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Abstract

Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins.
Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are
instrumental for understanding of structure-function relationships of these proteins, for the design of new inhibitors and
construction of improved biocatalysts. CAVER is a software tool widely used for the identification and characterization of
transport pathways in static macromolecular structures. Herein we present a new version of CAVER enabling automatic
analysis of tunnels and channels in large ensembles of protein conformations. CAVER 3.0 implements new algorithms for
the calculation and clustering of pathways. A trajectory from a molecular dynamics simulation serves as the typical input,
while detailed characteristics and summary statistics of the time evolution of individual pathways are provided in the
outputs. To illustrate the capabilities of CAVER 3.0, the tool was applied for the analysis of molecular dynamics simulation of
the microbial enzyme haloalkane dehalogenase DhaA. CAVER 3.0 safely identified and reliably estimated the importance of
all previously published DhaA tunnels, including the tunnels closed in DhaA crystal structures. Obtained results clearly
demonstrate that analysis of molecular dynamics simulation is essential for the estimation of pathway characteristics and
elucidation of the structural basis of the tunnel gating. CAVER 3.0 paves the way for the study of important biochemical
phenomena in the area of molecular transport, molecular recognition and enzymatic catalysis. The software is freely
available as a multiplatform command-line application at http://www.caver.cz.
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Introduction

Proteins are highly complex systems containing a variety of

clefts, grooves, protrusions and empty space in the proteins

interior. Besides many tiny cavities, this empty internal spa‘ce may

form cavities of specific functions, as well as tunnels and channels

(or pores), representing potential transport pathways for small

molecules, ions and water molecules [1]. Transport pathways play

an essential role in the functioning of a large number of proteins.

The best known examples include: (i) channels mediating the

transport of ions or molecules across biological membranes [2–10];

(ii) tunnels facilitating the exchange of ligands between the active

site and bulk solvent in enzymes with buried active site cavities

[10–17]; and (iii) intramolecular tunnels facilitating the transport

of reaction intermediates between two distinct active sites in

bifunctional enzymes [10,18–22]. The terms tunnel and channel

are often used interchangeably in the scientific literature,

therefore, we establish following unifying terminology. By channel

we mean a pathway leading throughout the protein structure,

without any interruption by an internal cavity, with both sides

open to the surrounding solvent. By tunnel we mean a pathway

connecting a protein surface with an internal cavity or a pathway

connecting more than one internal cavity. Accessibility of

individual pathways for different substances is largely governed

by their size, shape and amino acid composition and can be

efficiently modified by protein engineering [4,15,23–30]. Due to

the internal protein dynamics, individual transport pathways and

their characteristics may change significantly over time

[14,17,31,32]. Therefore, an ensemble of protein conformations,

rather than a single static structure, have to be analyzed to get
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relevant information about the characteristics of individual

transport pathways in a given protein [14,15,17,32–34].

Recently, several geometry-based tools for rapid identification

and analysis of pathways in protein structures have been

developed [35–44]. The main limitation of these tools is that they

were primarily developed for calculation of pathways in static

structures. Even though HOLE 2.2 [35], CAVER 1.0 [36],

MOLE 1.2 [37] and MolAxis 1.4 [39,40] can also be used for

identification of pathways in molecular dynamics (MD) simula-

tions, their application for systematic studies of dynamic systems is

very limited. HOLE 1.0 was the first tool developed for

identification of pathways running through macromolecules [35].

Its latest version (HOLE 2.2) supports analysis of structure

ensembles. However, HOLE 2.2 cannot be used for calculation

of tunnels or multiple pathways, which restricts its application only

to the analysis of a single channel penetrating through the protein.

Previously, we had developed CAVER 1.0 for analysis of protein

tunnels and channels [36]. A tunnel search in CAVER 1.0 is based

on a grid approximation causing calculation errors and large

demands on processor time and memory [37]. CAVER 1.0

enables calculation of tunnels in an ensemble of structures, but no

algorithm for clustering of identified tunnels is implemented. Users

have to assign correspondence between tunnels from different

snapshots manually, making CAVER 1.0 unsuitable for the

analysis of more than tens or hundreds of snapshots.

Some of the limitations of CAVER 1.0 were overcome by

MOLE 1.2 [37] and CAVER 2.0 [38]. Instead of grid

approximation, these tools employ a Voronoi diagram to describe

the skeleton of tunnels within the structure. The remaining

shortcoming of both MOLE 1.2 and CAVER 2.0 calculation

algorithms is that they construct Voronoi diagram without

considering variability in radii of individual protein atoms, thus

introducing calculation errors which can be as high as 2 Å for the

structures containing hydrogen atoms [39]. For the analysis of MD

simulations, MOLE 1.2 employs automatic clustering of tunnels

identified throughout the MD simulation based on the sets of

tunnel-lining atoms. The introduction of clustering provided

significant advance in the analysis of tunnels in the structures

from MD simulations. However, the implemented algorithm in

MOLE 1.2 clusters each tunnel immediately after its identification,

making the results dependent on the order in which individual

tunnels are identified. Moreover, the results of MOLE 1.2 are

provided separately for each snapshot. MolAxis 1.4 is another

Voronoi-diagram based tool for identification of tunnels and

channels [39,40]. Prior to the construction of the Voronoi

diagram, MolAxis 1.4 approximates each atom in the analyzed

protein by a set of balls (sphere interiors) with the radius of the

smallest atom in a given structure, thus avoiding the calculation

error observed in the early Voronoi-based tools [39]. Although

MolAxis 1.4 provides the opportunity to compute tunnels in

multiple structures, it cannot be used for automatic analysis of MD

simulations due to the lack of clustering.

Here, we present a new version of CAVER suitable for the

effective analysis of tunnels and channels in large ensembles of

protein structures. For this purpose, CAVER 3.0 implements new

algorithms for both the calculation and clustering of pathways. For

the construction of the Voronoi diagram, individual atoms of the

analyzed structure are approximated by balls of a fixed size, thus

minimizing calculation errors. Similarities between pathways are

evaluated based on their geometrical distance. The implemented

hierarchical average-link clustering algorithm ensures robust

clustering results and enables an easy adjustment of the clustering

parameters. We demonstrate that CAVER 3.0 outperforms

existing software for geometry-based analysis of pathways in MD

simulations. It provides detailed characteristics of individual

transport pathways and their time evolution, enables to identify

pathways invisible in a static structure and to investigate the

structural basis of pathway gating mechanism. This way, CAVER

3.0 opens up new possibilities for the study of important

biochemical phenomena, design of biomolecules with appropriate

catalytic properties as well as design of inhibitors acting via the

blockage of the transport pathways.

Design and Implementation

CAVER 3.0 is written in the Java programming language and

runs on all operating systems with installed Java Runtime

Environment 6.0 or higher. The algorithm of CAVER 3.0 consists

of three separable steps: (i) identification of pathways in each

provided structure, e.g., each snapshot of a MD simulation; (ii)

clustering of pathways identified in all snapshots; and (iii)

calculation and generation of output data. Due to the separation

of the identification and clustering steps, it is possible to run the

calculation of pathways in different snapshots in parallel.

Moreover, the results of each step can be saved and processed

in the subsequent steps with varying parameters, thus accelerating

the search for optimal parameters for the studied system.

1. Identification of pathways
1.1. Voronoi diagram construction. Representation and

processing of Voronoi diagram of balls of equal radii, i.e., ordinary

Voronoi diagram of points, is more effective than working with

Voronoi diagram of balls with variable radii, i.e., weighted

Voronoi diagram, and algorithms for its construction are also

better studied [45,46]. MOLE 1.2 and CAVER 2.0 constructs

ordinary Voronoi diagram without considering the differences in

radii of individual atoms, i.e., they represent the structure by a set

of balls of equal radii, where each ball represents one atom. This

can result in the error in the pathway radius estimation as large as

r12r2, where r1 is the radius of the largest atom in the system and

r2 radius of the smallest one. To take differences in atom radii into

account and still have molecule represented by balls of equal radii,

CAVER 3.0 approximates all atoms in the input structure which

are larger than the smallest atom in the structure by a user-

specified number of balls with the van der Waals (VDW) radius

equal to the VDW radius of the smallest atom, analogously to the

solution used in MolAxis 1.4 [39]. By this way, the input structure

is represented by a set of balls of equal radii. The representation

determines a surface which is never above the VDW surface of the

input structure and therefore the pathway radius may be

overestimated up to a certain limit, but not underestimated. The

upper limits of the overestimation are provided in the output data.

If more than four ball centers are co-spherical, more than four

Voronoi edges may join in a Voronoi vertex [45]. Handling such

degenerate cases complicates design of the algorithm and makes

the data structures less efficient. To avoid this, the coordinates of

the center of each ball are changed by a pseudorandom value

lower than 0.001 Å. In the following text, the resulting set of balls

will be referred to as a representation of input structure (RIS).

Furthermore, the distance between a point and a ball will always

denote the distance of the point and the closest point on the

surface of the ball. Finally, Delaunay triangulation [47] of the RIS

centers is used to construct the vertices and edges of the Voronoi

diagram [45].

1.2. Cost function. The axes of the pathways are identified

as simple paths in a graph composed of Voronoi vertices and

edges, i.e., the axis of a pathway is a sequence of Voronoi edges,

where each of the two consecutive edges share a vertex. The

Tool for Analysis of Tunnel and Channel Dynamics
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pathway is then composed of balls with center on the pathway axis

and a maximum radius at which the ball does not collide with the

RIS. We define the cost of a path so as to reflect the probability

that the pathway is actually used as a route for transportation of

the substances. In the simplified case of a path of length L and

constant radius r, the cost of the path is

c(r,L)~
L

rn

where n is a non-negative real number. Therefore, if two paths

have equal radii, the shorter has a lower cost. If they have the same

length, then the wider has a lower cost, unless n is zero. The

parameter n controls the balance between width and length and

can be set to a real number from 0 to 100. If set to 0, only the

length of the path is taken into account. On the other hand, if n is a

high number, a path that is only slightly narrower than the widest

path will have a higher cost unless it is many times longer. The

default is set to an established value of n=2 to give priority to wide

paths with a reasonable length [37,39]. The cost of a path with

continuously changing width can be expressed as

ðL

0

r(l){ndl

The function r(l) defines the radius of the largest ball which does

not collide with the RIS and is centered at the point on the

pathway axis in the distance l from the starting vertex measured

along the path. The user-defined threshold value rmax is used for

r(l), if the actual radius of the ball is larger than rmax. The minimum

value 0.1 Å is used for r(l) if the actual radius of the ball is smaller

than 0.1 Å. The value L is the total path length. The cost of the

pathway is computed by summing the costs of individual edges

forming the pathway axis. The cost of each edge is integrated

numerically using trapezoidal rule with a uniform grid. The

minimum number of trapezoids is 8 and minimum grid distance

0.1 Å. Prior to the search for the lowest cost paths, all edges which

cannot be traversed by a probe of radius of the user-specified value

rB are removed. Because of the approximated VDW molecular

surface, some edges appear to be wider than they are in reality.

Consequently, some edges are not removed from the Voronoi

diagram even though their real width is slightly narrower than rB.

This can happen only if the real edge width is similar to rB, and

may lead to false positive results, i.e., identification of pathways

which are in some pathway segment narrower than rB (Text S1).

Cost of each pathway is transformed into a new measure of

pathway importance called throughput. A throughput of a pathway

is computed as e2cost, where e is Euler’s number. Throughput

values ranges from 0 to 1—the higher the value, the greater the

importance of the pathway. The pathway A has a greater

throughput than B if and only if A has a lower cost than B.

1.3. Pathway identification. The starting point for the

calculation of the pathways is initially placed into the center of

gravity of the user-specified residues, atoms or a point defined by x,

y and z coordinates. Each of these entities contributes by the same

weight. The starting Voronoi vertex is then identified in the

vicinity of the initial starting point by the following starting point

optimization procedure. The closest Voronoi vertex within the

distance dmax from the initial starting point, which is at least rmin far

from the RIS, is used as a starting point for the calculation of

pathways. If no such vertex can be found, then the vertex with

maximum distance to RIS is selected from all vertices located

within the dmax distance from the initial starting point. In the case

that no vertex exists within the dmax distance, the whole procedure

is repeated with the value of 3 Å instead of the user-provided dmax
value. If still no vertex is found, the Voronoi vertex closest to the

initial starting point is used as the starting Voronoi vertex.

A proper setting of rmin and dmax parameters enables to find an

optimal starting point even in cases where the user-specified

position of the starting point is too close to RIS, outside (but still

close to) the target cavity, or intersects with RIS, thus minimizing

the effects of the user-selected starting point location on the

calculation results. On the other hand, if a completely wrong

initial starting point is selected, the starting point optimization

procedure does not help and consequently no or irrelevant

pathways are found. It is also important to note that the position of

the starting point directly influences overall length of identified

pathways and hence also their costs and throughputs. The starting

point used for analysis of pathways in a particular macromolecule

should be therefore always reported together with the output data

to allow reproduction of the calculations.

Pathways are identified as the paths in a graph composed of

Voronoi vertices and Voronoi edges. First, two groups of vertices

are identified: bulk solvent vertices and surface vertices. A vertex is

called a bulk solvent vertex if it can be accessed from the structure

exterior by a shell probe with a radius rS (e.g. rS=3 Å). Then, a

ball called a bulk solvent ball is placed into each bulk solvent vertex.

The radius of each bulk solvent ball is the largest possible, but

satisfying the condition that the ball does not intersect RIS. Next,

surface vertices are found by a search in the neighborhood of each

bulk solvent ball. Starting in a bulk solvent ball of a center A and

radius r, a vertex is called a surface vertex if it can be accessed by a

probe of the radius rB traveling from A through Voronoi edges so

that the probe never intersects RIS and always lies inside a ball of

the center A and the radius r+ds, where ds is by default set to the

value of 4 Å. This way, a set of surface vertices and a set of bulk

solvent vertices are defined. Furthermore, a surface boundary vertex is

defined as a surface vertex connected by an edge to a vertex that

does not belong to surface vertices. Similarly, a bulk solvent boundary

vertex is a bulk solvent vertex connected by an edge to a vertex that

does not belong to bulk solvent vertices.

The pathway search itself consists of two steps. In the first step,

the lowest cost path to every surface boundary vertex is found by

Dijkstra’s algorithm [48]. In the second step, each path is

prolonged by finding a single lowest cost path continuation to a

bulk solvent boundary vertex. Then, points are placed on each

pathway axis in regular intervals and a ball is placed into each

point. The radius of the ball is the maximum possible, but such

that the ball does not collide with RIS. Finally, balls from the end

of the path are removed one by one until the ball with the radius

smaller or equal to rS is reached.

1.4. Removal of redundant pathways. Several pathways

with nearly identical axes may be identified within one snapshot.

To remove such redundant pathways, the following iterative

procedure is employed. The lowest cost pathway P is selected and

all pathways within a user specified distance from P are discarded.

The procedure is repeated with the next remaining lowest cost

pathway, until all pathways are either selected or discarded.

2. Clustering of pathways
2.1. Calculation of pathway distances. Previously, we

proposed a method for estimation of a distance (i.e. dissimilarity) of

two pathways, which evaluated the distance between each ball

from the first pathway and its respective closest ball from the

second pathway [49]. To accelerate the computation of all

pairwise pathway similarities, we have now designed a more

efficient algorithm. The basic idea is to represent each pathway by

Tool for Analysis of Tunnel and Channel Dynamics
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a sequence of N points and then compute only distances between

pairs of points with the corresponding order, thus performing only

N distance computations for each pair of pathways. First, a point S

is constructed as the center of gravity of the starting Voronoi

vertices from all snapshots. Then, a set of points P is constructed

iteratively by processing the pathways ordered by their cost in

ascending order. For the pathway being processed, an extreme point

X is identified as the pathway axis point of the greatest distance

from S. The distance |SX| will be called a straight length of a

pathway. Then, the point Y from P is identified such that the angle

XSY is minimal. If P is still empty or the angle size is greater than

the user specified value, the extreme point X is added to P and its

weight is set to one. Otherwise, X is discarded and the point Y is

moved along the SY half-line so that its new distance to S is

|SX|+wY?|SY|, where wY is the weight of the point Y. The weight

of the point Y is then increased by one. In the end, each point in

the set P captures averaged straight lengths of pathways whose end

points are close to each other.

Next, all the pathways are processed once more. First, a set of

points Q is identified within P such that for the extreme point X of

the actually processed pathway and any point Y from Q, the size of

the angle XSY is not greater than a parameter called smoothness.

Then, the distance dend is computed as

P

Z[Q wZ
:DZSD

P

Z[Q wZ

Thus an average of straight lengths of the pathways in the vicinity

of the actually processed pathway was estimated.

Next, the geometry of each pathway axis is converted into N

points by the following procedure. For each pathway, the distance

dend is divided into a sequence of N+2 intervals Istart, I1, I2, …, IN
and Iend. The size of the intervals Istart and Iend is zstart and zend, where

values zend and zstart may be specified by the user and the intervals

themselves determine the pathway beginning and end sections that

are not used for the evaluation of pathway similarities. For each i

from 1 to N, the center of gravity Gi of all points whose distance

from S falls within the interval Ii is computed. Thus, each pathway

is characterized by a sequence of points G1, G2, …, GN. The

distance of two pathways A and B is defined as

1

N
:

X

N

i~1

w
i{1

N{1

� �

:DGAiGBi D

where |GAiGBi| denotes the Euclidean distance of two corre-

sponding points from pathways A and B and w is a linear function

w(x) = ax+b. The coefficients a and b are derived from the user

defined weighting parameter q so that the ratio between the

weights of the end point w(1) and starting point w(0) equals q and

w(0.5) equals 1. The weighting of the point distances allows the

user to emphasize either the importance of the pathway end

section by setting q.1, or of the pathway beginning section by

setting q,1. In practice, the weighting is performed by identifi-

cation of such points Ki lying on the halfline SGi that

DSKi D~w
i{1

N{1

� �

:DSGi D

and then the distance of the pathways A and B is calculated as

1

N
:

XN

i~1
DKAiKBii

D

Pathway distances are calculated on the fly during the above

described algorithm for the removal of redundant pathways, as

well as for all pairs of non-redundant pathways identified

throughout the MD simulation, which is used to establish the

correspondence between pathways in different snapshots. The

matrix of pairwise distances of all non-redundant pathways is

stored on the hard disk for further processing. The presented

algorithm for the calculation of pathway distances has several

advantageous properties: (i) the algorithm is fast and scalable as

only a small and adjustable number of distances need be evaluated

for each pair of pathways; (ii) each pathway is characterized by the

same number (3N) of coordinates, which allows fast clustering of

pathways; and (iii) pairwise distances of pathways can be

calculated using only selected pathway sections and/or the

importance of the pathway beginning or end sections can be

emphasized according to the needs of individual users.

2.2. Clustering of pathways. The clustering of pathways is

based on the pre-calculated distance matrix. Average-link hierar-

chical clustering [50] is used to construct a tree hierarchy of

pathway axes based on their pairwise distances. The size of the

clusters may be then optimized rapidly by cutting the tree at a

varying level of detail. This accurate clustering becomes demand-

ing with respect to computer time and disk capacity for datasets

containing more than 50,000 pathways. Therefore, a fast

approximate algorithm based on supervised machine learning

was also implemented, enabling the classification of even larger

datasets with hundreds of thousands of pathways. In the first step,

a set of pathways of manageable size is randomly sampled from the

pathway dataset and clustered using the average-link hierarchical

clustering. Each pathway is then assigned to one of the N+1

classes. N classes correspond to the N clusters with highest priority

and the last class contains pathways belonging to all remaining

clusters. This dataset is then used for training a k-nearest neighbor

classifier as implemented in the program Weka 3.6 [51]. Finally,

the classifier is used to assign each of the remaining pathways from

the original dataset either to one of the N clusters or to the last class

containing pathways from clusters with lower priorities.

3. Calculation and generation of output data
The identified pathway clusters are ranked by their property

called priority, which is calculated as a sum of throughputs of all

pathways in a given cluster, divided by the total number of

snapshots that were analyzed. Thus, both the number of pathways

in the cluster and their throughputs contribute to the pathway

ranking. If the cluster contains more pathways that were identified

in the same snapshot, only the pathway with the highest

throughput is considered.

The pathways are represented by a sequence of balls centered at

the points placed in regular intervals along the pathway axis. Each

ball has the maximum possible radius such that the ball does not

intersect RIS. The pathway representation shows the maximum

size of the spherical probe which can travel through the individual

pathway segments. It is important to note that the pathway

representation does not provide information about the total

volume of cavity or void around the pathway.

An atom and its corresponding residue are considered as

pathway-lining, if the distance of the atom’s surface to the surface

of some pathway ball is smaller than a user defined threshold

value. A Java implementation of KD tree [52] downloaded from

Tool for Analysis of Tunnel and Channel Dynamics
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http://home.wlu.edu/,levys/software/kd is used for efficient

spatial searching. The smallest ball of the pathway, i.e. the

narrowest part, will hereafter be called the pathway bottleneck.

Bottleneck residues are identified as residues with at least one atom

within the user specified distance from the pathway bottleneck.

For visualization purposes, the pathways are stored in PDB file

format. The PDB files are accompanied by Python and Tcl scripts,

simplifying visualization of the results in PyMOL [53] and VMD

[54].

Pathway profiles and characteristics are provided in the comma-

separated values (.csv) file format. Radii of each pathway are

measured in regular intervals along the pathway axis, thus

providing information on the pathway profile. Besides that, the

pathway radius is also estimated in regular intervals of the distance

from the point S (center of mass of the starting vertices). These

pathway profiles, calculated as the dependence of the pathway

radius on the distance measured along a straight line, are more

straightforwardly aligned to one another than the profiles

calculated along the pathway axis. The aligned pathway profiles

are visualized as heat map images, where the color of the point with

coordinates x and y expresses the radius of a given pathway in the

x-th snapshot and the y-th distance interval. Additionally, the time

evolution of pathway bottlenecks radii can be visualized as heat

map where the color of the point with coordinates x and y

expresses the bottleneck radius of the y-th pathway in the x-th

snapshot.

Results

Description of the software tool
CAVER 3.0 was primarily developed for the analysis of protein

structures, but it can be used for analysis of any molecular

structure containing tunnel-like features. The user has to provide a

structure or a set of aligned structures with consistently numbered

atoms and residues in PDB format as an input and specify the

starting point of the calculation. For the clustering of the identified

pathways, the user can choose either an accurate hierarchical

average-link clustering algorithm or the combination of this

clustering with supervised machine learning classification, which

enables fast processing of very large datasets containing hundreds

of thousands of pathways. A number of additional settings are

available, enabling users to adjust the calculation and clustering

parameters based on their needs. All results are presented in a

comprehensive way. Output data from the calculation includes: (i)

characteristics of individual pathways summarized over all

analyzed snapshots—frequency and priority of a given collective

pathway, mean and maximum radius of the narrowest region

(bottleneck), mean length, curvature and throughput of a collective

pathway; (ii) characteristics of individual pathways in individual

snapshots, enabling to track the changes of the collective pathways

over time—bottleneck radius, length, curvature, throughput, cost;

(iii) data for plotting of the pathway profiles—radius over distance

from the start; (iv) data for plotting of bottleneck radius and

throughput histograms; (v) list of atoms and residues lining

individual collective pathways; (vi) list of the residues making up

the bottleneck; (vii) heat maps showing time evolution of the

bottleneck radii and pathway profiles; and (viii) scripts for

visualization of the results in PyMOL and VMD. The individual

pathways making up the collective pathways can either be

visualized in a single frame, which is useful for the evaluation of

the clustering results and for a general overview of the collective

pathway variability, or as a MD trajectory tracking the changes of

the collective pathways over time.

Comparison with other tools
Identification of pathways in static crystal

structures. CAVER 3.0 was tested on a variety of biomolec-

ular structures (Protocol S1), which had previously been used for

the validation of MOLE 1.2 [37] and MolAxis 1.4 [40].

Comparison of the results obtained by CAVER 3.0, MOLE 1.2

and MolAxis 1.4 with the identical set of protein structures is

shown in Supporting Table S1. The pathways identified by

CAVER 3.0 are generally shorter than the pathways identified by

MOLE 1.2 and MolAxis 1.4 due to the more accurate definition

of protein surface at which the pathways end. MOLE 1.2 tends to

identify narrower pathways than the two other tools. The

differences in the pathways identified by MOLE- are caused by

the construction of the Voronoi diagrams without considering the

variability in atom radii. MOLE 1.2 also employs a distinct

search strategy—CAVER 3.0 and MolAxis 1.4 search for all

pathways simultaneously, while MOLE 1.2 performs a consec-

utive search and penalizes repeated searches of the same parts of

the Voronoi diagram.

Identification of pathways in molecular dynamics

trajectories. CAVER 3.0 and MOLE 1.2 were used for the

analysis of 1,000 snapshots from a 10 ns MD simulation of

haloalkane dehalogenase DhaA using various settings of clustering

parameters (Protocol S2 and S3). MolAxis 1.4 does not employ an

algorithm for pathway clustering and therefore is not suitable for

automatic analysis of tunnels in MD simulations. The average-link

algorithm implemented in CAVER 3.0 provided robust results

with better separated clusters than the clustering algorithm

implemented in MOLE 1.2 (Figure S1). Another advantage of

the hierarchical algorithm implemented in CAVER 3.0 is the

possibility to modify the results from clustering by adjusting the

threshold value without a need to repeat the clustering procedure.

This significantly speeds-up the search for the optimal clustering

parameters. CAVER 3.0 additionally provides other options to

control the clustering results—based on the user-defined param-

eters, the pairwise distance of the pathways may be calculated

using only selected pathway sections, with constant weights along

the entire pathway length or with a higher weight on either the

beginning or end sections of the pathway. Settings that provided

comparable clusters for the p1 tunnel (previously also named the

upper or main tunnel [36]) were selected and the time evolution of

the p1 tunnel calculated by both tools was compared (Figure S1C

and S1F). This comparison revealed that the average bottleneck

radius of the p1 tunnel calculated by CAVER 3.0 (1.4 Å, mean

error,0.04 Å) differs from that calculated by MOLE 1.2 (1.1 Å;

Figure 1A). This discrepancy is due to the calculation error of

MOLE 1.2 (Figure 1B), which is proportional to the difference

between the radii of individual atoms making up the pathway and

considerably varies in individual snapshots. For example, in a

sample snapshot, MOLE 1.2 identified a p1 tunnel with a

bottleneck radius of 0.5 Å, while the bottleneck calculated by

CAVER 3.0 was 1.2 Å with the maximum approximation error of

0.04 Å (Figure 1C).

Case study
Description of model system. Haloalkane dehalogenase

DhaA isolated from various strains of Rhodococcus spp. [55–58]

catalyzes hydrolytic cleavage of the carbon-halogen bond in a

variety of halogenated compounds. The active site of DhaA is

buried inside the protein core and is connected with the outside

solvent by access tunnels [59]. The access tunnels of DhaA were

studied in detail using classical and random acceleration molecular

dynamics (RAMD) simulations [15,60]. This study suggested five

pathways for the release of products and/or the exchange of water
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solvent, named p1, p2a, p2b, p2c and p3 [15]. Key residues of the

access tunnels identified by RAMD were randomized by directed

evolution, resulting in 25 unique mutants with higher activities

towards toxic recalcitrant compound 1,2,3-trichloropropane, with

the best mutant showing 32-fold improvement over the wild type

enzyme [28]. The wealth of available knowledge on access tunnels

of DhaA makes this enzyme a good model system to validate the

ability of CAVER 3.0 to identify and characterize tunnels in

trajectories from MD simulations.

Identification of tunnels. CAVER 3.0 was used for the

analysis of 10,000 snapshots from a 10 ns classical MD simulation

of DhaA in explicit water solvent (Protocol S2 and S3). In each

snapshot, all possible pathways with the bottleneck radius equal or

larger than 0.9 Å were identified, leading to a set of nearly 30,000

pathways. The pathways were clustered by the average-link

algorithm based on the pairwise distances of the pathways. All five

previously described DhaA tunnels [15] were identified among the

top four ranked pathway clusters (Figure 2, Table S2). The p2a

and p2b tunnels possess a common opening and thus were initially

identified as a single pathway (p2ab). Therefore, the clustering

threshold was decreased in order to evaluate the relative

importance of the p2a and p2b tunnels to each other (Figure 2).

We note that the localization of the p2a and p2b tunnels differs

slightly from the study of Klvana et al. [15], where these tunnels

were observed to run roughly parallel to each other. In our

analysis, we found out that these tunnels may cross each other and

consequently four different pathways may in theory be identified

by geometrical analysis. The lower clustering threshold also led to

the splitting of the p1 tunnel into three branches—the dominant

p1a tunnel, corresponding to the p1 tunnel observed in previous

analyses [15] and the less frequent and narrower p1a9 and p1b

tunnels (Figure 2, Table 1).

Figure 1. Comparison of the p1 tunnel of DhaA calculated by CAVER 3.0 and MOLE 1.2. (A) Time evolution of the bottleneck radius
calculated by CAVER 3.0 (blue) and MOLE 1.2 (red). Only a part of the 10 ns MD simulation is shown for clarity. The sample snapshot (black arrows)
was taken at 0.81 ns. (B) Geometry of the p1 tunnel in the sample snapshot calculated by CAVER 3.0 (blue) and MOLE 1.2 (red). Hydrogen atom of the
bottleneck residue Ala145 (white ball) is shown together with the sulfur atom of the bottleneck residue Cys176 (yellow ball) and with sphere
representation of the tunnels. The underestimation of the bottleneck radius by MOLE 1.2 is visible as an empty space between the tunnel and the
hydrogen atom of Ala145. (C) Profile of the p1 tunnel in the sample snapshot calculated by CAVER 3.0 (blue) and MOLE 1.2 (red). The dashed line
indicates the profile representing the maximum possible difference between the CAVER-calculated (solid line) and the correct profile of the p1 tunnel.
doi:10.1371/journal.pcbi.1002708.g001
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We found a good agreement between the results of CAVER 3.0

and the previous MD and RAMD study of DhaA product release

pathways [15] (Text S2): (i) all five previously proposed DhaA

pathways were reliably identified by CAVER 3.0, with estimated

relative importance p1&p2b&p2a.p2c,p3; (ii) the p1 tunnel

was found to be the dominant transport pathway—it was the most

frequently identified collective pathway, had by far the highest

maximum and mean radii of bottlenecks and was frequently open

for water molecules (Table 1, Figure 3); (iii) based on all studied

characteristics, the p2b and p2a tunnels were found to be the

second and the third most important, respectively; (iv) the p2c and

p3 pathways were only rarely identified, however, compared to

other possible tunnels ranked at lower places, the p2c and p3

pathways were still significantly more frequent and showed a

considerable widening of the bottlenecks in some snapshots (up to

1.2 Å, Table S2).

Figure 2. Comparison of the DhaA tunnels identified by CAVER 3.0 with the previously proposed pathways. (A) The top ranked
collective pathways identified throughout the molecular dynamics simulation of DhaA by CAVER 3.0 are all depicted in one frame as pathway
centerlines. The p2a and p2b tunnels were initially identified as one collective pathway—p2ab—using the clustering threshold of 4.3. Decreasing the
clustering threshold to 3.5 led to the separation of the p2a and p2b tunnels as well as the splitting of the p1 collective pathway into three clusters—
p1a, p1a9 and p1b. A random subsample of identified tunnels is shown for clarity. (B) Representative DhaA pathways (surface representation) for the
release of products and/or exchange of water solvent as identified previously by RAMD and classical MD simulations [15].
doi:10.1371/journal.pcbi.1002708.g002

Table 1. Characteristics of the top ranked tunnels of DhaA
identified by CAVER 3.0 in molecular dynamics trajectory
using the probe radius of 0.9 Å and the clustering threshold
of 3.5.

Tunnel p1a p1a9 p1b p2a p2b p2c p3

Cluster ranking 1 5 4 3 2 6 7

Snapshotsa 9958 409 743 1428 5011 120 131

Snapshots with an

open tunnelb
5292 0 5 3 82 0 0

Mean bottleneck

radius [Å]c
1.4 1.0 1.0 1.0 1.0 1.0 0.9

Max. bottleneck

radius [Å]

2.3 1.3 1.8 1.5 1.8 1.2 1.2

Mean throughputc 0.621 0.432 0.479 0.403 0.475 0.343 0.304

anumber of snapshots in which at least one pathway with bottleneck radius
$0.9 Å was identified;
bnumber of snapshots in which at least one pathway with bottleneck radius
$1.4 Å was identified;
ccharacteristics averaged over identified pathways (i.e. pathways with
bottleneck radius $0.9 Å), real values will be lower, especially for p1a9, p1b,
p2a, p2c and p3 tunnels, which were identified only in a small portion of
snapshots.
doi:10.1371/journal.pcbi.1002708.t001

Figure 3. Time evolution of the bottleneck radii of DhaA
tunnels identified by CAVER 3.0. The color map ranges from very
narrow (green) to wide (red) bottlenecks. White color indicates that no
pathway with bottleneck radius $0.9 Å was identified for the given
pathway cluster in the given snapshot.
doi:10.1371/journal.pcbi.1002708.g003
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It is important to note that RAMD and other methods

specialized in the simulation of ligand migration through protein

structure provide information specific to a particular ligand [31].

The specificity of obtained results represents an advantage in

many instances, but it may become a drawback if the user aims for

a general overview of the possible transport pathways in the

studied protein. In contrast, CAVER 3.0 facilitates the analysis of

pathways in classical MD simulations and thus provides a general

picture of the variability of potential transport pathways.

Analysis of tunnel dynamics. The capability of CAVER 3.0

to analyze dynamical systems is essential for the identification of

biochemically relevant tunnels. All previously known DhaA

tunnels were reliably identified by the analysis of the 10 ns MD

simulation snapshots, while only two of them—p1 and p2ab—

were found in the crystal structures of DhaA (PDB-IDs 1CQW,

1BN7 and 1BN6) under the same calculation settings (Protocol

S4). By decreasing the probe radius from 0.9 Å to 0.8 Å, more

than ten potential tunnels were identified in each crystal structure,

including the p1 variants (p1a, p1a9 and p1b), p2ab and p3 tunnels

(Table S3). The p2c tunnel was not observed. While the p1 tunnel

was clearly wider and had higher throughput than all other tunnels

in all three crystal structures, the remaining tunnels (with the

exception of p2a and p2b in the structure PDB-ID 1BN6) had very

similar characteristics to one another (Table S3), demonstrating

that it is difficult to identify the biochemically relevant tunnels by

analyzing the static crystal structures only. Such analysis may

easily overlook relevant tunnels that are temporarily closed, and/

or identify tunnels whose relevancy is disputable. In contrast,

tunnel characteristics obtained from the analysis of MD simula-

tion, such as the frequency of tunnel identification, the frequency

of tunnel opening or the bottleneck radius fluctuation, may be

used as indicators of the tunnel’s functional relevancy (Table S2).

This can be demonstrated on the exemplary analysis of the time

evolution of the p1 tunnel bottleneck. In all three available crystal

structures of DhaA with added hydrogen atoms, the value of the

bottleneck radius 1.2 Å (PDB-IDs 1BN6, 1BN7) and 1.3 Å (PDB-

ID 1CQW) indicates that the p1 tunnel may not be relevant,

considering the usual probe radius of 1.4 Å. In the MD simulation,

however, the p1 tunnel was open in a large number of snapshots

(bottleneck radius wider than 1.4 Å), suggesting the importance of

the tunnel for enzyme function (Figure 3 and Figure 4). The

Figure 4. Time evolution of the DhaA p1 tunnel. (A) Evolution of the p1 tunnel bottleneck radius over time. The dotted orange lines indicate
bottleneck radii of the p1 tunnel in DhaA crystal structures with added hydrogen atoms: PDB-IDs 1BN6 and 1BN7 (bottleneck radius 1.2 Å) and 1CQW
(1.3 Å). The four green circles indicate bottleneck radii of the p1 tunnel from the 2.76 ns (bottleneck radius 1.4 Å), 5.85 ns (2.3 Å), 7.57 ns (0.9 Å) and
the 7.72 ns (0.9 Å) snapshots from the molecular dynamics simulation of DhaA. (B) The p1 tunnel identified in DhaA crystal structures with added
hydrogen atoms (PDB-IDs 1CQW, 1BN6, 1BN7). (C) The p1 tunnel identified in the 2.76 ns, 5.85 ns, 7.57 ns and 7.72 ns snapshots of the MD trajectory
of DhaA.
doi:10.1371/journal.pcbi.1002708.g004
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maximum radius of the p1 tunnel bottleneck in the MD simulation

was 2.3 Å (Figure 4 and Table S4).

Analysis of bottleneck dynamics. The residues forming the

tunnel bottleneck represent promising hotspots for the modifica-

tion of tunnel properties, since their substitutions have potentially

the most pronounced impact on the tunnel geometry. Similarly to

other tunnel characteristics, the analysis of the bottlenecks is more

informative when the dynamics of the protein is considered. The

list of the bottleneck residues obtained by the analysis of the MD

trajectory using CAVER 3.0 suggested the existence of two distinct

bottlenecks along the DhaA p1 tunnel, while only one of them can

be identified in the crystal structures (Table S4). The analysis of

the bottlenecks in the MD trajectory also revealed the structural

details of the tunnel gating.

The most frequent bottleneck in the DhaA p1 tunnel is formed

mainly by Phe149 (71% of p1 tunnels), Cys176 (59%), Ala172

(50%) and Ala145 (38%) residues, mostly in combinations Ala145-

Phe149-Cys176 and Phe149-Ala172-Cys176 (26% and 24% of all

p1 pathways, respectively). Comparison of structures with an open

and closed p1 tunnels suggested that the gating in this bottleneck is

mediated by the movement of the N-terminal part of the cap

domain (Glu139-Phe149) carrying the bottleneck residues Ala145

and Phe149, movement of the C-terminal part of the a5-helix with

the bottleneck residue Cys176, and by the conformational change

of the bottleneck residues Phe149 and Cys176 (Figure 5A). The

proposed structural basis of gating in the bottleneck is in

agreement with the results from RAMD analysis [15].

The second bottleneck is positioned at the tunnel entrance from

the bulk solvent and is formed predominantly by Lys175 (26% of

all p1 pathways), Thr148 (23%) and Ala172 (50%; also included in

the first bottleneck), most often in the combination Thr148-

Ala172-Lys175 (16% of all p1 pathways). The gating in the second

bottleneck seems to be mediated mainly by the conformational

change of Lys175 (Figure 5B). This residue has previously been

observed to participate in the chloride ion release during MD

simulations [15]. The gating is also facilitated by the movement of

the N-terminal part of the cap domain (Glu139-Phe149) with the

bottleneck residue Thr148, by the conformational change of

Thr148 and by the movement of the a5-helix with the bottleneck

residue Ala172. Unlike the first bottleneck, the second one cannot

be observed in the crystal structures, and can only be identified by

the analysis of MD trajectories.

Figure 5. Bottleneck dynamics and structural basis of gating in the p1 tunnel of DhaA. (A) The bottleneck 1 represents the most frequent
bottleneck of the p1 tunnel and is mostly formed by Ala145, Phe149, Ala172 and Cys176. Comparison of snapshots with an open (red) and closed
(blue) p1 tunnels suggested that the gating is mediated by: (i) movement of the N-terminal part of the cap domain carrying Ala145 and Phe149; (ii)
movement of the a5-helix with Cys176 and Ala172; and (iii) conformational change of the bottleneck residues Phe149 and Cys176. The bottleneck
radius in the selected snapshots with an open and closed tunnel was 2.3 Å and 0.9 Å, respectively. (B) The bottleneck 2 of the p1 tunnel is mostly
formed by Thr148, Ala172 and Lys175. Comparison of snapshots with an open (red) and closed (green) p1 tunnel suggested that gating is mediated
by: (i) movement of the N-terminal part of the cap domain carrying Thr148; (ii) movement of the a5-helix carrying Ala172; and (iii) the conformational
change of the bottleneck residues Thr148 and Lys175. The bottleneck radius in the selected snapshot with an open and closed tunnel was 2.3 Å and
0.9 Å, respectively.
doi:10.1371/journal.pcbi.1002708.g005

Table 2. DhaA variants with modified catalytic properties, carrying substitutions in the bottleneck residues (in bold) identified by
CAVER 3.0.

Mutations Effect Reference

C176Y+Y273F 3.5-times higher activity with TCP [61]

C176F+G3D 4.0-times higher activity with TCP [62]

I135F+C176Y+V245F+L246I+Y273F 32-times higher activity with TCP [28]

K175M+C176G+Y273L 10,000-times higher binding rate of fluorescent probe [63]

doi:10.1371/journal.pcbi.1002708.t002
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The importance of the bottleneck residues identified by

CAVER 3.0 for the catalytic properties of DhaA had already

been demonstrated experimentally (Table S5, Table 2). Two

independent directed evolution experiments provided DhaA

variants C176Y+Y273F and C176F+G3D with 3.5-times [61]

and 4-times [62] higher activity towards the important environ-

mental pollutant 1,2,3-trichloropropane (TCP). Both these vari-

ants carried mutation in the position Cys176, which forms the

bottleneck of the p1 tunnel. In another study [28], the DhaA

variant C176Y+Y273F was used as a template for focused directed

evolution, subjecting Ile135 (bottleneck of p2a, p2c and p3

tunnels), Val245 (bottleneck of p2b and p1b tunnels) and Leu246

(bottleneck of p2a and p2b tunnels) to simultaneous saturation

mutagenesis. The best variant I135F+C176Y+V245F+L246I-

+Y273F showed 32-times higher activity towards TCP than the

wild type enzyme, which is due to decreased accessibility of buried

active site for water molecules [28]. A focused directed evolution of

the DhaA variant H272F was conducted to improve the binding of

a fluorescent probe into the enzyme active site [63]. The best

variant K175M+C176G+Y273L, with four orders of magnitude

improved binding rate, carried two substitutions in the p1 tunnel

bottlenecks (K175M and C176G) and one in the active site cavity

(Y273L). Altogether, these four examples demonstrate that

analysis of access tunnels using CAVER 3.0 can be useful for

the selection of suitable hot-spots for engineering of enzyme

catalytic properties. The study of dynamical systems enables the

identification of all important bottlenecks and provides invaluable

information about their relative relevance.

Conclusions

CAVER 3.0 is a new tool for geometry-based analysis of

pathways in both static and dynamic protein structures. For the

analysis of dynamical systems, the software implements several

new algorithms for accurate calculation and clustering of

pathways. CAVER 3.0 requires a protein structure or a set of

aligned structures and the specification of the calculation starting

point as the only obligatory inputs. A number of additional settings

are available, enabling users to customize the calculation based on

their needs. In the output, CAVER 3.0 provides all necessary data

for the analysis of the time evolution of individual pathways.

To demonstrate the capabilities of CAVER 3.0, we used it for

the analysis of tunnels in a molecular dynamics simulation of the

microbial enzyme haloalkane dehalogenase DhaA. We were able

to identify and reliably estimate the importance of all previously

published DhaA tunnels, including tunnels closed in DhaA crystal

structures as well as to correctly predict the bottleneck residues

important for the catalytic function of this enzyme. Detailed

investigation of the dynamics of the p1 tunnel revealed the

structural basis of tunnel gating. The obtained results demonstrate

that the analysis of static structures can lead to overlooking of

relevant auxiliary tunnels or prediction of tunnels whose relevancy

is disputable.

In summary, CAVER 3.0 enables an effective analysis of

pathways in dynamical protein structures, which provides important

insights into the structure-function relationships of proteins and

facilitates the design of improved biocatalysts and new inhibitors.

Availability

CAVER 3.0 is a multiplatform command-line Java application.

The software is licensed under the GNU General Public License

v3.0 and is freely available at http://www.caver.cz or as

supplementary material accompanying this paper (Software S1).

Supporting Information

Figure S1 Clusters of pathways calculated in the molecular

dynamics simulation of haloalkane dehalogenase DhaA by

CAVER 3.0 (A–C) and MOLE 1.2 (D–F). Pathways identified

throughout the simulation are shown in one frame as pathway

centerlines; if more pathways from the same snapshot are grouped

to the same cluster, only the pathway with the lowest cost is shown.

The variants of the p1 (main) tunnel are in different shades of blue,

variants of the p2 tunnel in yellow, green and magenta and the p3

tunnel is in red. (A–C) CAVER 3.0 results for different settings of

the clustering threshold. (A) Clustering was performed with

constant weights along the entire pathway and low clustering

threshold of 3.5. The p1 pathways with dispersed openings as well

as the p2a and p2b pathways which have a common opening are

separated into different clusters. (B) Increasing the clustering

threshold led to the joining of the p2a and p2b pathway clusters.

(C) Further increase of the clustering threshold led to the grouping

of all the p1 pathways into a single cluster. Note that some of the

previously visible p1 pathways are not visible after the change of

threshold since in individual snapshots, only the pathway with the

lowest cost is shown for each cluster. (D–F) MOLE 1.2 results for

different settings of the clustering parameters. (D) The parameters

were set to distinguish the known variants of the p2 tunnel; the p2a

and p2b pathway clusters are not well defined as they largely

overlap along the entire tunnel length. The p1 tunnel was divided

into multiple clusters. (E) Recalculation with a lower value of the

bound parameter led to the grouping of a portion of the p1

pathways into one cluster, while other p1 pathways remained

separated. The p2a and p2b clusters are not well defined—part of

the p2b cluster overlaps with the p2a cluster and part with the p1b

cluster. (F) The bound parameter was optimized to join all the p1

pathways into a single cluster. This led to also the p2a and p2b

pathways being clustered together; part of the p2ab cluster

overlaps with the p2c cluster. Note that many of the previously

visible p1 pathways are not visible, since in individual snapshots,

only the pathway with the lowest cost is retained for each cluster.

(TIF)

Protocol S1 Comparison of CAVER 3.0, MOLE 1.2 and

MolAxis 1.4.

(PDF)

Protocol S2 Molecular dynamics simulation of haloalkane

dehalogenase DhaA.

(PDF)

Protocol S3 Analysis of molecular dynamics simulation of

DhaA.

(PDF)

Protocol S4 Analysis of crystal structures of DhaA.

(PDF)

Software S1 CAVER 3.0 package containing CAVER 3.0

executable, source code, license, documentation and examples.

The latest release of CAVER 3.0 can be downloaded from http://

www.caver.cz.

(ZIP)

Table S1 Comparison of pathways calculated by CAVER 3.0,

MOLE 1.2 and MolAxis 1.4.

(PDF)

Table S2 Characteristics of the pathways identified in 10,000

snapshots of the 10 ns molecular dynamics trajectory of DhaA

using the probe radius of 0.9 Å and the clustering threshold of 4.3.

(PDF)
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Table S3 Characteristics of the pathways identified in DhaA

crystal structures using the probe radius of 0.8 Å.

(PDF)

Table S4 Comparison of characteristics of the DhaA p1 tunnel

obtained by the analysis of the molecular dynamics trajectory and

crystal structures.

(PDF)

Table S5 Bottleneck residues of the top ranked tunnels of DhaA

identified by CAVER 3.0 in molecular dynamics trajectory using

the probe radius of 0.9 Å and the clustering threshold of 3.5.

(PDF)

Text S1 Evaluation of potential false positive results.

(PDF)

Text S2 Comparison of tunnels identified by CAVER 3.0 with

known DhaA tunnels.

(PDF)
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