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INTRODUCTION

When designing a pipeline for the transport of a liquid one of the problems
to be considered is the provision of a device to guard against low pressures.
These low pressures can be caused, for example, by a sudden pump failure.
The failure creates a ﬁegative pressure wave which travels in the downstream
direction. Vapor pressure may be reached at a particular point, after which
cavitation may occur in a long part of the pipeline. After a certain time
the cavitation vanishes causing a very high pressure which may damage the
pipeline. 1In order to prevent the development of cavities and consequently
the development of high pressures, a device like an air vessel or surge tank
ig built., The presence of these devices decreases the pressure waves con-
siderably and increases the time scale of the system. This general
procedure for designing a pipeline is greatly influenced by the fact that
the phenomenon of cavitation in a long pipeline is badly understood and

experiments in this field are rare.

In the past, for a sudden pump failure or valve closure at the beginning of
a pipeline the relevant pressures and velocities were determined by intro-
ducing into the computation a cavity behind the pump or valve. The formation
of the cavity was governed by the continuity condition while in the pipeline
itself the celerity of a pressure wave was not disturbed (Ref. 1).

The first authors who developed a more realistic model of the phenomenon,
were de Haller and Bédué (Ref. 5). They pointed out that a negative
pressure wave can give rise to cavities which occur along a great length

of the pipeline. An important feature of the cavity was that its vertical
cross—-section remained small with respect to the total area of the cross~
section. For an inclined pipeline the movement of the cavity and the liquid
were greatly influenced by gravity. Siemons (Ref. 7), studying the
cavitation in a horizontal pipe, used the idea of an extensive cavity to
describe the formation and collapse of a long cavity in the top of the pipe.
In his numerical solution to the problem, he applied the same grid for

both the cavitation and the water hammer region and arrived in this way

at fairly extensive cavities. However, a simple’check of the results of

his solution shows that the balance of mass at the boundary of the cavity

is not fulfilled. Consequently the conclusion that no high pressures will

occur after the collapse is not justified.
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Dijkman and Vreugdenhil (Ref. 3) considered Siemons problem again and at
the same time extended their study by considering the influence of gas
escaping from the water at pressures below saturation pressure. They
obtained very thin cavities (some millimeters) for a specific case, even if
large amounts of gas are assumed to escape from the water. Considering the
flow below the cavity as a free surface flow does not seem realistic from

a practical point of view, since pipes generally do not lie perfectly
horizontal. Nevertheless, their conclusion that escaping gas reduces the
pressures after the collapse is valuable.

At this time (1971) the afore—mentioned mathematical studies have not been
verified by experiments. Therefore, the studies of Brown (Ref. 2) are
intersting, because his theory was verified by prototype experiments. He
studied the problem of water column separation at a discrete point. Usual
water hammer theory and experiment disagreed, and consequently small gas
pockets were introduced at the grid points of the graphical computational
scheme. In this way the overall celerity was decreased, especially at low
pressures. By introducing certain assumptions on the total amount of gas
in the pockets it was possibie to obtain a close agreement between theory
and experiment. In this case the gas had a detrimental effect on the water

hammer transient.

The present paper extends the limited knowledge of the occurrence of
cavitation in a horizontal pipeline by presenting a simplified computational
procedure in which the idea of a single long cavity is abandoned. The

computations are compared with experimental results.

PHENOMENON DESCRIPTION

Under normal circumstances, water hammer computations are based on the

celerity of a disturbance in a pipe completely filled with water, namely
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in which c, = celerity of the disturbance, K = bulk modulus of the water,
Py = specific density of the water, § = wall thickness of the pipe,

E = bulk modulus of the pipe material, D = diameter of the pipe and

n = coefficient accounting for anchorage system.

9 N/mz, while for sewage pipelines a

In these cases K is equal to 2 . 10
lower value for K is sometimes introduced. 1In this way the possible presence
of small gas bubbles is taken into consideration. It is well known that gas
bubbles, even in small quantities, considerably decrease the celerity cys
which is generally kept constant in computations.

If the pressure in the water reaches vapor pressure, a certain moment
cavitation is expected to occur. This means that vapor bubbles are formed

as a consequence of the pressure reduction. In general this is called a
cavitating flow. It is generally accepted that cavitation in liquids is
induced by microsize nuclei. The nuclei cannot exist as free bubbles in

the liquid because it can be shown that they must dissolve in the liquid,
even when the liquid is supersaturated (Ref. 4). A requirement for the
existence of nuclei is the solid phase. They will be present in crevices

in dust particles or in the wall. At low pressures certain nuclei will

grow to big vapor bubbles, which may rise to the highest point of the pipe.
If the cavitation lasts for a long time, the vapor bubbles will finally

form long cavities in the top of the pipe. Computations have to show whether

this situation will be reached or not.
FIRST APPROACH TO THEORY

As explained before, nuclei, being small gas bubbles in the liquid, are
necessary for cavitation to occur. It is obvious that they should be con-
sidered in a theoretical approach. However, due to the complex character
of the nuclei it is not possible to take into account all their properties.
Therefore, the first assumption is that there is no slip between nuclei and
liquid. This implies that nuclei attached to the wall are not taken into
consideration. The second assumption is that during the cavitation no gas

will be released from the liquid into the vapor bubble. As the time
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interval in which the vapor bubbles exist is short with respect to the
time scale of the diffusion process (Ref. 6), this seems to be justified.
The third approximation is that the gravitational influence is neglected.
If the distribution of nuclei is uniform, then the distribution of vapor
bubbles will be uniform as well. In reality this does not seem fully
justified as the cavitation occurs mainly in the top of the pipe. Even
when the vapor bubbles rise to the top of the pipe the consequences do not
seem serious. The flow, which is in fact a two phase flow, is considered
to remain homogeneous. Based on the assumptions mentioned before, the

equations of continuity and motion for this flow can be derived.

Equation of continuity

Using the law of conservation of mass and ignoring the mass of the bubbles
or nuclei, one obtains

9 ] _
-'é-}-{-(] k)puA+§-E(] k) p A=20 coe (2)

in which (see Fig. 1) A = area of cross-section, u = fluid velocity,
k = ratio of bubble volume to total volume, x = spacial coordinate, and
t

time coordinate.

With the well-known relationship for A and o

dA=§-éI—1-dp e (3)
Sk
P
= .2

dp—K dp oo (4)

in which p = pressure, and o, = specific density of fluid.

Eq. 2 transforms to

) ~ (1 - k) u sp _ 9k 1 -k op _
= (1 k) u + = ek T 5t + 5 5 0 vee (5)
p c 0 ¢
oo oo
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In Eq. 5, k is a function of pressure p. Assuming a constant number N

of nuclei per unit of mass of fluid, all having the same radii R, one

obtains
% T NR3
k= TR INY (6)
Ly2s w
p 3
If the gas bubble content is small then k can be approximated by
k:%“n‘pNRB e (7)

In Eq. 6 the bubble radius is determined by the equilibrium condition for
a single bubble, in which dynamic effects are neglected. This is justified
if only transient phenomena are‘considered which have a larger time scale
than the natural period of oscillation of that bubble, If the bubble con-

tains a certain amount of gas the equilibrium condition is

20 _
PP, *g " P =0 vee (8)
in which p, = vapour pressure in bubble, pg = gas pressure in bubble, and
o = gurface tension.

As the bubble is surrounded by a liquid at constant temperature, it is

assumed that the gas in the small bubble behaves isothermally, in which

case Boyle's gas law applies. Consequently

P R3 = C = contant = p_ R 3 cee (9)

g o o

The suffix , represents a certain initial condition. Substitution into

Eq. 7 yields

20 C
p—pv+i‘——-—§=0 o (IO)
R

A graphical representation of this relationship is given in Fig. 2. A
radius of 10—5 m has been chosen for the initial nucleus under atmospheric
pressure. According to Ref. 4, nuclei of this size are quite common,
although much bigger bubbles are feasible in sewage water. If the bubble

has attained a radius of
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no further pressure reduction occurs. The corresponding pressure is less
than the vapor pressure P, It is believed that at this point cavitation
really begins, because the continued growth of the bubble is unstable.
However, if this situation is reached, explosive growth without bound is
not possible due to the continuity condition for the fluid.

Eq. 5 still contains concentration k. By means of Eqs. 4 and 6 the
derivatives of k with respect to x and t in Eq. 2 can be replaced by

derivatives of p, using the product rule of differentiation

dk dR dk

- o4k 1
dk = dR . dp . dp = dR . Q-B . dp LI (12)
dR
or
3k .
dk - —2-9. _ 29 dp [ (]3)
R RS

Substitution of this result into Eq. 5 yields, after some rearrangement

P o9p Su ‘
at *u 3x +f 9% 0 vee (14)
with
1 3k K] !
f=[c2+(]—k)(§—g——2~g)-f] voe (15)
Qo o R3 R

For small k this can be simplified to

L2 X _ I
?o% R3 R

-1
_ 1 3k
f - [ + 20_] s e (16)
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Equation of motion

Application of the law of conservation of momentum to element dx of the

pipeline yields

3 o(1- 2 - 2 )R
3T p(1-k) uA + % P (1=k) u™A + A P AW e (17)

in which W represents friction. As only small quantities of gas are

considered, a usual quadratic friction law is assumed, i.e.

A
W=-2-]3'pou}ui ‘ r e (]8)

in which A = friction parameter. After some evaluation, using the equation

of continuity, Eq. 17 transforms to

ju Su 1 3 _ W
3¢~ YAk T po(l—k) X po(I—k) oo (19)

Transformation to characteristic coordinates

The equations of continuity and motion are of the quasilinear hyperbolic
type. This means that the equations can be solved by the method of

integration along characteristics. The characteristics are given by

dx _ \ / f _
el + po(l-k) utec oo (20)

while along these characteristics

du + dp - L

et e d e
*'\/po(l—k)f po(l—k)

In Eq. 12, c represents the celerity of an infinitesimal disturbance,

(21)

depending on f and k and consequently on the fluid pressure p. The
relationship between p and ¢ is shown in Fig. 3, where some curves are
drawn for some different initial conditions, namely ¢, = 500 and

1000 m/s, bubble sizes R, of 10—4 3 2

and 10—6 mat p = 10° N/m” (atmospheric
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pressure) and concentrations ko of 4,10 " and 4.10 ° at P = 105 N/mz.

The vapor pressure was kept constant at a value of pv = 2.103 N/mz.

The formula for ¢ and the relevant curves show the following features:
a. Under atmospheric pressure c has already decreased considerably with

4, while a con-

respect to SN for the high concentration ko = 4,10
centration ko = 4.10"6 does not have this effect; moreover, the initial
bubble size R, has a noticeable influence.

b. When the pressure decreases the influence of <, becomes smaller and
the curves with the same concentration ko approach each other.

c., Finally, at a certain low pressure the influence of the concentration
ko vanishes and the celerity ¢ tends to zero., This value is reached
if £ = 0, while the corresponding bubble radius is given by Eq. 11. Con-
tinued growth of the bubble yields negative values for f and consequently
imaginary characteristics., This indicates that the system of equations
has become elliptic with independent variables x and t. This is im-

possible from a physical point of view, so that then the phenomenon has

to be described in a different way.,
Physical system with unstable bubbles

Consider, as before, a fluid with a homogeneous distribution of stable bubbles
of equal size and investigate the behavior of a portion of this fluid between
two close cross—sections attached to the fluid particles. After pressure
reduction in this region the bubbles between the two cross—sections are going
to grow. At a certain moment the bubbles reach the critical size where they
tend to become unstable. Continued bubble growth will lead to a situation
where all bubbles are unstable. Introducing a small disturbance, it can be
shown that only one bubble continues its growth, while the other bubbles
return to their stable position. This can happen without change in the total
volume of the region considered, but during the process the pressure tends to
vapor pressure P, The greater the number of bubbles the closer the pressure
tends to pv. Further growth of the unstable bubble does not cause con-
siderable pressure fluctuations.

So far a local phenomenon has been considered. However, this occurs in a

big part of the pipeline and a situation arises with many unstable bubbles,
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which act like '"negative' springs. The pressure is close to P, Again
assuming a constant total volume it can be proved that in the long run only
one unstable bubble can remain; however, in practical circumstances this
final state will not be reached. Which bubble will grow is unpredictable.
During this process, inertia and friction effects play an important role.
The computations from which these conclusions result are not shown herein.
The conclusions are
a. In the cavitation stadium a limited number of bubbles will grow. The
assumption of a homogeneous bubble distribution is no longer justified.
b. The equations derived before can no longer be used. Due to the erratic
character of the phenomenon,.a stochastic approach is in fact required.
¢. The pressures at all points where cavitation occurs tend to vapor
pressure.,
Despite the fact that these conclusions are drawn for the academic case of
bubbles of equal size they hold as well for fluids with bubbles of different

sizes. In that case the biggest bubbles are going to grow.

SECOND APPROACH TO THEORY

Region without cavitation

In a preceding section it was shown that, under most circumstances the
celerity is equal to cyo provided the bubble content is not too high.

Thus, for the case p > P, the bubbles are assumed to play no role. The

simplified relevant equations are

Ip 2 du _

at T 0% Bx 0 e (2
and

Ju I 9p_ _ A

ot + 62-3; 5 u|u| L. (23)

Making use of the characteristic coordinates with

dx
‘a‘g‘ico ' .. (24)
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these equations transform to

du 1 dp A
£ E— e — o s
dt — p_c_ dt 75 ulvl (25)

Eqs. 24 and 25 can be easily solved by means of numerical calculus.

Region with cavitation

As pointed out before, it is assumed that p = Pye Consequently Egs. 5

and 19 become

'-E;-E"f" u‘é-;"‘- (1 "k)'a';;" L (26)
du 3u _ _ A
R vl ulul cen (27)

As k << 1, Eq. 26 simplifies to

3k 3k _ 3u
"a“t"'+u‘§;"ax DAY (28)

The characteristics of the quasilinear equations of first order 27 and

28 are given by

_dx __ 2D du
dt = " N m‘r oo (29)

and

_ dx _ dk
dt = u_é_g ..o (30)
9X

respectively. The first equality in Egqs. 29 and 30 indicates that a
disturbance propagates with the fluid velocity; the velocity of propagation
with respect to the fluid particles has reduced to zero. Integration of
Eq. 29, which affords the integral surface of Eq. 27, yields

2D u,

X - X, = - —X—-TG%T log ] %T f e (3D

i 1
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and

_2D

11
5 (]u[ Iui’> oo (32)

t - t,
1

in which X, = xi(ti) and u, = ui(ti) represent the initial conditions of

the cavitation region. In Eq. 30 %% can be derived from Eqs. 31 and 32.

These equations in differential form are

dx., du..
i _ 2D , du ! 1
dx =gty = 5 CTET T &, 9t bee (33)
i i 1
l du,
2D du 1 i
dt dti = A ("' UfuI + Ul[ui] dti dti) Y (34)

The meaning of dxi and dti is shown in Fig. 4. They represent the
differential form of the curve at which the initial condition us is given.

Taking dt = 0 one obtains:

_
du ax dx e e (35)

Together with the preceding equations, and after elimination of dx

1 duy L A
u, |u,[ dt, 2D

ou _ 1'71 1 (36)
x dx, du, Tt

l Cl i 1) + 2D 1 1 (l__ l_)

u] ‘u dt, A Juu,] dt, ‘u u,

i i i i

In this way gﬁ-has been expressed in the initial conditions at X, = xi(ti)

and variable velocity u.
If, in Eqs. 30 and 36, u is replaced by the result of Eq. 32 then Eq. 30

can be integrated, yielding the integral surface of Eq. 28

dui . uiluil

dx, 2D dx,

i i

dti t -t
k = log |1 + " . 3 eon (37)
-t b5 lugl (e - )
dx,
N
dt,
i
b e

335



and

2p “i A
X"'Xi=——>\—"‘1—l‘l—i—rlog [1 +‘§-'ﬁ luiJ (t - tl)] oo (38)

Eq. 38 could also have been derived from Egs. 31 and 32 by eliminating u.
It describes the path of a disturbance and, because of the vanished celerity,
the path of a fluid particle. In a parameter form Eqs. 37 and 38 give the

relative vapor volume k as a function of x and t in the cavitation region,
Transition from region without cavitation to region with cavitation

In the foregoing analysis two regions have been distinguished, one without
cavitation in which the celerity is equal to cy and another with

cavitation, where the velocity of propagation becomes zero. Consequently

in the cross-section of transition a sudden change of the celerity occurs.
The laws of conservation of mass and momentum must hold for the region of
transition as well. They yield the relation between pressures and fluid
velocities on both sides of the transition, as well as an expression for

the celerity of the discontinuity.

Fig. 5 gives a definition sketch of the situation in the transitional regiom.
Subscript £ stands for the fluid without cavitation, while subscript v
stands for the fluid with cavitation. The transition between the two regions
moves with a velocity c; with respect to the pipe wall. If the laws of
.conservation of mass and momentum are applied to the region, enclosed by

cross—sections a and b and the pipe wall, the results are

VoL _ v - =
(cs uf) pfAf (cs uV) (1 k) vaV 0 e (39)
and

v _ - v - = -
(cS uf) ofAfuf (cS uV) (1 k) vaVuV AV (pf pv) oo (40)
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Substituting

n
A, =P P, andp Vo

Ap = (1 # v

Pebe

into Egqs. 39 and 40 one obtains

A | - - - L. o=

(1 +——-P-§) (e! =u) = (1 =k (ef —u) =0 cee (41)
pOCO

(1+-—9-—25) (] = up) vy = (1 =K) (e = u) uv--i:-c-;P- cer (42)

c
pO 0

Introducing celerity cg of the transition with respect to the fluid
particles in the region without cavitation, one obtains from Eq. 41:

' (1l - k) Au (43)

= 1 52 mdeempeepeonma R P

8 8 £ K + A 22

[
pO o}

If k << 1, Eq. 43 may be approximated by

il
[
i
[

in which A u

vee (44)

‘Multiplication of Eq. 4! with u and subtraction from Eq. 42 yields

- Ap
Ap= o (1 + 2) cg A u .. (45)
p C
o o
Yo A
As E—-<< ] and consequently P2 << 1, Eq. 45 may be approximated by
o p.cC
o0
Ap = PoCe A u Lo (46)

Replacing cg in Eq. 46 by the right-hand size of Eq. 31 gives

@ w? = 2R+ =By e D)
° pOCO
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Finally, elimination of A u from Egs. 44 and 47 yields

o 4
o
¢ = ¢, [1 + k¢ > vo. (48)

A particular requirement of the foregoing analysis is that A p > o and
hence g and A u have the same sign. However, rarefaction shocks

(b p>o0, Au < o and c, < 0) are not acceptable as this would imply a
gain of the mechanical energy across the shock. Therefore, the condition

for the existence of a shock reads
Au>o con (49)

When cavitation starts in some cross-section, k = o, Au =0 and A p = 0
in that cross—section. In that Case g cannot be determined from Egs. 43
through 48, but it depends on the water hammer equations and the condition
P = P, The combination k > o, A u= 0, A p = o0 can be shown to be

impossible.
Conclusions to foregoing sections

In an arbitrary case, one can distinguish between regions with and without
cavitation. Eqs. 24 and 25 describe the behavior of the flow in the region
without cavitation. Egs. 3! and 32 describe the behavior of the velocity
in the region with cavitation, while Eqs. 37 and 38 give the corresponding
concentration of vapor. Between the two regions a continuous transition or
a shock exists. The changes of the velocity and pressure at the transition

are related by Eq. 47 and the celerity of the shock is given by Eq. 48.

. .. d . .
In a computation, characteristics of the type E% = u (cavitation) and
%% =t c (no cavitation) will intersect (Fig. 6). At the intersection

the velocity u, and the concentration k in the region with cavitation can be
derived from Eqs. 31, 32 and 37. Eq. 25 and Eq. 47 yield the two unknowns
P¢ and Ug.
Afther this analysis of the problem a PLl-program, which is described in
Appendix 1, was set up in order to solve the equations numerically. At the

same time a model was constructed to check the applicability of the theory.
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EXPERIMENT
Description of model

Fig. 7 gives a schematic sketch of the model. It consists of a p.v.c. pipe-
line (D = 0.0814 m, 8§ = 0.0043 m, E % 2,2 % 109 N/mz) having a total length
of 200 m. The pipeline is horizontal. A vertical pipe with a length of 2 m
has been connected to the pipeline at the end. Due to spacial limitations
the pipeline has been folded up. Under stationary circumstances the water
is discharged in a low head reservoir. In the latter reservoir a small
flume with V-notch has been fitted for flow measurement in the stationary
situation. During an experiment, the level in the low head reservoir can

be considered as being constant. The maximum fall between the water levels
in the two reservoirs is approximately equal to 2 m.

A pump supplies water from the low head reservoir to the high head reservoir.
The flow can be controlled by two valves located at the pressure side of the
pump and at the end of the test pipeline. The maximum water velocity which
can be attained amounts to | ﬁ/s. In the stationary situation the pressure
in the pipeline decreases linearly. Some measurements gave a friction co-
efficient A = ,0194 and a water hammer celerity c, = 430 m/s. In the high
head reservoir a piston valve has been positioned. In order to avoid
disturbances the piston valve can move freely over a short distance in the
pipe. In this way the valve attains the water velocity.

Finally the valve meets a ceiling which stops the valve practically in-
stantaneously. During an experiment at several points of the pipeline the
behavior of the pressure can be measured with flush mounted pressure trans-
ducers. The other electronic equipment consists of four measurement
amplifiers, a galvanometer drive, and a u.v., recorder. The pressure trans-
ducers have the lowest natural frequency of all electronic equipment, namely

1000 c¢/s.
Description of experiment
After the closure of the piston valve the pressure behind the valve decreases

immediately to vapor pressure. The corresponding fluid velocity does not

reduce to zero and consequently a large cavity begins to develop behind the
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valve. The negative pressure wave propagates in downstream direction with
a celerity to 430 m/s, and as soon as this wave has passed, bubbles are
going to grow. At the beginning of the pipeline the front of the pressure
wave is very steep, but depending on distance, the slope decreases. This
indicates that dispersion could be observed for pressures below atmospheric
pressure.

Fig. 8, representing some pressure graphs at varying locations of the pipe,
shows this phenomenon. When the negative pressure wave meets the end of
the pipeline with the constant head reservoir the wave is reflected
negatively. At this moment cavitation can be observed in the whole pipeline.
The reflected positive pressure.wave enters the region with cavitation
bubbles with a celerity which is much lower than the normal water hammer
celerity. In the reflected wave front a vertical part (shock) develops.
After the collapse of the vapor bubbles, small gas bubbles remain behind

at several places. This implies that the gas content of the fluid plays a
certain role. After the wave front has passed the cavitation region it
meets the big cavity behind the valve, while all cavitation in the rest of
the pipeline has vanished. l

In the big cavity, the pressure remains low and the wave front is negatively
reflected again. As the initial fluid velocity is high enough it keeps

the same direction and the big cavity continues its growth. After the
reflection of the wave against the big cavity, cavitation no longer occurs
in the pipeline. The height of the wave decreases considerably, and
depending on the initial conditions the wave damps out completely.

Finally the water in the pipeline behaves as a rigid water column.

During this process the fluid velocity changes its direction, the big cavity
becomes smaller and closes again. At the moment of closure of the big
cavity a high pressure arises. As the follow-up of the process is not
interesting, the experiment was stopped here. As an example it can be
mentioned that in the case of an initial velocity u = .95 m/s the big
cavity exists during 4.0 sec., while its maximum length was less than 10 m.
The bubble cavitation region in the pipe is shown in Fig. 9; the maximum
duration of cavitation amounts to 1.2 sec. and occurs at the beginning of

the pipeline.
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Computation

The origin of the x—axis is chosen at the beginning of the pipeline; the
origin of the t—-axis at the moment of valve closure. Assume that after
valve closure a sudden pressure drop arises. The initial curve where

cavitation begins is then defined by
—t = e oo (50)

After the passage of the pressure wave the velocity along this curve becomes

A uo2
(PL - PV) - E“f‘g;— (L - cOti) ces (51)

i o c
po o

in which u = velocity in stationary circumstances, and p; = pressure of low

head reservoir., This yields for the derivative of ug with respect to t;

du,
L _ A 2
d,t - .._.._2 D uo e (52)

( A ui + uO t - ti
c — [uT. ] ‘.. (53)

o i 1+ 5=— Ju.] (£ - t,)
i i

By means of Eq. 30 and the condition u, << el this expression changes to

2 2
u e * Yo
k%(}——-)—-—[——-r— cee (54)
ui CO ui‘
in which
u.
u = - = vo. (55)
1+-2—-]—3-Iu}(t—ti)
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Although the numerical program allows a less restricted shape of the
pressure drop, a computation has been made by means of the last two
relationships. The results of such a computation for the case

u, = 0.97 m/s and Py = 8.2 % 104 N/m2 are shown in Fig. 9 (x,t-diagram),

Fig. 10 (p.u~diagram), and in Fig., 8 (pressure behavior for some locations).
These numerical results can be checked by a further analytical approximation.
Neglecting friction, integration along a characteristic in the region with-
out cavitation yields the following relationship between pressures and

velocities at the shock and at x = L

- u co. (56)

As the pipeline is relatively short u; can be approximated by

4 vor (57)

AP w3 Yoy +u v, (58)

Using this relationship the shock relations can be solved. The results are

CO
cs%————-——é—— e (59)
| + k —
e u'
and Ap poco — .. (60)
2+ k —
in which
p, - D
u' = u - ou + 3 —%~E—¥! ... (61)
o O
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Together with the equation for k and an estimation for t - t; the height
and celerity of the shock can be computed. If some contributions of minor

importance are neglected one obtains

Cs% o oo (62)
p u
1 + % . O_O (L - x)
pL pv
and
A 2
p; =P, — 7T=op:u’ (L~ x)
Aph L ¥ 4D oo ce. (63)
P u
A o 0
1 + —— — (L - x)
2D pL pv

The analytical results for cg and A p agree very well with the numerical

results,
Comparison of the results of computation and experiment

After valve closure, several phases of the process may be distinguished, i.e.:

a. At the beginning of the pipeline a negative pressure wave with a
vertical front has been generated. During the propagation through the
pipeline this front does not remain vertical, but it transforms gradually,
probably due to the growth of nuclei. In the case shown in Fig. 8 at
the end of the pipeline the front has a length of about 40 m. The
computation does not show this dispersion effect; the front of the
pressure wave remains vertical. This implies that the initial curve of
the cavitation region in the experiment does not follow the theoretical
curve. Both curves are shown in Fig. 9.

b. At the end of the pipe the negative pressure wave is reflected nega-
tively. This implies that in the model cavitation ends at x ¥ 160 m,
while theoretically the end of the region is at x = 200 m. Fig. 8, e.g.,
shows that cavitation does not occur at all at x = 180 m.

From the location x ~ 160 m in the experiment a shock builds up graduall-

and is followed by a positive wave. The total height of the shock and
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pressure wave agree reasonably with the computed shock. It is sur-
prising that the path of the calculated shock and the shock in the

model agree very well (Fig. 9). At the beginning of the pipe, say at

x = 34 m (Fig. 8), the shock is fully developed and the height and the
celerity agree well with the computed quantities. Finally the shock
enters the region of the big cavity at the beginning of the pipe. This
cavity shows a greater influence on the shock path than has been assumed,
One of the reasons might be that the front of the cavity is not vertical.
The free surface of the cavity is extended over several metres.

c. At the big cavity a negative reflection of the shock occurs. In the
model the reflected negative pressure wave has a gentle slope which is
in contrast to the results of the computation. Calculations and
experiment both show that an extensive cavitation region does not occur
again. The pressure wave goes on propagating through the pipeline.
Fig. 8 shows that the time of occurrence agrees well with the computa-
tional results. However, the pressure waves in the model are heavily
damped out. As the computations indicate, this cannot be caused by
wall frictionm. Probably the dispersion which already played a role
at the beginning of the process causes this effect. Moreover, the
influence of gas evacuated from the liquid in the course of time is
unknown.

d. The calculated and experimental closure times of the big cavity at the

beginning of the pipeline agree very well. This is not shown in Fig. 8.

*CONCLUSIONS

In the foregoing sections two attempts have been made to describe the
phenomena that play a role if pressures are reduced to vapor pressure as a

consequence of water hammer.

The first approach, based on the behavior of nuclei or gas bubbles, failed
at the point where the radii of the bubbles exceed a critical value.

At this size the bubbles become unstable and apparently the characteristics
become imaginary. From this critical point the equations can no longer
describe the process. The advantage of this theoretical approach was that
it showed a considerable decrease of the velocity of propagation at low
pressures. As this happened in the experiments too, this theory certainly

holds to some extent.
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The second approach, being in fact a crude schematization of the problem,
distinguished between regions with and without cavitation. In the first
region the celerity was reduced to zero, while in the other section the
undisturbed celerity was supposed to hold. As the experiment shows, this
method gives a reasonable description of the overall behavior of the
process. Problems arose when it appeared that dispersion of the pressure
waves changed the position and the time of occurrence of the cavitation
region and the height of the shock. After the extensive cavitation had
disappeared the remaining pressure waves were much more pronounced in the
computation than they were in the experiment.

The next step for investigation might be a combination of both theories.
Moreover, the role of the gas evacuating from the liquid has to be

investigated in more detail.
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RESULTS OF NUMERICAL COMPUTATIONS

A number of computations has been carried out for a simple pipeline system,
which is shown in Fig. l4a. A pump transports a liquid through a horizontal
pipeline from a low head reservoir to a high head reservoir. The levels of
the reservoirs are assumed to be constant.

In order to reduce the number of parameters of the system, a sudden shut-
down of the pump was replaced by a prescribed pressure drop, depending

linearly on time:

P s t <0
t
p(0,t) = P, (po-pl) gl Ot
t > 7

in which p, represents the pressure of the low head reservoir. The pressure
difference P, ~ Pp and the time interval 7 were chosen in such a manner that

cavitation in the pipeline would occur.

The initial conditions for the computations were the steady state conditionms.

Introducing dimensionless quantities

™
il
I
[adl]
it
kol
fl
*U}'U
e
1
c’c

o = Po 7 Py 8 = Ps y = cT b = Py ™ P
S . = — = = = e
Ps 6% L P

in which p, represents the pressure of the high head reservoir,

Parameters y and ¢ result from the boundary condition at x = 0, representing
tﬁe shut-down of the pump. u
In fact a fifth parameter, viz. Eg, exists, but it disappears from the
equations if the convective terms’in the equations of motion and continuity
which contain this small parameter, are neglected.

The computations were carried out for subjoined values of the parameters

(42 cases).
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¢ 0.9 0.8 0.7
o 0.8 0.6
all combinations
B 1.0 0.5 0.25
Y 0.4 0.2
0] 0.9
o 0.4
all combinations
&) 1.0 0.5 0.25
Y 0.4 0.2

The distance step was 0.02 L. All computations were ended at 0.2 L/cO
after closure of the cavitation region.

A typical example of the results of the computations is given in Figs. lla
through lle, which show a x,t—diagram of the cavitation region and a number

of successive p,x~diagrams for the case
a = 0.8, B = 0.25, v = 0.2, ¢ = 0.9

Three other examples are given in Figs. 12a, b and ¢, in which only the
x,t-diagram and the p,x-diagram at 0.2 L/co after the closure of the
cavitation region are inserted.

‘At the moment of closure of the cavitation region a pressure rise is
generated which starts to propagate in both directions in the pipeline.
The two resulting pressure waves, generally having different magnitudes,
propagate up to the beginning and the end of the pipeline with only a
slight deformation. At the beginning or the end of the pipeline the
maximum pressure after cavitation occurs.

The magnitudes of the pressure waves Ap/pO at 0.2 L/c after closure are
plotted in Fig. 13 for all cases computed.

On the left side of the discontinuity some curves show, the maximum pressure
occurs at the beginning of the pipeline, in all other cases it occurs at
the end. VNeglecting the wave deformation, in the former case the maximum

pressure, p__ ., after cavitation is given by
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P
max & - o, 4 Ap
Py P,

Making use of these relations, the maximum pressure after cavitation are
found to be less than the maximum steady state pressure in all cases con-
sidered. As the numerical program is believed to represent the physical
phenomena to some extent, this result indicates that the consequences of
cavitation in pipelines of the present type are not serious, as far as the

maximum water hammer pressures are considered.
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APPENDIX 1 - The numerical program

by C. Kranenburg and E.O.F. Calle
General description

The program has been developed for the afore-mentioned pipeline system,
depicted in Fig. l4a.

In order to avoid unnessary complications, a shut-down of the pump, which
may cause cavitation in some part of the pipeline, has been replaced by a
prescribed time—~dependent pressure drop at the beginning of the pipeline.
The program is restricted to those cases in which only one cavitation region
occurs at the same time. Very often, the pressure course due to a shut-
down of a pump will fulfil this condition.

The initial conditions of the computation are given by the steady state
conditions. Other boundary and initial conditions can be introduced in a
simple way, e.g. for the experimental model, but extension of the program
to more than one cavitation region at the same time will be more laborious.
The computation starts from the initial conditions and proceeds row by row
in a fixed computational lattice by integration along characteristics. On
both sides of each second row boundary conditions are necessary. So long

as no cavitation occurs a row extends over the total length of the pipeline,
but when a cavitation region does exist the part of the row inside the
cavitation region is excluded from the water hammer computation. The
‘boundary conditions for the remaining two parts of the row are those on
both sides of the pipeline and the shock conditions on each side of the
cavitation region. On the other hand the water hammer equations afford a
relation which is necessary for the computation of the shock waves (''shock
fitting'"). Inside the cavitation region the afore-mentioned analytical
solution is used, giving the remaining relations for the computaéion of these
shock waves. When the shocks meet they change to two pressure waves in the
water hammer region. See Fig. l4c. A simplified flow chart of the program
is given in Fig. 15.

In conclusion of this section some specific details of the program will be

described.
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Water hammer computations

The method of characteristics has been chosen for the integration of the
water hammer equations, because in this case the flow velocity is much

less than the celerity, and hence the characteristics are approximately

rectilinear, Egqs. 24. Therefore, the lattice of characteristics in the

X,t-diagram takes the well-known shape of Fig. 16.

Integration of the compatibility equations, Eqs. 25, along the characteristics

yields
1 ] A 2
u. P: = u. _ + P:y ~ 5= u._ !u._ I At + 0(AET)
i e, Tl j- 1 ege  Timl 2D -1 -l
1 l A 2
I = - . T u, . + 0
%570 S PiT %+ ?o% Piv1 ~ 2D Y+ ’uJ*‘]I At (ae7)

in which subscript j indicates the lattice point and At represents the time
step. Neglecting the terms O(Atz), these equations can be solved for the
two unknowns uj and Pj at the new time step. When pressures and velocities
on a row are known, the procedure is applied to the next row, etc.

The boundary conditions at the ends of a row are given either by one of the
conditions at x = o (pump) and x = 1 (reservoir) or by a shock relation,

Eq. 47.
Initial curve and initial conditions of the cavitation region

When the first point in which the pressure is lower than the vapor pressure
is detected during the water hammer computation, the registration of the
position of the initial curve and the calculation of the initial conditions
of the cavitation region is started, and is continued during the computation
of the following rows. A problem which arises, is to find the moment that
the initial curve ceasesto exist and the shock starts to develop.

To solve this problem a continuous transition between water hammer and
cavitation regions is considered, and the celerity of the transition is
supposed to be less than the celerity c,» see Fig. 17. Points | and 3 are
situated on the transition, point 2 is situated in the water hammer region,

point 4 in the cavitation region.
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Directions | - 2 and 2 - 3 are characteristic directions in the water
hammer region, ! — 4 is the characteristic direction in the cavitation
region. As the four points are close to each other, friction influences

may be neglected. Egs. 25 and 32 yield

1 1

u, + P, = u, + P
2 poco 2 1 poco i
u, =~ ! Py, ® U, ~ ! P
3 I 3 2 °5%6 2
u, = u4

in which P, =Py =P

Eliminating u, and u,, one obtains

u, - u, = 2
4 3 ©.%

(P, = P,)
The right member of this equation is positive, because the pressure in the
water hammer region is always above vapor pressure. Hence
>
u, > u,

This means that a shock would develop. However, the above reasoning is
only valid if point 3 can be influenced by point 1, or, in other words, if
the celerity of the continuous transition is less than the celerity e

In this way one finds that, if

dx.
i

dt.
1

> c

lci! = o

the transition is continuous, and a shock starts to develop as soon as

]ci‘ becomes less than .

The shape of the initial curve is approximated by the lattice points in

which the pressure falls below the vapor pressure and cavitation starts,
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see Fig. 18. As the celerity of the initial curve is greater than the
water hammer celerity, boundary conditions for the water hammer computation
are not needed on this curve.

The solution of the equations for the cavitation region is given by Egs. 31,
37 and 38. Equations 37 and 38 may be simplified, again making use of the

fact that the flow velocity is much less than the celerity:

The results are for the vapor concentration

du, u.lu.[ .

K o 1 + A 11 | 1
dx. 2D dx. A

1 1 1 +

dt.
1

and for the characteristics

In the equation for the concentration k, expressions are required for the
q L L s q

d
.. i i . .
quantities —— and ——, which cannot be computed with some degree of

dx. dt.
accuracy from the crude approximation of the initial curve.
Therefore, these derivatives are replaced by derivatives of quantities in
the adjacent water hammer region.

On the initial curve the condition

dp = o
or
9p p
-1, dx, —]. dt. = o
(ax)l * (Bt)l &
holds.
Derivatives with respect to t are unconvenient in the numerical scheme and

therefore, the equation of continuity, Eq. 22, is used to eliminate (g%)i'

The result is
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dxl —ec. =pc 2 (BX i
dti i o o0 (EE)_
X Ji
in which
u. - u, P. - p.
dul o G*2  J o9 2B oy d¥2 )
9% J1 Ax ax 1 Ax

The lattice points j and j + 2 are situated in the water hammer region,
and nearest to thedanitial curve.

. i, . . -
An expression for I s derived.in a similar way.

The total differential of the velocity u on the initial curve reads

Again the derivative with respect to t is eliminated, applying the equation
of motion, Eq. 23, this time.

The result is

i

S5 fae) 1 () _L g
dx. Ix /i o c. \9xJi c. 2D i'71
i o1

or
2
SO PR I - S U T
dx. 2 |[\3x/i " <. 2D "'t
i C. i
i
du1 dxl
With the expressions for T and e the equation for the concentration k
changes to . t
¢ ? (33). (t - t.)
0 9xX /1 1
k=11-= x
;] 1+ gy lugl -y

The vapor concentration k in the cavitation region is not less than zero.

Consequently
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Co Ju
S (2
c.

1

The equation for c; gives
Ju) .
ox |1

The pressure in the water hammer region is not less than the pressure in the
cavitation region. Therefore, it is easily seen that, if c, > o then
3 . 3 Ju .
—E). > o, and if ¢, < o then —B). < o, Thus [(=]. is found to be not
Ix |1 = i ox J1 = 9x /1
less than zero.

With this result the above inequality changes to

or

le.| 2 ¢
it = 7o
which is consistent with the earlier results, derived from the shock

conditions.

As the derivatives of pressure and velocity have to be determined numerically,
the prescribed pressure drop at x = o should have a smooth course.

The quantities Xy Loy Ugs C and (%%)i are computed in all lattice points

of the approximated initial curve and stored in view of the calculation of

the shocks in a later phase of the computation.

If icil <e, and (QE)_ < o, which occurs close to the point where the shock

ox /1
starts, these values are replaced by the values in the preceding initial
curve point and the computation of the part of the initial curve considered

is terminated.

Some time after closure of the first cavitation region a second caviation
region may develop, which generally has a more irregular shape than the
first one. It appeared necessary to adapt the program to the occurence

of initial curves with inflexion points.
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Computation of shock waves

The propagation of a shock wave during a time step At is computed making

use of a modified Euler scheme. The predictor is

xs(t + At) = xs(t) i_cs(t) . At

The initial wvalues xs(t) and cs(t) are assumed to be known from the
computation of the preceding row.

The computation starts in the lattice point in which the initial curve
ceases to exist. The shock celerity cg in this point is unknown, but

satisfies the inequality

Some test runs showed that the shock computation converged to the same
solution for different values of the celerity,cS in the starting point.
However, in one case the shock appeared to start too fast, which caused

pressures below vapor pressure in the water hammer region. Therefore,

was chosen as the starting value in the computation.

At the new position of the shock, x = xs(t + At), the velocity u, and

vapor concentration k in the cavitation region are computed. Egs. 46 and
‘47 for the shock and a compatibility equation along characteristic (a) in
Fig. 19a yield the new shock celerity cg» Pressure p. and velocity uf.

In the compatibility equation the velocity and pressure in point A are re-
placed by the values in the lattice point B, as linear interpolation between
points C and B yielded unrealistic results.

The corrector

[cs(t + At) + cs(t)] At

1O | e

xs(t + At) = x (&) +

s
gives the final position of the shock at the new time step. Velocity,
pressure and celerity at the new time step are not corrected.

If point D lies inside the water hammer region the velocity and pressure
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in this point are taken equal to the values at the new position of the

shock (point E).

When the two shock paths intersect the shock computation is terminated and
the resulting pressure and velocity in the closest lattice point at the new
time step follow from the water hammer equations along characteristics (b)
and (c) in Fig. 19b. Sometimes two lattice prints have to be considered

as one point (F), Fig. 19c.

In view of a possible future cavitation region the two sharp pressure fronts,

caused by the meeting of the shocks, are spread over some lattice points.

On the boundaries of the second and following caviation regions a shock wave
may be removed by a negative pressure wave. After this, again a partial
initial curve develops, starting at the point where the shock ceases

to exist. The program takes this possibility into account.
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APPENDIX 3 - Notation

A area of cross-section
C gas constant
D diameter
E bulk modulus of pipe wall material
K modulus of compressibility of fluid
L length of pipe-line
N number of bubbles per unit of mass of fluid
R radius of bubble
W friction
a,b notation for cross—sections
c velocity of propagation
f variable compressibility coefficient
k bubble concentration
n coefficient accounting for anchorage system
P pressure
time coordinate
u velocity
X spacial coordinate
$ wall thickness
A friction parameter
o) specific density
o] surface tension
subscripts:
£ no cavitation
g gas
; initial condition of cavitation region
L low head reservoir
o undisturbed situation
S shock
v cavitation (vapor)
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NOMENCLATURE

area of cross section

wave celerity

dissolved-gas concentration

pipe diameter

modulus of elasticity of pipe-wall material
acceleration due to gravity

modulus of compressibility of liquid
universal gas constant (= 8.3J/mole/°K)
characteristic length of gas-liquid interface
length of pipeline s
nunber of moles of gas ‘

number of bubbles in a pipeline section of unit length

Péclet number

absolute pressure

bubble radius

surface

absolute temperature

time coordinate

charscteristic velocity of liguid with respect to gas-liguid interface
liquid velocity

pipe-wall thickness

coordinate along axis of pipeline

local void fraction

cross-section averaged void fraction

diffusion coefficient

constant in Henry’s law (= 7.Ox10_6moles/J for air-water at 2OOC)
increase of a variable across a shock wave

wall-friction coefficient

density

surface tension

angle of inclination of pipeline

L A9 PPN P MR x ¢ e ANAT P 5z KX MO 0 >

Subscripts
b Dbubble s shock wave
¢ cavitation + top of cross-section of pipeline
g 8&as v vapour
£ 1liquid o initial condition
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1. INTRODUCTION

In a pipeline transporting a liguid, a negative pressure wave may reduce the
pressure to the vapour pressure of the liquid, resulting in cavitation in some
part of the pipeline. If cavitation occurs in a high point for instance, then
a big cavity may develop in that point, leading to column separation (Ref.1).
However, cavitation may also take place in extensive horizontal or inclined
parts of the pipeline, due to a gradually decreasing steady-state pressure
ahead of the negative wave. In this case neither the assumption of column
separation is justified, nor the exact position of cavitation occurrence is
known in advance. During the appearance of sufficiently low pressures small
bubbles are formed from cavitation nuclei being present in natural liquids
(Ref. 2). As soon as the pressure falls below the saturation pressure of the
liguid, these bubbles are going to grow due to the diffusion of dissolved gas
towards the bubbles. The effect of released gas may be of importance in the
case of long discharge lines, in which cavitation of the type mentioned may
last many seconds.

In general, the pressures at one end or both ends of the pipeline are above
vapour pressure, which in course of time results in positive pressure waves
entering the region with cavitation. These waves diminish the length of this
region, and eventually close it. In many cases the closure of a region with
cavitation results in a sudden pressure rise which exceeds the local steady-
-state pressure (Ref. 3).

A summary of existent literature on this subject can be found in Ref. 4,
while additional information is given in Refs. 1, 3 and 5. In the present
paper & mathematical model describing the aforementioned type of cavitation,
is presented. The model, which is an extension of a version published pre-
viously by Kalkwijk and Kranenburg (Refs. 4 and 6), is based on the bubble
flow regime. The dependence of the wave celerity on pressure and the effect
of gas diffusion towards individual bubbles are taken into account. Results
of numerical computations are compared with those of an experiment in a hori-
zontal pipeline, also described in Refs, 4 and 6. Attention is paid to the
rapid attenuation of pressure surges after the occurrence of cavitation or
low pressures.

2. MATHEMATICAL MODEL

2.1, Formulation

The mathematical model is based on a one-dimensional approach to the three-
-phase gas-vapour-liquid flow. The gravity term due to the density gradient

of the mixture along the pipeline is neglected., This means that internal gra-
vity waves do not appear in the model. This schematization is permitted, as the
celerity of these waves is substantially less than the celerity of water-hammer
waves.

Cavitation nuclei, which are assumed to be present in the liquid, prcduce gas
budbbles when the pressure lowers. Below the saturation pressure of the liguid
these bubbles grow due to gas diffusion and rise to the top of the pipe cross-
-section. As in natural liquids a large number of nuclei is present (Ref. 2),
many bubbles are generated, which leads to coalescence of bubbles in the top

of the cross-section. At column separations this process results in a completely
separated (free surface) flow. However, as in long discharge lines the length

of column separations proves to be negligibly small compared to the total length
of the pipeline (Ref. 1), a column separation has little influence on the total
amount of gas released from the liquid. In the remaining part of the pipeline
the bubble flow regime prevails (Ref. 7) owing to the small void-fraction (Refs.
t, 4, 8 and 9), while at high pressures the voids may be present in the form of
cavitation nuclei. Therefore, the prediction of gas release from the liquid

will be based on the bubble flow regime for the whole pipeline. The number of
bubbles in a pipeline section of unit length is assumed to be constant in place
and time. Further assumptions as to the bubbles are: isothermal behaviour of the
gas in the bubbles (Ref. 10), constant vapour pressure, spherical shape,
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dynamic equilibrium, and same size in a cross-section.

As the celerity of water-hammer waves depends on the liguid pressure due to the
presence of gas bubbles, shock waves may occur. The above assumptions concerning
the bubble behaviour do not hold at shock waves.

2.2. Conservation laws

Neglecting the mass of the gas and vapour phases, application of the law of
conservatlon of mass to the fluid in a pipeline element yields

SU eﬂ}}dA + g(_»{ d)?zu.o(A zo _ (1)

With the well-known relationships for area A of the c1rcular pipe cross- sectlon
end liquid density P, (Ref. 11)

A MA

°‘Lp+_ gE ‘ <2>
and

fr_ P

b K » ' (3)

in which p. is the liquid pressure in the top of the pipe cross-section, Eg. 1
transforms to the equation of continuity

—L—(M"-(-MD_E‘E); 1 a”L-Hltaz)i—m"—o (4)

K X —x \ 2t X
in which
4 .
A i (5)
and
{ 4 Waad
— = - 4 ("]
&aj Kk 3E (6)

Application of the law of conservation of momentum to the same element yields,
again neglecting the mass of the gas and vapour phases

2 {aewrpyu dht 2 () pUdA +{ 28 da = (eayp 2 il da - .
tA 2 axi ﬁe §, % é &Bu(u] —5\(4-&3&%@»«\ q)d.A (1)
Using Egs. 2, 3, 4, 5 and 6, Eq. 7 changes to the equation of motion

W bw 4 e . A Caw

% R0 % T T wle| - gome | (8)

It is noted that the usual equations of continuity and motion for water hammer
are obtained, if & = 0 is substituted into Egs. 4 and 8. The law of conserva-
tion of energy is replaced by the assumptions of constant vapour pressure and
isothermal bubble behaviour.

2.3. The bubble suspension

The treatment of the bubble suspension-is based on the properties of a single
bubble. The equilibrium condition for a spherical bubble reads

bt - B (9)

Surface tension plays a role when the liquid pressure is close to vapour pressure
and consequently during cavitation. The gas pressure B is obtained from the
ideal-gas law

4 3 v
P% :STI'R = NLkT (10) |
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The relationship between pressure and bubble radius following from Egs. 9 and 10
is discussed in Refs. 2 and 4. Concerning the occurrence of cavitation one can
demonstrate that the system consisting of a large number of bubbles in a liquid,
is unstable in the presence of finite but small pressure fluctuations as soon as
the liquid pressure falls below vapour pressure. In the present case pressure
fluctuations occur due to turbulence. A stable situation in the case of pressures
below vapour pressure is obtained if it is assumed that locally only one bubble
grows %o a big vapour bubble, while the sizes of the remaining gas bubbles varies
only slightly (Ref. 6). The effect of surface tension on the vapour bubble is
small owing to the small curvature of the surface, so that after decay of dyna-
mic transients accompanying the growth of the vapour bubble, the liquid pressure
tends to vapour pressure., Also the gas density in the vapour bubbles is small,
and therefore the gas content of these bubbles is negligible. Further incresse

of the vapour volume does not change the pressure. The part of the pipeline in
which these phenomena occur will be designated as cavitation region, and the
remaining part as water-hammer region. The pressure in a cavitation region is
egual to vapour pressure,

Péc_""P\/ <11)

In the water-hammer region only gas bubbles exist, which gives the following
expression for the average void-fraction

- 3 )
2o = 4w TR (12)

Subseript 4  has been added as only gas bubbles are concerned. In the cavitation
region gas and vapour bubbles occur. Therefore, in this case it is convenient

to divide the total void-fraction into two parts accounting for gas bubbles and
vapour voids, respectively,

52-.—.0-2-{—@

< ? v

The void fraction concerning gas bubbles (39 ) in Eg. 1% satisfies Eg. 12.

(13)

The diffusion of gas in a liguid is caused by a gradient of the concentration
of dissolved gas. The mass flux of gas through a surface S which is connected
to the liquid particles, is given by Fick’s first law

AN _ ¢ o

JE"'SS.I" 2> 45 (14)
in which ¥ is the coordinate, normal to the surface S . The equilibrium con-
centration Cyon a gas-liouid interface follows from Henry’s law

Ch=7 fy (15)

The parameter which determines the character of the diffusion process is the
Péclet number

LU
’?e: — 16
s (16)
The Péclet number is the equivalent for gas diffusion of the Reynolds number
characterizing the diffusion of vorticity in laminar flow. Assuming

Uw 0.01n/s, L<A1O_3m, ﬁ==2x10-9m2/s (air-water at 20°C)

one obtains Pecn5x105. This large value of the Péclet number indicates that gas
diffusion occurs mainly in a boundary layer with thickness en L /VPe along the
bubble wall, as is pointed out by Levich (Ref. 12). In this case, from Ref. 12
also an approximate solution can be obtained for a spherical bubble which moves
in an inviscid liguid. The expression for the mass flux towards a bubble
according to this solution, which was also obtained by Boussinesqg, reads

% = (co-Cp)r2 T UR? (17)
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4in which ¢, is the constant gas concentration at some distance from the bubble.
A differential equation for the bubble radius as a function of time can be
obtained using Eqs. 10 and 9 and Henry’s law, Eq. 15. In the simple case where
the liquid pressure is equal toc vapour pressure and the concentration on the
bubble wall ¢, is negligible, one obtains after integration, assuming Re)=0

4 32 ke, 2
rw = 2pVU (G F +—) (18)
For water which is saturated at atmospheric pressure (kTeo = 17OON/ ), surface

tension G = 0.073 N/m, and a (small) slip velocity U = O.O1m/u from Eq. 18
thgsbubble radius is found to amount to TR = 0.25x10->m after 0.5s and to R =
10 “m after 1s. This example illustrates the fast bubble growth &t vapour

pressure.
The celerity of a disturbance in the water-hammer region can be obtained from

the expression

2 dp
T (19)

which yields in this case

4 4 -

— = —— 17 |(4=43) P, A (20)

a™ A d'P'E[ ? ﬁe Nkzcons‘c&n{: A
After differentiation one obtains

PRNCRCRI @)w[&z
?'2 d—Pt A dFJ‘ dP{ sz conskant
Substitution of Bgs. 2 and 3%, and differentiation of L, with respect to Pis
using Egs. 9, 10 and 12, ylelds 3

2% - 2 _2GR?
o oty 5 NukT-30R
The values of celerity a , obtained from Eq. 22, are less than the celerity

Ay 1in the absence of free gas. Celerity a. decreases when the pressure decreases
but remains greater than zero when the pressure tends to vapour pressure.

(21)

(22)

2: 4, Simplified equations of continuity and motion

As was pointed out, the void fraction in the water-hammer region is small so
that in Egs. 4 and 8 it can be neglected with respect to unity. lioreover, the
convective terms can be neglected (Refs. 5 and 11). Thus for the water-hammer
region the simplified equations of continuity and motion

A DPe B 2w _

M A obe A .
5, ox = gp wlul-gsng (24)

are obtained. In the cavitation region Egs. 4 and 8 simplify due to the constant-
-pressure condition (Eq. 11), while the convective terms are negligible again.
The total void-fraction, however, may reach values which have the order of
magnitude of unity at column separstions. These considerations lead to the
simplified equations of continuity and motion for the cavitation region

A 2% U

_®x, ot  ox "¢ (25)
2w _ A :

28 =7 gy -G g (26)

The influence of a large void-fraction on wall friction has been neglected. The
total void-fraction in the cavitation region is determined by Ecs. 25 and 26,
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while the gas fraction follows from Egs. 9, 10, 12 and 17 for the gas-bubble
suspension.

2.5. Shock waves, Transition from water-hammer to cavitation region

The celerity in the water-hammer region depends on the pressure. Consequently,
during the propagation of a positive pressure wave the wave front steepens,
eventually resulting in the development of a shock wave. The thickness of this
shock wave is determined by dynamic and thermodynamic bubble effects. Neglect
of these effects leads to a discontinuous wave, but nevertheless the overall
shock behaviour is described well (Ref. 13). The derivation of the shock rela-
tions, which is based on the application of the laws of conservation of mass
and momentum across the shock, is completely analogous to that given in Ref. 4.
Therefore, only the results are given herein:

AF‘E: P£QS AL (27)
AL A b
pad Rar Ak (28)

in which asis the shock-wave celerity, Ap. ig the increase of pressure across
the shock (AP&‘> o by definition), AZ 1is the increase of total void-fraction
across the shock (At < © ), and aw 1is the increase of velocity across the
shock. The condition that the internal energy of the fluid cannot decrease
during passage of a shock (Ref. 13) yields ag>0 and Auwu>o0 (the liguid veloci-
ty is chosen positive in the direction of shock propagation) so that only
compression shocks are possible. If the shock stirength 4p, reduces to zero, then
Eq. 28 changes to Eg. 22, neglecting &, with respect to unity, for the
celerity of a small disturbance. Ly

During the genesis of a cavitation region,celerity a. of the transition from
water-hammer to cavitation region appears to be greater than the local celerity
at vapour pressure in the water-hammer region. It can be shown that a shock

wave starts to build up on the transition,when celerity a. decreases to the
celerity at vapour pressure. As soon as this occurs, the direction of propaga-
tion of the transition is reversed, the shock penetrates into the cavitation
region, thus closing it (Ref. 6). The shock relations, Eqs. 27 and 28, also apply
to this case. Another possibility as to the termination of cavitation is the
growth of gas bubbles due to the release of dissolved gas. The growth rate of
the gas bubbles increases during cavitation owing to increase of the sizes of the
bubbles, while the growth rate of the total void-fraction decreases due to wall
friction. Cavitation terminates as soon as o = &,. Hereafter, gas diffusion
continues and, if no other influences are present, the liquid pressure begins
to rise above vapour pressure. However, this situation is not always reached
owing to the aforementioned propagation of shock waves on the boundaries of

the cavitation region.

As an example of the behaviour of the transition, in Fig. 1 the appearance of

a cavitation region after pump failure which induces a negative pressure wave
in the horizontal pipeline, is shown. During the genesis of this region the
transition is continuous. Next, shock waves are formed which start to close the
cevitation region.

2.6. Numerical computations

The equations of continuity and motion for the water-hammer region, Egs. 23 and
24, are integrated numerically, using the Lax-Wendroff two-step scheme (Ref.
14), which permits the occurrence of shock waves. The numerical smoothing of
these shock waves is accompanied by oscillations, which are undesirable in the
present case as vapour pressure might be reached erroneously. The oscillations
could be suppressed using an additional filtering operator (Ref. 15). Egs. 23
and 24 can be written as conservation laws, which is a requirement using the
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scheme mentioned. Strictly speaking, the momentum equation should be used in-
stead of the equation of motion in view of the occurrence of shocks. The
differences are small, however, as the liquid velocity is substantially less
than the shock celerity.

A special shock type occurs on the boundaries of a cavitation region. In this
case different systems of equations hold on both sides of the shock wave. As
moreover the description of the development and closure of the cavitation region
is a main topic of the present investigation, this shock type is calculated
using a shock-fitting procedure (Eqs. 27 and 28), which is more accurate.

As soon as during the computation the pressure reaches vapour pressure some-
where in the pipeline, the development of a cavitation region is started in

the numerical programme. During genesis of cavitation, initial conditions are
computed which are needed in the analytical solution of the equations for the
cavitation region, Egs. 25 and 26 (Ref. 4). In a later phase of the computation,
when a shock has built up on a boundary of the cavitation region, this solution
is used in the shock-fitting procedure (Ref. 6).

3. COMPARISON OF COMPUTATIONS WITH EXPERIMENT

3.1. Description of model pipeline

The model pipeline for which computations have been made, is described else-
where (Ref. 4). Therefore, only some important features will be mentioned here-
in., The model is depicted schematically in Fig. 2. The horizontal pipeline,
transporting tap water, consists of polyvinyl chloride. In the steady-state
situation the water flows from a high-head to a low-head reservoir. The levels
in the reservoirs are constant during an experiment. Cavitation is induced in
the pipeline by the momentaneous closure of a piston valve at the upstream end
of the pipeline. The steady-state discharge and the transient pressures at some
points of the pipeline could be measured.

3.2. Experiment

The closure of the piston valve causes column separation behind the valve, and
a negative pressure wave starts to propagate in the downstream direction. Due
to the steady-state friction gradient a cavitation region is generated at the
rear of this wave. The steepness of the wave decreases during propagation. Re-
flection of the negative wave at the low-hesd reservoilr results in a positive
pressure wave propagating in upstream direction. This wave, in which a very
steep part or shock develops, removes the cavitation region. After passage of
the wave, small gas bubbles remain behind, demonstrating the effect of gas
release from the liquid. When the positive wave reaches the column separation
behind the valve, it is reflected again, but a cavitation region is not genera-
ted anymore. The waves damp fast so that after some reflections the water in
the pipeline behaves as a rigid column. During this process the velocity changes
its direction, finally resulting in collapse of the column-separation cavity.
At this moment the experiment was ended.

3. 3. Computation

The numerical values of the relevant quantities were adopted from the model,
such as celerity a, = 450m/s, friction coefficient A= 0.0194, steady-state
velocity W, = O.97m/s, length £ = 200m, diameter D = 0.0814m, and downstream
pressure pg = 82kN/m2. The water is assumed to be saturated at atmospheric
pressure, which gives (o= 0.70moles/m3. The estimatior of number of bubbles
h and slip velocity U was based on the observation of bubbles through
transparant parts fitted in the pipeline, and was rather arbitrary. However,
the influence of dissolved-gas release can be seen as a second order effect so
that accurate determination of n and U is not of great importance. In the
computations n = 500m~! and U = 0.01m/s were assumed. The initial radius
of the bubbles at atmospheric pressure was assumed to amount to F3°= 3,2x10-5m.
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4. RESULTS AND CONCLUSIONS:

In Figs. 3, 4, and 5 the experimentsl and computed pressure histories at some
cross-sections are shown. Regarding the experimental curves it can be noted
that a strong dispersion (deformation) and attenuation of the pressure waves
occur, which is a well-known result (Ref. 5). Although the front of the pressure
wave removing the cavitation region is steep, the gradual development of &
shock wave is not clearly observed. However, at X = 34m the front of the wave
is almost vertical, which indicates that at this place a shock has built up.
The three sets of computed curves concern a computation without the presence
of free gas, a computation with bubbles containing a constant quantity of gas
(no gas diffusion), and a computation in which gas diffusion was taken into
account in the way pointed out in the preceding pages. In the computation
mentioned first the method of characteristics was used in the water-hammer
region, whereas in the second and third computation the aforementioned finite-
-difference method was applied. The computation without free gas does not show
significant dispersion or attenuation of the pressure waves (Fig. 3). The
computation with free gas but without gas diffusion does show dispersion of the
waves but the strong wave attenuation is not found (Fig. 4). The little change
in the steepness of the first negative pressure wave proves that the more
rounded shape of the waves occurring later on is not caused by numerical
smoothing, but is part of the mathematical model.

Wave attenuation is found if gas diffusion is introduced in the mathematical
model (Fig. 5). The damping is considerable, in spite of the fact that a
relatively small slip velocity and a reasonable number of bubbles were assu-
med. The attenuation is caused by the decrease of the celerity while time
elapses, and by the increase of the free-gas content. This can be shown by
eliminating void fraction &g and the derivatives of the velocity « from
the equations of continuity and motion, Egs. 23 and 24. Then a non-linear
telegraph equation results, the dissipation term of which contains the deri-
vative of the celerity with respect to time and a factor related to the
free-gas generation rate.

The conclusions are that free gas causes wave dispersion, and that the strong
wave gttenuation observed after cavitation and the occurrence of low pressures,
can be explained by the effects of gas diffusion.
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Fig. 5 Pressure histories at 0.5, 34, 58, 90 and 180m from the upstream end

of the pipeline. Computation with gas diffusion.




