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Introduction

|N RECENT YEARS an increasing amount of attention
has been devoted to problems of high-speed pumping systems,
This has been brought about largely by the problems of develop-
ing lightweight turbomachine components for liquid-rocket pro-
pulsion systems. The weight of rotating equipment such as
pumps and turbines for given power levels is, of course, reduced
rapidly as the rotative speed is increased. The speed cannot be
increased indefinitely, however, since the cavitation which de-
velops in the inlet portions of the pump impeller limits the per-
formance. The size and weight advantage conferred by higher
rotative speeds is not limited to missile-pump applications. Tt is,
in fact, always desirable to operate a liquid pumping system at the
highest speed possible, subjeet only to the afore-mentioned limita-
tions of cavitation. This is true for pumping applications in the
petroleum industry as well as, for example, hydroeleetric power-
plant installations. The deterioration in performance caused by
cavitation may occur in several ways. [Extensive cavitation in
the eye or inlet of the pump may give rise to appreciable mixing
losses and therefore a reduced and possibly unacceptably low
efficiency. The presence of the cavitation may also distort the
flow pattern to such a degree that insufficient power iz trans-
mitted to the flowing fluid. Damage to the structure from the
collapsing cavity voids either from erosion or vibration ean also
oceur, but this is not the subject of present concern.

A knowledge of the conditions under which rapid deterioration
of performance takes place by cavitation is therefore extremely
important to the designer of all kinds of rotating equipment. In
this paper we are concerned chiefly with the effects of cavitation
in what are called “inducer pumps.”” Experience and theory both
have shown that the inlet portions of the impeller must have a low
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Cavitation in Turbo Pumps—Part 1

A free-streamline flow through a cascade of semi-infinite flat plates is taken as a simpli-
fied model of the cavitation process in a helical inducer pump. The length and thickness
of the resulting cavity is determined as a function of blade geometry and cavitation
Loss coefficients resulting from the cavitation are estimated and representa-
tive cavity shapes are calculated to aid in designing the leading edge shape of the blades.

blade angle and moderately high solidity® to forestall the effects
of cavitation. These requirements usually result in a pre-
dominantly axial portion of the impeller entrance as shown in Fig.
1. (This portion may or may not be integral with the rest of the
pump impeller.) The development of eavitation in such a de-
vice as the pressure is gradually lowered is quite complex [1].?
For example, the flow is not usually steady nor is it always sym-
metrie, i.e., the amount of cavitation may vary from blade to
blade. Also, at moderate angles of attack complicated back
flows, real fluid effects, and tip clearance cavitation confuse and
obfuscate the observer. Some of these effects are illustrated in
Fig. 2 in which the appearance of the cavitation is shown for
various cavitation numbers and angles of attack on a helical in-
ducer of constant pitch. With reduction in inlet pressure the
cavitating region grows and moves downstream well into the pas-
sages of the inducer [1] and approaches the condition of the
sudden decrease in performance (shown in Fig. 3) known as
cavitation breakdown. Needless to say, it is of the utmost im-
portance that the designer be able to estimate when this condition
may take place.

Several papers have appeared in recent years that treat this
problem. One of the first of these is due to Gongwer [2]. In this
he adopted the model of a free-streamline flow through a cascade
of flat plate hydrofoils due to Betz and Petersohn [3] to represent
the cavity flow in the inlet of a centrifugal impeller. These same
ideas were then later applied to cavitation in an axial inducer [1, 4]
where the assumption of a planar cascade flow is more applicable
than it is in a centrifugal impeller. It was observed in a study of
helical inducers of constant pitch [1] that the minimum cavita-
tion number that could be safely achieved was something like
twice the value of that obtained from the free streamline theory
of Betz-Petersohn, although due to the limitations of the ex-
perimental equipment, these results were not conclusive. Similar
results were also found by other workers at about the same time.?

! Bee notations.
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Nomenclature.
¢ = length of cavity v = velocity component in y-direction ¢ = head coefficient, total pressure
D = 27 = blade spacing w = magnitude of velocity vector increase across rotor/pl,?
F cmpp]erf veloeity  potential L,y o= c()—ur_dinutes in physical plane ¥; = total pressure loss coefficient
P+ if z = x4y (P, — P3)/pU,*
h = Y = wake or cavity height at a = angle of attack to blade
cavity closure 8 = blade angle, (w/2) — Subscripts
= \/_] 7 = slasger ingls 1 = far upstream of cascade
L = cavitation number (py — 9.3/ { = hodograph variable u — ) ) - p—
/2 ‘p = density (slugs/ft?) 2 = far downstream of cascade (within
p = static pressure 7 = cavitation parameter (Py — p.)/ passage)
P = total pressure plU2/2 3 = after mixing process far downstream
@ = veloecity component in z-direction SE = velocity potential ¢ = quantities evaluated on free stream-
U7; = impeller speed w, sin (v + a) Y = stream funection line
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divided by the impeller tip speed) for various cavitation nurmbers. Per-

formance is seriously reduced in the lower right photegraph.

The assumption of planar flow along eylindrical sections
through an inducer is, of course, a great simplification. Radial
flows are developed along the constant pressure surfaces of the
cavity (which are themselves primarily radial), and the axial
veloeity distribution through the inducer, which depends upon the
radial work distribution of the rotor, is rarely constant, for in-
ducer pumps are seldom free vortex designs [5]. In addition,
observations and rough caleulations [1, 6] show that appreciable
radial boundary-layer flows take place along the surfaces of the
blades. Nevertheless, the free streamline theory appears to be a
good guide in determining the cavitation limits of these simplified
pumping configurations and more especially is it useful as a basis
for correlating experimental tests.

The remainder of the present paper discusses several simplified
free streamline models suitable for the flow through an inducer

2

k= #.13

Fig. 2(b)
a 12-deg inducer for various cavitation numbers

Cavitation development at a flow coefficient of ¢ = 0.08 in

and in a companion paper? these results are compared with tests
on actual inducers, It will be shown that, with the use of experi-
mentally determined correlating factors, this theory forms a use-
ful basis of design. The present studies are limited to helical
inducers of large solidity constant pitch and constant hub and tip
radii for simplicity, Furthermore, it is assumed that the cavita-
tion phenomenon in such flows is well represented by a free-
streamline model and that the vapor pressure within the cavity is

4+ L. B, Stripling, “Cavitation in Turbo Pumps— Part 2,"”" ASME
Paper No, 61— WA-98,
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Fig. 3 Typical performance of an inducer pump with 18-deg tip angle, 0.31 hub ratioc and 1.25 tip solidity

(chord over circumferential blade spacing).
here denoted by U..)

(¢ is the axial velocity divided by impeller tip speed which is
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Fig. 4 Sketch of various cavi

model; (c) re-entrant jet

known. These latter conditions may not be fulfilled, especially
for some of the cryogenie fluids now in common use. Here, al-
lowance must be made for the so-called “thermal effect” [7] and
possibly for the existence of other modes of cavitation such as the
foaming that takes place when liquid hydrogen cavitates® rather
than a distinet cavity as is presumed below. These considera-
tions, however, are beyond the scope of the present article.

Cavitation Models

The model we take for the How is that of a series of flat plate
hydrofoils arranged in an infinite cascade with a free streamline
originating from the leading edge of each hydrofoil. The flow is
assumed to be two-dimensional, irrotational, and inviscid. The
eavity may be longer than the chord of the hydrofoil but observa-
tions [1] have shown that, to provide the necessary flow turning,
the cavity must lie within the blade passage. There is no unique
solution for a constant pressure eavity of finite length, as there are
a variety of ways in which the cavity can be terminated (see, for
example, the book by Birkhoff and Zarantonello [8]). Among

i Private communication, W, Wilcox, NASA, Cleveland, Ohio.
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(a) Imag

plate; (b) "transition’ or wake

these are a re-entrant jet, an image plate on which the free stream-
line collapses, or the free streamline may gradually recover pres-
sure on a solid boundary that resembles a wake. These are
sketched in Fig. 4. While all of these various models give more
or less the same numerical results, it is believed that the wake
model (sometimes called the “dissipation’” model) simulates to
some degree the actual wake downstream of the cavity terminus
where intense mixing is observed to oceur. This is not par-
ticularly important for flows over isolated hydrofoils, but when
the fHow is confined, as it is in a ecascade or water tunnel, the
blockage of the wake is important in determining the subsequent
downstream flow. The actual wake thickness and structure of the
real flow cannot, of course, be determined from a perfect fluid
theory, so that there is considerable arbitrariness in any partieu-
lar mathematical model chosen for the flow. Therefore, we will
take the simplest possible model that retains the desired features
mentioned above.

It was mentioned that an inducer operates with the cavitation
bubble or region within the blade passage. That is, the length of
the cavity is less than the chord, so that we are interested pri-
marily in the case of “partial”’ cavitation. Since the chord of an

3
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Fig. 5 Sketch of partly cavitating cascade
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Fig. &6 Hodograph of the flow in the physical plane

inducer pump is ordinarily much longer than the peripheral
spaecing (say, two or three times) we will simplify the work below
by taking the chord to be infinitely long and studying the de-
velopment of the cavity in the inlet region as the pressure is
lowered.5

Formulation of Problem

An upstream flow of uniform velocity w, approaches the stag-
gered array of flat plates at an angle a as shown in Fig. 5. A free
streamline originates at the lending edge of each plate and closes
upon a flat surface parallel to the original surface. The length of
the cavitating region ¢ as well as its height i are to be determined
as functions of the stagger angle 7, angle of attack a, and the
cavitation number & which relates the upstream velocity w; to
the velocity along the constant pressure surface w,.. The cavita-
tion number for this flow is defined to be

& The ease of finite chord length has also been worked out but no
computations have been made. See also G, A. Dombrovsky, “On
Free Streamline Flow at Subsonic Velocities About an Infinite Lat-
tice of Flat Plates,” Doklady Academy Nauk USSR, 1856, vol. III,
no. 2, p. 312. Translated by G. and H. Cohen, Rensselaer Poly-
technie Institute, RPI Trans, no. 3.

4

u
nh = b
k=— lar)
pw;?/2 A
and from the Bernoulli relation
w. = w V1 + k (1b)

As is customary in problems involving free streamlines, it is con-
venient to discuss the flow in reference to the hodograph plane,
in which the streamlines that deseribe the wetted surfaces and
constant pressure surfaces are sketched as a function of the
hodograph variable { = w — . Thatis, if ¥ = ¢ + z't,{T/ is the
complex potential of the flow, with & being the velocity potential
and ¥ the stream function, then

= = — v (2)

where u, v are the z and y-veloeity components in the physical
plane, and z = x + iy is the complex variable in the physi-
cal plane. The solution rests upon the fact that the imaginary
part of F is known around the boundary of the flow as seen in the
hodograph plane. This is shown in Fig. 6 and corresponding
points in the physical and hodograph plane are identified. If F

Transactions of the ASME




can be determined as a function of {, then physical co-ordinates
for corresponding points in the {-plane can be determined by in-
tegrating (2), i.e.,

z = f — + const (3)

The usual procedure to determine F({) is to transform the
hodograph onto the potential plane F = @ + i by suitable in-
termediate steps. In the present work, however, the hodograph
is sufficiently simple so that the solution #({) can be determined
by inspection as was done in the original work of Betz and
Petersohn.

This is greatly facilitated by recognizing that the uniform flows
at infinity correspond to source-vortexes located at their cor-
responding points in the hodograph plane. For example,

F = we= et In (¢ — we ')

represents & source-vortex in the {-plane located at the point cor-
responding to z = Then, from (3), the corresponding
physical co-ordinates are

ww“?(a+7)f§‘ a5/< -

— o,

z 3
e '®

= e~ 1n [({ — wie "®)/{] + const

When we ~* is encireled once in the counterclock wise direction, z
moves a distance 27 to a corresponding point on the next step of
the caseade. (The slant height of the cascade ean be changed to
any other value by introducing a scale factor.) Also it is readily
shown that the streamlines in the {-plane near the origin of the
vortex are uniform and inclined at the angle e to the r-axis in the
physical plane.

Solution

The complex potential must have the appropriate singular
behavior indieated above at each of the points — =, + = of Fig. 6.
In addition the real axis and the circle |{| = w, must be stream-
lines in the hodograph. Finally, it is necessary that the point {
= 0 be a stagnation point of this flow which requires that

daF
E(f =0) =0 (4)

The potential satisfving the above conditions, determined by the
method of images, is

e trte In (¢ — we @)

) =

wy

. . w,? 3
4. e”'?""“’) In (r _ w“’,‘la} + ei('yJ.—u) In (S"‘ = w_c e—la)
U

4 2
4 g—ily+al |y (g— _ G e"“) — 2¢os (v + )
un

w,t
I:ln ({ — wy) 4+ In (; — =N ):l + const  (5)

and in order that (4) be fulfilled the following relationship be-
tween the veloeity ratios must hold:

w, W w, w W, w
——f——=(“+ l)msa-{-(——-—l)
W w, w, w, uy w,
sin @ tan (y + «) (6)

It is interesting to observe that (6) can be derived from momen-
tum eonsiderations alone, so that this relationship merely states
that the foree on the hydrofoils is normal to the chord.

Journal of Basic Engineering

The physical co-ordinates of the flow, obtained by integrating
(3), are

z=¢ Vin({ — wle_"“) 4 7 In (§ — wie')

+ — gy +2a) Iy (5" - e e""‘)

U
Wit ~ilrraa) ¢ e
+ w2 ¢ I (§ iy ¢
Wy w,*
—2—cos(y + a) [ln (§ — we ( )] -+ const
e Wea Wy

(7)

Our primary interest is in the co-ordinates of the leading edge and
terminus of the cavity. These are the length of the cavity e
mensured from the leading edge and the height of the wake meas-
ured normal to the blades. Upon reference to Fig. 5, it can be seen
that the difference in these co-ordinates is given by

2 =w) — A = —w,) (8)

and to insure the correet branches of (7), the argument of {" must
inerease from —7 to 0 as { inereases from —w, along the circle

¢+ th =

|¢| = w.. After some manipulation we obtain
wy cos a
h=21rt’cs'}'|:1——1(77+)] (9)
wa Cos Yy
and

 + 2wy cos @ + wi?
wyws w,
e ln il A
w,? 1w, 4+ we

3 2wyw, sin a

2 . |
o= ((-.03 ¥ + :3—'2 cos (v + 2-‘1]) In (wr, 2w cos @ + wy )

— W

— 2ecos (y + @) [E: -4

+ 2 (sin v + E—'; sin (y + :20:)) tan ™~ (10)

w2 — w?

The solution to the problem set out is summarized in equation
(6), (9), and (10). For example, let v, a, and k be given. w, is
then found from (1b) and w: from (6). h and ¢ then follow im-
mediately from (9) and (10), respectively.

Discussion

First, let us examine the two limiting cases k — o and ¢ — =,
For the former case as k — =, w,/w; — = and we see from (6)
that w/w, — cos y/cos (¥ + «) so that both & and e approach
zero, That is, the flow becomes fully wetted and the pressure at
the leading edge becomes negatively infinite as it should. Thus,
as k inereases, ¢ decreases. At the other extreme we note that if
w, = 1wy, ¢ or the cavity length becomes infinite. This cor-
responds to the Betz-Petersohn case for infinite chord length.
The ecavitation number is not zero for infinite cavity length but
is given by (6) with w, = w, = w.\/] + k, and is the minimum
value of k achievable in the caseade. Thus,

_ %Eiu @ cos (y + _ot__J

1 4+ sin 7y G

mi'n
Squation (11) brings out clearly that to obtain small cavitation
numbers, ¥ should approach 90 deg. When e = Qory + a =
/2 it is seen that knin = 0 but these values are net realistic
since in the first case blade thickness and boundary-layer blockage
restrict the flow and, in the second, there is no net through flow.
Between these extremes kyi, achieves a maximum value (for v
const) when ¢ = w/4 — y/2 of (1 — sin 7y)/(1 4+ sin y). This
shows again that large values of § are necessary fo obtain small
values of k.
The results of the foregoing (albeit elementary) problems are

5
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believed to be of some interest to pump designers., Therefore,  blade angles. Sinee the blade chord to spacing ratio of most in-

extensive computations of the characteristies of this cascade flow
have been carried out and are presented in Figs. 7 to 13, The first
of these (Fig. 7) shows how the length of the cavity increases as
the cavitation number is desereased for various inlet angles o and
blade angles 8 (the complement of y). It is of special interest to
observe that the minimum eavitation number is achieved when
the length-spacing ratio is about unity for all except the smallest

Journal of Basic Engineering

ducer configurations is about one and o half to two, we may take
this result to mean that the assumption of infinite blade chord
does not invalidate the results of the present caleulations for
practical configurations, In fact, it suggests that inducers of
considerably lower solidity could be used to good effect.

The eavitation number is not particularly convenient for use
in applications, however, so that the results of the foregoing have

1
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been presented in Fig. 8 in terms of an equivalent parameter.

NPSH P — p,
TS U2 T U2

(12)

where the abbreviation NPSH stands for the “net positive sue-
tion head” and U, is the speed of the inducer blade (no prerotation
is assumed to oceur). This parameter is of direct use in applica-
tion since the NPSH and rotative speed of the pumping application
are usually known in advance.

The height of the cavity compared to the blade spacing is shown
in Fig. 9 for an angle of attack of four degrees as a function of the
cavitation number. Note that these curves all terminate at the
minimum cavitation number possible for the caseade at each
particular blade angle and angle of attack. Also shown by the

dotted lines are crossplots for chord spacing ratios of 0.5 and 1.0.
1t is interesting to observe that the maximum heights in each case
are nearly reached when the cavity-spacing ratio is unity.

Some idea of the proportions of eavities is given in Fig. 10, again
for an angle of attack of four degrees. TFor the most part, the
cavities are rather “slender’ except for large cavitation numbers,
say, in excess of 0.25,

Mixing Loss

In the present model, the flow becomes asymptotically parallel
to the blades, and because of the finite height of the cavity wake,
it does not fill the passage. For all real cavity flows, however, the
cavity collapses and fluid will completely occupy the region be-
tween the blade surfaces of the impeller. Again, in a real fluid,

Transactions of the ASME
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there will be a certain inherent mixing loss in this process which ¥, = gh, /U2 (13)

arises from destroying the momentum of the re-entrant jet that
tends to form in cavity flows. This effect may be estimated from
the present calculations by permitting the flow to undergo a
rapid expansion to the full area between the blade passages.
Thus, the head loss will be

we — wy)?
py = (02— w)
29
where w; is obtained from the continuity equation
uy cos (¥ + o) = 1wy cos Y.

This relationship neglects the thickness of the blade and therefore
tends to overestimate this loss. It is convenient to express the
mixing loss in terms of the coeflicient

10

for now -, represents that part of the total head generated by
the blade section under consideration that is lost due to cavita-
tion, Of course, other more complicated real fluid and cavitation
interactions may occur, but we are unable to estimate them
with the present theory. Similar mixing losses are also reported
for a fully cavitated, i.e., infinite cavities, cascade of finite flat
plate hydrofoils by Cornell [9]. The present results, shown in Fig.
11 for an inlet angle of four degrees, therefore illustrate how the
loss coefficient ¢, varies with inlet pressure for a given cascade
geometry., With this diagram at the special angle of attack
listed rapid estimates of the total pressure logs due to eavitation
alone can be made. The maximum loss ¢ .. is not much greater
than that for the cavity length-spacing ratio of unity in conform-
ity with the results of Fig. 9, so that the charts of Cornell's work
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can be used for this case as well. For reference we also include a
plot of the maximum loss coeflicient ¥, wmax as a function of inlet
angle, Fig. 12,

Cavity Shape

To realize the cavitation performance of the present calcula-
tions, it is necessary that the suction side of the blade not inter-
fere with the free streamline. This is particularly important near
the leading edge where the cavity may be quite thin. Repre-
sentative free streamlines were therefore caleulated for a blade
angle of 15 and 6-deg angle of attack, utilizing equation (7). The
leading edge of the blade should therefore be filed so that it will
not contact the free streamline. This requires, especially for the
lower cavitation number of Fig. 13, a rather pointed leading edge
contour. If the blade shape is blunter than the free streamline
shape for the desired operating cavitation number, a drag force
parallel to the blade chord will be experienced. This will have
the undesirable result of increasing the mixing loss and the mini-
mum cavitation number for the cascade. In practice? blunt lead-

7 See part 2 of the present paper.

Journal of Basic Engineering

ing edge shapes have inferior cavitation performance to slender
shapes, and those that have the pressure side of the blade filed are
inferior to those with the suction side filed in conformance to the
above ideas.
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