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1. Introduction

Composite materials show internal cracking when a suffi-

ciently large stress is applied. In order to elucidate the

mechanism of cracking, a number of studies have been carried

out using simple models, in which a stiffer inclusion is

incorporated into an elastic solid and the onset of failure

near or at the surface of the inclusion is examined. Such

studies have included thoria spheres embedded in a glass

matrix (1), glass spheres embedded in a glassy polymer matrix

(2,3), and glass and steel spheres embedded in a rubber

matrix (4,5).

Variations in the strength of interfacial adhesion have

been shown to affect not only the magnitude of the critical

applied stress at which failure initiates, but also the nature

of the failure itself (2,5). For a weakly-bonded rigid sphere J.

in a rubber matrix, sudden detachment at the poles is observed

when the applied stress reaches a sufficiently large value.

On the other hand, when the rubber is well-bonded to the

inclusion, a characteristic internal failure, termed cavita-

tion, takes place near the poles of the inclusion, in the

direction of the applied tension (4,5) . This process consists • .

of the sudden appearance of a void within the rubber itself,

close to the surface of the inclusion but separated from it L

by a thin layer of still-attached rubber. It has been

attributed to elastic expansion of a microscopic precursor

void under the action of the local dilatant stress (negative

dl"® PIC



hydrostatic pressure) -P until the maximum extensibility of

the material is exceeded and the void then grows to a visible

size by tearing (6). This hypothetical mechanism of cavity

formation in elastomers has been shown to account quantita-

tively for the appearance of cavities under triaxial tensions

(6), under the action of dissolved supersaturated gases (7),

and at points near spherical and rodlike inclusions where a

sufficiently large triaxial tension is set up by an applied

far-field tensile stress (4,5,8).

Unbounded elastic expansion of a spherical cavity in a

rubber block is predicted to occur when the local dilatant

stress exceeds a critical value, given by

-PC = 5E/6 (1)

where E is Young's modulus of the rubber (6). Good agreement

is generally obtained with expetimentally-observed conditions

for the formation of visible cavities in soft rubbery solids.

One exception must be noted. When a rigid spherical

inclusion is present, and is small in size, the critical far-

field tensile stress for cavity formation is found to be

considerably larger than that calculated from equation 1, and

it increases steadily as the diameter of the inclusion is

reduced (5). This anomaly is tentatively attributed to a

second feature of the cavitation process: when the volume of

material subjected to the dilatant stress is extremely small,

say less than about 10- 5 m3 , then the probability of finding a
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relatively large precursor void within it is also small. And

when the precursor void is less than about 10- 7 m in diameter,

an additional restraint on its expansion becomes significant,

arising from its own surface energy, so that cavitation

becomes more difficult on this account (9).

We now turn to another aspect of internal void formation,

and that is the effect of the close proximity of two inclu-

sions upon the occurrence of voids between them. Cavities

appear midway between two closely-spaced spherical inclusions

lying in the direction of the applied tension (5), presumably

when the dilatant stress set up there is sufficiently large.

Simple models have therefore been constructed to represent

highly-filled composites. They consist of two steel spheres

or two parallel steel cylinders, bonded together with a layer

of strongly-adhering transparent silicone rubber between

them. They have been subjected to tensile forces in the

direction of the two steel end-pieces, large enough to induce
:Ile

cavitation in the rubber phase. Results for the critical

loads and deflections are reported here and compared with the

predictions of equation 1, using a simple approximate solution

for the dilatant stress set up in a layer of an incompressible

elastic material bonded between two rigid spheres or two rigid

parallel cylinders, when it is subjected to a tensile load in

the direction of their centers.

-!
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2. Theoretical considerations

Values of the maximum hydrostatic tension -P set up in

the rubber layer can be obtained from an approximate stress

analysis, assuming that the rubber is an incompressible,

linearly-elastic solid. The results take the form (10),

-Pm/E = em/ 4 A(A - 1)2 (2)

for a layer bonded between two rigid spheres, Figure la,

and

"-Pm/E em/ 2 A(A - 1)2 (3)

for a layer bonded between two parallel rigid cylinders,

Figure lb. The term A denotes

A = 1 + (h/D) (4)

IL

where h is the separation distance of the spheres or cylinders

and D is their diameter, and em is the maximum tensile strain

set up in the rubber, given by the ratio of the displacement 6

of one sphere or cylinder away from the other to the initial 0

separation h: em = 6/h.

The relations between em and the applied force F are

somewhat complex; they are given in the original paper (10).

However, they are not very different from the simple results:

em = c/E (5)

for layers between spherical end-pieces, and,
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em = 30/4E (6)

for layers between cylindrical end-pieces, where a denotes the

mean applied stress (10). With spherical end-pieces close

together the observed and calculated strains em are somewhat

larger than predicted by equation 5 and with closely-spaced

cylindrical end-pieces they are smaller than predicted by

equation 6, by a factor of up to 2X (10).

3. Experimental details

(i) Preparation of test-pieces.

Four sizes of steel balls were used to construct test-

pieces having spherical end-pieces, Figure la. The diameters

were 6.35 mm, 9.50 mm, 18.8 mm and 49.3 mm. Thin steel rods

were welded to the outer poles of the balls to hold them in a

stretching device subsequently. Stainless steel tubes having

an outer diameter of 9.55 mm, and of varied lengths in the

range 12.5 mm to 50 mm, were used to construct test-pieces "-

having cylindrical end-pieces, Figure lb.

Surfaces of the steel balls and tubes were polished with

fine emery paper and then coated with a special primer

(Primer 92-023, Dow Corning Corporation) to give good adhesion

to the silicone elastomer used. After the primer coating had

dried, rubber layers were cast in the gap between two identical

steel spheres or two identical cylinders using a mixture of

100 parts of Sylgard S-184 silicone polymer and 6 parts of

Sylgard C-184 curing agent, both of which were obtained from

9..
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Dow Corning Corporation. The mixture was degassed under

vacuum for 30 min and then poured into a mold surrounding the

metal end-pieces and cured for 12 h at 120'C. Tensile

measurements on a cured slab of the same formulation gave a

value for Young's modulus E of 0.96 ± 0.05 MPa.

Specimens were prepared with various spacings h so that

the ratio h/D ranged from about 0.02 up to about 0.35.

(ii) Measurement of applied forces or displacements

at which cavitation occurred

Specimens with spherical end-pieces were stretched under

an optical projector having a magnification of about 50X. The

displacement 6 at which a cavity was seen to appear suddenly

in the rubber layer was measured directly in this way and

employed using equation 2 to calculate the corresponding value

of the hydrostatic tension -Pm"

Some experimentally-determined relations between tensile

load, represented by the mean applied stress o, and the

corresponding displacement 6, are shown in Figure 2. They

are seen to be approximately linear, up to maximum tensile

strains of about 80 per cent, and values of the tensile stiff-

ness K obtained from their slopes were in good agreement with

those obtained previously for similar test-pieces subjected

to small compressions (10). Thus, the assumption of linear

elastic behavior appears to hold reasonably well for these

specimens, even up to moderately high tensile strains.

For specimens with cylindrical end-pieces, the critical



loads at which a visible cavity suddenly appeared were

measured directly using a tensile test apparatus. The speci-

mens were stretched at a rate of about 10 pm s-1, until a

cavity appeared, and the corresponding displacements were then

calculated from the measured critical loads using theoretical

stiffness values for such test-pieces (10). The corresponding

values of hydrostatic tension -Pm were obtained from equation 3.

It should be noted that only stresses arising from the

restraints at the bonded surfaces are considered in this

procedure for determining the triaxial tensile stress -Pm;

simple tensile stresses are neglected. They should be rela-

tively smallhowever, for specimens with closely-spaced end-

pieces.

4. Experimental results

(i) Formation of cavities

Photographs of representative cavities are shown in -

Figures 3 and 4, for specimens with spherical and cylindrical

end-pieces, respectively. The cavities appeared suddenly when

the critical load was reached and grew rapidly to a large size.

They formed in the general area of maximum tensile strain and

maximum hydrostatic tension, sometimes near one of the end-

pieces, Figure 3, and sometimes midway between them, Figure 4.

Similar observations were reported previously for a rubber

block containing two spherical inclusions (5)

It was noticed that the formation of cavities was somewhat

time-dependent; that is, when a load slightly smaller than the
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value taken here to be the critical one was applied and main-

tained for several seconds, a cavity would often appear in

the same way as in steadily-increasing loading. This feature

is tentatively ascribed to time dependence of the tensile

modulus and tear strength of the silicone rubber used.

(ii) Conditions for cavitation

Values of the critical dilatant stress -Pm for cavity

formation, determined as described above from the measured

critical loads or displacements, are given in Tables 1 and 2

for specimens with spherical and cylindrical end-pieces,

respectively. They are also plotted in Figures 5 and 6

against the ratio h/D of the end-piece separation to diameter

of the sphere or cylinder. The horizontal broken lines in

each of these Figures represent the theoretically-predicted

result, equation 1.

Experimental results for rubber layer thicknesses greater

than about 5 per cent of the end-piece diameter are seen to be

in reasonably good agreement with the theoretical cavitation

stress for a highly elastic solid containing a precursor void.

This is the case for layers bonded to either spherical or

cylindrical end-pieces and for a wide range of end-piece

diameters. As the relations for dilatant stress are rather

different in these two cases, equations 2 and 3, the general

agreement found to hold strongly suggests that the observed

cavities arise from the proposed mechanism of unstable elastic

expansion of precursor voids under the action of a critical

dilatant stress.
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At extremely small thicknesses of the rubber layer, less

than about 5 per cent of the end-piece diameter, the stresses

necessary to form a large cavity became considerably greater

than those for thicker rubber layers, Figure 5, as much as

four times greater when the layer thickness was only about 2

per cent of the end-piece diameter. This feature was found

to hold for specimens with spherical end-pieces having a wide

range of diameter, suggesting that it was not simply a func-

tion of the layer thickness itself but of the ratio of

thickness to end-piece diameter. It is reminiscent of the

previous observation that cavitation is more difficult to

bring about near small spherical inclusions (5). Once again,

it appears that an additional restraint on cavity formation

is operative in small volumes of rubber near highly-curved

surfaces, in addition to the simple elastic resistance that 4
governs the process in larger samples.

5. Conclusions

Large cavities have been found to form in layers of

rubber bonded between rigid spheres or cylinders when the

assembly is put into tension. The critical tensile loads and

deflections are in generally good agreement with a simple

fracture criterion: that a critical level of the local

dilatant stress -P, of about 5E/6, is reached. This is the

theoretical value at which unbounded elastic expansion of a

(hypothetical) precursor void would take place. Thus, it

appears that visible cavities occur as a result of such a

ki5
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process, and form when and where the critical dilatant stress

level is attained. However, when the rubber layer is

extremely thin, less than about 5 per cent of the end-piece

diameter, then cavitation requires substantially higher

stresses. For a regular arrangement of spheres on a cubic

lattice, this close proximity corresponds to a high volume

concentration of filler particles, of more than 45 per cent.
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Table 1: Effect of separation distance h on the cavitation

strain em and dilatant stress -Pm for specimens

with spherical end-pieces of diameter D.

D(mm) h(mm) h/D 6(mm) em Pm /E

6.34 0.95 0.150 0.87 0.92 1.33

1.33 0.210 1.52 1.14 1.12

1.93 0.304 1.95 1.01 0.64

9.51 0.19 0.020 0.05 0.26 3.22

0.22 0.023 0.06 0.27 2.91

0.37 0.039 0.07 0.19 1.16

0.38 0.040 0.11 0.29 1.74

0.43 0.045 0.10 0.23 1.24

0.74 0.078 0.25 0.34 1.00

18.80 0.27 0.014 0.04 0.15 2.68

0.73 0.039 0.22 0.30 1.85

49.30 0.69 0.014 0.14 0.20 3.58

0.84 0.017 0.21 0.25 3.50

2.51 0.051 0.76 0.30 1.40

2.93 0.058 1.02 0.35 1.46

16.96 0.335 18.32 1.08 0.62

4.

S.°

,,.
• .... .. •,•;•,• •,• : .,•.$-• .. .•.,,,,,'v~•,'.,,, %. o,.,; ... ,•.... , .. , _ ,... ,...',.,',.....>..--.,..,v., , . • ,. ., , • ..,
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Table 2. Effect of separation distance h on the cavitation

strain em and dilatant stress -Pm for specimens

with cylindrical end-pieces of diameter D 9.55 mm.

Length L (mm) h(mm) h/D F(N) (mm) a I b

12.5 0.43 0.045 25 0.034 0.08 u.84

0.91 0.095 66 0.255 0.28 1.35

1.21 0.127 77 0.440 0.36 1.27

25.5 1.00 0.105 114 0.161 0.161 0.70

1.36 0.142 12Z 0.395 0.29 0.90

1.51 0.158 127 0.476 0.32 0.86

50.0 0.85 0.089 170 0.150 0.18 0.91

0.95 0.099 206 0.209 0.22 1.02

1.16 0.121 211 0.286 0.25 0.90

1.24 0.130 216 0.317 0.26 0.87

a: Calculated from F.

b: Calculated from em using equation 3.

I0I
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Figure Captions

Figure 1: (a) Rubber layer (cross-hatched) bonded between two

steel spheres.

(b) Rubber layer (cross-hatched) bonded between two

parallel steel tubes. -

Figure 2: Experimental relations between mean tensile stress

a and ratio e of displacement 6 to initial separation

h for rubber layers bonded between two steel spheres.

Figure 3: Cavity formed in a silicone rubber layer bonded

between two steel spheres at a tensile strain em =

0.23. Initial separation h = 0.43 mm, diameter

D = 9.50 mm.

Figure 4: Cavity formed in a silicone rubber layer bonded

between two steel cylinders at a tensile strain

em 0.08. Initial separation h = 0.43 mm, diameter

D = 9.55 mm.

Figure 5: Dilatant stress -Pm for cavity formation in a

silicone rubber layer bonded between two steel

spheres vs ratio h/D of initial separation distance

h to sphere diameter D. D = 6.35 mm, 0 ; 9.5 mm, Q

18.8 mm, Q ; 49.3 mm, (J . The horizontal broken line

represents the predicted result from equation 1.

- .- • -• -- • . . . •," .-... -- • •.. , .. . U -• • *U• ' • - • • '•

. .. - i
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Figure 6: Dilatant stress -Pm for cavity formation in a silicone

rubber layer bonded between two parallel steel

cylinders vs ratio h/D of initial separation

distance h to cylinder diameter D. D = 9.55 mm, L =

12.5 mm, 0 ; 25.5 mm, 0 ; 50 mm, . The horizontal

broken line represents the predicted result from

equation 1.
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