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Abstract—The analysis and the design of the Power Delivery
Network (PDN) is crucial in the real world of high-speed and
high-performance on-board systems. In this context, the Cavity
Model (where facing portions of power bus are considered
electromagnetic resonant cavities) can be used to study the
generation and propagation of noise. Given a real-world board’s
layout, one of the primary requirements for the application of this
technique is the geometrical identification of all the cavities and
their connectivity. This paper is focused on the fully automatic
generation of this geometrical dataset as part of an integrated
tool for the analysis and design of PDN.

I. INTRODUCTION

In today applications, microprocessors and application-
specific integrated circuits (ASIC) have thousands of gates
switching simultaneously. The impulsive and repetitive cur-
rent drawn by these active devices from the Power Delivery
Network (PDN) is a challenging issue for a correct and reliable
PDN design and a severe source of electromagnetic noise
generation. In high-speed digital circuit designs, the PDN
associated with the PCB plays a vital role in maintaining
not only the power integrity (PI), i.e. the high quality of
the DC voltage level, but also the signal integrity (SI) as
the necessary fidelity of signal and clock wave shapes, and
minimizing electromagnetic noise generation. As integrated
circuit (IC) technology is scaled downward to yield smaller
and faster transistors, the power supply voltage must decrease.
As clock rates rise and more functions are integrated into mi-
croprocessors and ASICs, the power consumed must increase,
meaning that current levels, i.e., the movement of electrical
charge, must also increase [1], [2].

The PDN for modern medium-to-high-speed digital PCBs
is usually formed from one or more pair of conducting planes
used as power (PWR) and power return (very often improperly
called “ground” GND). The PDN for digital circuitry has
evolved over time, as signal and clock speeds have increased,
from discrete power supply wires, to discrete traces, to area
fills and ground islands on single/two-layer slow-speed boards,
to the planar power bus structure used extensively in today’s
multi-layer high-speed PCBs. The low inductance associated

with charge delivery from the plane to circuit element allows
for the storage of relatively easy-to-deliver charge available all
over the board.

Often the term power bus is used to identify an individual
plane pair, whereas the term PDN is used for the entire system
of supplying power to circuits placed on the PCB. Noise
is generated in the power bus when a digital active device
(integrated circuit or transistor) switches between its high and
low logical states (switching noise) [3], [4], or it can be
coupled to the power bus when a high-speed signal transits
through the power bus by signal vias (transition noise) [5].
Noise generated in the power bus can be easily propagated
throughout the board. Propagated noise can affect the opera-
tion of other active devices (signal integrity) as well as radiate
from the PCB (EMI). Among the possible techniques to study
the generation and propagation of noise there is the so called
Cavity Model [6] in which facing portions of power bus are
considered electromagnetic resonant cavities. Given a real-
world board’s layout, one of the primary requirements for the
application of this technique, is the geometrical identification
of all the cavities and their connectivity. Then a suitable
processing of the geometrical cavities’ boundaries is requested
for a correct and not over-detailed electromagnetic modeling.
After these actions the geometry (containing also the electrical
parameters such as electric permittivity of the substrates,
electrical conductivity of the planes, etc.) dataset is ready for
being input to the cavity model solver.

This paper is focused on the fully automatic generation
of the above mentioned geometrical dataset as part of an
integrated tool for the analysis and design of PDN.

II. THE MULTIPLANE CAVITY MODEL

The extension of the cavity model to a multiplane con-
figuration is straightforward. Each powerbus is segmented in
elementary shapes forming cavities; for each cavity, based
on [6] the impedance matrix (Z) or the S-parameters are com-
puted among the ports. The cavities are then interconnected
by enforcing the electromagnetic boundary conditions such
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Fig. 1.

A three cavities structure assembled in ADS.

as the voltage and currents’ continuity. Fig. 1 [4] shows an
example of a three cavities structure in which the assembling
is manually worked out by using ADS [7].

In the next section it will be considered the algorithms for
an automatic and exact identification of the cavities forming
a PDN in order to apply the cavity model approach

ITII. THE CAVITY IDENTIFICATION PROBLEM

In what follows, a formalization of the cavity identification
problem is given. In our context, a board can be modeled
as a multiplane structure defined by geometric objects and
relationships as follows (see Fig. 2):

Definition 3.1:

« a multiplane structure consists of n stacked layers; for-
mally, MS = {Ly, Lo, ..., L,}, where Ly (L, resp.) is
the top (bottom, resp.) layer;

o cach layer is a rectangle in a 3-dimensional reference
system. Each layer lies in a plane parallel to the z = 0
plane. All the layers have the same dimensions;

« the distance between two layers is defined by the function
d: MS x MS — R. Note that, the distance between two
layers depends on their z-coordinate only;

« cach layer contains shapes; shapes of layer L; can be
modeled as a set P; of polygons such that: (i) each
polygon has non-zero area, (i) each polygon may have
holes, and (ii7) polygons are pairwise disjoint;

e polygons in P; are partitioned into n; nets: P, =
{N} N2, .. SN ng>1,1<i<m;

o aviais a vertical line at point (z, y) passing through lay-
ers. A via may or may not “‘be connected” to a given layer.
Given p € P, the relationship connects(via(z,y),p)
holds iff via(z,y) is connected to p.

Given a polygon p, by p we denote the translation of p at the
z = 0 plane.

Definition 3.2: Let p; € P; and p, € P, i < j, be two

polygons fulfilling the following conditions:

e ;1Np2=p,p#0;
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Fig. 2. An example of multiplane structure consisting of n layers (layers
shapes are not depicted).

o pNp’ =0, for each p’ € Py, and for each k € [i+1,j—1].

In this case, the polyhedron having the polygon p as base
area and d(L;,L;) as height is called physical cavity. Such
a cavity is denoted as cav(p1, p2); we say that cav(py,p2) is
induced by p; (by projecting onto ps).

Notice that, according to the cavity definition and to the fact
that polygons of a layer are pairwise disjoint, if two cavities
share some points, then such points must belong to the lateral
surface of the cavities. This properties leads to the following
definitions.

Definition 3.3: Let ¢; = cav(p1,p2) and co = cav(p1,p3)
be two cavities induced by the same polygon p; by projecting
onto different polygons ps and ps. ¢; and ¢y are horizontal
adjacent if they share some points.

Definition 3.4: Let ¢c; = cav(p1,p2), ca = cav(p2,ps3), and
c3 be three distinct cavities. If c3 shares points in the lateral
surfaces with both ¢; and co, then ¢; and ¢y are vertical
adjacent.

Definition 3.5: Let ¢1 = cav(p1,p2) and co = cav(ps,ps)
be two cavities. If there exists a via wvia(z,y) such
that both connects(via(x,y),p1) and connects(via(z,y),p3)
hold, then ¢; and ¢y are via adjacent.

Two cavities are adjacent if they are horizontal, vertical, or
via adjacent.

Definition 3.6: Given a sequence of cavities ¢y, ca, ..., ¢4,
q > 2, such that ¢; and ¢;4; are adjacent, 1 < i < ¢, then we
say that ¢; and ¢, are connected.

Problem 1 (PHYSICAL CAVITIES): Given a multiplane struc-

ture M .S, computes all the physical cavities.
The cavity model solvers currently available require that
cavities must have primitive polygons as base. At the moment,
the primitive polygons consist of triangles and rectangles with
the following additional constraints:

o each triangle has a fixed shape: the internal angles must

have values 90, 45, and 45 degrees;

« the triangle hypotenuse must lie on the boundary of p

« the aspect ratio of each rectangle is at most 20:1

Let cav be a physical cavity. Constraints above imply that
cav has to be further processed before to be considered as
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a “valid” input for the cavity model solver. In particular, if
p is the base polygon of cav, then the boundary of p has to
be “approximated” to provide a new polygon p’ such that it
can be partitioned into primitive polygons. Such a subdivision
produces logical cavities, that is, all the polyhedra induced by
triangles and rectangles. So, the following additional two com-
binatorial problems naturally arise: POLYGON APPROXIMATION,
and POLYGON DECOMPOSITION.

Problem 2 (POLYGON APPROXIMATION): Let p be a polygon
with holes. Approximate p into a polygon p’ such that the
boundary of p’ is formed by horizontal, vertical, or oblique
(45 degrees wrt exes) segments. The difference between the
segments of p and p’ is less than some error according to a
given criterion C.

In what follows, the approximated polygon is called quasi-
orthogonal polygons (in contrast to orthogonal polygons, for
which the boundary is formed by horizontal and vertical seg-
ments only). The follows problem refer to the segmentation.

Problem 3 (POLYGON DECOMPOSITION): Let p a quasi-
orthogonal polygon with holes. Compute a partition of p into
primitive components with the minimum number of elements.

Even if the notion of cavity connection has been given for
the physical case, it can be easily extended to logical cavities.
So, the following concludes the formulation of the cavities
identification problem.

Problem 4 (CAviTY CONNECTIONS): Let LC be a set of
logical cavities. Determine the cavity connection relationship
in LC.

IV. THE CAVITY IDENTIFICATION ALGORITHM

In this section we discuss the cavity identification algorithm.
It is based on algorithms that solve the four combinatorial
problems defined in the previous section. All the problems
fall in the computational geometry area [8].

A. Algorithms’ Description

Due to space limitations, in this section we give an high
level description of the algorithms (neither formal descriptions
nor proofs for the properties underlying the algorithms are
provided).

The problem PHYSICAL CAVITY can be solved by an iter-
ative algorithm which uses operations like intersection and
difference between polygons with holes, while the problem
POLYGON APPROXIMATION can be solved by adapting the
MiniMax method [9] for polygon approximation.

The problem POLYGON DECOMPOSITION can be solved as
follows. In principle, to decompose a quasi-orthogonal poly-
gon, it is possible to use four cutting directions: vertical (|),
horizontal (—), left-oblique (\), and right-oblique (). It can
be shown that at most two out of four are allowable (in [10],
it is shown that it is NP-hard to decompose a polygon if at
least three cutting directions can be used). Moreover, it can be
shown that the problem can be solved first by computing all
the possible triangles and then by decomposing the remaining
part. Notice that, the remaining part is an orthogonal polygon
with holes that can be decomposed into rectangles only.
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Fig. 3. Example of quasi-orthogonal polygon decomposition

In [11], Imai and Asano devised an optimum algorithm to
decompose an orthogonal polygon into rectangles.

According to properties above and by using the algorithm
in [11], we solved the problem of decomposing a quasi-
orthogonal polygon p by the following steps:

1) compute all the triangles of p;

2) compute p’ by removing from p all the triangles com-
puted at Step 1;

3) complete the decomposition by applying the ImaiAsano
algorithm to p/;

4) check whether there are “long” rectangles; in case, cut
them to fulfill the constraint on the max aspect ratio.

Fig. 3 shows an application of this decomposition algorithm.
The last problem, CaviTy CONNECTIONS, can be solved by
applying basic polygon operations.

B. Implementation Issues

All the algorithm briefly discussed in the previous
section have been implemented by using CGAL [12].
CGAL is an open source project whose aim is to pro-
vide an easy access to efficient and reliable geomet-
ric algorithms in the form of a C++ library. For in-
stance, concerning data structures, we used the basic classes
Polygons_with_holes_2 and Polygons_set_2 to
model shapes and nets respectively; concerning computation,
we exploited the intersection () and difference ()
methods of such classes. For solving the POLYGON DE-
COMPOSITION, instead of Polygons_set_2, we used
Arrangments_2 to model polygons with holes. Given a set
C' of planar curves, the arrangement A(C') is the subdivision
of the plane into zero-dimensional, one-dimensional and two-
dimensional cells, called vertices, edges and faces, respectively
induced by the curves in C [13]. The use of arrangments
allowed us to simplify the insertion of a chord into a polygon
as a basic mechanism to perform a polygon decomposition.

C. The Final Software Architecture

It has been realized a software application, named Cavity
Identification Tool (CIT), that implements the algorithms
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Fig. 5. The physical cavities’ 2D visualizer. A zooming on cavities from
layer SIG3 to layer SIG4. Focus on the green shape forming the top of a
cavity.

described before and provides additional functionalities, such
as shapes and cavities visualization.

CIT has been designed as a client-server application. The
client is written in Java and is responsible for realizing a GUI
that allow the user to provide the main input (all the requested
board data) as well as additional parameters (for instance, the
max aspect ratio for rectangles). The server is responsible for
implementing all the C++ algorithms based on CGAL.

Each time the server computes geometrical information
(e.g., physical cavities), it sends to the client such informa-
tion encoded in SVG [14] format. The client implements
a geometric info visualizer that allows the user to have a
promptly feedback about the performed computation. The
client implements the SVG visualization and manipulation by
exploiting the Batik [15] graphic toolkit. Figs. 4 and 5 give
an idea about the visualization functionality of the tool.

The client-server communication has been realized by
means of the XML-RPC [16] protocol.

V. ALGORITHM’S VALIDATION AND RESULTS

We performed an experiment by running the tool over a PCB
consisting of: 16 layers, 221 nets, 498 shapes, and 16287 vias.
The import phase required 460.23 seconds (data imported
from txt files extracted from a Cadence® Allegro® PCB

Proceedings, 20th Int. Zurich Symposium on EMC, Zurich 2009

The shapes’ visualizer. A zooming on shapes at layers SIG3 and
SIG4 only. The opacity property of SVG graphic elements allows to see the

editor project file). The execution of the module responsible
for computing all the physical cavities produced the following
output: 14685 physical cavities computed in 288.53 seconds.
By running the same module with a threshold on the size about
the area of the polygon at the top of a physical cavity, we get
the result shown in Fig. 6.
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Fig. 6. Number of physical cavities by varying the min area allowed.

The experiment has been performed on a pc with the
following main features: Intel Dual Core E2140 @ 2800 MHz,
RAM 2GB DDR2 800 MHz, GNU/Linux Kernel 2.6 x86_64,
GCC 4.2.3.
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