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Abstract—We present the results from a qualitative and quantitative user study comparing fishtank virtual-reality (VR) and CAVE

displays. The results of the qualitative study show that users preferred the fishtank VR display to the CAVE system for our scientific

visualization application because of perceived higher resolution, brightness and crispness of imagery, and comfort of use. The results

of the quantitative study show that users performed an abstract visual search task significantly more quickly and more accurately on

the fishtank VR display system than in the CAVE. The same study also showed that visual context had no significant effect on task

performance for either of the platforms. We suggest that fishtank VR displays are more effective than CAVEs for applications in which

the task occurs outside the user’s reference frame, the user views and manipulates the virtual world from the outside in, and the size of

the virtual object that the user interacts with is smaller than the user’s body and fits into the fishtank VR display. The results of both

studies support this proposition.

Index Terms—User study, virtual reality, display, CAVE, fishtank VR, DT-MRI visualization.
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1 INTRODUCTION

THE scientific visualization community increasingly uses
virtual reality display systems that employ new

visualization and interaction techniques. Determining the
relative merits of different VR display systems for different
applications and tasks is thus important for developing
effective visualization tools as well as new displays.

The purpose of the work reported here is to understand
better how CAVE and fishtank VR display systems affect
user performance. A CAVE is an immersive VR display
system and fishtank VR display is a desktop display system
[1], [2]. Both systems generate and update a stereoscopic
view of a virtual world according to the user’s head
position and orientation. Interaction devices for CAVEs are
mainly hand-held six-DOF tracked tools. For fishtank VR
displays, possible interaction devices range from the
standard mouse and keyboard to hand-held six-DOF
tracked tools. The CAVE and the fishtank VR display used
in this study are representative of current immersive and
desktop display technologies. As a CRT-based desktop
display system, the fishtank VR has higher angular
resolution and brighter imagery than the projector-based,
immersive display in the CAVE. On the other hand, the four
walls of the CAVE provide more pixels than the fishtank VR
display. As an initial attempt to compare user performance
in these two environments, we conducted two consecutive
user studies, one anecdotal (or qualitative) and one
quantitative.

We performed the anecdotal study before the quantita-
tive study for two specific reasons. First, we believe

application-oriented user studies—using domain experts
as subjects and their hypothesis-testing process as the
task—can complement user studies involving abstract tasks
and applications. Second, we wanted to gain insights for
designing our quantitative study.

In the quantitative study, we measured users’ time and
accuracy in completing an abstract visual search task. The
task was to find a feature on the noisy surface of a potato-
like object shown in four different visual contexts. We
developed two hypotheses prior to the study:

1. User performance would be better in the fishtank VR
system than in the CAVE. Fishtank VR systems have
such desirable characteristics as high angular resolu-
tion and bright, crisp imagery. Also, the fishtank VR
system would be more effective for the type of task
our study examined, since 1) the task occurred
outside the user’s reference frame, and the user
viewed and manipulated the virtual world from the
outside in, and 2) the virtual object that the user
interacted with was smaller than the user’s body and
fit into the fishtank VR display. We give the details
of the task in Section 3.2.

2. User performance would vary for different visual
contexts. This hypothesis generalizes to a 3D setting
previous results from 2D visual search studies.
Previous 2Dvisual search studies found that presence
and configuration of other objects in a scene influ-
enced how quickly the target objects were detected or
identified [3], [4]; the results of these studies suggest
that humans use visual context to assess object
congruence with the background and that visual
context facilitates target detection or identification. In
the case of 3D scenes, we believe that contexts that
provide good motion-parallax information (better
edge and figure-ground delineation) and are coin-
cident with the physical display surface (better
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stereopsis signal) will enhance user performance
because they permit the user to segregate the fore-
ground target object from the background context
easily [5], [6].

The next section summarizes related work. We explain
the setup of both experiments and their results in Section 3.
Possible interpretations of the results and related issues are
discussed in Section 4, and our conclusions are given in
Section 5.

2 RELATED WORK

We are not aware of anywork that directly compares CAVEs
with fishtank VR displays. However, studies have compared
different VR systems with one another as well as with
conventional monoscopic desktop systems. Arthur et al.,
comparing a fishtank VR display to amonitor-based desktop
system, reported that fishtank VR significantly improved
user performance in a tree-tracing task [7]. They also found
that head tracking enhanced user performance more than
static stereo. In a more recent study, Ware et al. showed that
stereo combinedwithmotion gave the best user performance
in 3D visualization of graphs [6], and that passive stereo was
more effective than head tracking. Pausch et al. did a
qualitative user study to compare a head-mounted display
(HMD) with a conventional desktop system for a generic
search task [8]. They found that the HMD improved user
performance significantlywhen the target—the virtual object
that users were asked to find—was absent. They found no
significant user performance difference between the two
systems when the target was present. A later study showed,
however, that the findings of Pausch et al. did not apply to
desktop VR (a conventional desktop system without stereo
and head tracking that uses animated interactive 3Dgraphics
to build virtual worlds) [9]. This study showed that fishtank
VR and desktop VR have a significant advantage over HMD
VR in performing a visual search task.

Bowman et al. recently compared HMD with tabletop
(workbench) and CAVE systems for search and rotation
tasks, respectively [10]. They found that HMD users
performed significantly better than CAVE users for a
natural rotation task (turning a corner by rotating the head
or body rather than by rotating the virtual world manually
using a joystick). They also showed that subjects performed
a difficult search task differently depending on which
display they used first. Our work builds on previous work
by comparing CAVE and fishtank VR platforms directly
using both quantitative and qualitative user studies.

3 METHODS AND RESULTS

The CAVE we used is a four-sided, 80 TAN VR-Cube. It has
rear-projected front and side walls and a front-projected
floor, and each of its four displays has resolution 1; 024�
768 pixels. Our fishtank VR display setup has a 22

00 (2000

viewable) Mitsubishi Diamond Pro 2070-SB desktop moni-
tor. The display runs at two different resolution modes: a
lower resolution of 1; 024� 768 pixels and a higher
resolution of 1; 280� 1; 024 pixels. We henceforth refer to
the fishtank VR run at the higher resolution mode as the
higher-resolution fishtank (or HR fishtank) and to the

fishtank VR run at the lower resolution mode as the lower-
resolution fishtank (or LR fishtank).

In both systems, users wear a pair of LCD shutter glasses
that support active stereo viewing; a tracker attached to the
glasses relays their position and orientation to the compu-
ter. We used the most reliable tracker available in each
environment at the time of the experiments: an InterSense
IS-900 tracker in the CAVE and a Polhemus 3Space Fastrak
for the fishtank VR display. The IS-900 is more accurate
than the Polhemus but was only available in the CAVE
environment.

While we conducted the anecdotal study with only the
higher-resolution fishtank VR, we used both resolution
modes in the quantitative study.

3.1 Anecdotal Experiment

3.1.1 Application

Weused a diffusion tensormagnetic resonance imaging (DT-
MRI) visualization application for our anecdotal work. DT-
MRI is an imaging modality with the potential to measure
fiber-tract trajectories in fibrous soft tissues such as nerves
and muscles. The application, based on work by Zhang et al.
[11], visualized DT-MRI brain data as 3D streamtube and
streamsurface geometries in conjunction with 2D T2-
weighted MRI sections. We ran the application both in the
CAVE and on the fishtank VR display. The size and
placement of 2D sections with respect to the brain model
used were the same in both environments. Since our brain
models occupied the same relative screen space on both
displays, 2D sections displayed in theCAVEwere larger than
2D sections on the fishtank VR display (see Fig. 1).

3.1.2 Participant Pool

Five domain-expert users were asked to use the application
in the CAVE and on the fishtank VR display. Four of the
users were male and one was female. Two of the users
started with the fishtank version of the application and the
others started with the CAVE version.

3.1.3 Task

Each user had his/her own task (or scientific hypothesis to
be tested). They described their hypotheses to us, and we
asked them to compare how well the two platforms suited
their tasks. The users expressed their opinions by talking to
us while they used the application. We offered comments
on and counterarguments to their observations in order to
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Fig. 1. The visualization application running in the CAVE (a) and on the
fishtank VR display (b).



explore the reasoning behind the users’ observations. The
users were then asked to give their overall preference for
one of the two VR systems.

3.1.4 Results

One user preferred the CAVE and four preferred the
fishtank VR display. Table 1 summarizes the users’
comments on the relative advantages of CAVE and fishtank
VR systems.

Our first user was a neurosurgeon who had used the
application before. He uses DT-MRI data to study obses-
sive-compulsive disorder (OCD) patients and was particu-
larly interested in studying changes that occur after
radiation surgery, which ablates an important white-matter
region. He wanted to see the relationship between
neurofiber connectivity and linear diffusion (streamtubes)
in the brain. He strongly preferred using fishtank VR and
found no relative advantages of the CAVE.

Our second user was a biologist who was also trying to
see correlations between white-matter structure and linear
diffusion in the brain. His interests were not confined to a
specific anatomical region. He was the only user who
preferred the CAVE over the fishtank display.

Our third user was a doctor and a medical school
instructor with an undergraduate degree in computer
science. She evaluated the application from teaching and
learning perspectives.

Our fourth user was a computer science graduate
student with an undergraduate degree in neuroscience.
Like our second user, he looked at the application to see
correlations between white-matter structures and linear
diffusion in the brain. He preferred the fishtank VR because

the 2D sections had higher resolution and the models
looked crisper on the screen, attributes that helped him see
the correlations more easily.

Our last user was a neuroradiologist working on multi-
ple sclerosis who wanted to see the 3D course of the neural
fibers in the corpus callosum. He was able to see what he
was looking for using both display platforms.

All users found 2D sections to be very helpful in both
platforms. They said they were familiar with looking at
2D sections, which helped them to correlate and orient the
3D geometries representing diffusion with the brain
anatomy.

3.2 Quantitative Experiment

In this experiment, we compared the two systems by
measuring user performance on a visual search task.

3.2.1 Application

Users were asked to identify a feature on a potato-like object
with a noisy surface in different visual contexts. The users
searched for either a rectangular or triangular feature
protruding from the surface of the object; the height of the
feature was fixed across trials and exactly one feature was
present in each trial.

We generated the potato-like objects in three steps. First,
we generated lumpy shapes using spherical harmonics.
Each lumpy shape p was formed by scaling a unit sphere s

with a combination of harmonic offsets Ylm:

p ¼ s
X

l2f0;2;4;6g

Xl

m¼�l

Ylmnlm; ð1Þ

where nlm is a normally distributed random number with
mean 0 and standard deviation ranging from 1 for the
lowest degree, Y00, to 0:27 for the highest degree, Y6;�6. The
drop-off of the standard deviation was tuned to create
subjectively lumpy objects that were not too distorted to
conceal the protruding shape.

Second, we created triangular or rectangular extrusions
from random positions on the surfaces of these shapes (see
Fig. 2). Last, we added noise all over the surface of each
object. Fig. 3 shows a potato object with three different noise
levels.

Potato objects were shown to users in four different
visual contexts or scenes: blank, brick, world, and porch (see
Fig. 4). The visual contexts varied in content and depth
disparity within the environment. In the blank context, all
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TABLE 1
Advantages Reported for CAVE and Fishtank VR

Fig. 2. Two “potato” objects before noise was added. (a) The potato on
the left has a rectangular feature while (b) has a triangular feature.



walls were the same shade of gray. A brick texture was
drawn on the walls for the brick context. The world context
had of a brick floor (the same texture as in the brick context)
extending to a horizon drawn to appear about 100 miles
away with mountains and trees and a blue sky above. The
porch context was identical to the world except that a white
porch was drawn in the foreground coincident with the
physical walls of the CAVE. Note that all the contexts
completely covered all the walls of the CAVE.

These four contexts let us test our hypotheses on the
benefits of good motion parallax and stereopsis. The blank
context provides no cues for using motion to segregate the
target from the potato object. The brick context provides a
strong stereo cue (particularly since it is displayed coin-
cident to the wall) and an emphatic texture that should
facilitate target-object separation through motion parallax.
The world context provides only textural elements to
promote target-object segregation, but these elements are
weak since they are projected to appear far away relative to
the object and user. The porch context is a hybrid between
the features of the brick and world contexts: The porch
provides some near-depth textural information relative to
the object, but not as much as the brick context. All of the
contexts, except for the blank context, use the same brick
texture on the floor.

In order to exclude brightness as a variable, we adjusted
the overall brightness of the different contexts to be about
the same. We checked the luminosity values by opening the
contexts in Photoshop and by using a photometer.

3.2.2 Participant Pool

Forty-one volunteers participated in the study, 20 of whom
were male. They were mostly undergraduate and graduate

students with different backgrounds (science, art, and
humanities). Fourteen of the participants performed the
experiment in the CAVE, another 14 used the higher-
resolution fishtank VR system, and the remaining 13 used
the lower-resolution fishtank VR system. The experiments
all took place over the course of a few days. The
experiments for various groups of participants—CAVE,
HR fishtank, and LR fishtank—occurred in that order over
the course of two years.

3.2.3 Task

Each participant group completed the same set of
60 trials—12 practice and 48 test trials. The order of the
test trials was randomized across users. To ensure the best
stereoscopic experience, the interocular distance of each
user was used in generating the stereo imagery. Users had
30 seconds to complete the task in each trial; trials taking
longer than 30 seconds (timed-out trials) were excluded
from analysis. On average, the CAVE participants timed out
5.1 percent of the time, the lower-resolution fishtank VR
participants timed out 2.4 percent of the time, and the
higher-resolution fishtank VR participants timed out
1.8 percent of the time. (These percentages are calculated
using only the data from the participants included in the
statistical analysis in Section 3.2.5.)

We presented a different context-potato-feature combi-
nation at each trial. Each context had the same set of potato-
feature combinations, which had equal numbers of trian-
gular and rectangular features. Participants received audi-
tory and visual feedback during practice trials to indicate
feature position and response accuracy, but received no
feedback during test trials.

The users manipulated the object with a hand-held
device, a wand, using their dominant hands. Another wand
(three-button) served as a response box (left = square, right
= triangle).

The users stood still in the CAVE, but they sat on a chair
in front of the fishtank VR display. Interaction in the CAVE
was based on an “object-on-a-stick” metaphor: The potato
object was fixed at the far end of a virtual stick and coupled
with the wand’s rotation and translation. The fishtank VR
had no virtual stick. Instead, the object was centered and
fixed at the user’s eye level, and its orientation was coupled
to that of the wand. In both environments, we tried to use
an appropriate interaction technique. “Object-on-a-stick”
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Fig. 3. A potato object with three different noise levels, (a) 0:015,
(b) 0:035, and (c) 0:045, in ascending order from left to right. The feature
in all three is rectangular.

Fig. 4. The four visual contexts, blank, brick, world, and porch in our study of user search performance. The potato objects in each context are similar

to those displayed during the search task. Note that these visual contexts exploit the CAVE’s immersive capabilities by covering of its all four display

walls. (a) blank, (b) brick, (c) world, and (d) porch.



works well in the CAVE, but not for the fishtank VR system:
Participants cannot visually track objects off-screen, which
would naturally occur when manipulating a potato skew-
ered on the end of a virtual stick. We also noticed that most
users in the CAVE held the potato in front of their faces in a
relatively fixed position while performing the search task.
Therefore, limiting users’ ability to translate the potato
object in the fishtank environment replicates to some extent
the actual visual stimuli of users in the CAVE system.

3.2.4 Factors and Measures

Our quantitative experiment used a mixed-model design
(also called a cross-plot or, in biomedical research, cross-
sectional design) that contains both between-subjects and
within-subjects factors. In our case, display type (CAVE,
lower-resolution fishtank VR, higher-resolution fishtank
VR) was a between-subjects factor, and feature type
(triangular, rectangular) and context (blank, brick, world,
and porch) were within-subjects factors. Users participated
in only one of the independent levels of the between-
subjects factor but participated in all the within-subjects
factor levels. We recorded the users’ task-completion times
and task-accuracy values as measures of performance.

3.2.5 Data Analysis

Two users, one from the CAVE and one from the higher-
resolution fishtank VR, were omitted from the statistical
analysis because they timed out on more than 10 percent of
the trials. We thus analyzed the data from 13 different users
for each display environment using multifactor mixed
ANOVA in SPSS, a commercial statistics package.

3.2.6 Plotting Confidence Intervals

We display inferential confidence intervals around means in
our bar graphs. These intervals are calculated directly from
the ANOVA analysis. Using inferential confidence intervals
simplifies drawing pairwise statistical inferences from data
plots of ANOVA results [12]. The figures indicate a
statistically significant difference to the p ¼ 0:05 level
between any two means if the intervals around the two
means do not overlap. We used Bonferroni’s correction in
calculating pairwise comparisons.

3.2.7 Results

Users were significantly faster and more accurate on the
fishtank VR system at both resolution modes than in the
CAVE. There was no statistically significant difference in
user performance between the HR fishtank VR and the
LR fishtank VR (see Table 2 and Table 3).

Also, disproving our hypothesis, visual context had no
significant effect on accuracy or speed in either environment
(Ftimeð3; 108Þ ¼ 2:002, ptime ¼ 0:118, Ferror rateð3; 108Þ ¼ 1:025,
perror rate ¼ 0:385).

Fig. 5 andFig. 6 showmean task-completion timeanderror
rate values for the CAVE, LR fishtank andHR fishtank. Error
bars on the graphs indicate statistical significance: Over-
lapping error bars for any measurement indicate that the
difference between the measurements is not statistically
significant.

4 DISCUSSION

4.1 Looking-In versus Looking-Out Tasks

The results of both studies are consistent with our
hypothesis that fishtank VR displays are more conducive
to looking-in tasks than CAVEs. In a looking-in task, the user
views and manipulates a virtual world from the outside in,
and interacts with a virtual object that is smaller than his/
her body and fits in the fishtank VR display. The potato
search task is a looking-in task. Interaction with our DT-MRI
brain application also provides a looking-in perspective, as
does brain surgery.

A looking-out task, by contrast, shares the user’s frame of
reference: The user views and manipulates the virtual
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TABLE 2
Between-Subjects ANOVA Results

TABLE 3
Mean and Standard Error for Task Performance for Each Display Type

1 Significant differences were determined through pairwise comparisons using Bonferroni’s correction.

Fig. 5. Mean task-completion times for the CAVE, LR fishtank VR, and

HR fishtank VR displays. Users identified the features faster on the

HR fishtank and LR fishtank VR displays than in the CAVE.



world from the inside out. The user interacts with a virtual
object that is larger than his/her body and fills his/her
foveal and peripheral vision. Thus, looking-out tasks require
users to use their peripheral vision more than looking-in
tasks.

We believe that fishtank VR systems are a natural fit for
looking-in tasks because 1) a fishtank VR display physically
separates the user’s frame of reference from the virtual
object’s frame of reference, which forces the user to look
into the virtual world, and 2) a fishtank VR display
physically fits in the user’s field of view. On the other
hand, we expect looking-out tasks—such as architectural
walkthroughs, navigation in unfamiliar terrain, or urban
combat—to benefit more from CAVE-like displays, which
fill the user’s peripheral vision, than from fishtank VR
displays.

4.2 Why No Significant Effect of Visual Context?

Contrary to our hypothesis, we did not find statistically
significant differences between the visual contexts. One
reason for this finding may be that the dependent measure
was not sensitive enough to capture subtleties in user
performance. If, however, our measure was sensitive
enough, these findings are contrary to previous results in
the 2D visual search domain. One possible reason for this is
that many previous studies focus on semantic (relational)
contextual influences between the background and the
target objects in the scene [13], while we focused on the
psychophysical traits of the contexts. Another reason may
be that the properties of the potato object-target feature
conjunction were so obvious as to let users perform the task
without needing to rely on information external to the
object (i.e., context) for object-target segregation; previous
2D studies purposely manipulated the signal-noise ratio
between the target and distractors to gauge the extent to
which similarity and edge ambiguity confounded search
performance. In the present study, however, since the task
required users to segregate and identify the target feature
from the object, they may have ignored the context
completely and focused their (foveal) vision and attention
on the object. Furthermore, Wolfe et al. argue that
separation of targets from a background scene is a
preattentive step that allows subsequent focus of attention
on candidate target items; if the segmentation of the potato

object-feature pairs here is so salient as to be preattentive,
one could argue that we should see no differences between
the contexts [14].

We believe that strong motion and stereo cues, lacking in
previous 2D visual search studies, masked any differences
in performance due to the four different visual contexts in
this study. The current study displayed the 3D scenes in
stereo with hand-coupled and head-coupled motions
together. Motion cues provide both robust configural
information about the scene and strong depth cues. Along
with stereo, these cues help disambiguate information in
the scene, particularly the structure of the feature with
respect to the object. Previous research also suggests that
users make fewer errors in comprehending visual data
when using hand-coupled or head-coupled motion together
with stereo viewing [6]. Also, our study presented scenes
for much longer viewing times than the studies performed
with 2D images and thus allowed the user to explore the
object more thoroughly. A final reason for the absence of
differences may be the type of the task used: In looking-in
tasks, the user’s interaction with background and periphery
is inherently limited.

Although we found no significant differences between
the contexts, we believe that we may find contextual
differences using a looking-out task if our suppositions
about the nature of the contexts is correct. One of the
possible reasons described above for finding no contextual
differences was that users did not “see” the contexts; users
tended to put the potato objects right in front of them to
search it efficiently for the target feature, and this
necessarily limited their view of the contexts. Conversely,
users must view the scene as a whole in order to perform a
looking-out task, since this type of task necessitates seeing
the objects as well as the context. It is thus possible that
differences in user performance between contexts might
become apparent for a looking-in task using an object with a
semi-transparent or sparse (e.g., lattice) surface.

4.3 Task, Stimuli, and Interaction Choice

We chose the visual search task of finding a protruded
feature on a noisy surface for two reasons. First, the task
seemed an appropriate abstraction of the exploratory data
visualization process. In our observation, an important part
of the work of scientists doing exploratory involved the
examining geometric structures in order to locate hard-to-
find features. In partially reconstructing this process, we
decided to use rectangular and triangular protrusions from
potato-like forms as the hard-to-find features of these forms.
We adjusted the difficulty of the task by changing the
amount of the noise added to the surface and the extent of
the perturbations to the underlying shape. We believed that
there would be a general correspondence between perfor-
mance on our task and performance in scientific explora-
tions. Second, the suggestion in the literature for 2D visual
search that context would make a difference supported the
choice of a visual search task.

We chose interaction methods in the different environ-
ments using a “best-of-breed” approach: We tried to pick
interaction methods that would be as effective as possible
for each environment. This approach was intended to avoid
biasing results by using identical methods of interaction
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Fig. 6. Mean error rates for the CAVE, LR fishtank VR, and HR fishtank

VR displays. Users were more accurate on the HR fishtank and

LR fishtank VR displays than in the CAVE.



when those methods would be inappropriate in one of the
environments.

In retrospect, given that we did not measure a difference
due to visual context, the advantages of the immersive
CAVE environment were probably underutilized. As we
discussed above, using looking-out tasks is one approach to
utilize these advantages better. There are also other task
choices that might make better use of the CAVE environ-
ment including relationship identification and navigation.

4.4 Should Display Differences Be Normalized?

CAVE and fishtank VR systems differ not only in intrinsic
design such as size and field of view, but also in extrinsic
technology-related limitations such as brightness and
resolution. We chose to compare the displays as they were,
not normalizing for the extrinsic differences; subsequent
studies might be able to attribute some of the differences we
find to specific extrinsic factors, such as angular resolution.
Kasik et al. have already showed the positive effect of a
crisp display on user performance [15]. Quantifying the
effects of by-design and by-technology differences is
important in steering the future efforts of both application
developers and display designers.

4.5 Abstract versus Application-Specific
User Studies

We can categorize user studies as abstract or application-
specific according to the tasks and performance criteria
used. The two schemes are complementary, and each has its
own uses. Abstract user studies evaluate user performance
on abstract tasks and contexts using generic performance
criteria. The quantitative study presented here was an
abstract user study. It is inherently easier to reproduce,
quantify, and generalize abstract user studies than applica-
tion-specific ones. However, how to transfer results from
abstract user studies to real application domains is not
obvious without a formalism that can relate the abstract
tasks evaluated to a specific real-world application.

On the other hand, application-specific studies use tasks,
contexts and performance criteria that are directly related to
an application domain, so that their results can potentially
find immediate implications in that domain. Recent work
by Laidlaw et al. reported an application-specific quantita-
tive user study that compared different 2D field visualiza-
tion methods using expert (and nonexpert) users for a set of
domain-specific objective tasks such as locating and
identifying critical points and advecting a particle in the
field [16]. The present anecdotal work using the DT-MRI
brain visualization application was a qualitative, applica-
tion-specific study.

4.6 Some Observations Concerning Head-Tracking
and Stereo

We observed that users generally did not move their heads
during the quantitative user study. We tested this observa-
tion by repeating the study with the higher-resolution
fishtank VR without head tracking, using three subjects.
While the number of subjects is suitable only for a pilot
study, the results, consistent with our observations, suggest
that turning off head-tracking may not make a significant
change the users’ speed or accuracy. This may be because of

the nature of our looking-in task: Viewing and manipulating
a relatively small object from the outside in reduces the
need for head motion. Also, the small size of the virtual
object facilitates faster rotation with the hand-held device,
which is more natural in viewing an object of that size than
moving the head.

Similarly, in order to test the effect of stereo display in the
quantitative study, we repeated the study on the higher-
resolution fishtank VRwithout stereo using six new subjects.
We found that stereohelped theusers locate the feature faster,
buthadnosignificant effect on the identificationof the feature
type. Users were statistically significantly faster with stereo
display than with mono (Ftimeð1; 17Þ ¼ 7:877; ptime ¼ 0:012).
This finding is in line with earlier work: Ware et al. showed
that stereo with hand-coupled motion was the most effective
combination in 3D graph visualization [6]. There was not,
however, a significant difference in task accuracy between
stereo andmono cases in thepresent study (Ferror rateð1; 17Þ ¼

1:219; perror rate ¼ 0:285). This is probably because of the
“binary” accuracy measure used. We anticipate a significant
effect if a more sensitive measure is used.

5 CONCLUSION

For our visual search task, and possibly for similar looking-
in tasks:

. Fishtank VR displays are more accurate and faster
than CAVEs.

. Visual context did not demonstrate a statistically
significant effect on user performance.

. When the user manipulates a virtual object using a
six-DOF hand-held device coupled with the object,
stereo display contributes significantly to user
performance; head-tracking may not.
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