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Abstract: Components made of aluminum alloys operating under cavitation erosion conditions
have low performance and therefore a reduced lifetime. The degradation of these components is a
consequence of the repetitive implosion of cavitation bubbles adjacent to the solid surface. In this
paper, the effect of the rapid re-melting and solidification modification of the surface microstructure of
parts of an Al-based alloy strengthened by artificial ageing on the reduction of material loss through
cavitation erosion was investigated. The heat source used was the electric arc generated between a
tungsten electrode and the workpiece (i.e., TIG). Local surface melting was performed at different
values of linear energy (El = 6600–15840 J/cm), varying the current between 100 A and 200 A, at a
constant voltage of 10 V. The obtained results showed an increase in the surface microhardness at
values of 129–137 HV0.05 and a decrease in the erosion rate from 0.50 µm/min, characteristic of the
artificial ageing heat treatment, to 0.10–0.32 µm/min, specific to TIG re-melted layers. For the study
of the cavitational erosion mechanism, investigations were carried out by optical microscopy and
scanning electron microscopy. The results showed that the improvement of the cavitational erosion
resistance by surface melting was a consequence of the increase in microstructural homogeneity and
grains refinement.

Keywords: TIG remelting; aluminum alloy; cavitation erosion

1. Introduction

Degradation of component surfaces by cavitation erosion is a result of the rapid
formation, growth, and collapse of bubbles in liquids due to strong pressure fluctuations [1].
Cavitation erosion involves different types of interaction between metallurgical, chemical,
mechanical and hydrostatic processes [2,3]. This phenomenon causes surface damage and
loss of material due to the growth and collapse of bubbles, which are due to local pressure
fluctuations within the liquid flowing around the surface of the parts [1,4]. In detail, when
there is a localized pressure drop, the liquid reaches the vapor pressure level and undergoes
a phase change, forming bubbles (cavities) containing vapor. Cavitation bubbles last only
until the low-pressure zone is left. When the fluid returns to the quiet zone, the bubbles
immediately implode, forming a shock wave that strikes and erodes the surface of the part
it is in contact with.

A series of research papers analyzed the behavior of various types of metallic materials
exposed to cavitation during their operation [5–9]. It is well known that among technical
alloys, those with an aluminum base have the lowest cavitation erosion resistance [2,4].
In surface engineering, to reduce cavitation wear, various methods are used to prepare
coatings applied to a substrate, such as the welding deposition method, thermal spraying,
chemical or physical vapor deposition, etc. [1,6]. Li et al. [10] showed that the application
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of a thermochemical nitriding treatment improved the cavitation erosion behavior of some
Ti-based non-ferrous alloys, which can be explained by the generation of a homogeneous
microstructure with a single layer of α-Ti(N) in the diffusion nitrogen-enriched zone. Kwok
et al. [11] and Zhang et al. [12] highlighted the advantages offered by the laser technique in
the deposition of protective layers against the cavitation erosion of engineering materials.

Man et al. [13] used a laser technique for SiC/Si3N4 surface alloying of the AA6061
aluminum alloy. They found that the cavitation erosion resistance was improved three times
compared to that of the reference material, while there was no significant improvement in
the 100% SiC-alloyed specimen.

However, these surface strengthening methods have some disadvantages, as they
result in the presence of pores, relatively low adhesion, inhomogeneous dilution, and a
non-uniform microstructure [14–17], which limit the applications in cavitation environ-
ments. For these reasons, modifying the surface properties without changing the chemical
composition is an innovative approach to avoid the mentioned defects.

Due to the high cost of laser beam operations and the need for vacuum in electron
beam equipment, attention has been focused on using TIG welders that are cheap, flexible
and easy to handle for surface modification by local melting. The TIG electric arc produces
enough thermal energy to perform some surface treatments; it offers some significant ad-
vantages, including selective hardening, minimal distortion of the components, controllable
depth of the modified layer, and absence of filler material.

The purpose of this paper was to investigate the effect of local TIG surface remelting
of a 6xxx series aluminum base alloy—which could be strengthened by aging—in terms
of structural transformation mechanism, onto the cavitation erosion resistance. The 6xxx
series aluminum base alloys are frequently used for the production of components that
undergo severe cavitation erosion phenomena during service, such as diesel cylinder liners,
pistons, pumps, hydrofoils, valves, sluice gates, combustion chambers, etc. [1,2,4,6,9,13,18].

2. Experimental Procedure

The material used in the research, type EN AW-6082, (EN AW-AlSi1MgMn according
to EN 573) was delivered in the form of sheets with the following dimensions: length
L = 300 mm; width l = 150 mm, and thickness g = 30 mm.

The nominal chemical composition of the alloy was: Si = 1.18%, Fe = 0.39%, Cu = 0.065%,
Mn = 0.70%, Mg = 1.32%, Cr = 0.10%, Ni = 0.015%, Zn = 0.044%, Ti = 0.011%, Ga = 0.01%,
V = 0.023%, Al = Rest%.

The heat treatment was carried out by applying a solution at 535 ± 5 ◦C/25 min/water,
followed by artificial aging at 175 ± 10 ◦C/8 h/air (Figure 1).
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Figure 2, the microstructure obtained after this heat treatment was composed of
γ solid solution grains with an aluminum base having a polyhedral shape, and inside
and on the separation boundaries between them, there were particles of intermetallic
phases, consisting of Mg2Si for the large ones, Al5FeSi for those in the form of a plate, and
Al12(Fe, Mn)3Si for the spherical ones [18]. This alloy shows the highest values for the
mechanical resistance characteristics among all the 6xxx series alloys and is used in the
aeronautical, marine, automotive and food industries [7,18].
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The surface was remelted using a TIG welding equipment (Weld Guru, Buda, TX, USA,
Figure 3) in the following working conditions:

• base metal: Al-6082 alloy;
• welding equipment: MAGIC WAVE 300 (Fronius);
• alternating current frequency: 70 Hz;
• nature of current: alternating current;
• balance: 60/40;
• shielding gas: Ar 100%;
• electrode type: EWLa 15;
• electrode diameter: 3.2 mm;
• gas flow: 10 L/min;
• tilt of the gun: 90 degrees.

Materials 2023, 16, x FOR PEER REVIEW 5 of 18 
 

 

 

Figure 3. The welding experimental stand. 

Further, both from the locally surface remelted plates and from the reference ones, 

cavitation samples were processed by chipping; their shape and dimensions are shown in 

Figure 4. 

 

Figure 4. Geometry of the cavitation samples (mm). 

The experimental research followed the study of the linear welding energy influence 

on the improvement of the cavitation erosion resistance of remelted surfaces. For that, 

three different welding regimes were used. A change in linear energy El = (Ua × Is)/vs × 60 

[J/cm] was achieved by changing the value of the welding current while keeping the weld-

ing speed constant, as follows: 

a. Regime 1: 

i. Welding current: Is = 100 A; 

ii. Electric arc voltage: Ua = 11 V (RMS = Root Mean Square); 

iii. Arc length: 2 mm; 

iv. Welding speed: vs. = 10 cm/min; 

v. Linear energy: El = 6600 J/cm. 

b. Regime 2: 

4 

Figure 3. The welding experimental stand.

Further, both from the locally surface remelted plates and from the reference ones,
cavitation samples were processed by chipping; their shape and dimensions are shown in
Figure 4.
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The experimental research followed the study of the linear welding energy influence
on the improvement of the cavitation erosion resistance of remelted surfaces. For that, three
different welding regimes were used. A change in linear energy El = (Ua × Is)/vs × 60 [J/cm]
was achieved by changing the value of the welding current while keeping the welding speed
constant, as follows:

a. Regime 1:

i. Welding current: Is = 100 A;
ii. Electric arc voltage: Ua = 11 V (RMS = Root Mean Square);
iii. Arc length: 2 mm;
iv. Welding speed: vs. = 10 cm/min;
v. Linear energy: El = 6600 J/cm.

b. Regime 2:

i. Welding current: Is = 150 A;
ii. Electric arc voltage: Ua = 12.1 V (RMS);
iii. Arc length: 2 mm;
iv. Welding speed: vs. = 10 cm/min;
v. Linear energy: El = 10,890 J/cm.

c. Regime 3:

i. Welding current: Is = 200 A;
ii. Electric arc voltage: Ua = 13.2 V (RMS);
iii. Arc length: 2 mm;
iv. Welding speed: vs. = 10 cm/min;
v. Linear energy: El = 15,840 J/cm.

According to the technological recommendations, the base material was preheated to
a temperature of 100 ◦C, and the temperature between passes was maintained at values
of 120–150 ◦C. In order to maintain a constant welding speed, the TIG welding head
was mounted on a welding installation, the process being mechanized. For the surface
remelting of the samples, parallel passages were made, with a step between passages equal
to 2/3 of the width of a passage so as to achieve an overlap of the passages of approx.
1/3 of the width of a passage. The remelting details are shown in Figure 5. This made it
possible to obtain a smooth molten surface without welding defects (lack of melting or
marginal notches). The passages performed aimed at obtaining a width of the remelted
area of at least 25 mm to provide cavitation samples with well-specified dimensions, shown
in Figure 3.
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The cavitation tests were conducted on sets of three samples for each remelting regime,
using a vibrating device with piezoceramic crystals (Figure 6) [7,8] made in accordance with
the requirements of Standard ASTM G32-2016 regarding the indirect testing method [19].
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The functional parameters of the device were:

• vibration amplitude, 20,000 ± 1% Hz;
• vibration amplitude, 50 µm;
• power of the electronic ultrasound generator, 500 W;
• working environment, potable water having a temperature of 22 ± 1 ◦C.

A characteristic of this device is the control and constant maintenance of the acoustic
and electrical parameters, with the help of a computer, based on a software implemented
for this purpose.

Before the cavitation test, the attack surface of each sample was polished on a Buehler
Phoenix Beta machine (Spectrographic Ltd., Shipley, UK) to a roughness Ra = 0.2 ÷ 0.8 µm.
The total testing duration of each sample was 165 min, this being divided into 12 periods
(one of 5 min, one of 10 min, and the next 10 periods of 15 min each). At the end of each
test period, the sample was cleaned in acetone and air-dried.

Prior to the start of the tests and at the end of each intermediate test period, the
cavitation exposed surfaces were examined under an optical Olympus SYX7 (Olympus,
Zhengzhou, China) microscope and photographed with a high-resolution Canon Power
Shot A 480 camera (Canon, Tokyo, Japan) to monitor the surface damage exposed to the
cavitation attack. The samples were weighed before starting the tests and at the end
of each intermediate period. The weighing was carried out with an analytical Zatklady
Mechaniki Precyzyjnej WP 1 (Mechaniki Precyzyjnej R&G S.A., Mielec, Poland) balance,
whose accuracy was of 5 significant decimals (up to 0.00001 g).

At the end of each intermediate test period, “i”, the corresponding mass loss was
determined, ∆mi.

The eroded mass was established according to the relation:

mi =
12

∑
i=1

∆mi (1)
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Later, based on the mass losses, the values of the cumulative mean penetration depth
of erosion, MDEΣi and the values of the erosion penetration rate related to the period “i”
MDERi were determined [20,21]:

MDEΣi =
12

∑
i=1

∆MDEi = ∑i=12
i=1

4 ∆mi
ρ π d2

p
[µm] (2)

MDERi = ∆MDEi/∆ti [µm/min] (3)

where:
i is the testing period;
∆mi is the mass of material lost through erosion, in period i, in grams;
P is the material density, in grams/mm3;
∆ti is the duration of cavitation corresponding to period “i” (5 min, 10 min or 15 min);
dp is the diameter of the sample surface subjected to cavitation attack (dp = 15.8 mm);
∆MDEi is the value of the mean penetration depth of erosion, achieved by cavitation

during the period ∆ti.
At the end of the test, the cavitation exposed surface of the samples was examined

by an optical Leica DM 2700 M microscope (Leica Microsystems, Madrid, Spain) and by
the scanning electron microscope TESCAN VEGA 3 LMU Bruker EDX Quantax (Bruker
Corporation, Billerica, MA, USA).

3. Results and Discussion
3.1. Cavitation Erosion Curves

In Figures 7 and 8, the characteristics of the cavitation erosion curves are shown
comparatively and indicate the variation of the parameters MDE (mean penetration depth
of erosion) and MDER (mean penetration rate of erosion) with the duration of the vibrating
cavitation attack, for the three structural states obtained after local surface remelting as
well as for the reference material subjected to the solution-based heat treatment followed
by artificial aging. It is specified that the experimental values in these diagrams represent
the mean values of the three tested sets of samples, for each type of material processing.
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The following observations resulted from the analysis of these graphs:

• TIG remelting of the considered alloy surface at the currents Is = 100 A, 150 A, and
200 A caused an increase in the cavitation erosion resistance, Rcav, from 1.5 times to
5 times (where Rcav. = 1/MDER, t = 165), compared to the conventional heat treatment
specific for this material;

• the use of welding currents of 200 A provided the lowest values of the MDE and MDER;
• during the stabilization period, until the end of the test duration (165 min), the erosion

rates of the remelted TIG surfaces acquired values of approx. 0.10–0.32 µm/min, and
those specific to the age hardening heat treatment were approx. 0.50 µm/min.

3.2. Macro- and Micrographic Examinations
3.2.1. Macrographs of the Surfaces Tested for Cavitation

With the help of a Canon Power Shot A480 camera, images of the cavitation exposed
surfaces were obtained at each test time. Figure 9 shows these characteristic images for each
value of melting current with respect to the linear energy. The energetic impact generated
by the collapse of the cavitation bubbles made the samples surface uneven. Up to 30 min of
attack, no surface degradation was observed. At longer times, the formation of a ring from
the surface periphery together with more and more microcraters (pinches) with variable
sizes and uneven distribution was revealed. Thus, for cavitation attack times greater than
90 min, the remelted samples surfaces, especially with Is = 100 A and Is = 150 A, became
very rough, which implies a strong damage to them. On the contrary, the degree of surface
damage of samples remelted with Is = 200 A was lower, which proved that their cavitation
erosion resistance was significantly improved. The main reason for this phenomenon can
be the existence of fine grains and a microstructure with a uniform distribution of the
constituent phases. After cavitation erosion for 165 min, the pinches on the material surface
developed into an irregular group of cavitation craters.
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3.2.2. Micrograph of the TIG Remelted Layer

After the TIG remelting process, the surface of the material solidified at a higher
degree of subcooling, with respect to that at a lower real temperature than the equilibrium
temperature, so that the dimensions of the germs were smaller, their number was larger,
and the microstructure obtained was finer. In Figure 10a,b the microstructure of the layer
obtained at a current I = 200 A and a linear energy El = 15,840 J/cm is shown. It was
observed that it contained small, equiaxial, unoriented crystals of α solid solution with an
aluminum base and fine particles of intermetallic compounds [18], a microstructure that
provides isotropic mechanical properties and an improvement of the use characteristics
due to the strengthening mechanism resulting from the refinement of the granulation. The
initiation and subsequent propagation of microcracks in the surface layer occurred at the
interface between the particles derived from chemical combinations and the aluminum-
based solid solution matrix (Figure 10b). Exposure of the material surface to repeated shock
waves and/or repeated microjets led to an accumulation of plastic deformations until micro-
damages occurred that caused material loss. With the increase of the cavitation attack time,
there was a fragile removal of the phases of the chemical combinations, after which a
uniform degradation of the solid solution grains took place, the breaking phenomenon
having a ductile character.
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Figure 10. Microscopic images of a cross section through the remelted layer, with Is = 200 A:
(a) OM ×200; (b) SEM ×750.

At melting current values over 200 A and linear energies higher than 15,840 J/cm,
the very high thermal shock action induced by the surface melting process caused the
appearance of microcracks in the edge layer (Figure 11).
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Figure 11. SEM image of a cross section with microcracks through the remelted layer, with Is = 250 A.

The micro-hardness of the alloy subjected to heat treatment with a solution followed
by artificial aging showed values of 112–120 HV 0.05, and that of the TIG remelted surfaces
reached values of approx. 128–137 HV 0.05.
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3.2.3. Topography of Surfaces Eroded by Cavitation

A scanning electron microscope examination of the surfaces tested for cavitation
(Figures 12 and 13) demonstrated that the erosion phenomenon occurred in a similar
way to that of pure metals with a face-centered cubic lattice, fcc, namely, through plastic
deformation followed by a ductile fracture over the entire surface.
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The results of the metallographic investigations carried out with the optical microscope
and the scanning electron microscope, in correlation with the hardness measurements,
allowed explaining the mechanism of the cavitation erosion phenomenon. The finishing
of granulation and microstructure after the local surface remelting process, beside the
hardness increase, were responsible for the cavitation erosion improvement, along with
the material removal. The high capacity of mechanical embrittlement (low stacking fault
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energy) of the solid solution matrix with the fcc crystalline network led to erosion by
ductile fracture on the entire surface. The loss of material occurred preferentially in isolated
regions, apparently with a random distribution, the formed microcraters showing typical
striations similar to the fatigue fractures of aluminum alloys [4,6,9,13].

However, with this alloy containing up to 3% of alloying elements, the material was
preferentially lost in isolated regions, apparently randomly, leaving behind striated, flat-
bottomed microcraters [1,2,4,7]. The fracture surface of these microcraters was similar
to that of fatigue fractures in aluminum alloys. The microcraters expanded laterally to
macroscopic sizes without undergoing changes in their topographical characteristics. The
diameter of the cavitation microcraters was approximately 20 µm, and some of them
reached 50 µm and even 80–90 µm.

4. Conclusions

Based on the investigations regarding the microstructure and cavitation erosion char-
acteristics of TIG remelted surfaces of the EN AW-6082 alloy, the following conclusions can
be summarized:

The process of local surface remelting using the TIG electric arc, operated at currents
of 100, 150, and 200 A and voltage of 10 V, led to grain and microstructure refinement in
the investigated alloy.

It was highlighted that for welding current values Is = 200 A, the cavitation erosion
resistance of this alloy increased by a factor of approximately 200%.

The surface microhardness of the structurally modified layers increased from approx.
115 HV0.05 to approx. 134 HV0.05.

The fracture surface of the microcraters formed on the hollow surfaces had a ductile
character, similar to the fatigue fractures of aluminum alloys.
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