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Cavity electromechanics with parametric
mechanical driving
D. Bothner1✉, S. Yanai1, A. Iniguez-Rabago 1, M. Yuan1,2, Ya.M. Blanter1 & G.A. Steele1✉

Microwave optomechanical circuits have been demonstrated to be powerful tools for both

exploring fundamental physics of macroscopic mechanical oscillators, as well as being pro-

mising candidates for on-chip quantum-limited microwave devices. In most experiments so

far, the mechanical oscillator is either used as a passive element and its displacement is

detected using the superconducting cavity, or manipulated by intracavity fields. Here, we

explore the possibility to directly and parametrically manipulate the mechanical nanobeam

resonator of a cavity electromechanical system, which provides additional functionality to the

toolbox of microwave optomechanics. In addition to using the cavity as an interferometer to

detect parametrically modulated mechanical displacement and squeezed thermomechanical

motion, we demonstrate that this approach can realize a phase-sensitive parametric amplifier

for intracavity microwave photons. Future perspectives of optomechanical systems with a

parametrically driven mechanical oscillator include exotic bath engineering with negative

effective photon temperatures, or systems with enhanced optomechanical nonlinearities.
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S
uperconducting microwave circuits have been demonstrated
to be extremely powerful tools for the fields of quantum
information processing1–3, circuit quantum electrodyna-

mics4–8, astrophysical detector technologies9 and microwave
optomechanics10–12. In the latter, microwave fields in super-
conducting cavities are parametrically coupled to mechanical
elements such as suspended capacitor drumheads or
metallized nanobeams, enabling high-precision detection and
manipulation of mechanical motion. Milestones achieved in the
field include sideband-cooling of mechanical oscillators to the
quantum ground state11, strong coupling between photons and
phonons13, the generation of non-Gaussian states of motion14–16

or the entanglement between two mechanical oscillators17.
Recently, there are increasing efforts taken towards building

passive and active quantum-limited microwave elements for
quantum technologies based on microwave optomechanical cir-
cuits, connecting the fields of microwave optomechanics, circuit
quantum electrodynamics and quantum information science18–20.
Among the most important developments into this direction are the
demonstration of microwave amplification by blue sideband driving
in simple optomechanical circuits21, and the realization of direc-
tional microwave amplifiers22 as well as microwave circulators23,24

in more complex multimode systems25.
Recent theoretical work26–28 on optomechanical systems with a

parametrically driven mechanical oscillator proposed the use of
mechanical parametric driving to enable parametric amplification
with enhanced bandwidth and reduced added noise, compared to
the case of an optomechanical amplifier using a blue-sideband
drive26. Furthermore, the authors predict that there is a para-
meter regime that results in an effective density of states, which
can be interpreted as an effective negative temperature for cavity
photons26. Other related recent works have predicted enhance-
ments of the optomechanical coupling27 and the generation of
non-Gaussian microwave states28. Direct electrostatic driving of a

mechanical element in an microwave electromechanical cavity
using a combination of DC fields and electrical fields resonant
with the lower frequency mechanical device have been used in the
past for probing mechanical resonators in cavity devices10,29,30.
These schemes also allow tuning of the mechanical frequency in
an optomechanical cavity29–31 and enable direct parametric
driving of the mechanical resonator32. Using this electrostatic
tuning for parametric driving in an electromechanical system,
however, has until now not been explored.

Here, we present measurements of a superconducting micro-
wave optomechanical device in which we use direct electro-
static driving to achieve strong parametric modulation of
the mechanical resonator. By modulating the mechanical reso-
nance frequency, we generate phase-sensitive parametric ampli-
tude amplification and thermomechanical noise squeezing of the
mechanical motion, both detected using optomechanical cavity
interferometry10. Furthermore, we demonstrate how parametric
modulation of the mechanical resonance frequency can be used to
generate phase-sensitive amplification of a microwave probe
tone, which is three orders of magnitude larger in frequency than
the parametric pump tone itself. For the operation of the
microwave amplifier, the optomechanical system can be driven
on the red cavity sideband, which allows for simultaneous
mechanical cooling and microwave amplification. The experi-
mental implementation presented here provides an optomecha-
nical platform for further exploration of phase-sensitive
quantum-limited amplification and photon bath engineering
using mechanical parametric driving.

Results
The device. Figure 1 shows an image of a superconducting
coplanar waveguide (CPW) quarter-wavelength (λ∕4) resonator
used as a microwave cavity. The cavity is patterned from a
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Fig. 1 Superconducting circuit nano-electromechanical system with electrostatic and low-frequency access. a False-color scanning electron microscopy

image of a superconducting quarter-wavelength cavity (here for ωc= 2π ⋅ 7.5 GHz), capacitively side-coupled to a coplanar waveguide feedline. The

molybdenum-rhenium (MoRe) metallization is shown in blue and the silicon (Si) substrate in gray. b Zoom into the coupling capacitance region, where the

mechanical nanobeam as part of the coupling capacitance is visible. The dimensions of the beam, which consists of MoRe on top of high-stress silicon-

nitride (Si3N4), are 100 μm× 150 nm × 143 nm. c A magnified view of the suspended nanobeam. d Simplified circuit and measurement scheme, showing a

lumped element circuit representation of the device as well as the microwave (MW) input and output lines (including a DC block and high electron

mobility transistor amplifier shown as triangle) and the DC (directed current) input line connected to the microwave lines via a bias-tee. A more detailed

version of the setup is given in Supplementary Note 1. e Cavity resonance data (black) and fit curve (orange). From the fit, we extract the cavity resonance

frequency ωc= 2π ⋅ 6.434 GHz and the internal and external linewidths κi= 2π ⋅ 370 kHz and κe= 2π ⋅ 5.7MHz, respectively. f Resonance curve of the

mechanical oscillator readout via the superconducting cavity. Data are shown as black dots, a Lorentzian fit as orange line. From the fit we extract the

mechanical resonance frequency Ωm= 2π ⋅ 1.4315MHz and a quality factor Qm= 195,000. g Optomechanically detected excitation spectrum of the

nanobeam vs. applied DC voltage. The bright line resembling an inverted parabola represents the resonance of the in-plane mode, which was used

everywhere throughout this paper. The thin second line around 1.48MHz corresponds to the mechanical out-of-plane mode. The red dashed line at Vdc=

−4 V indicates the voltage operation point we chose to use.
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~60-nm-thick film of 60∕40 molybdenum-rhenium alloy (MoRe,
superconducting transition temperature Tc ~ 9 K33) on a 10 ×
10 mm2 and 500 μm-thick high-resistivity silicon substrate; cf.
Methods section and Supplementary Fig. 1. For driving and
readout, the cavity is capacitively side-coupled to a transmission
feedline by means of a coupling capacitance Cc= 16 fF. The
cavity has a fundamental mode resonance frequency ωc= 2π ⋅
6.434 GHz and internal and external linewidths κi= 2π ⋅ 370 kHz
and κe= 2π ⋅ 5.7 MHz, respectively. The transmission spectrum
of the cavity around its resonance frequency is shown in Fig. 1e;
for details on the device modeling and fitting, see Supplementary
Note 2.

The superconducting cavity is parametrically coupled to a
MoRe-coated high-stress Si3N4 nanobeam, which is electrically
integrated into the transmission feedline. The nanobeam has a
width w= 150 nm, a total thickness t= 143 nm (of which ~83 nm
are Si3N4 and 60 nm are MoRe) and a length r= 100 μm. It is
separated from the center conductor of the cavity by a ~200-nm-
wide gap (cf. Fig. 1c) and we estimate the electromechanical
coupling strength to be g0= 2π ⋅ 0.9 Hz. More design and
fabrication details are described in the Methods section and
Supplementary Fig. 1.

The mechanical nanobeam oscillator has a resonance frequency
of its fundamental in-plane mode of Ωm0= 2π ⋅ 1.475MHz. It can
be significantly tuned by applying a DC voltage Vdc between
center conductor and ground of the CPW feedline, adding an
electrostatic spring constant to the intrinsic spring (cf. Supple-
mentary Note 4). The measured functional dependence of
the resonance frequency on DC voltage is shown in Fig. 1g.
Throughout this whole article, we bias the mechanical resonator
with Vdc=−4 V, leading to a resonance frequency Ωm= 2π ⋅
1.4315MHz and a linewidth Γm ≈ 2π ⋅ 7.5 Hz. A resonance curve
of the mechanical oscillator at Vdc=−4 V is shown in Fig. 1f.

The device is operated in a dilution refrigerator with a base
temperature of Tb= 15 mK, which corresponds to a thermal

cavity occupation of
kBTb

_ωc
� 0:05 photons. Assuming the mode

temperature of the nanobeam being the fridge base temperature,
we expect an average occupation of the mechanical mode with

nm ¼ kBTm

_Ωm
� 220 thermal phonons.

Parametric mechanical amplitude amplification. When the
resonance frequency Ωm of a harmonic oscillator is modulated
with twice the resonance frequency Ωp= 2Ωm, then a small
starting amplitude of the oscillator motion can be increased or
reduced, depending on the relative phase between the oscillator
motion and the frequency modulation34,35. To modulate the
resonance frequency of a mechanical oscillator, one of the relevant
system parameters like the oscillator mass m or the restoring
spring force constant k can be modulated. Here, we follow the
latter approach and modulate the effective spring constant of
the nanobeam by applying a combination of a static voltage Vdc

and an oscillating voltage V2Ω � sin 2Ωt with roughly twice the
mechanical resonance frequency Ω ~Ωm. The static voltage adds
an electrostatic spring contribution kdc to the intrinsic spring
constant km and the oscillating part modulates the total spring
constant with ~2Ωm. The capacitive modulation of the mechanical
resonance frequency is a natural choice for superconducting cavity
electromechanics36, but other possibilities have been explored as
well, mainly in the optical domain with nonmetallized mechanical
oscillators. It has been demonstrated that the time-varying dyna-
mical backaction of modulated laser beams37,38 and switching of
trapping frequencies for levitated dielectric particles39 can also be
utilized for mechanical parametric amplification.

In addition to the parametric driving, we slightly excite the
mechanical oscillator by adding a near-resonant oscillating

voltage V0 cosðΩt þ ϕpÞ and characterize its steady-state dis-

placement amplitude depending on the parametric modulation
amplitude V2Ω and on the relative phase difference between
resonant drive and parametric modulation ϕp. The mechanical
amplitude is detected by monitoring the optomechanically
generated sidebands to a microwave drive tone sent into the
cavity, which is constant in amplitude and frequency with ω ~ ωc

(cf. Fig. 2a).
We operate the nanobeam in a regime of voltages where it can

be modeled by the equation of motion

€x þ Γm _x þ
1

m
k0 þ kp sin 2Ωt
h i

x ¼
F0

m
cos Ωt þ ϕp

� �

; ð1Þ

where m is the effective nanowire mass, x is the effective nanowire
displacement, k0= km+ kdc, kp∝VdcV2Ω and F0∝VdcV0. From
an approximate solution of this equation of motion, the
parametric amplitude gain Gp= ∣x∣on∕∣x∣off can be derived to be
given by

Gp ¼
cos2ðϕp þ φÞ

1þ V2Ω

V t

� �2 þ
sin2ðϕp þ φÞ

1� V2Ω

V t

� �2

2

6

4

3

7

5

1=2

: ð2Þ

The detuning-dependent threshold voltage Vt for parametric
instability in this relation is given by

V t ¼ V t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
4Δ2

m

Γ2m

s

ð3Þ

with the threshold voltage on resonance Vt0 and the detuning
from mechanical resonance Δm=Ω−Ωm. The phase φ ¼
� arctanð2Δm=ΓmÞ considers the detuning-dependent phase
difference between the near-resonant driving force and the
mechanical motion. Details on the theoretical treatment of the
device are given in Supplementary Note 6.

Figure 2 summarizes our results on the phase and detuning-
dependent parametric frequency modulation. When we excite the
mechanical resonator exactly on resonance, apply a parametric
modulation with twice the resonance frequency and sweep the
phase ϕp, we find an oscillatory behavior between amplitude
amplification and de-amplification with a periodicity of Δϕp= π
(cf. Fig. 2b). To explore the dependence of the amplification on
the parametric modulation amplitude V2Ω, we repeat this
experiment for different voltages V2Ω and extract maximum
and minimum gain by fitting the data with Eq. (2) for Vt= Vt0

and φ= 0. The extracted values follow closely the theoretical
curves up to a voltage V2Ω ≈ 0.9Vt0, above which we are limited
by resonance frequency fluctuations of the mechanical resonator.
The maximum gain we achieve by this is about ~22 dB.

In order to characterize the device response also for drive
frequencies detuned from resonance, we repeat the above
measurements for different detunings and extract the maximum
and minimum gain for each of these data sets. Hereby, we always
keep the parametric drive frequency twice the excitation
frequency and not twice the resonance frequency. The maximum
and minimum values of gain we find for V2Ω ≈ 0.75Vt0 are shown
in Fig. 2d and are in good agreement with theoretical curves
shown as lines. We note that the dependence of maximum and
minimum gain of detuning is not Lorentzian lineshaped, as the
threshold voltage is detuning dependent itself and the deviations
between experimental data and theoretical lines mainly occur due
to slow and small resonance frequency drifts of the nanobeam.
Moreover, the phase between near-resonant excitation drive and
parametric modulation for maximum/minimum gain does not
have a constant value; it follows an arctan-function as is discussed
in more detail in Supplementary Note 6.
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In summary, we have achieved an excellent experimental control
and theoretical modeling regarding the parametric amplification of
the coherently driven nanobeam in both parameters, the relative
phase between the drives and the detuning from mechanical
resonance.

Thermomechanical noise squeezing. Due to a large residual
occupation of the mechanical mode with 102−103 thermal pho-
nons, its displacement is subject to thermal fluctuations, which in

a narrow bandwidth can be described by34

xthðtÞ ¼ XðtÞ cosΩmt þ YðtÞ sinΩmt: ð4Þ

Here, X(t) and Y(t) are random variable quadrature amplitudes,
which vary slowly compared to Ω�1

m . Similarly to the coherently
driven mechanical amplitude detection discussed above, this
thermal motion or thermomechanical noise can be measured by
optomechanical sideband generation in the output field of a
microwave signal sent into the superconducting cavity (cf. the
inset schematic in Fig. 3a).

We measure the thermomechanical noise quadratures X(t) and
Y(t) with and without parametric pump. An exemplary result is
shown in Fig. 3b. As we have demonstrated above by amplification
and de-amplification of a coherent excitation, one of the
quadrature amplitudes, here Y(t), is getting amplified while the
other, here X(t), is simultaneously reduced, when the mechanical
resonance frequency is parametrically modulated with 2Ωm. This
puts the mechanical nanobeam into a squeezed thermal state. From
the time traces of the quadratures, we reconstruct by means of a
Fourier transform the power spectral density (PSD) of the noise as
shown in Fig. 3a. With parametric driving, the total PSD is larger
than without, in particular close to Ωm, as the additional energy
pumped into the amplified quadrature Y(t) is larger than the
energy reduction in X(t) and at the same time the total linewidth
decreases for the same reason.

From the time traces, we can also generate quadrature
amplitude histograms, shown in the bottom panels of Fig. 3b.
In the histograms the squeezing of the thermal noise is apparent
as a deformation from a circular, two-dimensional (2D) Gaussian
distribution in the case without parametric pump to a cigar-like-
shaped overall probability distribution, when the parametric
modulation is applied. To determine the squeezing factor we
achieve by this, we integrate the 2D-histograms along the Y-
quadrature and extract the variance σ2X of the X-quadrature from
a Gaussian fit to the resulting data (cf. Fig. 3c). Analogously, we
obtain the variance σ2Y for the Y-quadrature. To calibrate out the
noise of the HEMT amplifier, we substract the independently
measured variance of the amplifier noise σ2amp and define the bare

variances ΔX2 ¼ σ2X � σ2amp;X and ΔY2 ¼ σ2Y � σ2amp;Y .
For the parametric modulation amplitude V2Ω∕Vt ≈ 0.67 used

here, we find the squeezing factor

s ¼
ΔX2

on

ΔX2
off

¼ 0:49; ð5Þ

where ΔX2
on and ΔX2

off are the X-quadrature variances with the
parametric drive on and off, respectively. This squeezing factor is
below the usually mentioned 3 dB limit due to the finite analysis
bandwidth (cf. discussion in Supplementary Note 7). Using more
advanced squeezing schemes with feedback40–42 or based on
measurement43,44, it has been demonstrated that the variance of
the X-quadrature can be squeezed by even more than 3 dB, but
these approaches typically operate in the instability regime and
suppress the corresponding amplification of the Y-quadrature.
The variance σ2amp is the quadrature noise originating from the

cryogenic amplifier in our detection chain and is measured by
monitoring the noise slightly detuned from the mechanical
resonance.

From an analysis of the individual quadrature power spectral
densities and variances, based on ref. 41, we estimate the effective
temperatures of the quadratures to be increased by about 18% for
X and about 40% for Y due to the parametric drive. We believe
that this excess noise as compared to an ideal parametric
amplifier is induced by resonance frequency fluctuations of the
mechanical oscillator and could be reduced by a device with
higher frequency stability.
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Fig. 2 Electromechanical detection of parametric, phase-sensitive

mechanical amplitude amplification. a Experimental scheme. The

mechanical oscillator is coherently driven by a combination of DC and

alternating voltage with frequency Ω ~Ωm, while the electrostatic spring

constant is modulated with twice this frequency 2Ω ~ 2Ωm. Via the

optomechanical coupling, the mechanical oscillations generate sidebands to

a microwave pump tone sent to the cavity with frequency ω=ωc, which are

used for homodyne detection of the mechanical amplitude. b Mechanical

amplitude gain 20log 10Gp vs. offset phase ϕp between resonant drive and

parametric modulation. When the phase is swept, the amplitude is

oscillating between amplification or de-amplification with a periodicity of

π. Circles show data and the line shows a fit with the theoretical expression

Eq. (2). c Maximum and minimum gain on resonance vs. parametric

modulation strength. The maximum (ϕp= π∕2) and minimum (ϕp= 0)

gain values on resonance follow the theoretical curves (lines) up to a

maximum gain of ~22 dB. For stronger parametric modulation amplitudes

close to the instability threshold (indicated as vertical line), the gain in our

experiments is limited by resonance frequency fluctuations of the

mechanical resonator. d Maximum and minimum gain vs. detuning from

resonance. For a driving frequency slightly detuned from resonance, the

maximum gain gets reduced compared to the resonant case. Points are

extracted from phase-sweep curve fits. Lines show the corresponding

theoretical curves and the shaded area contains all gain values achievable

by changing ϕp.
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Parametric microwave amplification. In a cavity optomechanical
system, the mechanical oscillator can not only be coherently driven
by a directly applied resonant force, but also by amplitude mod-
ulations of the intracavity field. Such a near-resonant amplitude
modulation can be generated by sending two microwave tones with
a frequency difference close to the mechanical resonance into the
cavity. Here, we apply a strong microwave drive tone on the red
sideband of the cavity, i.e., at ωd=ωc−Ωm, and add a small probe
signal around the cavity resonance frequency at ωp ~ωc. This
experimental scheme generates a phenomenon called optomecha-
nically induced transparency (OMIT), where by interference a
narrow transparency window opens up in the center of the cavity
absorption dip45,46. The width of the transparency window is given
by the sum of intrinsic mechanical linewidth Γm and the additional
linewidth due to the red-sideband-drive-induced optical damping
Γo. The effect of OMIT effect can be understood as follows. The
amplitude beating between the two microwave tones coherently
drives the nanobeam by an oscillating radiation pressure force,
which transfers energy from the cavity field to the nanobeam. The
resulting mechanical motion with frequency Ω=ωp−ωd mod-
ulates the cavity resonance frequency and hereby generates side-
bands to the intracavity drive tone at ωd ±Ω, with a well-defined
phase relation to the probe tone. The sideband generated at ωd+Ω
interferes with the probe signal and generates OMIT (cf. Fig. 4a for
vanishing parametric modulation and Fig. 4b). In Fig. 4b, the
transparency window can be seen in the center of the cavity
transmission spectrum as extremely narrow spectral line and a
zoom into this region, shown in Fig. 4c, reveals the Lorentzian
lineshape with a width Γeff ≈ 2π ⋅ 12 Hz.

When we perform the OMIT protocol with a parametric
modulation applied to the nanobeam, the mechanical oscillations
get modified according to the previously shown results, i.e.,
dependent on the relative phase between the cavity field-induced
mechanical oscillation and the parametric modulation, the
mechanical amplitude gets amplified or de-amplified. By choosing
the optimal phase for each detuning Δm=Ω−Ωm, the transpar-
ency window amplitude can be increased to values above 1, i.e., the
microwave probe tone is amplified by parametrically pumping the
mechanical resonator, which is three orders of magnitude smaller in
frequency than the probe signal (cf. Fig. 4c). With an amplified
mechanical motion, the motion-induced sideband of the drive tone
gets amplified as well, such that the total cavity output field at
the probe frequency can be enhanced to values larger than 1. Here,
we achieve an intracavity field gain of about 14 dB, which
corresponds to a net gain of about 7 dB due to the unamplified
OMIT signal being significantly below unity transmission. A
schematic of OMIT and the amplification mechanism is shown in
Fig. 4a.

The observed microwave amplification is, similarly to the bare
mechanical amplitude gain, phase-sensitive and modulates
between amplification and de-amplification when sweeping the
phase of the parametric drive, with a periodicity of 2π. This
phase-sensitivity of the microwave gain is shown in Fig. 4d for
three different detunings from the mechanical resonance. We
note that the phase periodicity here is equivalent to the case of the
mechanical amplitude amplification, but due to the details of our
theoretical analysis of the system (see Supplementary Note 8) the
phase is given for the parametric drive instead of the resonant
force here, which doubles its value.

Similar to the mechanical amplitude amplification, the micro-
wave gain depends on the parametric drive voltage, which has a
threshold value above which the parametric instability regime
begins. When we plot the maximally achievable transmission ∣S21∣
exactly on the mechanical resonance vs. the parametric excitation
voltage, we find a monotonously increasing behavior as shown in
Fig. 4e for three different red-sideband drive powers. Shown are
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Fig. 3 Interferometric detection of squeezed thermomechanical noise in a

nanomechanical oscillator. a The thermal displacement fluctuations

generate sidebands at ω= ωc+Ωm and ω= ωc−Ωm to a microwave tone

sent to the cavity at ω= ωc as schematically shown in the inset. After

down-conversion, we detect these sidebands and the corresponding

power spectral density is shown for the parametric modulation switched

off as blue line and with the parametric modulation switched on as red

line. The black line is a Lorentzian fit to the data without parametric

modulation. b shows the quadratures of the thermal displacement

fluctuations vs. time in the top panels and as histograms (taken for 300 s

of measurement time) in the bottom panels. Without parametric

modulation, the thermal fluctuations are distributed equally in both

quadratures (left side) and the quadrature histogram is a rotational

symmetric Gaussian curve; with a parametric modulation applied, as

shown on the right side, the fluctuations in one quadrature get amplified

while the fluctuations in the second quadrature get de-amplified. The

result is a squeezed thermal state. The colorscale represents histogram

counts from low (dark) to high (orange) values. White pixels correspond

to no recorded counts. The blue circles in the histogram plots are guides

to the eye. In (c) we plot the distribution of X-quadrature values for the

histograms shown in (b) as dots and Gaussian fits as lines. When the

parametric modulation is switched on, the variance of the X-quadrature

gets significantly decreased and the squeezing factor is approximately s=

0.49. The histograms are normalized to the total number of ~13,000 data

points. Data were taken for V2Ω∕Vt= 0.67.
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data for drive powers corresponding to cooperativities C1 � 0:16,
C2 � 0:28 and C3 � 0:5 or intracavity photon numbers nc1=
2.25 ⋅ 106, nc2= 4.5 ⋅ 106, and nc3= 9 ⋅ 106. The functional depen-
dence of the maximum transmitted power is formally identical to
the case without parametric driving

jS21j
2 ¼

κ2i
κ2

þ Cp
Γm
Γ2eff

2
κiκe
κ2

Γeff þ
κ2e
κ2

CpΓm

� �

ð6Þ

with a parametrically enhanced cooperativity

Cp ¼
C

1� V2Ω

Veff
t0

; ð7Þ

where the effective threshold voltage is given by Veff
t0 ¼

V t0Γeff=Γm. From fits to the data, shown as lines, we can extract
the instability threshold voltages, indicated as dashed vertical lines
and plotted in the inset vs. effective mechanical linewidth. The
threshold gets shifted towards higher values due to an increase of
mechanical linewidth, which is partly due to the optical spring and
partly due to a microwave power-dependent intrinsic linewidth
(see Supplementary Note 5). At the same time, the net microwave

gain increases with increasing sideband drive power, as the
baseline (the peak height of the transparency window) is shifted
up as well and because the gain in this experiment was limited by
the mechanical nonlinearity, cf. Supplementary Note 9, which gets
less significant for a larger total mechanical linewidth.

So far, our current device is far from being optimized for large
gain, large bandwidth and low added noise for several reasons.
Due to the small maximally achieved cooperativity of C � 0:5,
not all intracavity gain is translated to net output gain. At the
same time, the cooperativity limits the amplification bandwidth,
which is given by the effective mechanical linewidth Γeff. Finally,
it would be desirable to operate in the sideband-resolved limit
Ωm > κ to enable ground-state cooling in contrast to the slightly
bad cavity limit in our present device, where even for large
cooperativities the lowest possible phonon occupation is given by
nmin ¼

κ
4Ωm

� 1. The residual phonon occupation, however,

directly translates to input-referenced added noise26. In an
optimized device, operated in the resolved sideband regime and
with cooperativities C > nth, all intracavity field gain corresponds
to net microwave gain, the bandwidth will be increased by several
orders of magnitude compared to the current value and the
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Fig. 4 Phase-sensitive and tunable microwave amplification by parametric mechanical driving. a Experimental scheme. The cavity is coherently driven

on the red sideband ωd=ωc−Ωm. In addition, a small probe tone is swept through the cavity resonance. At the same time, the resonance frequency of the

mechanical oscillator is parametrically modulated with 2Ω. b Optomechanically induced transparency (OMIT) without parametric modulation V2Ω= 0.

Data are shown in blue, black line is a fit, the dashed box indicates the zoom-in region shown in panel (c). In addition to the data without parametric

modulation, we show the highest achieved transmission with parametric driving as orange circles. Close to the mechanical resonance we observe

intracavity gain of the probe signal up to ~14 dB and net transmission gain of ~7 dB. The orange line shows a theoretical curve calculated with independently

obtained parameters. The schematic in (a) visualizes the amplification mechanism. By the beating of the two cavity tones, energy from the cavity field is

converted into mechanical motion, which is amplified by parametric modulation. The hereby increased energy is upconverted back to the probe tone

frequency as sideband of the red-detuned drive tone. d The microwave gain is phase-sensitive; it depends on the phase between the parametric modulation

and the intracavity amplitude beating. The three data sets (black lines are fits) show the gain for different detunings from ωp−ωd=Ωm (0 Hz, 2π ⋅ 7 Hz

and 2π ⋅ 12 Hz). e Probe-tone gain vs. parametric drive voltage for three different red-sideband drive powers. The parametric drive voltage is normalized to

its value obtained in Fig. 2 using a resonant drive for amplitude detection. Lines are calculations based on independently extracted parameters. The

parametric instability threshold, indicated by dashed vertical lines, is shifted to higher values with increasing red-sideband drive power, partly due to optical

damping, partly due to a power-dependent intrinsic mechanical damping rate. The inset shows the extracted threshold voltage vs. effective mechanical

linewidth and as dashed line the theoretical prediction. The cooperativity for (b−d) is C � 0:5 and C � 0:16;0:28;0:5 for (e).
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amplifier will be near-quantum limited, as has been extensively
discussed in ref. 26. The most straightforward way to achieve these
realistic numbers would be a significant increase of the single-
photon coupling rate g0 by about a factor of ~10 and a
simultaneous decrease of the cavity linewidth by ~10 through a
weaker coupling to the feedline (cf. also Supplementary Note 10).

In terms of amplifier performance, such an optimized device
would be on par with other, recently developed multimode or
multitone optomechanical amplification schemes20,22,25,47, but
provides a simplified setup as it does not require multiple circuit
modes or frequency conversion. In contrast, however, to most
previously realized optomechanical amplification schemes21,22,25,48,
our system provides phase-sensitive amplification, enabling for
example mechanically mediated squeezing of microwave signals36.
Compared to other cavity-based parametric amplifiers such as
Josephson-based circuits49,50, optomechanical amplifiers suffer
from a reduced bandwidth, but with the benefit of a large dynamic
range25. Considering the additional possibilities arising from the
presented scheme such as enhancing optomechanical nonlinea-
rities27, photon bath engineering26 and force sensing in hybrid
devices with a Bose−Einstein condensate51–53, our platform offers
rich and exciting perspectives for quantum-limited optomechanical
device engineering.

Discussion
In this work, we have demonstrated an electromechanical cavity
with mechanical parametric driving. By means of an opto-
mechanical, interferometric readout scheme of a high-quality
factor mechanical nanobeam oscillator, we have demonstrated
phase-sensitive mechanical amplitude amplification, and observed
thermomechanical noise squeezing. We demonstrated that this
parametric mechanical drive can be used to implement a phase-
sensitive microwave amplification, in a regime where dynamical
backaction can simultaneously cool the mechanical resonator.
Using the presented experimental platform in an optimized
device, it should be possible to cool the mechanical oscillator into
its quantum ground state and perform a near-quantum-limited
amplification scheme for microwave photons. Furthermore, this
approach will allow to explore exotic regimes of bath engineering
for microwave cavities26 and enable other applications of
mechanical parametric driving and mechanical squeezing, that
have been proposed and discussed in the recent years27,28.

Methods
Device fabrication. The device fabrication starts with the deposition of a 100-nm-
thick layer of high-stress Si3N4 on top of a 500-μm-thick 2-inch silicon wafer by
means of low pressure chemical vapour deposition. Afterwards, 60-nm-thick gold
markers on a 10-nm chromium adhesion layer were patterned onto the wafer using
electron beam lithography (EBL), electron beam evaporation of the metals and lift-
off. Then, the wafer was diced into individual 10 × 10 mm2 chips, which were used
for the subsequent fabrication steps.

By using a three-layer mask (S1813, tungsten and ARN-7700-18), EBL and
several reactive ion etching (RIE) steps with O2 and an SF6/He gas mixture, the
Si3N4 was thinned down everywhere to ~10 nm on the chip surface except for
rectangular patches (124 × 9 μm large) around the future locations of the
nanobeams. After resist stripping in PRS3000, the remaining ~10 nm of Si3N4 were
removed in a buffered oxide etching step, which also thinned down the Si3N4 in the
rectangular patch areas to ~ 83 nm. This two-step removal of Si3N4 by dry and wet
etching was performed in order to avoid over-etching with RIE into the silicon
substrate.

Immediately afterwards, a ~60-nm-thick layer of superconducting
molybdenum-rhenium alloy (MoRe, 60/40) was sputtered onto the chip. By means
of another three-layer mask (S1813, W, PMMA 950K A6), EBL, O2 and SF6/He
RIE, the microwave structures were patterned into the MoRe layer. The remaining
resist was stripped off in PRS3000.

Finally, the nanobeam patterning and release was performed. The pattern
definition was done using another three-layer mask (S1813, W, PMMA 950K A6),
EBL and RIE. After the MoRe-Si3N4 bilayer was completely etched by the SF6/He
gas mixture, the etching was continued for several minutes. As we had chosen the
RIE parameters to achieve slight lateral etching, the silicon underneath the narrow

nanobeam was etched away by this measure and the beam was released from the
substrate. After the nanobeam release, the remaining resist was stripped using an
O2 plasma.

A simplified schematic of the fabrication is shown in Supplementary Fig. 1,
omitting the patterning of the electron beam markers.

Mechanical amplitude amplification—measurement routine and data pro-

cessing. To measure the mechanical amplitude amplification, we sweep the phase
between the drive tone and the parametric pump. In order to sweep the phase, we
add a small detuning δ on the order of ~0.1 Hz to the parametric drive tone, i.e.,
modulate with 2Ω+ δ, and measure a time trace of the down-converted cavity
sideband signal at Ω. Then, the parametric phase is given by ϕp= δt+ γ with an
arbitrary offset term γ. For the down-conversion, we send a resonant microwave
tone to the cavity and detect the cavity output field at Ω after mixing it with the
drive tone as local oscillator. This protocol provides us with a voltage signal pro-
portional to the mechanical amplitude (cf. also Supplementary Note 3).

We fitted the resulting power curves with

f ðtÞ ¼ α1
cos2ðα2t þ α3Þ

ð1þ α4Þ
2 þ

sin2ðα2t þ α3Þ

ð1� α4Þ
2

" #

ð8Þ

and fit parameters αi, from where we get

Gmin ¼
1

1þ α4
;Gmax ¼

1

1� α4
: ð9Þ

Repeating this procedure for different detunings allows to determine the maximum
and minimum gain dependent on Δm. Finally, we fit the detuning-dependent
maximum and minimum gain points with the corresponding theoretical expression

f ðΔmÞ ¼
β1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ β2ðΔm � β3Þ
2

q

± β4

� �2 ; ð10Þ

where ± is chosen for minimum and maximum gain, respectively, and βi are the fit
parameters. By this method, we determine the maximum gain on resonance with
higher fidelity than just setting the excitation frequency to the resonance frequency
due to small mechanical resonance frequency drifts and fluctuations of unknown
origin. We note that ultimately and for parametric excitation voltages close to the
threshold voltage, these frequency shifts also limit the observable gain, as it
becomes more and more sensitive to frequency fluctuations as can also be seen in
Supplementary Fig. 8, where the range of largest gain gets narrower with increased
V2Ω∕Vt.

Thermomechanical noise squeezing—measurement routine. To characterize
the thermomechanical noise of the nanobeam, we send a resonant microwave tone
to the cavity and detect the cavity output field after mixing it with the drive tone as
local oscillator. This down-converts the motional sidebands to the original
mechanical frequency, similar to the protocol for mechanical amplitude amplifi-
cation. To detect the quadratures of the sidebands X0ðtÞ and Y 0ðtÞ, we measure the
voltage with a lock-in amplifier set to the mechanical resonance frequency with a
sample rate of 225 samples/s. The total sampling time was 300 s. This measurement
scheme was repeated for different parametric modulation strengths of the
mechanical resonance frequency V2Ω∕Vt, including V2Ω∕Vt= 0. To characterize also
the (white) background noise floor originating from the detection amplifier chain,
we repeat the measurement for a lock-in center frequency sufficiently detuned from
the mechanical resonance such that there is no signature of the mechanical thermal
noise included.

Thermomechanical noise squeezing—data processing. As first step, we
manually rotate the measured quadratures X0ðtÞ and Y 0ðtÞ by ~ π∕36 to obtain the
amplified and de-amplified quadratures X(t) and Y(t). We calculate the total PSD
by S= ∣X(Ω)+ iY(Ω)∣2, where X(Ω) and Y(Ω) are the Fourier transforms of the
recorded X(t) and Y(t), respectively. The obtained spectra are smoothed by
applying a 100-point bin averaging and the smoothed spectra are divided by the
smoothed background noise spectrum to remove the lock-in amplifier filter
function. The result is shown in Fig. 3.

The histogram data in Fig. 3 were obtained by first applying a 40-point moving
average and plot each fifth datapoint of the resulting dataset into the histograms.
The variances were calculated from Gaussian fits to the Y-integrated histograms.

Parametric microwave amplification—measurement routine and data pro-

cessing. Both the measurement routine and the data processing are done in full
analogy with the mechanical amplitude amplification. Instead of sweeping the
phase, we detune the parametric drive tone by ~0.1 Hz from the frequency dif-
ference between the sideband drive and the probe tone. Then, we track the
transmission of a probe tone vs. time with a network analyzer. The resulting
oscillatory transmission curves of the amplitude are fitted with a function as given
in Eq. (9), from which we extract maximum and minimum transmission. To
normalize the signal, we calculate the nominal complex background value at the
corresponding frequency from the cavity fit divide it off.
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Data availability
The data presented in this study will be available on Zenodo with the identifier https://

doi.org/10.5281/zenodo.3713207 upon publication of this work.
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