T. Data is continuously updated during

the closed-loop run. Specifically, we consider a new data

point every 5 time steps, and keep track of 30 data points

by discarding the oldest when adding a new point. For this

conceptual example, we do not make use of the dynamic sparse

approximation in Section III-B. The training data is initialized

with 30 data points of zero input and zero output. We employ

a squared exponential kernel (3) for both output dimensions

with fixed hyperparameters L1 = L2 = diag([0.35, 0.15]T),
and variances σ2

f,1 = 0.04 and σ2
f,2 = 0.25.

We use a quadratic stage cost, with weight matrices Q =
diag([1, 0, 10]T), R = 20 and a prediction horizon N = 35
to track a pitch angle reference. The terminal cost P is

chosen according to the solution of the associated discrete-

time algebraic Riccati equation, i.e. the LQR cost. As ancillary

linear controller Ki, an infinite horizon LQR control law

based on the linear nominal model is designed using the same

weights as in the MPC and used in all prediction steps i. This
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Fig. 2: Simulation results of GP-based MPC for autonomous

underwater vehicle in an online learning scenario. GP-based

MPC (top) and linear stochastic MPC (bottom). The solid gray

line shows the reference value of the pitch angle, dashed in

the respective color the state and input constraints.

stabilizes the linear system and reduces uncertainty growth

over the prediction horizon. Constraints are introduced based

on Remark 2 considering a maximum probability of constraint

violation of 2.28%, corresponding to a 2-σ confidence bound.

The MPC problem is solved using FORCES Pro [28], [29].

The resulting closed-loop trajectory, during which the sys-

tem learns from online data, is shown in the top plot of

Fig. 2. For comparison, we run the same simulation with a

linear stochastic MPC formulation, subject to the prior model

uncertainty, i.e. considering the nominal linear system subject

to increased noise of variance Σw+diag([σ2
f,1, σ

2
f,2]

T) instead

of the learned nonlinear GP term. We use the same cost

function and chance constraint formulation in the stochastic

MPC formulation, the results of which are shown in the

bottom plot of Fig. 2. The simulations demonstrate improved

performance of the GP-based MPC over the linear stochastic

MPC, while simultaneously improving constraint satisfaction.

Under the chosen uncertainty description, the constraint on

minimum pitch angle is violated with the linear stochastic

MPC control law, which does not account for the nonlinear

friction effects during this large reference change. When

pitching back down, improved performance under the GP-

based MPC can be observed. In particular, compared to the

linear stochastic MPC, the GP-based formulation keeps less

‘safety distance’ to the constraints, since the friction terms

are accurately identified and residual model uncertainty is

small. The GP-based formulation therefore allows for im-

proved control performance with reduced conservatism, while

maintaining safety of the AUV.

V. AUTONOMOUS RACING

As a second example we consider an autonomous racing

scenario, in which the goal is to drive a car around a

track as quickly as possible, while keeping the vehicle safe,

i.e. while avoiding collision with the track boundaries. The

controller is based on a model predictive contouring control

formulation [30], [31] which has been applied to the problem

of autonomous racing in [32]. Preliminary simulation results

were published in [21]. This hardware experiment does not

Fig. 3: Illustration of the constraint tightening procedure.

The effective track radius is adjusted based on the predicted

position uncertainty.

allow for direct access to state measurements and the controller

and learning formulation is instead based on state estimates

obtained from a localization system using an infrared camera

and extended Kalman filtering. Details on the state estimation

can be found in [32].

A. Car Dynamics

The race cars are modeled by continuous-time nominal

dynamics ẋ = f c(x, u) obtained from a bicycle model with

nonlinear tire forces given by a simplified Pacejka tire model.

This results in states and inputs

x = [X,Y,Φ, vx, vy, ω]
T, u = [p, δ]T ,

with position xXY = [X,Y ]
T

, orientation Φ, longitudinal and

lateral velocities vx and vy , and yaw rate ω. The inputs to the

system are the motor duty cycle p and the steering angle δ.

For details on the system modeling please refer to [21], [32].

For use in the MPC formulation, we discretize the sys-

tem using a Runge-Kutta method with a sampling time of

Ts = 20ms. We add g(x, u) capturing unmodeled dynamics,

as well as additive Gaussian noise w. Due to the structure of

the nominal model, we assume that the model uncertainty, as

well as the process noise w, only affect the velocity states vx,

vy and ω of the system, and that the unmodeled dynamics do

not depend on the position states, i.e.

Bd = [0 I]T, g(x, u) = g(vx, vy, ω, p, δ) : R
5 → R

3 .

The system is subject to input constraints U , i.e. the steering

angle is limited to lie in ±δmax and the duty cycle has to lie

in [−0.1, 1], where the negative values correspond to braking.

B. GP-based Racing Controller

We consider a race track given by its centerline and a fixed

track width. The centerline is described by a piecewise cubic

spline polynomial, which is parameterized by the path length

Θ. Progress along the track is characterized by Θi, which

is introduced as an additional state and enters the considered

cost function linearly, encouraging a maximization of progress

along the track. Given a Θi, we can evaluate the corresponding

centerline position C(Θ) = [Xc(Θ), Yc(Θ)]
T

, such that the

track constraint can be expressed as

X (Θi) :=
{

xXY
∣

∣

∥

∥xXY − C(Θi)
∥

∥ ≤ r
}

⊂ R
2 ,

where r is half the track width. Making use of (10), we

arrive at tightened constraints on the mean position µXY
i ∈
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Fig. 4: Comparison of race lines with nominal and GP-based controller. The red cross is the starting point of the race car.

Z(θi,Σ
XY
i ). Fig. 3 exemplifies the predicted evolution of the

cars position and the resulting constraint tightening.

The state is extended by previously applied inputs and

large input changes are additionally penalized. The prediction

horizon is chosen as N = 30 and we formulate the chance

constraints (10) with χ2
2(px) = 1. We do not make use of an

ancillary controller, i.e. Ki = 0, and tighten constraints only

for the first 20 prediction steps, applying the constraints to the

mean for the remainder of the prediction horizon, similar to the

method used in [33]. We reduce computation times by making

use of the dynamic sparse approximations with 10 inducing

points as outlined in Section III-B, placing the inducing inputs

regularly along the previous solution trajectory. To allow for

real-time computation at 20ms sampling times, two additional

approximations are applied. The variance dynamics are pre-

evaluated based on the previous MPC solution, which enables

the pre-computation of state constraints (10) and avoids opti-

mization over the variances. Additionally, we neglect the mean

prediction of the lateral velocity error since the state is difficult

to estimate reliably and the error generally small, such that

we observed no improvement when including it in the control

formulation.

C. Results

We start out racing the car using the nominal controller, i.e.

the controller without an added GP term. Since the nominal

model is not well tuned, driving behavior is somewhat erratic

and there are a number of small collisions with the track

boundaries, as can be observed in Fig. 4a. Using the collected

data, we train the GP error model d using 325 data points. We

infer the hyperparameters in (3) as well as the noise level Σw

using maximum likelihood optimization.

The resulting race lines of 20 laps with the GP-based

controller are displayed in Figure 4b, generally showing a

much more consistent and safe racing behavior. In particular,

it can be seen that almost all of the systematic and persistent

problems in the race line of the nominal controller can be

alleviated. Fig. 5 shows the encountered dynamics error in

the yaw-rate and the predicted error during the first lap with

the sparse GP-based controller. Mean and residual uncertainty

predicted by the GP matches the encountered errors well. It

is important to note that the apparent volatility in the plot is

not due to overfitting, but is instead due to fast changes in the

input and matches the validation data, i.e. the measured errors.

To quantify performance of the proposed controllers we

compare in Table I average lap time T l, minimum lap time

Tl,min as well as the average 2-norm error in the system dy-

namics ‖e‖, i.e. the difference between the mean state after one

prediction step and the realized state, e(k+1) = µx
1 −x(k+1).

We see that the GP-based controller is able to improve

significantly on all these quantities, with an average lap time

improvement of 0.71 s, or almost 7%, which constitutes a large

improvement in the considered racing task. This is in part

due to the improved system model, as evident in the average

dynamics error ‖e‖, but also due to the cautious nature of

the controller, which helps to further reduce collisions and

large problems in the race line. Due to the cautious nature, the

minimum lap time gains are slightly less pronounced. In fact,

the nominal controller consistently displays higher top speeds.

Often times, however, this leads to significant problems at

the brake point to a slow corner. We evaluate the effect of

the sparse dynamic approximation on the prediction quality

by computing the predicted error under a full GP on the

recorded data as ‖ef‖ = 0.33 and find that the increase in

error when using the proposed sparse approximation is around

3%. Computation times are reported as average solve times T c

and the percentage of solutions in under 20 ms, Tc < 20ms.

6 8 10 12
−4

−2

0

2

4

time [s]

d
ω

[r
a
d
/
s
]

Fig. 5: Dynamic sparse GP compensation of the yaw-rate error

with 10 inducing inputs during the first race lap. The black

dots show the measured error on the yaw rate at each time

step, while the blue line shows the error predicted by the GP.

The shaded region is the 2-σ confidence interval.
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TABLE I: Experimental results

Controller T l [s] Tl,min [s] ‖e‖ [-] Tc [ms] Tc < 20ms

Nominal 10.32 9.65 0.65 18.2 76.3%

GP-based 9.61 9.27 0.34 17.2 99.8%

Average solution times of nominal and GP-based controller are

similar. The percentiles of solutions in under 20ms, however,

differ significantly, likely due to frequent large re-planning

with the nominal controller. The results therefore demonstrate

that the presented GP-based controller can significantly im-

prove performance while maintaining safety in a hardware

implementation of a complex system with fast sampling times.

VI. CONCLUSION

The paper discussed the use of Gaussian processes to learn

nonlinearities for a safe improvement of performance in model

predictive control. Combining GP dynamics with a nominal

system and the use of computational approximations rendered

GP-based MPC formulation computationally feasible with low

sampling times. A simulation example as well as a hardware

implementation have shown cautious control with improved

performance. In particular, we have demonstrated in exper-

iments that both performance and safety in an autonomous

racing setting can be significantly improved by using cautious

data-driven techniques, showing the practical feasibility and

potential of learning approaches in high performance control

systems.
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