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Abstract: Connected and automated vehicles (CAVs) are getting a lot of attention these days as their
technology becomes more mature and they benefit from the Internet-of-Vehicles (IoV) ecosystem.
CAVs attract malicious activities that jeopardize security and safety dimensions. The cybersecurity
systems of CAVs detect such activities, collect and analyze related information during and after the
activity, and use cyber threat intelligence (CTI) to organize this information. Considering that CTI
collected from various malicious activities may share common characteristics, it is critical to provide
the cybersecurity stakeholders with quick and automatic ways of analysis and interrelation. This aims
to help them perform more accurate and effective forensic investigations. To this end, we present
CAVeCTIR, a novel approach that finds similarities between CTI reports that describe malicious
activities detected on CAVs. CAVeCTIR uses advanced machine learning techniques and provides
a quick, automated, and effective solution for clustering similar malicious activities. We applied
CAVeCTIR in a series of experiments investigating almost 3000 malicious activities in simulation,
real-world, and hybrid CAV environments, covering seven critical cyber-attack scenarios. The results
showed that the DBSCAN algorithm identified seven no-overlapping core clusters characterized by
high density. The results indicated that cybersecurity stakeholders could take advantage of CAVeCTIR
by adopting the same or similar methods to analyze newly detected malicious activity, speed up the
attack attribution process, and perform a more accurate forensics investigation.

Keywords: connected and autonomous vehicles; internet of vehicles; cyber threat intelligence reports;
cybersecurity; machine learning; cluster analysis; malicious incidents and attacks; security response;
threat profiling and information sharing; digital forensics

1. Introduction

Recent and rapid technological advancements have resulted in building smart and
complex environments (e.g., smart cities). Among others, smart mobility (i.e., intelligent
transport and mobility networks) is an important part of such environments. Smart mobil-
ity refers to many modes of transport, with connected and autonomous vehicles (CAVs)
being a rising and demanding domain. CAVs aims to assist driving activity by combin-
ing various technologies (e.g., advanced sensors, onboard computing, remote processing,
telecommunication, and positioning systems) through automated procedures. To accom-
plish their goal, CAVs collect and analyze data from their surrounding context continuously
and navigate within the smart environment with little or no human intervention. CAVs
operate on Internet-of-Vehicles (IoV) networks, which are dynamic and multi-diverse
ecosystems that include various communication types. Examples of such communica-
tion types are Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-Network
(V2N), Vehicle-to-Pedestrian (V2P), and Vehicle-to-Everything (V2X).
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IoV is a challenging domain with complex and diverse features and demands, such
as dynamic topological structures, huge network scalability, non-uniform distribution of
network components, complex granularities, and mobility limitations [1]. In this con-
text, CAVs are an IoV dimension that attracts diverse types of malicious activities (e.g.,
cyber-attacks). We identify three main types of such activities: (i) malicious activities on
autonomous control systems (e.g., in-vehicle network attacks), (ii) malicious activities on
autonomous driving system components (e.g., sensor attacks), and (iii) malicious activities
on V2X communications (e.g., attacks on ad-hoc vehicle networks) [2]. Their successful
confrontation is critical, considering that vulnerabilities in CAVs can put human life at risk.

Researchers have proposed several defense techniques to identify malicious activities [3]
and apply response and recovery strategies [4]. During the application of such techniques,
information (e.g., characteristics of the detected malicious activity, threat actor profiling,
and existing techniques that confront cyber-attacks) is collected and analyzed. Such in-
formation is critical for the successful mitigation of potentially harmful activities and
incidents in CAVs. The structure of such information should follow standard procedures to
be beneficial for security and public safety within a smart environment (e.g., IoV ecosys-
tems). Toward this direction, the cybersecurity community has proposed the use of Cyber
Threat Intelligence (CTI) reports. In recent years, CTI has attracted growing attention and
investment from cybersecurity communities (both research and industry), considering
that cybersecurity stakeholders use CTI to build accessible knowledge repositories, which
contain rich information about identified malicious activities, detected cyber-attacks, threat
profiling, analysis methods, adversary tactics and techniques, forensics investigation, etc.
Cybersecurity stakeholders (e.g., cybersecurity experts) use such knowledge to speed up
the analysis process of the detected malicious activities and eventually attribute them
successfully, aiming to mitigate their direct impact and prevent similar malicious activities
in the future.

Focusing on cyber-attacks, recent research works take advantage of artificial intel-
ligence (e.g., machine learning processes) to detect high-level indicators of compromise
(IOCs), which are presented in CTI reports, to enable attack attribution [5]. Furthermore,
researchers have proposed intelligent systems that model CTI and detect threat types
(e.g., anomaly types) on heterogeneous information networks [6]. In an attempt to follow
and broaden these strategies, cybersecurity stakeholders could use CTI-based solutions
to minimize false alerts, fatigue, and misdetections. Therefore, cybersecurity stakeholders
could enrich the sharing of IOCs with machine learning models to achieve collaborative
threat detection [7]. Such research works use varying CTI platforms and repositories to
store information related to threats, IOCs, and machine learning models, such as MISP,
GOSINT, YETI, and CIF [8].

Even though there is much information, it is scattered throughout several sources, such
as publicly accessible knowledge bases (e.g., MITRE ATT&CK) and private CTI repositories
within an organization. Cybersecurity stakeholders, with an emphasis on cybersecurity
experts, should be able to rapidly identify common patterns and characteristics in CTI
reports (e.g., common adversary tactics, similar analysis and mitigation techniques), given
that the detected malicious activities (e.g., cyber-attacks) may be connected to one another.
Therefore, there is a need to assist cybersecurity stakeholders in this direction, as this
would have a direct impact on the forensic investigation process (e.g., speed up the attack
attribution process and perform a more accurate post-incident investigation). Motivated
by that need, we can extend existing cybersecurity frameworks for IoV, such as nIoVe [9],
by reinforcing them with tools that employ artificial intelligence techniques to address
such challenges. In particular, we can adopt machine-learning approaches (e.g., clustering
techniques) to build tools that identify similarities and differences between the attributes of
the stored CTI reports and the characteristics of a new malicious activity. Cybersecurity
experts could use such tools to swiftly correlate a malicious activity with previously
reported ones, access existing knowledge about it, and apply comparable approaches to
analyze its impact. This would result in a more accurate and quicker attack attribution and
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post-incident forensics investigation. Therefore, the research question that this work aims
to answer is:

“Can we expand existing IoV cybersecurity frameworks and provide the cybersecurity
stakeholders (with an emphasis on cybersecurity experts) with an approach implementing
an automatic process that analyzes and correlates CTI reports with newly detected
malicious activities (e.g., cyber-attacks) on CAVs in an IoV environment?”

To answer our research question, we developed CAVeCTIR, which expands the nIoVe
framework [9]. CAVeCTIR uses advanced machine learning techniques and provides a
quick, automated, and effective solution for clustering similar malicious activities. We
performed an evaluation study applying CAVeCTIR in various CAV environments (simula-
tion, real-world, and hybrid) and investigated its performance for almost 3000 malicious
activities of diverse types (GNSS signal spoofing, GNSS signals jamming, CAN DoS at-
tack, alteration of CAN messages, alteration of camera stream, false sensor reading, and
malware/ransomware attack). The results indicated that the DBSCAN algorithm worked
well and identified non-overlapping core clusters of high density. Therefore, cybersecurity
stakeholders could take advantage of CAVeCTIR by adopting the same or similar methods
to analyze newly detected malicious activity, speed up the attack attribution process, and
perform a more accurate forensics investigation.

The remainder of the paper is organized as follows: we discuss related works, we
present the nIoVe framework, which is a multi-layered interoperable cybersecurity solution
for IoV [9], we present our approach for matching CTI reports using machine learning
techniques, we present the setup and the results of an evaluation study with multiple
attack scenarios, we interpret and discuss the findings of our study, we present the future
directions of this work, and we conclude the paper.

2. Related Work

In this section, we discuss related works in the field focusing on the importance of CTI
in cybersecurity frameworks, methods for extracting and sharing CTI information, and the
analysis methods of CTI for IoV systems.

2.1. Importance of CTI

CTI provides meaningful information about cybersecurity threats; through the anal-
ysis of such information, we build valuable knowledge about the motives, capabilities,
resources, and opportunities of cyberspace adversaries. Such knowledge is important for
organizations that focus on providing cybersecurity solutions and individuals that serve as
network architects, cybersecurity operators, forensic specialists, threat incident responders,
policy-makers, etc. Several challenges (e.g., attack vector reconnaissance, attack indicator
reconnaissance) and opportunities (e.g., application of artificial intelligence techniques to
perceive, reason, learn, and act against advanced cyber-attacks) can be identified in the
CTI [10].

CTI is a critical component of the cybersecurity domain because it provides evidence-
based knowledge about existing and potential cyber threats. It also improves security
operations efficiency and effectiveness in terms of detective and preventive capabilities.
To represent the knowledge gained through CTI, several taxonomies, sharing standards,
and ontologies have been proposed (e.g., [11–13]), which typically address the following
aspects: motivations, goals, strategies, tactics, techniques, and procedures (TTPs), tools,
indicators of compromise (IOCs), atomic indicators, targets, and courses of action. Multiple
attacks and actors are supported through such CTI models.

Following the construction of the CTI information, its quality assessment is also an
important step. Several levels of subjective and objective assessment can be identified,
including attribute (e.g., concise representation, relevancy, schema completeness, syntactic
accuracy, timeliness), object (e.g., representational consistency, reputation), and report
(e.g., the appropriate amount of data) levels. In their recent work, Schlette et al. [14]
proposed quality assessment and measurement methods, also discussing visualization
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techniques. Besides the steps of CTI reconstruction and quality assessment, it is also
important for cybersecurity organizations and individuals to follow novel and consistent
ways of extracting and sharing CTI information. We discuss them next.

2.2. Extracting and Sharing CTI Information

Recent research works make extensive use of machine-learning approaches to extract
CTI information, which has various advantages, such as the identification of indicators of
compromise and automatic categorization of CTI reports with domain-specific tags (e.g., fi-
nance, government). Various methods have been used, such as analysis of raw log data [15],
analysis of social media data based on convolutional neural networks [16], analysis of
conversations (e.g., forum data) based on support vector machines [17,18], use of natural
language processing models [19], analysis of semantic and contextual information collected
from varying sources [20], mining of CTI reports to automatically learn the semantics
of malicious campaigns [21], and leveraging entropy and mutual information [22], from
structured or unstructured sources [23,24]. A common characteristic of these works is that
they rely on artificial intelligence and that the analysis of the CTI information is typically
organized (e.g., in CTI reports), which is then shared among cybersecurity stakeholders.

Regarding the sharing of CTI information, Wagner et al. [25], in a recent review,
showed that various sharing models are adopted, covering peer-to-peer, peer-to-repository,
and hybrid aspects. Considering the importance of actionable CTI and the value of various
dimensions (e.g., timeliness of sharing CTI, trust establishment of CTI sharing, stakeholder
reputation, data interoperability, privacy, and anonymity), the use of automated tools
(e.g., through established CTI repositories) plays a major role. One of the most known
and widely used tools is the MISP Threat Sharing platform [26], which is an open-source
solution that supports utilities and documentation for effective CTI by sharing indicators of
compromise. Other tools, such as SecurityKG [27], are also used for automated CTI gather-
ing and management, supporting higher-level concepts (e.g., adversary tactics, techniques,
and procedures). Moreover, organizations often use technologies such as STIX [12] and
TAXII [28] to describe and share CTI information in a secure and automated manner.

2.3. Use and Analysis of CTI in IoV Systems

A small body of research focuses on the use and analysis of CTI on IoV, which might
result from the fact that IoV technologies are new, are not yet mature, and have not
been in wide practical use until now. Kukkala et al. [29] underpin the importance of
using threat intelligence for enhanced cybersecurity testing and sharing this information
between different organizations to effectively tackle cyber-attacks in CAVs and IoV systems.
Along the same line, He et al. [30] highlight the benefits of adopting artificial intelligence
techniques (e.g., machine learning) to analyze CTI in IoV systems, such as dealing with
a huge amount of data and performing automated processes. Panda et al. [31] proposed
that honeypots could be adjusted to deceive attackers and thus collect and analyze CTI in
IoV contexts, configuring the IoV vulnerabilities. Basnet et al. [32] present deep-learning
techniques that could leverage CTI for cyber-attack detection in CAVs. Ali et al. [33]
proposed the adoption of machine-learning approaches for secure vehicular communication.
Other important dimensions, apart from security, are preservation and safety. Regarding
preservation, Liu et al. [34] proposed an IoV service deployment and execution with privacy
preservation in cloud-edge computing. Regarding safety, Mohseni et al. [35] reviewed
practical machine-learning safety techniques that could complement engineering safety for
machine-learning-based software in autonomous vehicles. In a related domain (maritime
transportation systems), Kumar et al. [36] presented a framework that models CTI and
identifies domain-specific threat types.
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2.4. Synthesis

The discussion of the related works in the field (Table 1) highlighted the importance
of CTI in cybersecurity frameworks, presented methods for extracting [15–17,19–24] and
sharing [12,26–28] CTI information, and stressed that only a limited body of research
exists in the intersection of CTI and IoV [29–32]. To this end, we should stress that while
the analysis (e.g., discovery of similarities and differences, comparisons) and correlation
(e.g., matching) of CTI reports is an important task; there is no research—to the authors’
knowledge—that elaborates on it. Hence, aiming to shed light on this dimension and
answer our research question, in the next sections, we discuss the nIoVe framework that
provides a cybersecurity framework focusing on IoV; we propose a novel approach based
on machine learning that supports the automatic analysis and correlation of CTI reports,
and present the results of an evaluation study.

Table 1. Related works.

Work Reason(s) for Adopting Machine Learning Techniques Application Domain

Landauer et al. [15] extract CTI from raw log data generic
Zhao et al. [16] extract CTI from social data domain-specific
Deliu et al. [17] classify CTI content (forum posts) social media
Zhang et al. [19] extract CTI actions through semantic analysis generic, text mining
Li et al. [20] collect and analyze CTI events (semantic analysis of articles) generic, text mining
Zhu et al. [21] collect and analyze CTI malicious campaigns (semantic analysis of articles) generic, text mining
Husari et al. [22] extract CTI actions through semantic analysis generic, text mining
Ghazi et al. [23] extract high-level CTI IOCs generic, text mining
Wang et al. [24] extract high-level CTI IOCs generic, text mining
Gao et al. [27] search, collect, and manage CTI generic
He et al. [30] analyze huge CTI volume IoV
Panda et al. [31] collect and analyze CTI for honeypot configuration IoV
Basnet et al. [32] detect cyber-attacks in CAVs IoV
Ali et al. [33] ensure secure vehicular communication IoV
Liu et al. [34] deploy and execute privacy preservation services in cloud-edge computing IoV
Mohseni et al. [35] complement engineering safety for IoV software based on machine learning IoV

3. nIoVe Framework

Our work is based on the nIoVe framework [9], which provides a generalized cyberse-
curity solution for IoV networks, focusing on CAVs. A critical feature of any integrated
cyber-defense strategy, such as the ones described in nIoVe, is the real-time and post-
incident investigation of the incoming attacks. This two-phase investigation approach aims
to identify characteristics, motives, targeted assets, and the impact of the identified attacks.
Security stakeholders, such as security experts, could take advantage of the investigation
outcome to have a better understanding of the underlying causes of the incoming attacks
and identify common patterns (e.g., attacker profiling, exploitation of IoV vulnerabilities).
Toward this end, nIoVe implements an attack attribution and digital forensic readiness
tool (AAFRT) to allow security experts to perform post-incident analysis of the detected
cyber-attacks [37]. AAFRT supports two major functionalities:

• Attack attribution, which identifies low-level and high-level IOCs and aims to assist
security experts in attributing the detected attack to known threat actors by attempting
to identify common tactics, techniques, and procedures;

• Digital forensic readiness, which enables the nIoVe framework to automatically collect
forensic data from various sources and to create a CTI report containing all the neces-
sary information about the attack. This step is vital for further digital investigation,
preservation of the integrity of the collected data, and maintenance of a valid chain
of custody.

In the IoV environments, there is a large degree of heterogeneity for the connected
devices that handle diverse information types and communicate through different protocols.
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That is a major challenge, and security experts address it by building customized forensics
plans. Such plans allow the automatic collection and analysis of data related to the detected
cyber-attack, aiming at mitigating the system vulnerability. Moreover, the nIoVe framework
communicates the identified vulnerabilities both to the administration/monitoring team
and to the manufacturers of the IoV components (e.g., manufacturers of CAVs).

To this end, AAFRT provides the FoRePlan tool [38] that allows security experts to
create new and update old forensics plans tailored to the type of supported attacks (e.g.,
denial-of-service, GNSS spoofing attacks). After the detection of the attack, the plan that
matches the features of the attack is selected, scheduled, and executed. A multi-threading
process initiates the collection of related data from various IoV sources. Next, standardized
methods and procedures are followed to preserve the collected data. A preliminary analysis
(e.g., timeline analysis, session analysis, log analysis) of the data follows to speed up the
forensics analysis process. After collecting all the available information, AAFRT provides
the security experts with a CTI report with several characteristics related to the detected
attack, including the assigned attack profile, the executed plan, the collected data, and the
outcome of the forensics analysis. Moreover, nIoVe provides security experts with a secure
virtual environment equipped with sophisticated forensics analysis tools to help them with
the analysis process.

CAVeCTIR Method

As discussed, the attack attribution process and the appropriate assignment of an
attack profile are crucial steps in post-incident forensic analysis. Some characteristics
and features of the detected attack can be directly extracted from the analysis of the
acquired data. Others require more intense and complex procedures of processing and
knowledge extraction, which are based on interrelating different CTI reports. These CTI
reports are recorded in a CTI repository based on the MISP sharing platform [26]. The
CTI reports might share common characteristics (e.g., attack techniques, attack models,
analysis methods), and thus, they might be potentially correlated with each other. However,
this information is not visible to the cybersecurity stakeholders, and thus, we propose
the CAVeCTIR method, which supports the automatic interrelation and matching of a
detected malicious activity with a collection of stored CTI reports. CAVeCTIR extends the
CTIMatcher tool presented in our previous work [39], as it provides a more holistic solution
that supports more and diverse types of malicious activities found in IoV. The CAVeCTIR
aims to assist cybersecurity stakeholders (e.g., cybersecurity experts and analysts) in
identifying CTI reports that describe similar malicious activities and thus boost post-
incident forensic analysis. CAVeCTIR supports the following processes (Figures 1 and 2),
which are technically implemented through micro-services in the IoV ecosystem.

• Initialization of attack profile: CAVeCTIR extracts characteristics of the detected attack
directly and initializes the attack profile. These characteristics include the IoV com-
ponents (e.g., sensors) that have been attacked, propagation trends, risk assessment
regarding the overall IoV system, and the level of confidence regarding the impact of
the attack. Based on these, an initial attack profile is generated and assigned to a new
forensic case.

• Acquisition of CTI reports: In parallel with the previous step, CAVeCTIR seeks, processes,
and acquires CTI reports from various platforms and repositories, including both the
internal MISP-based CTI repository and other external repositories to which the
organization has access (e.g., shared threat intelligence repository). The output of this
step is a collection of the acquired CTI reports.

• Features selection/extraction: Based on the collected information related to the detected
attack and the CTI reports, CAVeCTIR aims to reduce the number of features and rank
the importance of these features through feature selection and extraction processes. It
generates a features model fed to the matching analysis process, aiming to provide an
efficient and quick machine-learning clustering approach.
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• Algorithm selection: Several algorithms are supported for both supervised and unsu-
pervised machine learning. Focusing on the unsupervised techniques, the supported
algorithms include k-means clustering, mean-shift clustering, density-based spatial
clustering of applications with noise (DBSCAN), affinity propagation, hierarchical
clustering, balanced iterative reducing and clustering using hierarchies (BIRCH), and
ordering points to identify the clustering structure (OPTICS). The selection of the most
effective algorithm depends on various factors, including the selected features, the
knowledge of the number of clustering, and the sample size.

• Matching analysis: Having as input the profile of the detected attack, the acquired
CTI reports, the features model, and the appropriate machine-learning algorithm,
CAVeCTIR proceeds with the matching analysis, which aims to cluster the CTI reports
dynamically and in real-time. Similarities and differences between the CTI reports are
recorded. In the end, the detected attack is matched with one or more CTI reports,
which are characterized as interrelated, meaning that they describe malicious activ-
ities, tools, techniques, and processes that share common patterns with the newly
detected attack.

• Recommendation of matched CTI reports: The outcome of the previous step is a series
of clusters containing matched recorded CTI reports. Based on the detected attack,
CAVeCTIR recommends the corresponding cluster to the cybersecurity stakeholders
(e.g., cybersecurity experts and analysts). This cluster contains CTI reports, from both
internal and external sources, that match the profile of the detected attack, according
to the selected machine-learning approach. Therefore, the cybersecurity stakeholders
have full access to the matched CTI reports, assess their relevance to the detected
attack, estimate the impact on the IoV environment, and can adopt the same or similar
post-incident forensic analysis processes (including tools, methods, and techniques) to
identity and eventually attribute the detected IoV attack quickly and accurately.

Detected
Attack

Initialization of
attack profile

Acquisition of
CTI reports

Features selection
and extraction

Matching analysis

Algorithm
selection

Available
features

Available
algorithms

Recommendation
of CTI reports

CAVeCTIR

Cybersecurity  
Stakeholder

collection of CTI reports

attack profile

features model clustering algorithm

clusters of CTI reports

matched CTI reports

Shared CTI
repository

Internal CTI
repository

Public IoV
CTI platfom

...

CTI repositories

vulnerability score

severity score

propagation trends

target components

probability
accuracy DBSCAN

OPTICS

BIRCH

Mean-shift

Figure 1. The conceptual structural diagram of CAVeCTIR.
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Detect attack

Initialize attack
profile

Acquire available
CTI reports

Select clustering
algorithm

Select appropriate
features 

Create clusters of
CTI reports

Find the cluster of
the detected attack

Recommend the
CTI cluster

Figure 2. The activity diagram of the primary functionality (behavior) of CAVeCTIR.

4. Evaluation Study

After proposing an automatic process for analyzing and correlating CTI reports, we
performed an evaluation study to answer our research question. We performed various
IoV attacks that target CAVs in various environments (simulated, real-world, and hybrid).
Next, we discuss the setup and the results of the study.

4.1. Setup

This section discusses the selected attack scenarios, the environments, the analysis
tools, and the study procedure.

4.1.1. Attack Scenarios

We focused on seven attack scenarios, which are critical for CAVs and IoV systems:
GNSS signal spoofing, GNSS signals jamming, CAN DoS attack, alteration of CAN mes-
sages, alteration of camera stream, false sensor reading, and malware/ransomware attack.
Table 2 presents a brief description of them, and Figure 3 illustrates the IoV environment
and the compromised components for each scenario.
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Table 2. The attack scenarios performed in our study.

Attack Description

GNSS signals spoofing

The attacker emits a fake GNSS signal (i.e., providing false positioning and timing data) to
the area that the CAV is moving through. The CAV receives this signal and processes false
vehicle location. As a result, the moving CAV gets disoriented, demonstrating unexpected
and dangerous behavior.

GNSS signals jamming

The attacker attempts to disrupt GNSS communications by jamming GNSS signals. As
GNSS signals are vulnerable to intentional interference, the attacker uses a specific device
(e.g., Software Defined Radio (SDR) hardware) to overpower GNSS signals so that they
cannot be acquired and tracked by the GNSS receiver.

CAN DoS attack

The attacker floods the CAN bus (i.e., the control area network of the CAV that implements
a message-based protocol, which enables communication between the in-vehicle
components, such as micro-controllers and devices) with messages with high priority. As a
result, the CAN bus becomes unresponsive, and thus, there is no control over the CAV,
which demonstrates unexpected and dangerous behavior.

Alteration of CAN messages

The attacker tries to manipulate the CAN frames. Data manipulation can be defined as the
insertion of an unauthorized CAN frame into the network. Since the CAN protocol does
not have an authorization mechanism, a malicious node can attach to the network and
inject malicious data. An attacker exploits this vulnerability and sends a CAN message to
activate emergency brakes while the vehicle is moving.

Alteration of camera stream

The attacker attempts to alter the video transmitted over the Ethernet network of the CAV.
They intercept the video stream and tamper with it. Next, they send it to the supervision
center that monitors the CAVs. This results in image elements not being identified by the
supervision center correctly. As a result, the supervision center cannot identify the actual
situation of the CAV through the internal camera.

False sensor reading

The attacker manipulates the speedometer (i.e., the gauge that measures the instantaneous
speed of the CAV) readings to trick the CAV into making bad decisions. The attacker
replaces the existing speedometer with a malicious one. Therefore, the control module
receives an erroneous value on the speed of the new device, which leads the CAV to make
bad decisions and demonstrate unexpected and dangerous behavior.

Malware/Ransomware

The attacker attempts to penetrate and infect the vehicle with malware (e.g., ransomware).
They use a Trojan disguised as a legitimate file to trick the end-users into downloading or
installing it on a vehicle. The malware encrypts the vehicle’s files, making them
inaccessible and the vehicle inoperable, and demands a ransom payment to decrypt them.

4.1.2. Environments

• Simulated environment. To simulate the attacks on CAVs, we used the co-simulation
tool of the nIoVe framework (Figure 4). The co-simulation tool is based on the CARLA
open-source simulator that supports the development, training, and validation of
autonomous driving systems. The interface of the co-simulation tool (i) enables the
security expert to execute a specific attack scenario, (ii) provides a console to view the
progress of the attack, and (iii) provides a live video stream of the CAV moving in a
metropolitan area.

• Real-world. This environment is a real smart city environment. The choice of this
scenario is motivated by the fact that a real-life trial presents no danger for humans
in this case (e.g., vehicle passengers, pedestrians, and other road users). It is mainly
based on the communication between the road-side unit (RSU) and the CAV, with two
on-board units (OBUs) installed (one responsible for the vehicle movement and the
other responsibilities of the communication).

• Hybrid. The deployment and the testing of the cybersecurity framework take part in
a real-world-like environment of a setup that meets specific requirements. Like the
real-work environment, it is based on the OBUs of the CAV.
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GNSS Jammming

GNSS Spoofing

Alteration of CAN messagesCAN DoS attack False sensor reading

Alteration of camera stream Malware/Ransomware

Figure 3. The IoV environment and the compromised components for each attack scenario.

Figure 4. The user interface of the co-simulation tool used for the simulation of the attacks.

4.1.3. Analysis Tools

For the matching and correlation process, we followed a real-time clustering analysis
approach using the scikit-learn machine-learning library for Python [40]. scikit-learn
supports several different methods for the clustering of unlabeled data. Given that the
AAFRT CTI repository is dynamic and multi-layered, with no predefined clusters of related
CTI reports, we focused only on unsupervised machine learning methods, which do not re-
quire the pre-specification of the number of clusters. Hence, we took into consideration the
mean-shift, DBSCAN, OPTICS, and BIRCH methods. Taking into account the increased num-
ber of expected clusters (based on the performed attack scenarios) and the increased sample
size, we focused on the DBSCAN clustering model [41], as discussed in Raptis et al. [39]. The
DBSCAN model (Appendix A) uses a minimum density level estimation based on a threshold
score for the number of neighbors within a specific distance (i.e., radius). Objects with more
than that threshold number of neighbors within the area defined by the given radius are
considered to form the core clustering points. The DBSCAN model aims to find the areas that
satisfy the minimum density and which are separated by areas of lower density.
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Regarding the features taken into account for the clustering analysis, they included
the output of the risk assessment engine of the nIoVe framework, the CAV components
that seemed to be influenced during or after the detected malicious activity (e.g., have
a different behavior), and potential targets (e.g., CAV components with a high risk of
attack propagation). The output of the risk assessment engine provided information about
the impact of the malicious activity, such as severity score (i.e., how severe the activity
was), probability (i.e., how probable is an ongoing risk occurrence), accuracy (i.e., how
precise and accurate the detection was), and vulnerability score (i.e., how the CAV system
is influenced by the vulnerability). They are all represented as decimal numbers ranging
from 0 to 10.

To assess the clustering performance, we did not use a single metric, but we decided
to use a combination of them. In particular, we used the Silhouette coefficient [42], the
Calinski–Harabasz score [43], and the Davies–Bouldin index [44]. They are common and
well-established metrics that have been widely used for such evaluation processes in the
literature. We discuss them next:

• Silhouette coefficient [42]. The Silhouette coefficient s(i) is defined for each sample
and is composed of two scores, a(i) and b(i). A higher Silhouette coefficient score
relates to a model with better defined clusters.

a(i) =
1

|CI | − 1 ∑
j∈CI ,i 6=j

d(i, j)

b(i) = min
1
|CJ | ∑

j∈CJ

d(i, j)

s(i) =


1− a(i)/b(i), a(i) < b(i)

0, a(i) = b(i)
b(i)/a(i)− 1, a(i) > b(i)

• Calinski–Harabasz score [43]. The Calinski–Harabasz score (also known as the Vari-
ance Ratio Criterion) is the ratio of the sum of between-cluster dispersion and of
inter-cluster dispersion for all clusters. For a set of data E of size nE, which has been
clustered into k clusters, the Calinski–Harabasz score s is defined as the ratio of the
between-cluster dispersion mean and the within-cluster dispersion:

s =
tr( Bk)

tr(Wk)
× nE − k

k− 1

where tr( Bk) is the trace of the between-cluster dispersion matrix and tr(Wk) is the
trace of the within-cluster dispersion matrix defined by:

Wk =
k

∑
q=1

∑
x∈Cq

( x− cq) ( x− cq)
T

Bk =
k

∑
q=1

nq( cq − cE) ( cq − cE)
T

with Cq as the set of points in cluster q, cq the center of cluster q, cE the center of E,
and nq the number of points in cluster q. The score is higher when the clusters are
dense and well separated, which relates to a standard concept of a cluster. Moreover,
the score is computed fast.

• Davies–Bouldin index [44]. The Davies–Bouldin index signifies the average ‘similar-
ity’ between clusters, where the similarity is a measure that compares the distance
between clusters with the size of the clusters themselves.
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The index is defined as the average similarity between each cluster Ci for i = 1, ..., k
and its most similar one Cj. In the context of this index, the similarity is defined as a
measure Rij that trades off:

– si: the average distance between each point of cluster i and the centroid of that
cluster (also known as cluster diameter).

– dij: the distance between cluster centroids i and j.

A simple choice to construct so that it is nonnegative and symmetric is:

Rij =
si + sj

dij

Then the Davies–Bouldin index is defined as:

DB =
1
k

k

∑
i=1

max(Rij)

A lower Davies–Bouldin index relates to a model with better separation between the
clusters. Zero is the lowest possible score. Values closer to zero indicate a better partition.

4.1.4. Study Procedure

Several attack scenarios have been executed and recorded during the nIoVe EU project.
We kept logs of the recorded scenarios and created a dataset with the identified threats along
with several features (e.g., computed vulnerability score, potential targets of the system).
Our dataset consists of the logs, the assets, and the features collected and calculated during
the execution of 2996 attack scenarios.

4.2. Results

We ran a series of DBSCAN tests using the scikit-learn machine-learning library with
a diverse range of parameters:

• eps ∈ [ 0.1, 3.0] with step = 0.1, which defines the maximum distance between two
samples for one to be considered as in the neighborhood of the other.

• minsamples ∈ [ 1, 300] with step = 1, which defines the number of samples (i.e., total
weight) in a neighborhood for a point to be considered as a core point (including the
point itself).

Regarding the analysis of the evaluation metrics, we produced the heatmaps depicted in
Figure 5. Each heatmap reflects the assessment of each evaluation metric in a 30 × 300 matrix.
Each row (N = 30) represents the eps parameter, and each column (N = 300) represents the
minsamples parameter. The coloring follows a three-color scheme, with red indicating the
poorest performance, yellow indicating the medium performance, and green indicating the best
performance. Focusing on the evaluation parameters, this means that the greener a cell is, the
higher the Silhouette coefficient is (i.e., close to 1), the higher the Calinski–Harabasz score is,
and the lower the Davies–Bouldin index is (i.e., close to 0).

Combining all, we achieved the best results for eps = 1.1 and minsamples = 19, which
provided N = 7 core clusters. We should note that the values of the selected parameters
are close to the heuristic recommendations suggested by Schubert et al. [45]. Focusing on
each metric, we had s = 0.792 as the Silhouette coefficient, which is close to the maximum
value (i.e., 1), meaning that the core clusters are characterized by high density, there are
no overlapping core clusters, they are well apart from each other, and they are clearly
distinguished. This is also confirmed by the Calinski–Harabasz score, which indicates, with
a maximum value of s = 2350, that the core clusters are dense and well separated, relating
to a standard concept of a cluster. We should also mention that there is a high degree of
correlation between these two metrics and that our results are in line with results of studies
in other domains (e.g., [46]), which indicates a high volume of consistency and increased
validity. Regarding the Davies–Bouldin index (minimum value: DB = 0.348), the analysis
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indicates that the clustering model performed well. This is attributed to the fact that the
clusters are not similar to each other, and thus, the best clustering scheme minimizes the
Davies–Bouldin index.

(a)

(b)

(c)
Figure 5. Heatmaps produced for the evaluation metrics of each experiment run. (a) Silhouette
coefficient. (b) Calinski–Harabasz score. (c) Davies–Bouldin index.

We should highlight that the evaluation of CAVeCTIR is based on several parameters,
including the DBSCAN algorithm, the Silhouette coefficient, the Calinski–Harabasz score, and
the Davies–Bouldin index. They all have advantages and disadvantages. DBSCAN performs
well for datasets with noise, recognizes outliers easily, and the clusters can develop irregular
shapes. However, it is sensitive to the eps and minsamples parameters, which justifies our
decision to explore a variety of combinations. The Silhouette coefficient provides an easy
metric for defining the quality of the clustering, but it normally needs high computational
effort. The Calinski–Harabasz score tends to be most suitable when the identified clusters
are more or less spherical and compact in their middle (e.g., normal distribution). It also
tends to have high scores when the clusters have similar sizes. Regarding the Davies–
Bouldin index, it has simpler and quicker computation than the Silhouette coefficient, and
it is computed based on quantities and features inherent to the available data. However, it
is generally higher for convex clusters, it limits the distance metric to the Euclidean space,
and a good index value does not always guarantee the best results regarding information
retrieval. For all of the above, we decided to use these metrics as complementary to take
the best from their application in a real-life IoV scenario.

In an attempt to compare the results derived from our evaluation study with the
results derived from other studies conducted in the cybersecurity domain reporting CTI
processes, regarding each metric, we observe that:

• Silhouette coefficient: our result (s = 0.792) is similar to or better than the coefficient
scores reported regarding the clustering of the Conti and Ryuk families (s = 0.725) and
Babuk family (s = 0.786) used in CTI processes [47], clusters containing malicious URLs
(s = 0.383) [48], and TTP profile extraction and group clustering in IoT (0.610) [49].

• Calinski–Harabasz score: our result (s = 2350) is in between the scores reported in other
studies regarding TTP profile extraction and group clustering in IoT (s = 3416) [49] and
uncovering cybercrimes in social media through natural language processing techniques
(s = 1088) [50].
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• Davies–Bouldin index: our result (DB = 0.348) is similar or lower to the scores
reported regarding TTP profile extraction and group clustering in IoT (DB = 0.737) [49]
and the enhancement of data quality in real-time CTI (DB = 0.561) [51].

• Performance timing: the maximum execution time (in seconds) for the clustering
was t = 209. The DBSCAN performance timings vary widely in the literature (e.g.,
t = 11 [52], t = 83 [53], and t = 2460 [54]). However, this metric highly depends on
the computational resources, the data size, and the complexity of the machine-learning
problem. Since CAVeCTIR contributes to the post-incident forensics investigation, the
reported timing is acceptable.

5. Discussion
5.1. Summary of Findings

CAVeCTIR is a novel approach that expands the functionality of the nIoVe framework
by allowing the automated matching and clustering of new malicious activities with a set
of existing CTI reports recorded in an IoV ecosystem. The proposed approach is based
on machine-learning techniques and models that enable cybersecurity experts to perform
deeper and more accurate post-incident analyses. We also reported an evaluation study
in which the proposed approach was activated after a series of different attacks (GNSS
signal spoofing, GNSS signals jamming, CAN DoS, alteration of CAN messages, altered
camera stream, false sensor reading, and malware attack) targeting the CAVs of an IoV
ecosystem. The results provided evidence of the functionality and performance of the pro-
posed approach. Hence, the results lead to active consideration of matching and clustering
techniques to automatically find similar CTI reports in IoV environments. Approaches
such as CAVeCTIR equip the cybersecurity stakeholders (e.g., organizations, and security
experts) with automated tools that find and interrelate similar malicious activities detected
in IoV environments quickly with minimum—or even with no—human intervention. As
a result, the proposed approach could speed up the post-incident investigation of digital
forensics and lead to a more accurate, more efficient, and faster attack attribution.

Attack attribution is a time-consuming, resource-demanding, and challenging task for
cybersecurity stakeholders (e.g., organizations, and experts), considering that there are no
automated processes for defining and assessing the responsibility for malicious activities,
both regarding technical aspects and threat actor profiling. A high volume of information
related to such malicious activities, such as IOCs, is available for existing (e.g., previously
reported) threat incidents. Cybersecurity stakeholders (e.g., cybersecurity experts and
analysts) could benefit from the proposed approach, as they could quickly and accurately
interrelate a new malicious activity (e.g., newly detected cyber-attack) with one or more that
have already been reported in the CTI repository resulting in a successful attack attribution.
We should stress that CAVeCTIR takes into consideration the dynamic, ongoing, and multi-
stage nature of the attack attribution process, which often includes malicious activities and
incidents of different types and characteristics. During a typical attack attribution scenario,
the cybersecurity experts and analysts of an organization would compare information
about a new threat to existing knowledge of previous threats recorded in CTI reports. They
would evaluate tools, tactics, techniques, and methods of known malicious actors, would
assess the collected and analyzed forensics evidence to define a confidence level for their
evaluation reports and judgments and would adopt alternative hypotheses and scenarios
to trace malicious activities back to their sources, and thus, complete the attack attribution
process. In such scenarios, the CAVeCTIR would be a valuable asset for cybersecurity
stakeholders to perform an accurate and quick attack attribution.

To provide a clearer picture, let us present an example by making the following
hypothesis: an attacker performs a DoS attack on a specific IoV sensor (e.g., GNSS receiver)
of a moving CAV. The system detects the anomalies while analyzing the GNSS signals
and clusters them into an attack. After the detection of the cyber-attack, the cybersecurity
experts of the organization perform a series of post-incident analyses, aiming to attribute
the attack (e.g., assign a threat actor profile), among others. The results of the analyses,
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performed both by the cybersecurity experts and the IoV system (including both manual
and automatic processing ways), constitute the digital forensic evidence, which is part of
the recorded CTI report. Forensic evidence includes information such as attack sources,
analysis methods, collection tools, tactics, etc. CAVeCTI updates the recorded CTI report
whenever a new post-incident analysis is performed or when new evidence is collected
and preserved. In our hypothetical scenario, let us also include that the cybersecurity
experts of the organization have already evaluated the attack attribution, which resulted in
specific threat actors, tools, tactics, techniques, procedures, and incentives. When a new
CTI report, which contains information about a detected malicious activity (e.g., GNSS
spoofing attack) with similar features and characteristics to old ones, is recorded in the
threat intelligence repository, the cybersecurity experts will receive information about the
already recorded similar CTI report(s) that have already been processed and assessed.
Therefore, cybersecurity experts could adopt similar methods and protocols to collect, store,
preserve, process, and analyze the associated forensic evidence, and thus, speed up the
attack attribution process eventually. Even in the scenario that the attack attribution process
has only partially been completed, CAVeCTIR would enable the cybersecurity experts
to identify common patterns and reported characteristics between different CTI reports,
weigh their confidence level, and decide the degree of their interrelation, aiming to trace
malicious activities back to their origins.

5.2. Integration with Other CTI Repositories

Our approach uses the AAFRT threat intelligence repository to search, collect, and
analyze CTI reports. As discussed, the repository is based on the widely used open-source
MISP platform. However, our approach is not limited to it. Its open, transparent, dynamic,
and adaptive structure allows the cybersecurity stakeholders to expand it and integrate
it with other repositories to implement further analysis techniques, including machine
learning clustering techniques. For example, the CAVeCTIR could also communicate
with the CTI repository of another platform, regardless of its backend system (e.g., MISP
platform), to execute all the required operations (e.g., search, collection, and analysis
of the recorded CTI reports) to help the cybersecurity stakeholders find related threat
incidents quickly while following an automatic process. Another characteristic of our
proposed approach is that it can communicate and take benefit of other widely used and
established knowledge bases and repositories, such as MITRE ATT&CK (publicly accessible
knowledge base of adversary tactics, techniques, and procedures based on real-world
malicious incidents and observations) and CAPEC (publicly available catalog of common
attack patterns performed by adversaries to exploit known weaknesses in applications and
other cyber-enabled capabilities). Toward this direction, the cybersecurity stakeholders
could apply diverse formats, protocols, and processes to ensure a high degree of consistency
and communication scalability of the shared CTI information (e.g., STIX, TAXII).

5.3. Expandability beyond IoV

The approach we followed focuses on CAVs and IoV environments. However, our
approach can be adopted and applied to other environments as well, such as safety-
critical systems and e-banking. The only requirement for such environments is to collect,
analyze, and record information related to malicious incidents (e.g., cybersecurity threats)
to CTI reports. The approach discussed in the manuscript promotes security situational
awareness, real-time defense, and in-depth post-incident threat analysis, and thus, it can be
applied to diverse domains effectively and efficiently. However, we should stress that the
expandability and adaptability of our approach in other than IoV domains might require the
analysis and specification of domain-specific characteristics besides the common ones found
in diverse types of malicious activities. For example, in the case of an e-banking system,
features such as the number of transactions, transferring amounts, routing numbers, and
beneficiaries might be critical for the threat analysis. In such cases, the system should adjust
and refine the feature models and extraction processes appropriately to support the efficient
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matching and correlation of CTI reports in these domains. Therefore, security experts would
have the information needed to perform in-depth post-incident forensics analyses and
eventually lead to the accurate attribution of the security threat (e.g., incoming attack).

5.4. Limitations and Future Steps

Our approach has three main limitations, which are related to the available data, the
parameters of the machine-learning approaches, and the supported malicious activities.
The effectiveness and efficiency of the machine-learning approaches (such as the ones used
in CAVeCTIR) are associated with the size of the available data and the finetuning of the
parameters of the algorithms. CAVeCTIR was based on a sample of almost 3000 mali-
cious incidents covering seven different attack types. Although the size is quite big, the
effectiveness of the adopted machine-learning approach and the tuning of its parameters
would get better and optimized during the ongoing evolution of the system. Focusing
on the machine learning model and its characteristics, CAVeCTIR was limited to the use
of the DBSCAN algorithm, considering that our previous work indicated its suitability
in such cases. Moreover, we focused on a specific set of features and parameters, which
are dependent on the adopted IoV framework (i.e., nIoVe) and the application of the
machine learning model. The extraction and selection of more features, along with the
re-configuration of the parameters of the adopted machine learning models (DBSCAN
and other algorithms), should be explored. Regarding the supported malicious activities,
CAVeCTIR is limited to seven main types: GNSS signal spoofing, GNSS signals jamming,
CAN DoS attack, alteration of CAN messages, alteration of camera stream, false sensor
reading, and malware/ransomware attack. CAVeCTIR could consider more types in the
future to support a wider area of malicious activities. These types include: V2X signals
jamming and spoofing, jamming of mobile broadband communications signals, leakage of
IoV credentials, alteration of remote commands, and alteration of embedded firmware.

The presented work can be extended with our future goals falling into three major
categories: (i) optimization of the clustering analysis, (ii) integration with other CTI systems,
and (iii) thorough evaluation by security experts. Regarding the optimization of the
clustering analysis, we plan to (i) analyze more IoV attacks focusing on CAVs (e.g., alteration
of CAN bus messages, false maneuvers, traffic lights alterations, and V2X attacks) in other
than simulation environments (e.g., hybrid and real-word environments), and (ii) explore
combined clustering methods and diverse threat parameters/features, aiming to refine
the models, improve their performance, and thus, provide enhanced assistance to the
security experts. Regarding the integration with other CTI systems, we plan to extend the
proposed approach to other CTI repositories of IoV environments (e.g., in nIoVe, there
is a shared threat intelligence repository that records a complete list of incoming threats,
including response and recovery actions). We also plan to extend the proposed approach to
communicate with open-source and publicly accessible platforms, including knowledge
bases and repositories (e.g., MITRE ATT&CK). This extension would help security experts
to perform a more detailed forensics analysis, given that they would have access to more
information related to the malicious incident they investigate. Finally, regarding the
evaluation by security experts, we plan to perform thorough user evaluation studies
in diverse environments (e.g., simulation, hybrid, and real-world), where experienced
security stakeholders (e.g., security experts) will assess several dimensions of the proposed
approach, such as its functionality, operability, and efficiency.

6. Conclusions

In this manuscript, we presented CAVeCTIR, a novel approach that could support the
cybersecurity stakeholders (e.g., experts and organizations) during post-incident forensic
analysis. CAVeCTIR seeks, collects, analyzes, and correlates cyber threat intelligence
(CTI) reports that record detected malicious activities on connected and autonomous
vehicles (CAVs) in Internet-of-Vehicles (IoV) environments. CAVeCTIR takes advantage of
machine learning techniques (e.g., real-time clustering analysis) to find similarities between



Appl. Sci. 2022, 12, 11631 17 of 20

new and recorded CTI reports. Hence, cybersecurity stakeholders could gain access to
previous knowledge, identify common patterns, and adopt similar techniques and tools
during the post-incident investigation. Therefore, it could drive a more effective and
accurate forensics analysis and, thus, speed up the attack attribution process. CAVeCTIR
helps cybersecurity stakeholders to mitigate the impact of the detected malicious activities
quickly and effectively, and eventually, prevent future similar activities in IoV environments.
While CAVeCTIR focuses on CAVs and IoV, it could also be applied to other application
domains, such as Industrial Internet-of-Things (IIoT), e-banking, and safety-critical systems.
However, it might need appropriate adjustments and adaptations to fit the unique features
and address the challenges of each application domain.
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Abbreviations
The following abbreviations are used in this manuscript (main text, tables, figures):

CAV Connected and Autonomous Vehicle
IoV Internet of Vehicles
IOCs indicators of compromise
CAN bus Controller Area Network bus
GNSS Global Navigation Satellite System
DoS Denial of Service
IMU Inertial Measurement Unit
OBU On-Board Unit
RSU Road-Side Unit

Appendix A

The DBSCAN algorithm used in the CAVeCTIR model can be expressed in pseudocode
as follows:

DBSCAN(D, eps, MinPts):
C = 0
for each unvisited point P in dataset D:

mark P as visited
NeighborPts = regionQuery(P, eps)
if sizeof(NeighborPts) < MinPts:

mark P as NOISE
else:

C = next cluster
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expandCluster(P, NeighborPts, C, eps, MinPts)

expandCluster(P, NeighborPts, C, eps, MinPts):
add P to cluster C
for each point P’ in NeighborPts:

if P’ is not visited:
mark P’ as visited
NeighborPts’ = regionQuery(P’, eps)
if sizeof(NeighborPts’) >= MinPts:

NeighborPts = NeighborPts joined with NeighborPts’
if P’ is not yet member of any cluster:

add P’ to cluster C

regionQuery(P, eps):
return all points within P’s eps-neighborhood (including P)
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