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Cautious NMPC with Gaussian Process Dynamics for Autonomous

Miniature Race Cars

Lukas Hewing1, Alexander Liniger2 and Melanie N. Zeilinger1

Abstract— This paper presents an adaptive high performance
control method for autonomous miniature race cars. Racing
dynamics are notoriously hard to model from first principles,
which is addressed by means of a cautious nonlinear model
predictive control (NMPC) approach that learns to improve
its dynamics model from data and safely increases racing
performance. The approach makes use of a Gaussian Process
(GP) and takes residual model uncertainty into account through
a chance constrained formulation. We present a sparse GP
approximation with dynamically adjusting inducing inputs,
enabling a real-time implementable controller. The formulation
is demonstrated in simulations, which show significant improve-
ment with respect to both lap time and constraint satisfaction
compared to an NMPC without model learning.

I. INTRODUCTION

Control of autonomous cars is a challenging task and

has attracted considerable attention in recent years [1].

One particular case of autonomous driving is autonomous

racing, where the goal is to drive around a track as fast

as possible, potentially to race against competitors and to

avoid collisions [2]. In order to achieve high performance

at these extreme conditions, racing teams today spend a

significant amount of time and effort on modeling, which

is challenging especially near the limits of tire adhesion

[3]. Learning-based control methods have been proposed

to address this challenge and show great potential towards

improving racing performance [4]. They do, however, often

suffer from poor model accuracy and performance during

transient learning phases. This can lead to violation of

critical constraints [5] related to keeping the car on track and

avoiding collisions, compromising not only performance, but

the success of the entire race. In addition, iteratively learning

the racing task on a lap-by-lap basis, as considered e.g.

in [6], suffers from poor generalization and does typically

not allow for maintaining high performance for dynamic

racing tasks, such as obstacle avoidance or overtaking. This

paper addresses these challenges by learning the dynamics

model from data and considering model uncertainty to ensure

constraint satisfaction in a nonlinear model predictive control

(NMPC) approach, offering a flexible framework for racing

control.

Recently, a number of autonomous racing control methods

were presented that rely on NMPC formulations. An NMPC

racing approach for miniature race cars was proposed in [7],
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which uses a contouring control formulation to maximize

track progress over a finite horizon and enables obstacle

avoidance. It was extended to a stochastic setting in order

to take model uncertainty into account in [8] and [9]. Using

model learning in an MPC framework allows for generaliz-

ing from collected data and for improving performance in

varying racing tasks. This was, for instance, demonstrated in

[10] by using the mean estimate of a Gaussian Process (GP)

as a dynamics model for an NMPC method based on [7].

Furthermore, the MPC approach recently proposed in [11]

was applied to the problem of autonomous racing, where the

model is improved with an iterative parameter estimation

technique [12].

The method presented in this paper makes use of GP re-

gression to improve the dynamics model from measurement

data, since GPs inherently provide a measure for residual

model uncertainty, which is integrated in a cautious NMPC

controller. To this end we extend the approach presented in

[7] with a learning module and reformulate the controller in a

stochastic setting. A key element differentiating the approach

from available results is the stochastic treatment of a GP

model in an NMPC controller to improve both performance

and constraint satisfaction properties. We derive a tractable

formulation of the problem that exploits both the improved

dynamics model and the uncertainty and show how chance

constraints on the states can be approximated in determin-

istic form. The framework thereby allows for specifying a

minimum probability of satisfying critical constraints, such

as track boundaries, offering an intuitive and systematic way

of defining a desired trade-off between aggressive driving

and safety in terms of collision avoidance.

While the use of GPs in MPC offers many benefits, it

poses computational challenges for use with fast sampled

and larger scale systems, such as the race car problem,

since the evaluation complexity of GPs is generally high and

directly scales with the number of data points considered.

Various approaches to address this limitation have been

presented in the literature. One class of methods relies on an

approximation by a finite number of basis functions, such as

the sparse spectrum approximation [13], which is also used

in the GP-based NMPC in [10]. We present an approach

for predictive control based on a sparse GP approximation

using inducing inputs [14], which are selected according to

an approximate trajectory in state-action space. This enables

a high-fidelity local approximation currently relevant for

control at a given measured state, and facilitates real-time

implementability of the presented controller.

We finally evaluate the proposed cautious NMPC con-
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troller in simulations of a race. The results demonstrate that

it provides safe and high performance control at sampling

times of 30 ms, which is computationally on par with NMPC

schemes without model learning [7], while improving rac-

ing performance and constraint satisfaction. We furthermore

demonstrate robustness towards process noise, indicating

fitness for hardware implementation.

II. PRELIMINARIES

In the following we specify the notation used in the paper

and briefly introduce GP regression and sparse approxima-

tions based on inducing inputs as relevant to the presented

control approach.

A. Notation

For two matrices or vectors we use [A;B] := [AT BT ]T

for vertical matrix/vector concatenation. We use [y]i to refer

to the i-th element of the vector y, and similarly [A]·,i for

the i-th column of matrix A. A normal distribution with

mean µ and variance Σ is denoted N (µ,Σ). We use ‖x‖ for

the 2-norm of vector x and diag(x) to express a diagonal

matrix with elements given by the vector x. The gradient of

a vector-valued function f : R
nz → R

nf with respect to

vector x ∈ R
nx is denoted ∇xf : Rnz → R

nf×nx .

B. Gaussian Process Regression

Consider M input locations collected in the matrix

z = [zT1 ; . . . ; z
T
M ] ∈ R

M×nz and corresponding measure-

ments y = [yT1 ; . . . ; y
T
M ] ∈ R

M×nd arising from an unknown

function g(z) : Rnz → R
nd under the following statistical

model

yj = g(zj) + ωj , (1)

where ωj is i.i.d. Gaussian noise with zero mean and

diagonal variance Σw = diag([σ2
1 ; . . . ;σ

2
nd
]. Assuming a GP

prior on g in each output dimension a ∈ {1, . . . , nd}, the

measurement data is normally distributed with

[y]·,a ∼ N (0,Ka
zz

+ σ2
a) ,

where Ka
zz

is the Gram matrix of the data points using

the kernel function ka(·, ·) on the input locations z, i.e.

[Ka
zz
]ij = ka(zi, zj). The choice of kernel functions ka and

its parameterization is the determining factor for the inferred

distribution of g and is typically specified using prior process

knowledge and optimization based on observed data [15].

Throughout this paper we consider the squared exponential

kernel function

k(z, z̃) = σ2
f exp

(

−
1

2
(z − z̃)TL−1(z − z̃)

)

,

in which L ∈ R
nz×nz is a positive diagonal length scale

matrix. It is, however, straightforward to use any other

(differentiable) kernel function.

The joint distribution of the training data and an arbitrary

test point z in output dimension a is given by

p([y]a, [y]·,a) ∼ N

(

0,

[

Ka
zz

Ka
zz

Ka
zz Ka

zz

]

)

, (2)

where [Ka
zz]j = ka(zj , z), Ka

zz = (Ka
zz)

T and similarly

Ka
zz = ka(z, z). The resulting conditional distribution is

Gaussian with p([y]a | [y]·,a) ∼ N (µd
a(z),Σ

d
a(z)) and

µd
a(z) = Ka

zz(K
a
zz

+ Iσ2
a)

−1[y]·,a , (3a)

Σd
a(z) = Ka

zz −Ka
zz(K

a
zz

+ Iσ2
a)

−1Ka
zz . (3b)

We call the resulting GP approximation of the unknown

function g(z)

d(z) ∼ N (µd(z),Σd(z)) (4)

with µd = [µd
1; . . . ;µ

d
nd
] and Σd = diag([Σd

1; . . . ; Σ
d
nd
]).

Evaluating (4) has cost O(ndnzM) and O(ndnzM
2) for

mean and variance, respectively and thus scales with the

number of data points. For many data points or fast real-time

applications this limits the use of a GP model. To overcome

these issues, various approximation techniques have been

proposed, one class of which is sparse Gaussian processes

using inducing inputs [16], briefly outlined in the following.

C. Sparse Gaussian Processes

Most sparse GP approximations can be understood using

the concept of inducing targets yind at inputs zind and an

inducing conditional distribution q to approximate the joint

distribution (2) by assuming that test points and training data

are conditionally independent given yind [14]:

p([y]a, [y]·,a) =

∫

p([y]a, [y]·,a |yind)p(yind) dyind

≈

∫

q([y]a |yind)q([y]·,a |yind)p(yind) dyind .

There are numerous options for selecting the inducing inputs,

e.g. heuristically as a subset of the original data points,

by treating them as hyperparameters and optimizing their

location [17], or letting them coincide with test points [18].

In this paper, we make use of the state-of-the-art

Fully Independent Training Conditional (FITC) approxi-

mation to approximate the GP distribution and reduce

computational complexity [17]. Given a selection of in-

ducing inputs zind and using the shorthand notation

Qa

ζζ̃
:= Ka

ζzind
(Ka

zindzind
)−1Ka

zindζ̃
the approximate pos-

terior distribution is given by

µ̃d
a(z) = Qa

zz(Q
a
zz

+ Λ)−1[y]·,a , (5a)

Σ̃d
a(z) = Ka

zz −Qa
zz(Q

a
zz

+ Λ)−1Qzz (5b)

with Λ = diag(Ka
zz

−Qa
zz

+ Iσ2
a). Concatenating the output

dimensions similar to (4) we arrive at the approximation

d̃(z) ∼ N (µ̃d(z), Σ̃d(z)) .

Several of the matrices used in (5) can be precomputed such

that the evaluation complexity becomes independent of the

number of original data points. Using M̃ inducing points,

the computational complexity for evaluating the sparse GP

at a test point is reduced to O(ndnzM̃) and O(ndnzM̃
2)

for the predictive mean and variance, respectively.
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Fig. 1: Schematic of the car model.

III. RACE CAR MODELING

This section presents the race car setup and nominal

modeling of the car dynamics, which will serve as a base

model for the learning-based control approach. This is largely

based on material presented in [7], which provides a more

detailed exposition.

A. Car Dynamics

We consider the following model structure to describe the

dynamics of the miniature race cars

ẋ = fc(x, u) +Bd(gc(x, u) + w) , (6)

where fc(x, u) are the nominal system dynamics of the

car modeled from first principles, and gc(x, u) reflects un-

modeled dynamics. The considered nominal dynamics are

obtained from a bicycle model with nonlinear tire forces as

shown in Figure 1, resulting in

fc(x, u) =























vx cos(Φ)− vy sin(Φ)
vx sin(Φ) + vy cos(Φ)
ω
1

m

(

Fr,x(x, u)− Ff,y(x, u) sin δ +mvyω
)

1

m

(

Fr,y(x, u) + Ff,y(x, u) cos δ −mvxω
)

1

Iz

(

Ff,y(x, u)lf cos δ − Fr,y(x, u)lr

)























,

(7)

where x = [X;Y ; Φ; vx; vy;ω] is the state of the system,

with position (X,Y ), orientation Φ, longitudinal and lateral

velocities vx and vy , and yaw rate ω. The inputs to the

system are the motor duty cycle p and the steering angle δ,

i.e., u = [p; δ]. Furthermore, m is the mass, Iz the moment

of inertia and lr and lf are the distance of the center of

gravity from the rear and front tire, respectively. The most

difficult components to model are the tire forces Ff,y and

Fr,y and the drivetrain force Fr,x. The tires are modeled by

a simplified Pacejka tire model [19] and the drivetrain using

a DC motor model combined with a friction model. For the

exact formulations of the forces, we refer to [7].

In order to account for model mismatch due to inaccurate

parameter choices and limited fidelity of this simple model,

we integrate gc(x, u) capturing unmodeled dynamics, as well

as additive Gaussian white noise w. Due to the structure of

the nominal model, i.e. since the dynamics of the first three

states are given purely by kinematic relationships, we assume

that the model uncertainty, as well as the process noise w,

only affect the velocity states vx, vy and ω of the system,

that is Bd = [0; I3].
For the use in a discrete-time MPC formulation, we finally

discretize the system using the Euler forward scheme with a

sampling time of Ts, resulting in the following description,

x(k+1) = f(x(k), u(k))+Bd(g(x(k), u(k))+w(k)), (8)

where w(k) is i.i.d. normally distributed process noise with

w(k) ∼ N (0,Σw) and Σw = diag[σ2
vx
;σ2

vy
;σ2

ω], which,

together with the uncertain dynamics function g, will be

inferred from measurement data.

B. Race Track and Constraints

We consider a race track given by its centerline and a fixed

track width. The centerline is described by a piecewise cubic

spline polynomial, which is parametrized by the path length

Θ. Given a Θ, we can evaluate the corresponding centerline

position (Xc(Θ), Yc(Θ)) and orientation Φc(Θ). By letting

Θ̃ correspond to the projection of (X,Y ) on the centerline,

the constraint for the car to stay within the track boundaries

is expressed as

X (Θ̃) :=











x

∣

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

[

X

Y

]

−

[

Xc(Θ̃)

Yc(Θ̃)

]

∥

∥

∥

∥

∥

∥

≤ r











, (9)

where r is half the track width.

Additionally, the system is subject to input constraints,

U =

{

u

∣

∣

∣

∣

∣

[

0
−δmax

]

≤

[

p

δ

]

≤

[

1
δmax

]

}

, (10)

i.e. the steering angle is limited to a maximal angle δmax

and the duty cycle has to lie between zero and one.

IV. LEARNING-BASED CONTROLLER DESIGN

In the following, we first present the model learning

module that is subsequently used in a cautious NMPC

controller. We briefly state the contouring control formulation

[7], serving as the basis for the controller and integrate

the learning-based dynamics using a stochastic GP model.

Afterwards, we introduce suitable approximations to reduce

computational complexity and render the control approach

real-time feasible.

A. Model Learning

We apply Gaussian process regression [15] to infer the

vector-valued function g of the discrete-time system dynam-

ics (8) from previously collected measurement data of states

and inputs. Training data is generated as the deviation to the

nominal system model, i.e. for a specific data point:

yj = g(x(j), u(j)) + w(j) = B
†
d

(

x(j+1)− f(x(j), u(j))
)

,

zj = [x(j);u(j)] ,

where † is the pseudoinverse. Note that this is in the form

of (1) and we can directly apply (3) to derive a GP model

d(xi, ui) from the data, resulting in the stochastic model

xi+1 = f(xi, ui) +Bd(d(xi, ui) + wi) . (11)
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The state xi obtained from this model, which will be used

in a predictive controller, is given in form of a stochastic

distribution.

B. Contouring Control

The learning-based NMPC controller makes use of a

contouring control formulation, which has been introduced

in [20], [21] and was shown to provide good racing perfor-

mance in [7]. The objective of the optimal contouring control

formulation is to maximize progress along the race track.

An approximation of the car position along the centerline is

introduced as an optimization variable by including integrator

dynamics Θi+1 = Θi + vi, where Θi is a position along

the track at time step i and vi is the incremental progress.

The progress along the centerline over the horizon is then

maximized by means of the overall incremental progress
∑N

i=0
vi.

In order to connect the progress variable to the race car’s

position, Θi is linked to the projection of the car on the

centerline. This is achieved by minimizing the so-called lag

error êl and contouring error êc, defined as

êl(xi,Θi) =− cos(Φ(Θi))(Xi −Xc(Θi))

− sin(Φ(Θi))(Yi − Yc(Θi)) ,

êc(xi,Θi) = sin(Φ(Θi))(Xi −Xc(Θi))

− cos(Φ(Θi))(Yi − Yc(Θi)) .

For small contouring error êc, the lag error êl approximates

the distance between the projection of the car’s position

and (Xc(Θi), Yc(Θi)), such that a small lag error ensures

a good approximate projection. The stage cost function is

then formulated as

l(xi, ui,Θi, vi) =‖êc(xi,Θi)‖
2
qc

+ ‖êl(xi,Θi)‖
2
ql

− γvi + lreg(∆ui,∆vi) . (12)

The term −γvi encourages the progress along the track,

using the relative weighting parameter γ. The parameters

qc and ql are weights on contouring and lag error, respec-

tively, and lreg(∆ui,∆vi) is a regularization term penalizing

large changes in the control input and incremental progress

lreg(∆ui,∆vi) = ‖ui − ui−1‖
2
Ru

+ ‖vi − vi−1‖
2
Rv

, with the

corresponding weights Ru and Rv .

Based on this contouring formulation, we define a stochas-

tic MPC problem that integrates the learned GP-model (11)

and minimizes the expected value of the cost function (12)

over a finite horizon of length N:

min
U, V

E





N−1
∑

i=0

l(xi, ui,Θi, vi)



 (13a)

s.t. xi+1 = f(xi, ui) +Bd(d(xi, ui) + wi), (13b)

Θi+1 = Θi + vi, (13c)

P (xi+1 ∈ X (Θi+1)) > 1− ǫ, (13d)

ui ∈ U , (13e)

x0 = x(k), Θ0 = Θ(k) , (13f)

where i = 0, . . . , N−1 and x(k) and Θ(k) are the current

system state and the corresponding position on the centerline.

The state constraints are formulated w.r.t. the centerline

position at Θi as an approximation of the projection of the

car position, and are in the form of chance constraints which

guarantee that the track constraint (9) is violated with a

probability less than 1− ǫ.

Solving problem (13) is computationally demanding, es-

pecially since the distribution of the state is generally not

Gaussian after the first prediction time step. In addition,

fast sampling times – in the considered race car setting

of about 30 ms – pose a significant challenge for real-

time computation. In the following subsections, we present

a sequence of approximations to reduce the computational

complexity of the GP-based NMPC problem for autonomous

racing in (13) and eventually provide a real-time feasible

approximate controller that can still leverage the key benefits

of learning.

C. Approximate Uncertainty Propagation

At each time step, the GP d(xi, ui) evaluates to a stochas-

tic distribution according to the residual model uncertainty,

which is then propagated forward in time, rendering the

state distributions non-Gaussian. In order to solve (13), we

therefore approximate the distributions of the state at each

prediction step as a Gaussian, i.e. xi ∼ N (µx
i ,Σ

x
i ) [22], [23],

[24]. The dynamics equations for the Gaussian distributions

can be found e.g. through a sigma point transform [25] or

a first order Taylor expansion detailed in Appendix I. We

make use of the Taylor approximation offering a computa-

tionally cheap procedure of sufficient accuracy, resulting in

the following dynamics for the mean and variance

µx
i+1 = f(µx

i , ui) +Bdµ
d(µx

i , ui) , (14a)

Σx
i+1 = Ãi

[

Σx
i ⋆

∇xµ
d(µx

i , ui)Σ
x
i Σd(µx

i , ui)

]

ÃT
i , (14b)

where Ãi =
[

∇xf(µ
x
i , ui) Bd

]

and the star denotes the

corresponding element of the symmetric matrix.

D. Simplified Chance Constraints

The Gaussian approximation of the state distribution al-

lows for a simplified treatment of the chance constraints

(13d). They can be approximated as deterministic constraints

on mean and variance of the state using the following

Lemma.

Lemma 1. Let n-dimensional random vector x ∼ N (µ,Σ)
and the set Bxc(r) =

{

x | ‖x− xc‖ ≤ r
}

. Then

‖µ− xc‖ ≤ r −
√

χ2
n(p)λmax(Σ) ⇒ Pr(x ∈ Bxc(r)) ≥ p,

where χ2
n(p) is the quantile function of the chi-squared

distribution with n degrees of freedom and λmax(Σ) the

maximum eigenvalue of Σ.

Proof. Let Ex
p := {x | (x−µ)TΣ−1(x−µ) ≤ χ2

n(p)} be the

confidence region of x at level p, such that Pr(x ∈ Ex
p ) ≥ p.

We have Ex
p ⊆ E x̃

p with x̃ ∼ N (µ, λmax(Σ) I), i.e. E x̃
p is an

1344



Fig. 2: Planned trajectory with active chance constraints.

Shown is the mean trajectory of the car with 1-σ confidence

level perpendicular to the car’s mean orientation.

outer approximation of the confidence region using the direc-

tion of largest variance. Now µ ∈ Bxc(r−
√

χ2
n(p)λmax(Σ))

implies E x̃
p ⊆ Bx

c (r), which means Pr(x ∈ Bx
c (r)) ≥

Pr(x ∈ E x̃
p ) ≥ Pr(x ∈ Ex

p ) = p.

Using Lemma 1, we can formulate a bound on the

probability of track constraint violation by enforcing
∥

∥

∥

∥

∥

∥

[

µX
i

µY
i

]

−

[

Xc(Θi)
Yc(Θi)

]

∥

∥

∥

∥

∥

∥

≤ r −
√

χ2
2(p)λmax(ΣXY

i ), (15)

where ΣXY
i ∈ R

2×2 is the marginal variance of the joint

distribution of Xi and Yi. This procedure is similar to

constraint tightening in robust control. Here the amount of

tightening is related to an approximate confidence region for

the deviation from the mean system state.

Constraint (15) as well as the cost (12) require the variance

dynamics. The next section proposes a further simplification

to reduce computational cost by considering an approximate

evolution of the state variance.

E. Time-Varying Approximation of Variance Dynamics

The variance dynamics in (14b) require N
2
(n2 + n)

additional variables in the optimization problem and can

increase computation time drastically. We trade off accuracy

in the system description with computational complexity

by evaluating the system variance around an approximate

evolution of the state and input. This state-action trajectory

can typically be chosen as a reference to be tracked or by

shifting a solution of the MPC optimization problem at an

earlier time step. Denoting a point on the approximate state-

action trajectory with (µ̄x
i , ūi), the approximate variance

dynamics are given by

Σ̄x
i+1 = Āi

[

Σ̄x
i ⋆

∇xµ
d(µ̄x

i , ūi)Σ̄
x
i Σd(µ̄x

i , ūi)

]

ĀT
i

with Āi = [∇xf(µ̄
x
i , ūi) Bd]. The variance along the tra-

jectory thus does not depend on any optimization variable

and can be computed before the state measurement becomes

available at each sampling time. The precomputed variance

is then used to satisfy the chance constraints approximately,

by replacing ΣXY with Σ̄XY in (15). The resulting set is

denoted X̄ (Σ̄x
i ,Θi). Figure 2 shows an example of a planned

trajectory with active chance constraints according to this

formulation with χ2
2(p) = 1.

In the following, we use similar ideas to reduce the

computational complexity of the required GP evaluations

by dynamically choosing inducing inputs in a sparse GP

approximation.

F. Dynamic Sparse GP

Sparse approximations as outlined in Section II-C can

considerably speed up evaluation of a GP, with little deterio-

ration of prediction quality. For fast applications with high-

dimensional state-input spaces, however, the computational

burden can still be prohibitive.

We therefore propose to select inducing inputs locally at

each sampling time, which relies on the idea that in MPC

the area of interest at each sampling time typically lies close

to a known trajectory in the state-action space. Similar to the

approximation presented in the previous subsection, inducing

inputs can then be selected along the approximate trajectory,

e.g. according to a solution computed at a previous time step.

We illustrate the procedure using a two-dimensional ex-

ample in Figure 3 showing the dynamic approximation for

a simple double integrator. Shown is the contour plot of the

posterior variance of a GP with two input dimensions x1 and

x2. Additionally, two trajectories generated from an MPC are

shown. The solid red line corresponds to a current prediction

trajectory, while the dashed line shows the previous predic-

tion, which is used for local approximation of the GP. As

the figure illustrates, full GP and sparse approximation are

in close correspondence along the predicted trajectory of the

system.

The dynamic selection of local inducing points in a

receding horizon fashion allows for an additional speed-up

by computing successive approximations adding or removing

single inducing points by means of rank 1 updates [26].

These are applied to a reformulation of (5), which offers

better numerical properties [14] and avoids inversion of the

large matrix Qa
zz

+ Λ,

µ̃a
d(z) = Ka

zzΣK
a
zind,z

Λ−1[y]·,a ,

Σ̃a
d(z) = Ka

zz −Qa
zz +Ka

zzind
ΣKa

zindz
,

with Σ =
(

Ka
zindzind

+Ka
zindz

Λ−1Ka
zzind

)−1

. Substitution

of single inducing points corresponds to a single line and

column changing in Σ−1. The corresponding Cholesky fac-

torizations can thus efficiently be updated [27].

G. Resulting Control Formulation for Autonomous Racing

We integrate the approximations presented in the previous

sections in the learning-based MPC problem in (13) resulting

in the following approximate optimization problem

min
U, V

E





N−1
∑

i=0

l(µx
i , ui,Θi, vi)



 (17a)

s.t. µx
i+1 = f(µx

i , ui) +Bdµ̃
d(µx

i , ui), (17b)

Θi+1 = Θi + vi, (17c)

µx
i+1 ∈ X̄ (Σ̄x

i+1,Θi+1), (17d)

ui ∈ U , (17e)

µx
0 = x(k), Θ0 = Θ(k) , (17f)
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Fig. 3: Contour plots of the posterior variance of a GP for

the full GP (top left) and dynamic sparse approximation (top

right). The solid red line is the trajectory planned by an MPC,

the dashed red line the trajectory of the previous time step

used for the approximation, with inducing points indicated by

black circles. The bottom plot shows the respective variances

along the planned trajectory.

where i = 0, ..., N−1. By reducing the learned model to the

mean GP dynamics and considering approximate variance

dynamics and simplified chance constraints, the problem is

reduced to a deterministic nonlinear program of moderate

dimension.

In the presented form, the approximate optimization prob-

lem (17) still requires an optimization over a large spline

polynomial corresponding to the entire track. Since evalua-

tion of this polynomial and its derivative is computationally

expensive, one can apply an additional approximation step

and quadratically approximate the cost function around the

shifted solution trajectory from the previous sampling time,

for which the expected value is equivalent to the cost at

the mean. Similarly, Θi can be fixed using the previous

solution when evaluating the state constraints (17d), such that

the spline can be evaluated separately from the optimization

procedure, as done in [7].

V. SIMULATION

We finally evaluate the proposed control approach in

simulations of a race. The race car is simulated using system

(6) with gc resulting from a random perturbation of all

parameters of the nominal dynamics fc by up to ±15% of

their original value. We compare two GP-based approaches,

one using the full GP d(xi, ui) with all available data points

and one a dynamic sparse approximation d̃(xi, ui), against

a baseline NMPC controller, which makes use of only the

nominal part of the model fc, as well as against a reference

controller using the true system model, i.e. with knowledge

of gc.

A. Simulation Setup

We generate controllers using formulation (17), both for

the full GP and the dynamic sparse approximation with

10 inducing inputs along the previous solution trajectory

0 50 100 150 200 250 300 350

−2

0

2

k

[d
(x

k
,u

k
)]
ω

Fig. 4: Prediction of the dynamic sparse GP with 10 inducing

inputs during a race lap. Shown as black dots are the error

on the yaw rate under process noise as encountered at each

time step. The blue line shows the dynamics error predicted

by the GP. The shaded region indicates the 2-σ confidence

interval, including noise.

of the MPC problem. The inducing points are placed with

exponentially decaying density along the previous solution

trajectory, putting additional emphasis on the current and

near future states of the car. The prediction horizon is chosen

as N = 30 and we formulate the chance constraints (17d)

with χ2
2(p) = 1. To guarantee feasibility of the optimization

problem, we implement the chance constraint using a linear

quadratic soft constraint formulation. Specifically, we use

slack variables si ≥ 0, which incur additional costs ls(si) =
‖si‖

2
qs

+ cssi. For sufficiently large cs the soft constrained

formulation is exact, if feasible [28]. To reduce conservatism

of the controllers, constraints are only tightened for the first

15 prediction steps and are applied to the mean for the

remainder of the prediction horizon, similar to the method

used in [8].

The system is simulated for one lap of a race, start-

ing with zero initial velocity from a point on the center-

line under white noise of power spectral density Qw =
1

Ts
diag([0.001; 0.001; 0.1]). The resulting measurements

from one lap with the baseline controller are used to generate

350 data-points for both GP-based controllers. Hyperparam-

eters and process noise level were found through likelihood

optimization, see e.g. [15].

To exemplify the learned deviations from the nominal

system, Figure 4 shows the encountered dynamics error in the

yaw-rate and the predicted error during a lap with the sparse

GP-based controller. Overall, the learned dynamics are in

good correspondence with the true model and the uncertainty

predicted by the GP matches the residual model uncertainty

and process noise well. Note that the apparent volatility in

the plot does not correspond to overfitting, but instead is due

to fast changes in the input and matches the validation data.

Solvers were generated using FORCES Pro [29] with a

sampling time of Ts = 30 ms and the number of maximum

solver iterations were limited to 75, which is sufficient to

guarantee a solution of required accuracy. All simulations

were carried out on a laptop computer with a 2.6 GHz i7-

5600 CPU and 12GB RAM.
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Fig. 5: Resulting trajectories on the race track for simulations

without process noise with baseline, reference and sparse

GP-based controller.

B. Results

To quantify performance of the proposed controllers we

compare the lap time Tl and the average squared slack

of the realized states s20 corresponding to state-constraint

violations. We furthermore state average solve times Tc of

the NMPC problem and its 99.9th percentile T 99.9
c over the

simulation run. To demonstrate the learning performance

we also evaluate the average 2-norm error in the system

dynamics ‖e‖, i.e. the difference between the mean state

after one prediction step and the realized state, e(k+1) =
µx
1 − x(k+1).
For direct comparison, we first evaluate controller perfor-

mance in simulations without process noise. As evident in

Figure 5, the baseline controller performs visually subopti-

mally and is unable to guarantee constraint satisfaction, even

in the absence of process noise. The reference controller

and sparse GP-based controller (GP-10) perform similarly.

Table I(a) summarizes the results of the simulations without

process noise. We can see that the full GP controller (GP-

Full) matches the performance of the reference controller.

It also displays only small constraint violations, while the

reference controller exhibits some corner cutting behavior

leading to constraint violations. This is due to unmodeled

discretization error, also evident in the dynamics error of the

reference controller. The discretization error is partly learned

by the GPs, leading to lower error than even the reference

controller. Overall the sparse GP controller demonstrates a

performance close to that of the full GP controller, both in

terms of lap time and constraint satisfaction and is able to

significantly outperform the baseline controller.

Table I(b) shows the averaged simulation for different

process noise realizations. The values are averaged over 200

TABLE I: Simulation results

(a) without process noise

Controller Tl [s] s
2

0
[10−3] ‖e‖ [-] Tc [ms] T

99.9
c [ms]

Reference 8.64 4.50 0.18 9.4 19.1
Baseline 9.45 4.77 1.20 10.8 20.6
GP-Full 8.67 0.95 0.09 105.2 199.23
GP-10a 8.76 1.77 0.16 12.3 26.9

(b) with process noise

Controller Tl [s] s
2

0
[10−3] ‖e‖ [-] Tc [ms] T

99.9
c [ms]

Reference 8.76 2.88 0.33 9.7 20.8

Baselineb 9.55 65.11 1.20 10.1 23.9
GP-Full 8.80 0.68 0.23 102.0 199.4
GP-10a 8.90 1.20 0.28 12.1 25.6

aRequires an additional ≈ 2.5 ms for sparse approximation.
bEight outliers removed.

runs, except for T 99.9
c , which is the 99.9th percentile of all

solve times. Qualitatively, the observations for the noise-

free case carry over to the simulations in the presence of

process noise. Most strikingly, the baseline NMPC controller

displays severe constraint violations under noise. In eight

cases this even causes the car to completely lose track. The

runs were subsequently removed as outliers in Table I(b).

All other formulations tolerate the process noise well and

achieve similar performance as in the noise-free case. The

reference controller achieves slightly faster lap times than the

GP-based formulations. These, however, come at the expense

of higher constraint violations. Through shaping the allowed

probability of violation in the chance constraints (17d),

the GP-based formulations allow for a trade-off between

aggressive racing and safety.

The simulations underline the real-time capabilities of the

sparse GP-based controller. While the full GP formulation

has excessive computational requirements relative to the sam-

pling time of Ts = 30 ms, the dynamic sparse formulation

is solved in similar time as the baseline formulation. It does,

however, require the successive update of the sparse GP

formulation, which in our implementation took an additional

2.5 ms on average. Note that this computation can be done

directly after the previous MPC solution, whereas the MPC

problem is solved after receiving a state measurement at

each sample time step. The computation for the sparse

approximation thus does not affect the time until an input

is applied to the system, which is why we state both times

separately. With 99.9% of solve times below 25.6 ms, a

computed input can be applied within the sampling time

of Ts = 30 ms, leaving enough time for the subsequent

precomputation of the sparse approximation.

The results demonstrate that the presented GP-based con-

troller can significantly improve performance while main-

taining safety, approaching the performance of the reference

controller using the true model. They furthermore demon-

strate that the controller is real-time implementable and able

to tolerate process noise much better than the initial baseline

controller. Overall, this indicates fitness for a hardware

implementation.
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VI. CONCLUSION

In this paper we addressed the challenge of automatically

controlling miniature race cars with an MPC approach under

model inaccuracies, which can lead to dramatic failures,

especially in a high performance racing environment. The

proposed GP-based control approach is able to learn from

model mismatch, adapt the dynamics model used for control

and subsequently improve controller performance. By con-

sidering the residual model uncertainty, we can furthermore

enhance constraint satisfaction and thereby safety of the

vehicle. Using a dynamic sparse approximation of the GP

we demonstrated the real-time capability of the resulting

controller and finally showed in simulations that the GP-

based approaches can significantly improve lap time and

safety after learning from just one example lap.

APPENDIX I

UNCERTAINTY PROPAGATION FOR NONLINEAR SYSTEMS

Let µx
i and Σx

i denote the mean and variance of xi,

respectively. Using the law of iterated expectation and the

law of total variance we have

µx
i+1 = Exi

(

Ed|xi
(xi+1)

)

= Exi

(

f(xi, ui) +Bdµ
d(xi, ui)

)

Σx
i+1 = Exi

(

vard|xi
(xi+1)

)

+ varxi

(

Ed|xi
(xi+1)

)

= Exi

(

BdΣ
d(xi, ui)B

T
d

)

+ varxi

(

f(xi, ui) +Bdµ
d(xi, ui)

)

With a first order expansions of f, µd and Σd around xi = µx
i

these can be approximated as [22]

µx
i+1 ≈ f(µx

i , ui) +Bdµ
d(µx

i , ui) ,

Σx
i+1 ≈ BdΣ

d(µx
i , ui)B

T
d

+∇xf̃(µ
x
i , ui)Σ

x
i

(

∇xf̃(µ
x
i , ui)

)T

with f̃(µx
i , ui) = f(µx

i , ui) +Bdµ
d(µx

i , ui).
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