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Abstract

High-energy linear particle accelerators enable exploration of the microscopic
structure of pharmaceuticals, solar cells, fuel cells, high-temperature super-
conductors, and the universe itself. These accelerators accelerate charged
particles using oscillating magnetic fields that are confined in metal cavities.
The amplitudes and phases of the electromagnetic fields need to be accurately
controlled by fast feedback loops for proper accelerator operation.

This thesis is based on the author’s work on performance analysis and con-
trol design for the field control loops of the linear accelerator at the European
Spallation Source (ESS), a neutron microscope that is under construction in
Lund, Sweden. The main contribution of the thesis is a comprehensive treat-
ment of the field control problem during flat-top, which gives more insight
into the control aspects than previous work. The thesis demonstrates that a
key to understand the dynamics of the field control loop is to represent it as
a single-input single-output system with complex coefficients. This represen-
tation is not new itself but has seen limited use for field control analysis.

The thesis starts by developing practical and theoretical tools for anal-
ysis and control design for complex-coefficients systems. This is followed by
two main parts on cavity field control. The first part introduces parametriza-
tions that enable a better understanding of the cavity dynamics and discusses
the most essential aspects of cavity field control. The second part builds on
the first one and treats a selection of more advanced topics that all bene-
fit from the complex-coefficient representation: analysis of a polar controller
structure, field control design in the presence of parasitic cavity resonances,
digital downconversion for low-latency feedback, energy-optimal excitation
of accelerating cavities, and an intuitive design method for narrowband dis-
turbance rejection. The results of the investigations in this thesis provide a
better understanding of the field control problem and have influenced the
design of the field controllers at ESS.

3





Acknowledgments

Thank you, Bo Bernhardsson I could not have asked for a better supervisor.
Your deep understanding of control in both theory and practice, your help-
fulness, your optimism, and your sense of humor have made my PhD studies
worthwhile. Your sharp eye for detail has greatly improved this thesis as well
as my other manuscripts. I am also thankful to my co-supervisors Anders J
Johansson and Rolf Johansson. Anders has led the low-level RF project at
Lund University with great enthusiasm, organized visits to accelerator facili-
ties, been supportive of my work and carefully reviewed this thesis. Rolf has
carefully reviewed this thesis and skillfully negotiated contractual matters
for my involvement with the ESS project.

The helpfulness and openness of the low-level RF experts around the
world have been invaluable in my work on this thesis. I have spent week-
long research visits with Mark Crofford and his colleagues at the Spalla-
tion Neutron Source, with Sven Pfeiffer and his colleagues at the Deutsches
Elektronen-Synchrotron, and with Larry Doolittle and Carlos Serrano at
Berkeley Labs. I have also made shorter visits to Philippe Baudrenghien
at CERN, Thomas Schilcher at the Paul Scherrer Institute, and Chang V
at the Institute of Modern Physics. I greatly thank you all for sharing your
time and expertise with me. I am thankful to Claudio Rivetta for stimulating
collaboration on complex-coefficient system.

I would like to express my sincere gratitude to the members of the beam
physics and RF groups at ESS for taking their time to discuss with me and
answer my questions. I would in particular like to thank Anders Svensson,
Fredrik Kristensen, Christian Amstutz and Anirban Krishna Bhattacharyya
for their work with the firmware and hardware of the ESS low-level RF
system, the many interesting technical discussions that we have had, and all
the fun travels that we have done.

5



Thank you Daniel Sjöberg, Anders Karlsson, and Gabriele Constanza at
the Department of Electrical and Information Technology, Lund University,
for sharing your expertise on the dynamics of electromagnetic cavity fields.

Thank you Åke Andersson and your colleagues at MAX IV for giving me
a perspective on the ESS proton linac by sharing your expertise on electron
synchrotrons and letting me visit your synchrotron on multiple occasions.

I am grateful to all my past and present colleagues at the Department of
Automatic Control for excellent research discussions and all the fun that we
have done together. Special thanks go to the administrative staff for making
things run smoothly, to Leif Anderson for sharing his expertise on typogra-
phy, and to my office mates throughout the years. Mattias Fält and Fredrik
Bagge Carlson have been excellent travel companions and have provided
great support on Julia programming. Mattias was also a great collaboration
partner on an interesting optimization problem. Melika Shahriari from TRI-
UMF spent six months at the department and during this time we had many
intriguing discussion on iterative learning control. Olle Kjellqvist did a great
job of investigating numerical issues in Q design. Finally, Anton Cervin did an
incredible job of reviewing this thesis, which led to significant improvements.
Parts of the thesis were reviewed by Marcus Thelander Andrén, Martin Hey-
den, and Richard Pates.

Last but not least, I would like to thank those that are most important
to me: my parents, my sister, my friends and Sara.

Financial Support

The author’s work for the European Spallation Source was done under a
collaboration agreement between ESS and Lund University. The author is a
member of the ELLIIT Excellence Center (supported by the Swedish Gov-
ernment) and was a member of the LCCC Linnaeus Center (supported by the
Swedish Research Council). His attendance at the American Control Confer-
ence 2017 was supported by the Ericsson Research Foundation.

6



Contents

Abbreviations 11

1. Introduction 13
1.1 The European Spallation Source . . . . . . . . . . . . . . . . 13
1.2 Proton acceleration and the need for cavity field control . . 16
1.3 Background literature and previous work . . . . . . . . . . . 17
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2. Background on Automatic Control 26
2.1 Linear time-invariant systems . . . . . . . . . . . . . . . . . 26
2.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Norms of signal and systems . . . . . . . . . . . . . . . . . . 32

3. Linear Accelerators and Cavity Field Control 34
3.1 Linear Accelerators . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Example of an ion linac: The ESS linac . . . . . . . . . . . . 36
3.3 Drivers of cavity field stability in linacs . . . . . . . . . . . . 37
3.4 Field control challenges . . . . . . . . . . . . . . . . . . . . . 39

4. Complex-Coefficient Systems 41
4.1 Baseband transformation of bandpass signals . . . . . . . . . 41
4.2 Baseband transformation of bandpass systems . . . . . . . . 45
4.3 Control theory for complex-coefficient systems . . . . . . . . 46
4.4 Relation to equivalent real-coefficient representation . . . . . 49
4.5 Signals with directionality . . . . . . . . . . . . . . . . . . . 52
4.6 Other applications of complex-coefficient systems . . . . . . 54

7



Contents

Part I Modeling and Essentials of Cavity Field Control 57

5. Modeling: The RF System 59
5.1 The low-level RF system . . . . . . . . . . . . . . . . . . . . 61
5.2 Phase-reference system . . . . . . . . . . . . . . . . . . . . . 65
5.3 RF cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 RF distribution system . . . . . . . . . . . . . . . . . . . . . 66
5.5 High-power RF amplifiers . . . . . . . . . . . . . . . . . . . 67
5.6 Typical delays in field control loops . . . . . . . . . . . . . . 72

6. Modeling: The Accelerating Cavity 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Electromagnetic fields in accelerating cavities . . . . . . . . 74
6.3 Baseband model of the accelerating cavity mode . . . . . . . 76
6.4 On equivalent-circuit-based cavity parametrizations . . . . . 78
6.5 Phasor diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.6 Power-optimal coupling and detuning . . . . . . . . . . . . . 83
6.7 Normalized cavity dynamics . . . . . . . . . . . . . . . . . . 85
6.8 Parasitic modes . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.9 Parasitic same-order modes of elliptical multicell cavities . . 93

7. Modeling: Summary 98
7.1 Modeling for cavity field control . . . . . . . . . . . . . . . . 98
7.2 Types of disturbances . . . . . . . . . . . . . . . . . . . . . . 101
7.3 Parameter variations . . . . . . . . . . . . . . . . . . . . . . 105

8. Essentials of Cavity Field Control 106
8.1 A water-tank analogy . . . . . . . . . . . . . . . . . . . . . . 106
8.2 Basic aspects of cavity field control . . . . . . . . . . . . . . 108
8.3 Disturbance sensitivity vs. external coupling . . . . . . . . . 113
8.4 Loop-phase adjustment . . . . . . . . . . . . . . . . . . . . . 114

9. Limits of Field Control Performance 117
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.2 Mathematical formulation of control specifications. . . . . . 118
9.3 Problem formulation . . . . . . . . . . . . . . . . . . . . . . 119
9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Part II Selected Topics in Cavity Field Control 127

10. Cartesian vs. Polar Feedback 129
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
10.2 Small-signal robustness of polar feedback . . . . . . . . . . . 130
10.3 Aspects of Cartesian vs. polar feedback . . . . . . . . . . . . 133
10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8



Contents

11. Field Control of Cavities with Parasitic Modes 135
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.2 Process model . . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.3 Control strategies for parasitic modes . . . . . . . . . . . . . 137
11.4 Numerical comparison . . . . . . . . . . . . . . . . . . . . . 138
11.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
11.6 Beam-loading-induced field-control error . . . . . . . . . . . 145

12. Digital Downconversion for Cavity Field Control 147
12.1 Background on digital downconversion . . . . . . . . . . . . 148
12.2 Low-latency digital downconversion for field control . . . . . 150
12.3 Additional low-pass filtering . . . . . . . . . . . . . . . . . . 156
12.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

13. Energy-Optimal Cavity Filling 160
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
13.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . 161
13.3 RF drive for energy-optimal filling . . . . . . . . . . . . . . . 162
13.4 Comparison of filling strategies . . . . . . . . . . . . . . . . 164
13.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

14. Ripple-Rejecting Peak Filters 169
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
14.2 Intuitive design of disturbance-rejecting peak filters . . . . . 170
14.3 Example: Rejection of RF-drive ripple . . . . . . . . . . . . 176
14.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . 182

15. Conclusions and Future Work 184
15.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
15.2 Future work: Directionality in the field control problem . . . 186
15.3 Future work: Transient operation and iterative learning control 188
15.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Bibliography 189

Appendices 202
A. Widely linear systems . . . . . . . . . . . . . . . . . . . . . . 205
B. The LLRF system for ESS . . . . . . . . . . . . . . . . . . . 208
C. Derivation: Dynamics of a cavity mode . . . . . . . . . . . . 209
D. Derivation: Dynamics of elliptical multicell cavities . . . . . . 214
E. Controller optimization . . . . . . . . . . . . . . . . . . . . . 219
F. Anti-windup for complex-coefficient systems . . . . . . . . . 222
G. Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

9





Abbreviations and Notation

Abbreviations

Abbreviation Meaning

ADC Analog-to-Digital Converter
DAC Digital-to-Analog Converter
DDC Digital Downconversion
DTL Drift-Tube Linac

(a type of accelerating cavity)
ESS European Spallation Source

(Neutron source in Lund, Sweden)
Eu-XFEL European X-ray FEL (FEL in Hamburg, Germany)
FEL Free-Electron Laser
FPGA Field-Programmable Gate Array
IF Intermediate Frequency
ILC Iterative Learning Control
IQ In-phase and Quadrature

(real and imaginary parts of a complex number)
LLRF Low-Level Radio-Frequency
LCLS-II Linac Coherent Light Source (FEL in Stanford, CA, USA)
LO Local Oscillator
LTI Linear Time-Invariant
MIMO Multiple-Input Multiple-Output
MO Master Oscillator
PI(D) Proportional-Integral-(Derivative)
RF Radio Frequency
RFQ Radio-Frequency Quadrupole

(a type of accelerating cavity)
rms root-mean square
SISO Single-Input Single-Output
SNR Signal-to-Noise Ratio
SNS Spallation Neutron Source

(Neutron source in Oak Ridge, TN, USA)
TITO Two-Input Two-Output
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Notation

The list below has been limited to the most important symbols.

Symbol Meaning

G∗(s) The complex-conjugate transfer function
(6= [G(s)]∗ and 6= GH(s), see p. 48)

(·)∗ The complex conjugate of something
(·)T The transpose of something
(·)H The conjugate transpose of something
(·)⋆ Indicates that something is optimal

[−] Indicates that a quantity is dimensionless

φ∗ The angle of a phasor
θ∗ A phase shift in the control loop
γ∗ A decay rate
τ∗ A time delay

Complex signals and constants will be denoted by bold letters. In block
diagrams with both real and complex signals the latter will be indicated
by double arrows ( ).

Nomenclature

Control will refer to automatic control and not industrial control (system).
Cavity field errors will refer to what often is called RF jitter in the acceler-
ator literature. Bandwidth will always refer to the bandwidth of a baseband
system (equal to the half-bandwidth of the corresponding bandpass system).
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1

Introduction

High-energy linear particle accelerators have many important applications:
they drive spallation sources and free-electron lasers which reveal the struc-
ture of proteins, pharmaceuticals, and materials; they are integral compo-
nents in most high-energy physics experiments; and they are researched as a
means to cleaner nuclear energy.

For proper operation of a linear accelerator, it is crucial that the electro-
magnetic fields that accelerate the charged particles have the correct ampli-
tude and phase. The work in this thesis has been motivated by the challenges
to control the electromagnetic fields of the linear proton accelerator at the
European Spallation Source.

1.1 The European Spallation Source

Neutron imaging reveals features that are invisible to X-rays (Figure 1.1)
and is a crucial technology for understanding the atomic structure of ma-
terials and organic molecules. The European Spallation Source will, once
completed, be the world’s brightest neutron source. It has been said that
its long, high-intensity pulses will bring a paradigm shift to neutron imag-
ing [ESSa, 2017] that will enable breakthroughs in pharmacology, chemistry,
solid-state physics, engineering sciences, material sciences, and archeology
[Peggs et al., 2013].

The ESS is under construction outside of Lund, Sweden since 2014, as a
collaboration between 13 European member countries. ESS will be a sustain-
able research facility and will be driven by renewable energy. The heat in its
cooling water will be recycled to Lund’s district-heating network.
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X-rays.

Neutrons.

ESS(Sweden)

ISIS(UK)

SNS(US) JPARC(Japan)

ILL(France)

Figure 1.1 Left: Neutrons and X-rays interact differently with atoms
which allow them to reveal complementary information. Note that certain
parts of the camera are invisible to X-rays. Photo credit: Paul Scherrer
Institute. Right: Comparison of the neutron pulse of ESS and the neutron
pulses of the currently brightest neutron sources.

Spallation

The neutrons at ESS will be obtained through a nuclear reaction called spalla-
tion, by bombarding a tungsten target with protons (Figure 1.2). The emitted
neutrons will be guided to the 15 different state-of-the-art neutron instru-
ments by neutron guides. The main components of ESS are illustrated in
Figure 1.3, for details see the technical design report [Peggs et al., 2013].

proton

288 000 km/s

Tungsten
nucleus

BOOM!

π

γ

neutrons

⇒

Figure 1.2 Smashing high-velocity protons into tungsten nuclei releases
free neutrons through a nuclear reaction called spallation [Russell, 1990].
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1.1 The European Spallation Source
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Accelerator

Spallation target

Ion Source

Neutron
experiments

Figure 1.3 Schematic of the Euro-
pean Spallation Source. The length of
the accelerator is not to scale.
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Figure 1.4 How the 5 MW average power of the ESS accelerator com-
pares to the currently most powerful linear accelerators in the world.

1.2 Proton acceleration and the need for cavity field
control

The protons at ESS will be accelerated by a 400-meter-long linear accelerator
(linac). The accelerating force will be provided by oscillating electromagnetic
fields confined in hollow metal structures called accelerating cavities. In total
there will be 155 cavities of six different types along the accelerator.

The protons will be accelerated in bunches of roughly one billion protons
each. The acceleration of the bunches and how well they are kept together
(longitudinal focusing) depend on the amplitudes and the phases (relative
to the bunches) of the accelerating electromagnetic fields. Unless the ampli-
tudes and phases are accurately controlled there will be a focusing mismatch
that leads to that protons are lost from the bunches. These protons crash
into the cavity walls and induce radioactivity. Too much beam loss and conse-
quent radioactivation delays hand-on maintenance of the accelerator, thereby
reducing its availability.

The ESS linac will be the world’s most powerful linac (Figure 1.4) due to
its high beam current (62.5 mA) and high duty-factor (4 %). This means that
only small field errors can be accepted before the radioactivation becomes
too severe. The field-error requirements are unprecedentedly hard for a high-
intensity proton linac. It is the challenges of meeting these requirements that
have motivated this thesis.
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1.3 Background literature and previous work

The field control problem

A typical pulse of a pulsed linac is shown in Figure 1.5. Ripple from the RF
amplifier’s power supply and the beam current act as disturbances on the
cavity field, giving rise to field errors. To keep the cavity field at its setpoint
requires fast feedback loops that adjust the output of the RF amplifier based
on measurements of the cavity field. Such a field control loop is illustrated
in Figure 1.6.

Particular field control challenges for the ESS linac

There are a number of particular field control challenges for the ESS linac.

• The high beam current means that the cavities are more sensitive to
disturbances such as amplifier ripple and beam-current ripple than in
linacs with lower beam currents.

• The relative magnitude of the disturbances themselves are larger. For
example, it is difficult to manufacture low-ripple pulsed power supplies
for the RF amplifiers due to the massive output power that is required.

• The requirement that the field errors must be less than 0.2 % (rms)
in amplitude and 0.2° (rms) in phase for the nine normal conducting
cavities is unprecedentedly hard for a high-intensity proton linac.

• There will be a total of 155 cavities of six different types, driven by
different types RF amplifiers. Many of the cavities have parasitic reso-
nance modes that can cause feedback instability. The heterogeneity of
the field control loops makes it necessary with a simple and understand-
able controller structure where parameter tuning is easy to automate.

1.3 Background literature and previous work

Previous work on cavity field control

There is no text book on cavity field control but the PhD thesis [Schilcher,
1998] is often suggested as an introduction. Introductory material is also
provided by the CERN accelerator school [Baudrenghien, 2000; Schilcher,
2007] and in [Garoby, 1996]. In the author’s experience the best way to learn
about cavity field control is through personal communication with experts
in the field. Recent work on cavity field control and field-control electronics
is presented at the biannual Low-Level RF Workshop [LLRF].

Field control for the electron linacs of free-electron lasers (FELs) is dis-
cussed in several PhD theses [Brandt, 2007; Hoffmann, 2008; Schmidt, 2010;
Pfeiffer, 2014; Rezaeizadeh, 2016]. However, it should be remembered that
the field-control challenges for FEL linacs and high-intensity proton linacs
are different. Two high-intensity proton linacs with similar characteristics

17
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Figure 1.5 Pulse structure of a pulsed linac. The RF amplifier is turned
on ahead of the beam pulse to build up the cavity field to its nominal
level; this is called filling. During the beam pulse, or flat-top of the RF
pulse, the beam gains energy from the cavity field which is maintained by
the RF amplifiers. Note that ripple in the RF drive and the beam current
act as disturbances that induce cavity field errors. To reduce the errors to
acceptable levels it is necessary with feedback from a field controller.

Accelerating cavity

Waveguide
iiij
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Figure 1.6 Typical field control loop for controlling the amplitude and
phase of the electromagnetic field in an accelerator cavity. The amplitude
and the phase (relative φref) of the field measurement y should be kept at
the setpoints Asp and φsp. Variations dps of the amplifier supply voltage
and beam-current variations db act as disturbances on the system.
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1.3 Background literature and previous work

and challenges as for the one at ESS are the linac at the Spallation Neutron
Source [UT-Battelle, 2006] and Linac4 at CERN [Arnaudon, 2006]. Field
control for these linacs is discussed in [Ma et al., 2006] and [Baudrenghien
et al., 2014].

For extremely narrow-bandwidth cavities (e.g., at LCLS-II with 16 Hz)
it is generally considered that one should use a field controller based on the
self-excited-loop architecture introduced in [Delayen, 1978] and more recently
discussed in [Doolittle, 2014]. This topic will not be discussed in this thesis.

Complex-coefficient models for cavity field control

This thesis demonstrates the advantages of analyzing the field-control loop as
a single-input single-output LTI system with complex coefficients. Complex-
coefficient representations of the cavity dynamics are common in the accel-
erator literature but have seen little use for field control analysis. Instead,
equivalent real-coefficient models with two inputs and two outputs are used;
these models give less intuition and are more cumbersome. The following was
stated in a paper on cavity modeling for field control “The complex cavity
representation simulates the circuit approximation but has rather academic
importance” [Czarski et al., 2003].

For circular accelerators, the circulating beam gives rise to dynamics that
cannot be captured by a complex-coefficient LTI system. The real-signal Ped-
ersen model [Pedersen, 1975, Fig. 3] is traditionally used instead. A complex,
widely-linear representation could still simplify the modeling, but the analysis
would be the same as with a real representation.

The situation seems to be similar in the literature on feedback lineariza-
tion of RF amplifiers (Section 4.6). A complex-coefficient representation is
well known, but control analysis is done with equivalent, real-coefficient mod-
els [Briffa, 1996; Dawson, 2003].

Control theory for complex-coefficient systems

The complex-baseband representation of bandpass signals and systems has
been well-known and extensively used in both engineering and physics [Ga-
bor, 1946]. Particularly in the communications literature where it has been
essential since the early days [Stein and Jones, 1967].

However, complex-coefficient systems have received little attention in the
control literature, which is natural since the applications are few and lit-
tle known. One interesting application is vibration suppression of rotating
machinery [Byun and Lee, 1988; Ren et al., 2013]. Another is regulation
of electric motors and generators [Novotny and Wouterse, 1976; Gataric and
Garrigan, 1999; Harnefors, 2007; Dòria-Cerezo and Bodson, 2016]. In the con-
text of the latter application a number of standard tools in automatic control
have been generalized to the complex setting: the Nyquist stability criterion
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[Gataric and Garrigan, 1999], amplitude and phase margins [Harnefors, 2007],
and the root-locus method [Dòria-Cerezo and Bodson, 2016]. There have also
been some extensions of theoretic results (for the sake of generality), i.e., LQR
[Lancaster and Rodman, 1995], the Routh-Hurwitz criterion [Frank, 1946],
and Kharitonov’s theorem [Bose and Shi, 1987].

General background material

A good introduction to linear accelerators is [Wangler, 2008] and [Lapostolle
and Septier, 1970] is a classic. Good introductions to automatic control are
found in [Skogestad and Postlethwaite, 2007; Åström and Hägglund, 2006].
The low-level RF systems where field controllers are implemented have many
similarities to the radio systems for wireless communications; a helpful intro-
duction to such systems is [Ellingson, 2016].

Control of circular accelerators

The field control challenges for circular accelerators are different from those
for linear accelerators. Most notably in that the dynamics of the circulating
beam couple to the dynamics of the cavity field. Another challenge lies in the
implementation of so-called RF gymnastics [Garoby, 2010]. These interesting
problems are outside the scope of this thesis; for details see [Brennan, 1994;
Baudrenghien, 2000; Mastoridis, 2005; Lonza and Schmickler, 2014]. A classic
result on the stability of circular accelerators is Robinson’s stability theorem
[Robinson, 1964]. The Nobel prize-winning work on stochastic cooling [Van
Der Meer, 1985] is another interesting read.

1.4 Contributions

The main contributions of this thesis are

1. An investigation of how the theory and tools of automatic control ex-
tend to the analysis of complex-coefficient systems.

2. A unified treatment of cavity field control for linear accelerators. The
treatment is based on complex-coefficient LTI systems which simplifies
understanding, analysis, and control design. Specific contributions are

� A fundamental, energy-based parametrization of the cavity-field dy-
namics.

� A suitable normalization of the cavity-field dynamics.
� A derivation of the transfer function of an elliptical cavity with par-

asitic same-order modes.
� A discussion of how to deal with parasitic cavity modes in the con-

troller design.
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� The observation that parasitic cavity modes together with beam
loading may give a systematic control error of the accelerating mode.

� An in-depth discussion of the field-control problem from an
automatic-control perspective and a demonstration of that simple
PI and PID controllers often achieve close to optimal performance.

� A comparison of Cartesian and polar feedback for cavity field control.
� A discussion of digital downconversion for cavity field control.
� A discussion of directionality in the field-control problem, illustrated

by “instantaneous” phasor diagrams.

3. An intuitive approach to tune disturbance rejecting peak-filters, based
on considering complex-coefficient, first-order systems.

A minor contribution is the derivation and discussion of energy-optimal ex-
citation of accelerating cavities.

The author worked closely with the physicists and engineers at ESS on
the design and analysis of the field control loops for the ESS linac during
2014–2019. The topics considered in this thesis have been motivated by this
work.

1.5 Publications

This section lists the publications on which this thesis is based.
The thesis is a further development of the licentiate1 thesis

Troeng, O. (2017). Cavity Field Control for High-Intensity Linear Proton
Accelerators. Licentiate thesis TFRT-3237. Dept. of Automatic Control,
Lund University, Lund, Sweden.

Control for complex-coefficient LTI systems (Chapter 4) is a key
concept used throughout this thesis. A collection of applications and theo-
retical results for such systems were presented in the following paper.

Troeng, O., B. Bernhardsson, and C. Rivetta (2017). “Complex-coefficient
systems in control”. In: Proceedings of the 2017 American Control Con-
ference. (Seattle, WA, May 24–26, 2017).

Bo Bernhardsson and Claudio Rivetta independently observed that the field
control loop can be analyzed as a complex-coefficient LTI system. Troeng in-
vestigated the practical implications of this observation, collected theory and
applications of complex-coefficient LTI systems, and realized that also Carte-
sian feedback linearization can be analyzed as such a system. Troeng wrote

1A Swedish degree between MSc and PhD.
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the paper, with Bernhardsson and Rivetta contributing helpful suggestions
on the manuscript.

Modeling of accelerating cavities (Chapter 6, Appendices C and D)
is the foundation for cavity field control.

The first of the following papers introduces an energy-based parame-
terization of the cavity dynamics, which avoids several issues of previous,
equivalent-circuit-based parameterizations. The paper also proposes a nor-
malization of the cavity dynamics that is suitable for field control analysis.

The second paper derives the complex-coefficient transfer function of an
elliptical cavity with parasitic same-order modes. It also points out that beam
loading variations may induce a systematic field error due to the interaction
between the RF system and the parasitic modes, if the complex envelope of
the accelerating mode is not directly measured.

Troeng, O. (2019a). “Modeling the accelerating mode of accelerator cavities”.
Submitted to Physical Review Accelerators and Beams.

Troeng, O. (2019b). “Modeling multicell elliptical cavities with parasitic
same-order modes from a field-control perspective”. Submitted to Physi-
cal Review Accelerators and Beams.

The field control challenges for different linac types (Chapter 3)
are different and this point was discussed in the following paper.

Troeng, O., M. Eshraqi, A. Johansson, and S. Pfeiffer (2019). “Field control
challenges for different linac types”. In: Proceedings of the 10th Interna-
tional Particle Accelerator Conference. (Melbourne, Australia, May 19–
24, 2019). Not subject to peer review.

Troeng wrote most of the manuscript and made the numerical computations.
Mamad Eshraqi contributed to the section on drivers of field stability and
Sven Pfeiffer contributed to the sections on cavity field control, in particular
those related to free-electron-laser linacs. All co-authors contributed general
comments and suggestions on the manuscript.

Digital downconversion (Chapter 12) is necessary for implementing
field control on digital LLRF system. The publication below discusses how the
requirements on digital downconversion differ between communications ap-
plications and control applications. Discussions and some numerical compar-
isons of different filters for low-latency digital downconversion are provided.
Another contribution is that “two-sample reconstruction” is interpreted as
standard digital downconversion with a two-tap FIR filter.

Troeng, O. and L. Doolittle (2019). “Low-latency digital downconversion for
control applications”. In Preparation.
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The paper came about after discussions between the two authors. Troeng
wrote the manuscript and Doolittle provided helpful comments and sugges-
tions.

Energy-optimal cavity filling (Chapter 13) allows the energy for build-
ing up the electromagnetic fields in the accelerating cavities to be reduced.

Troeng, O. and B. Bernhardsson (2017). “Energy-optimal excitation of radio-
frequency cavities”. In: Proceedings of the 20th World Congress of the
International Federation of Automatic Control. (Toulouse, France, July 9–
14, 2017).

Troeng contributed the main ideas and wrote the paper. Bernhardsson sug-
gested improvements and contributed the self-contained optimality proof.

Disturbance-rejecting peak filters (Chapter 14) are relatively well-
known throughout the control community. However, the existing methods
for designing these filters provide little intuition into the design trade-offs.
The following paper proposed a simple, intuitive, and widely applicable ap-
proach to tune disturbance-rejecting peak filters.

The paper was motivated by the need to reduce the impact of power-
supply ripple on the cavities at ESS, but the method has general applicability.

Troeng, O. and B. Bernhardsson (2018). “An intuitive design method for
disturbance-rejecting peak filters”. In: Proceedings of the 14th IEEE In-
ternational Conference on Control and Automation (ICCA). (Anchorage,
AK, June 12–15, 2018).

Bernhardsson, with assistance from Troeng, performed initial experiments
that showed that the impact of switching ripple could be reduced with a
second-order filter. Troeng came up with the idea to decompose the second-
order filter into two first-order complex-coefficient filters that could be inter-
preted as “bubbles” in the Nyquist diagram, thus enabling intuitive parame-
ter tuning. Troeng wrote the paper and performed the numerical simulations,
with Bernhardsson contributing helpful suggestions.

LLRF-workshop presentations

Most of the content in this thesis has been presented to the field control
community at the bi-annual Low-Level RF workshop (no peer review).

Troeng, O., B. Bernhardsson, A. J. Johansson, and R. Johansson (2015).
Cavity field control for the European Spallation Source. Low-Level Radio-
Frequency Workshop 2015, Shanghai, Nov. 3–6, 2015.

Troeng, O., B. Bernhardsson, and A. J. Johansson (2017). Towards a better
understanding of cavity field control. Low-Level Radio-Frequency Work-
shop 2017, Barcelona, Spain, Nov. 3–6, 2017.
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Troeng, O., B. Bernhardsson, and A. J. Johansson (2019). Perspectives on
cavity field control. Low-Level Radio-Frequency Workshop 2019, Chicago,
IL, Sep. 29–Oct. 3, 2019.

Additional publications

Publications by the author, outside the scope of this thesis, are listed below.

Troeng, O. and M. Fält (2018). “A seemingly polynomial-time algorithm
for optimal curve fitting by segmented straight lines”. In: Proceedings of
the 57th IEEE Conference on Decision and Control. (Miami Beach, FL,
Dec. 17–19, 2018).

Troeng, O. and M. Fält (2019). “Sparsity-constrained optimization of inputs
to second-order systems”. In: Proceedings of the 17th European Control
Conference. (Naples, Italy, June 25–28, 2019). IEEE.

Kjellqvist, O. and O. Troeng (2019). Numerical pitfalls in Q-design. Sub-
mitted to the 21st World Congress of the International Federation of
Automatic Control.

Shahriari, Z., B. Bernhardsson, O. Troeng, and G. A. Dumont (2019). Con-
vergence analysis of iterative learning control using pseudospectra. Sub-
mitted to International Journal of Control.

Gonzalez-Cava, J. M., F. B. Carlson, O. Troeng, A. Cervin, K. van Heusden,
G. A. Dumont, and K. Soltesz (2019). PID versus Youla parameter con-
trol of propofol anesthesia. Submitted to IEEE Transactions on Control
Systems Technology.

1.6 Thesis outline

Chapter 2, Background on Automatic Control introduces tools from
automatic control that will be used throughout the thesis.

Chapter 3, Linear Accelerators and Cavity Field Control gives ex-
amples of high-energy linacs and discusses how the field control challenges
differ between a high-intensity ion linac and a free-electron-laser linac.

Chapter 4, Complex-Coefficient Systems discusses how bandpass sys-
tems, such as the field control loop, can be modeled in the baseband
(by the complex-envelope approximation). Baseband systems have complex-
coefficient dynamics, so control theory for such systems is discussed.

Chapter 5, Modeling: The RF System provides baseband models of the
components in the field control loop (except the accelerating cavity).
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1.6 Thesis outline

Chapter 6, Modeling: The Accelerating Cavity presents a suitable
parametrization of the baseband dynamics of the electromagnetic cavity
modes, and discusses various aspects of the cavity dynamics.

Chapter 7, Modeling: Summary collects the results from the previous
two chapters and presents three baseband models of the field control loop
with different levels of complexity. Disturbances are also discussed.

Chapter 8, Essentials of Cavity Field Control presents the most basic
aspects of cavity field control, comparing the field control loop with regulation
of a water tank. Control objectives for field control are discussed and the
important topic of loop phase adjustment is treated.

Chapter 9, Limits of Field Control Performance compares the field
control performance of PI(D)-controllers and the optimal LTI controller.

Chapter 10, Cartesian vs. Polar Feedback compares the standard, lin-
ear field controller architecture with a nonlinear polar architecture.

Chapter 11, Field Control of Cavities with Parasitic Modes presents
different control strategies to avoid instability from parasitic cavity modes.

Chapter 12, Digital Downconversion for Cavity Field Control dis-
cusses the requirements on digital downconversion for cavity field control and
analyzes two suitable downconversion filters.

Chapter 13, Energy-Optimal Cavity Filling presents the energy-
optimal strategy to build up the electromagnetic cavity fields at the beginning
of an RF pulse.

Chapter 14, Ripple-Rejecting Peak Filters presents how to augment a
nominal controller with a peak filter for improved rejection of narrowband
disturbances and an intuitive tuning method for the filter parameters.

Chapter 15, Conclusions and Future Work sums up the thesis.
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2

Background on Automatic

Control

This chapter gives short (and somewhat simplified) introductions to concepts
in automatic control that will be used extensively throughout this thesis. The
following topics will be discussed: transfer functions, feedback, Nyquist’s sta-
bility criterion, and norms of signals and systems. For a proper introduction
to these topics see Chapter 2 in [Åström and Hägglund, 2006]. An introduc-
tion to control written for physicists is [Bechhoefer, 2005].

2.1 Linear time-invariant systems

The dynamics of a linear, time-invariant (LTI) systems can be represented in
the time domain by its impulse response g(t), or in the frequency domain by
its transfer function G(s) [Åström and Hägglund, 2006]. The two represen-
tations are related via the Laplace transform. In this thesis we will mostly
use the frequency-domain representation since it gives much insight into the
field control problem.

An important property of (stable) linear time-invariant systems is that
a sinusoidal input signal gives a sinusoidal output signal with the same fre-
quency (after transients). The amplitudes and phases of the two sinusoids
are related by the system’s transfer function G(s) as in Figure 2.1.

G(s)
u(t) = cos ωt y(t) = |G(iω)| cos(ωt + ∠G(iω))

Figure 2.1 The transfer function G(s) of an LTI system relates the
Laplace transforms of the input and output signals via Y (s) = G(s)U(s).
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2.1 Linear time-invariant systems

Example, transfer function of a first-order system

Assume that a first-order LTI system is defined by the following relationship
between the input signal u(t) and output signal y(t),

ẏ(t) + 10y(t) = 10u(t). (2.1)

By taking the one-sided Laplace transform L of both sides (for zero initial
conditions) we obtain

sY (s) + 10Y (s) = 10U(s), (2.2)

where U(s) = Lu and Y (s) = Ly. By introducing the transfer function

G(s) =
10

s + 10

we can re-write (2.2) as

Y (s) = G(s)U(s).

Example, transfer function of a time delay

The system given by a time delay τ ,

y(t) = u(t − τ),

is after Laplace transformation seen to have the transfer function

G(s) = e−sτ .

Bode diagrams

The Bode diagram is a convenient tool for visualizing transfer functions and
obtain insight into the dynamics of the underlying LTI systems. The Bode
diagram shows a transfer function’s magnitude and phase as a function of
frequency, with the magnitude and frequency on logarithmic scales.

Example: The Bode diagram for the process model

P (s) =
10

s + 10
e−s (2.3)

(the system (2.1) with a one-second delay) is shown in Figure 2.2a.
The magnitude curve in Figure 2.2a shows that low-frequency variations
(ω < 0.1 rad/s) in the input signal give rise to output variations of the same
amplitude, but that variations of higher frequencies are attenuated.
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(a) Process P (s) = e−s/(10s + 1).
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(b) Controller C(s) = 5 + 1/s.

Figure 2.2 Bode diagram for the process P (s) in (2.3) and the PI con-
troller (2.4) with K = 5 and Ti = 5. The upper diagram shows the am-
plitude of the transfer function P (iω) as a function of frequency, and the
lower diagram shows the phase of the transfer function.

2.2 Feedback

Given a stable LTI system we could in principle make its output y(t) equal
to a constant setpoint ysp by an appropriate choice of the input signal u(t).
There are several problems with this approach: (1) it requires perfect knowl-
edge of the process dynamics P (s); (2) if there are disturbances acting on
the process, see Figure 2.3a, there will be errors on y; and (3) if the system
dynamics are slow it will take a long time for y(t) to converge to ysp. All
these problems can be mitigated by introducing a feedback controller C(s)
that adjusts the input signal u(t) based on the control error e(t) = ysp −y(t);
see Figure 2.3b.

To illustrate the advantages of feedback, we consider a proportional-
integral (PI) controller, which gives the control signal

u(t) = K

(
e(t) +

1
Ti

∫ t

−∞

e(t) dt

)
.

The first term is proportional to the control error, and the second term is
proportional to the integral of previous control errors.

In the Laplace domain the PI controller takes the form

C(s) = K

(
1 +

1
sTi

)
(2.4)
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Figure 2.3 Illustration of control without feedback (open-loop control),
and with feedback (closed-loop control).
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(a) Transfer function from disturbances d to
the measured signal y; dashed line: P (with-
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(b) Sensitivity function S = 1/(1 + P C).

Figure 2.4 Bode magnitude diagrams for two closed-loop transfer func-
tions when the process P and controller C are given by the transfer functions
in Figure 2.2; the phases of the transfer functions are not shown since it is
rarely of interest for closed-loop transfer functions.

see Figure 2.2b for the Bode diagram of the controller (2.4) with K = 5 and
Ti = 5.

The sensitivity function

Without feedback (Figure 2.3a) the transfer function from disturbances d to
control errors e is given by P (s); by introducing a feedback controller C(s)
(Figure 2.3b) the transfer function from disturbances to the control errors
becomes instead P/(1 + PC); Figure 2.4a shows the improved attenuation of
low-frequency disturbances that is provided by the feedback controller.

The difference in disturbance attenuation from introducing feedback is
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(a) Considered feedback intercon-
nection.
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Re L(iω)

Im L(iω)

ω < 0
ω > 0

(b) The Nyquist curve of the open-
loop system L(s) = C(s)P (s).

Figure 2.5 Illustration of the Nyquist criterion for the process P and
controller C in Figure 2.2. From (b) it is seen that the Nyquist curve stays to
the right of the point −1, thus, according to the Nyquist stability criterion,
the closed-loop system in (a) is stable.

quantified by the so-called sensitivity function

S =
1

1 + PC
, (2.5)

see Figure 2.4b.

Feedback stability

Stability is a fundamental concern for systems involving feedback. Instability
results if the controller compensates control errors too aggressively. A typical
manifestation of instability is that the system starts to oscillate uncontrol-
lably. For the applications in this thesis, closed-loop stability is conveniently
verified by the Nyquist stability criterion.

The Nyquist Stability Criterion (Simplified Version)
Let L(s) = C(s)P (s) be a system’s open-loop transfer function and assume
that L(s) is stable (has no poles in the right half-plane). Then the closed-loop
system is stable if and only if the Nyquist curve L(iω), ω ∈ (−∞, ∞) does
not encircle and stays to the right of the critical point −1. ✷

See Figure 2.5 for an illustration of the Nyquist stability criterion.

Robustness

The Nyquist stability criterion shows that a feedback system is stable when
the open-loop Nyquist curve stays to the right of the point −1. Hence it is
not surprising that the shortest distance between the Nyquist curve and the
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(b) Bode diagram.

Figure 2.6 Illustration of different robustness measures in the Nyquist
and open-loop Bode diagrams.

point −1 is a good indication of how robust the system is to modeling errors
and process variations. Since the distance in the complex plane between the
Nyquist curve and the point −1 is given by |L(iω) − (−1)| = 1/ |S(iω)|, we
see that the maximum value of the sensitivity function (2.5),

MS := sup
ω

|S(iω)| (2.6)

indicates the robustness of a feedback interconnection. The smaller the value
of MS , the more robust is the feedback interconnection.

Amplitude and phase margins are two alternative robustness measures.
The amplitude margin Am quantifies the maximum permissible gain increase
of the open-loop system without instability and the phase margin ∆φm quan-
tifies the maximum permissible phase drop of the open open-loop system
without instability, see Figure 2.6.

Even if the amplitude and phase margins are large, the closed-loop system
could have poor robustness [Åström and Murray, 2010, Figure 9.11]. On the
other hand, a small value of MS always guarantees reasonable amplitude and
phase margins [Skogestad and Postlethwaite, 2007, Eq. (2.39)],

Am ≥ MS

MS − 1

∆φm ≥ 2 arcsin
1

2MS
.

For example, MS = 1.6 guarantees an amplitude margin of at least 2.6, and
a phase margin of at least 36°. Thus, a robustness specification in terms of
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MS is more general than amplitude and phase margins, and typically it is
also more convenient to work with.

Fundamental limitations

It is important to remember that there are fundamental limitations on the
achievable control performance [Stein, 2003]. If both the process and the
controller are linear and time invariant, then one such limitation is given
by Bode’s integral formula (if both the open- and closed-loop systems are
stable, and the gain of open-loop system rolls off sufficiently fast at high
frequencies), ∫ ∞

−∞

log |S(iω)| dω = 0, (2.7)

where S is the sensitivity function (2.5).
Bode’s integral formula can be viewed as a conservation law of sensitivity

[Stein, 2003]. If the feedback pushes the sensitivity function below 1 at some
frequencies it will unavoidably pop up above 1 at other frequencies; fittingly,
this is known as the waterbed effect. The waterbed effect is seen in Fig-
ure 2.4a, where the control system reduces disturbances at low frequencies,
but amplifies them around 1 rad/s.

2.3 Norms of signal and systems

In what follows it will be convenient to use the 2-norm of signals to quantify
their energy/rms-value, and the H∞-norm of closed-loop transfer functions
to quantify the robustness of feedback interconnections. Below we provide
the definitions of these norms for the single-input single-output case; for the
multi-input multi-output case, as well as for more details, see [Skogestad and
Postlethwaite, 2007, 2.8.1, 4.10, A.5].

2-norm of signal

The 2-norm of a scalar signal y with finite support [0, T ], and with one-sided
Laplace transform Y , is defined as

||y||2 = ||Y ||2 :=

√∫ T

0

|y(t)|2 dt (2.8a)

=

√
1

2π

∫ ∞

−∞

|Y (iω)|2 dω. (2.8b)

From (2.8a) we see that the rms-value of y equals ||y||2 /
√

T .

32



2.3 Norms of signal and systems

If y is a stochastic signal from a stationary process with spectrum Y , the
norm (2.8b) instead corresponds to the expected rms value of the signal as
T → ∞.

The 2-norm enable a compact representation of control performance—for
example, if y is the amplitude error of the cavity field then ||Y ||2 is the rms
value of y, which is what needs to be kept within specified limits.

H∞-norm of a system

The H∞-norm (H-infinity norm) of a linear, time-invariant, single-input
single-output system G(s) is given by

||G||∞ =

{
supω |G(iω)| if G is stable

∞ if G is unstable
. (2.9)

Using the H∞-norm, the robustness measure in (2.6) can be written

MS := ||S||∞ .
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3

Linear Accelerators and

Cavity Field Control

3.1 Linear Accelerators

High-energy linear particle accelerators have many important applications.

1. As the driver of free-electron lasers

2. As the driver of spallation sources

3. For high-energy physics experiments

• Injecting into circular accelerators
that reach even higher energies

• Rare isotope production [Bollen, 2010]
• Neutrino production [Baussan, 2014]
• Linear colliders [LCC 2019]

4. For nuclear-energy applications

• Transmutation of long-lived nuclear waste
[Abderrahim et al., 2012]

• Accelerator-driven fission reactors [Carminati et al., 1993]
• Materials testing for fusion reactors [Garin and Sugimoto, 2009].

A large number of lower-energy linacs are used for cancer treatment and
semiconductor manufacturing. However, the requirements on field control for
these linacs are quite relaxed since they only have one or a few accelerating
cavities.

Linear accelerators are generally classified as either ion linacs or electron
linacs [Turner, 1994]. Parameters for a selection of high-energy linacs are
shown in Figure 3.1.
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3.1 Linear Accelerators

Tungsten
target

ring

undulators

undulators

undulators
rings/

short-pulse
facility

500 m

Normal conducting cavities

Superconducting cavities

ESS SNS Eu- LCLS-II Swiss- MAX
XFEL SCL FEL IV

Accelerated particle H+ H− e− e− e− e−

Avg. Beam Power [MW] 5 1.4 (2.8) 0.6 0.4 † ‡
Final Energy [GeV] 2 1 (1.3) 17.5 4 5.8 3.6
Beam Current∗ [mA] 62.5 25 (38) 5 0.1 † ‡
Pulse Length [ms] 2.86 1.0 0.65 CW † ‡
Pulse Frequency [Hz] 14 60 10 CW 100 10/100
Bunch frequency

(during pulse) [MHz] 352.21 402.5 4.5 0.9 † ‡
No. cavities 155 96 ≈800 ≈300 121 39
No. field control loops 155 96 27 ≈300 36 0

∗ Averaged over the flat-top of the RF pulse.
† One or two 200 pC electron bunches per 3 µs RF pulse.
‡ One or three 100 pC electron bunches per 4.5 µs RF pulse.

Figure 3.1 Comparison between the parameters of a selection of high-
energy linacs at different facilities: the European Spallation Source, Lund,
Sweden [Peggs et al., 2013; Garoby, 2017]; Spallation Neutron Source, Oak
Ridge, TN [UT-Battelle, 2006; Champion et al., 2017]; the European XFEL,
Hamburg, Germany [Altarelli, 2007]; Linac Coherent Light Source II, Stan-
ford, CA [Galayda, 2014]; and MAX IV, Lund, Sweden [MAX IV, 2010].

35



Chapter 3. Linear Accelerators and Cavity Field Control

beam transport to
tungsten target

RFQ
MEBT

Ion source

5 DTLs
26 spoke
cavities

36 medium-β
cavities 84 high-β cavities

fRF = 352.21 MHz fRF = 704.42 MHz

Figure 3.2 Block diagram of the proton linac at ESS. Depending on the
proton velocity different accelerating cavities are used. The cavities in the
orange section are made of copper (or copper plated) and are operated at
room temperature. The downstream 146 cavities (blue color) are made of
niobium and kept at 2 kelvin. This makes them superconducting, which
reduces resistive losses and allows stronger electric fields.

3.2 Example of an ion linac: The ESS linac

A schematic of the ESS linac is shown in Figure 3.2. Protons (H+) are gen-
erated in the ion source by ionizing hydrogen gas with microwave radiation.
The protons drift through the low-energy beam transport (not shown) to the
radio-frequency quadrupole (RFQ). The RFQ is a special type of accelerat-
ing cavity whose electromagnetic field both bunches, focuses and accelerates
the beam; the bunching is what allows the beam to be accelerated by the
oscillating electromagnetic fields in the downstream cavities.

Downstream the RFQ, three buncher cavities in the medium-energy beam
transport (MEBT) keep the beam bunched before five drift tube linacs
(DTLs) accelerate the bunches from 9 % to 41 % of the speed of light.

These first 9 cavities (RFQ, bunchers, DTLs) are made of copper and
are operated at room temperature. The following 146 cavities are made of
niobium and are kept at a temperature of 2 K. This makes them supercon-
ducting which gives very low electric losses and allows strong electric fields.
Three different superconducting cavities are used depending on the veloc-
ity of the proton bunches: spoke cavities, medium-β elliptical cavities, and
high-β elliptical cavities. The RF frequency of the RFQ, bunchers, DTLs
and spoke cavities is 352.21 MHz and for the elliptical cavities it is doubled
to 704.42 MHz. Three of the cavity types for the ESS linac are shown in
Figure 3.3.

The motivation for the pulsed operation of the ESS linac is to allow higher
peak intensities and to give a time separation of the neutron energies that
arrive at the experiment stations. The specific pulse rate of 14 Hz is related
to the time it takes for the neutrons to travel from the neutron target to the
instrument stations through the neutron guides [Peggs et al., 2013].
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3.3 Drivers of cavity field stability in linacs

(a) Radio-frequency quadrupole with vacuum pumps
and tuners [Alberi and Lacroix, 2015].

(b) Cryomodule with two spoke
cavities [Bousson et al., 2014].

(c) Cryomodule with four elliptical medium-β cavities [ESSb, 2017].

Figure 3.3 Three of the six types of accelerating cavities that will be
used for the ESS linac. The spoke cavities and the elliptical cavities are
kept in cryomodules to allow them to be cooled to 2 K, which makes them
superconducting. Image credit: ESS.

3.3 Drivers of cavity field stability in linacs

Field-stability drivers of ion linacs

The beam in an ion linac needs to be accelerated over hundreds of meters
before its velocity starts to approach c (the speed of light). Therefore the
synchronous phase (the nominal phase between the particle bunches and the
cavity field) needs to be selected so that the cavity fields provide longitudinal
focusing (in addition to acceleration). If the electromagnetic field is longitu-
dinally focusing then it must be transversally defocusing, which follows from
Earnshaw’s theorem [Wangler, 2008, Sec. 7.1]. Unless the amplitudes and
phases of the fields are accurately controlled the beam is focused differently
in the longitudinal and transverse planes which causes a mismatch that leads
to halo production and loss of halo particles [Plum, n.d.] Proton losses on
the structure cause radioactivation which delays hands-on maintenance and
therefore reduces the availability of the linac. To allow hands-on maintenance
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Chapter 3. Linear Accelerators and Cavity Field Control

(within a reasonable time) the beam losses should not exceed 1 W/m [Mokhov
and Chou, 1999]. It is often challenging to achieve this level of beam loss for
multi-megawatt proton linacs. Many high-intensity proton linacs are beam-
loss limited, i.e., many subsystem requirements, as those on field stability,
are driven by the need to limit beam losses.

Experiments performed at LANSCE linac indicated that beam losses had
an exponential dependence on field errors [Rybarcyk and McCrady, 2016].
Note that the beam losses depend on the beam current which means that
cavity field control will become more important for future linacs with higher
beam currents.

Example: Derivation of field-error requirements for the ESS linac1.
For the 5 MW ESS linac the beam loss requirement of 1 W/m translates to
that only 1–2 out of 10 000 particles can be lost. This was challenging to
achieve in the linac design [Levinsen et al., 2016]. The field-error require-
ments for the ESS linac were derived by simulating the beam loss for differ-
ent levels of field errors using the simulation software Tracewin [Uriot and
Pichoff, 2015]. Thousands of bunches had to be simulated for each level of
field error to obtain sufficient statistics. To accurately account for halo forma-
tion, which is a main reason for beam loss, required simulations with 105–106

macro particles (each representing some 1000 protons). The simulations were
numerically demanding due to the large number of particles and the nonlin-
ear Coulomb forces between them. To simulate the propagation of a single
proton bunch along the linac took about one hour on a high-performance
computer and completing the error studies took many months.

Finally, the beam physics group at ESS set the requirements on cavity
field errors to 0.2 % rms in amplitude and 0.2° rms in phase for the 9 nor-
mal conducting cavities and 0.1 % and 0.1° rms for the 146 superconducting
cavities [Eshraqi and Levinsen, 2016; Levinsen et al., 2016]. The difference
in error levels was motivated by that it is easier to obtain small field errors
for superconducting cavities, which we will see in Chapter 9. The error re-
quirements on the amplitudes and phases were selected so that there would
be equal contributions to beam loss from each type of error.

Certain disturbances give rise to field errors that are correlated between
multiple cavities. For example, beam current ripple gives rise to errors that
are correlated between all the cavities and ripple in the voltage supplied by
the power supplies to a group of RF amplifiers gives rise to correlated field
errors in the corresponding cavities. Error correlations were not accounted
for in the design of the ESS linac due to a lack of disturbance models. 1

1Personal communication with Mamad Eshraqi, ESS.
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3.4 Field control challenges

Field-stability drivers of free-electron-laser linacs

For FEL linacs it is mainly beam parameters such as the bunch-to-bunch
energy spread, the bunch compression in the injector, and the bunch arrival
time at the undulator that dictate the required field stability. The Euro-
pean XFEL [Altarelli, 2007], LCLS-II [Doolittle, 2015], and SwissFEL [Gan-
ter, 2012] require field errors smaller than 0.01 % (rms) in amplitude and
0.01° (rms) in phase.

Beam losses are less of an issue for FEL linacs than for high-intensity ion
linacs due to1: (1) lower average beam current; (2) less Coulomb repulsion
since the electrons are relativistic; (3) less transversal defocusing from the
electric field; and (4) electrons induce less less radioactivity [Schmidt, 2016].

Derivation of field-error requirements for FEL linacs. The effect of
cavity field errors on the energy spread and the arrival time jitter can be com-
puted using the formulas in [Altarelli, 2007, Sec. 4.8.1.1] and [Merminga and
Kraft, 1996], which is quite straight-forward relative to the beam-loss com-
putations for high-intensity ion linacs. Examples of field error requirements
for FEL linacs can be found in [Ganter, 2012, Sec. 2.4.4], [Stohr, 2011, Table
6.11] and [Altarelli, 2007]. These are roughly on the order of 0.01%/0.01◦.

3.4 Field control challenges

It is interesting to note the diversity of field-control challenges that may
arise from the high-level design decisions of a linac. The challenges for the
high-intensity proton linac at ESS linac was discussed in Section 1.2. The
challenges for the SNS linac are quite similar but larger field errors are tol-
erated. Below we briefly mention some field control challenges for the other
linacs in Figure 3.1.

The European XFEL in Hamburg, Germany, was designed for high bril-
liance at X-ray-wavelengths [Altarelli, 2007]. For cost reasons, every RF
amplifier drives thirty-two superconducting TESLA cavities [Schmidt, 2010;
Pfeiffer, 2014]. The cavity bandwidth of 140 Hz means that calibration and
cavity frequency control need careful consideration. There are additional feed-
back challenges in the control of the electron gun.

Linac Coherent Light Source II in Stanford, California, will have a su-
perconducting linac operating in CW mode with a bunch repetition rate of
almost 1 MHz [Galayda, 2014]. The cavities will have bandwidths of 16 Hz
and will be driven by dedicated solid-state amplifiers. The extremely low
bandwidth calls for field control by self-excited loops and makes cavity fre-
quency control a challenge [Doolittle, 2015].
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Chapter 3. Linear Accelerators and Cavity Field Control

SwissFEL in Villigen, Switzerland, was designed to be an affordable and
compact X-ray FEL capable of 1 angstrom wavelengths [Ganter, 2012; Milne,
2017]. Its operation principle is quite different from the two previous FELs—
the RF pulses are extremely short and at most two electron bunches are
accelerated during each RF pulse. The RF pulses are too short for intra-
pulse feedback so it is necessary with pulse-to-pulse corrections using iterative
learning control to deal with temperature transients that act as disturbances
[Rezaeizadeh et al., 2017].

The MAX IV injector linac in Lund, Sweden, has klystrons with a
small phase-pushing factor of 4 ◦/% and klystron power supplies with less
than ±0.01 % voltage ripple. This ensures that the pulse-to-pulse variations
are small. Accurate control of the cooling and the air conditioning keeps long-
term drifts small. The careful disturbances mitigation enables sufficient cavity
field stability to be achieved with a simple and robust open-loop approach
[MAX IV, 2010]2.

2Personal communication with Aleksandar Mitrovic, MAX IV.
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4

Complex-Coefficient

Systems

The analysis of a system with high-frequency input and output signals (e.g., a
field control loop) is often simplified by considering how the system relates the
complex envelopes of the input and output signals (Sections 4.1–4.2). If the
original system is linear and time-invariant then the complex envelopes of the
input and outputs signals are related via a complex-coefficient LTI system.
Analysis and control design for complex-coefficient systems is discussed in
Sections 4.3–4.4. The disturbances acting on the field control loop will have
certain directionality, so we discuss such signals in Section 4.5. Lastly, some
enjoyable examples of control applications whose analyses are simplified by
a complex-coefficient representation are given in Section 4.6.

Certain effects in the field control loop give rise to dynamics that cannot
quite be represented by a complex-coefficient LTI system since linearity only
holds for multiplication by real numbers. This class of systems will be referred
to as widely linear systems. We will only refer to this concept occasionally
so the details have been placed in Appendix A.

4.1 Baseband transformation of bandpass signals

A high-frequency sinusoid

yc(t) = A(t) cos(ωct + φ(t)) (4.1)

whose amplitude A(t) and phase φ(t) vary slowly relative to the oscillation
frequency ωc has a narrowband spectrum around the oscillation frequency
ωc. This type signal is often called a bandpass signal.

The signal (4.1) can be written

yc(t) = Re{y(t)eiωct} (4.2)
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|Yc(ω)|

|2u(ω)Yc(ω)|

−ωc 0 ωc

Frequency ω [rad/s]

|Y (ω)|

Figure 4.1 Frequency-domain illustration of how a bandpass signal yc(t)
(with Fourier transform Yc) is transformed to a baseband signal y(t) (with
Fourier transform Y ). The middlemost figure shows the signal after multipli-
cation by 2 and truncation of negative frequency components (u(·) denotes
the Heaviside step function). The asymmetry of Y (ω) indicates that the
corresponding time-domain signal y(t) is complex valued.

where y(t) = A(t)eiφ(t) is a slowly-varying complex signal. For analysis it is
often more convenient to work with y rather than yc.

Note that y is not uniquely defined by the relation (4.2), [Schreier and
Scharf, 2010, Example 1.4]. To avoid ambiguity we follow the communica-
tions literature [Proakis and Salehi, 2002] with the following definition.

Definition 4.1 The complex envelope, or the equivalent baseband signal
of a finite-energy signal yc is the signal y with Fourier transform

Y (s) =

{
2Yc(s + iωc) if ω ≥ −ωc

0 otherwise
,

where Yc(ω) is the Fourier transform of yc.

This definition corresponds to zeroing out Yc at negative frequencies,
multiplying by 2, and then translating along the frequency axis by −ωc, See
Figure 4.1 for a visualization of these steps. The corresponding approach in
the time domain is to first compute the pre-envelope z(t) = yc(t)+ i(Hyc)(t),
where Hyc denotes the Hilbert transform of yc, and then recover the complex
envelope as y(t) = z(t)e−iωct.
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4.1 Baseband transformation of bandpass signals

Real-time recovery of the complex envelope

In implementations that recover the envelope of a narrowband signal yc,
the truncation and the shift operations are applied in the opposite order of
Definition 4.1. First the spectrum of yc(s) is frequency-shifted and scaled
through multiplication by 2e−iωct (follows from standard rules for Fourier
transforms). Then the resulting signal is low-pass filtered. To strictly adhere
to the definition, only the frequency content at ≤ −ωc should be removed,
but for practical purposes, any sensibly chosen low-pass filter does the job.

To illustrate the procedure, let yc(t) = Re
{

y(t)e−iωct
}

. After frequency-
shifting and scaling, we get

yc(t) · 2e−iωct =
1
2

[
y(t)eiωct + y∗(t)e−iωct

]
· 2e−iωct

= y(t) + y∗(t)e−2iωct. (4.3)

Low-pass filtering the signal (4.3) removes the double-frequency component
y∗(t)e−2iωct. With a non-ideal low-pass filter this component will not be
fully removed and y will be slightly distorted, but these imperfections tend
to be negligible in practice. This method of recovering the complex-envelope
y is known as quadrature downconversion, or downconversion to baseband.
See [Ellingson, 2016, p. 5.3] for a further discussion. For cavity field control,
quadrature downconversion is typically implemented digitally. We discuss
this further in Section 5.1.1 and Chapter 12.

Remark 4.1 (Telecommunications terminology) In the telecommu-
nications literature, the real and imaginary parts of a baseband signal y are
referred to as the in-phase and quadrature components. The reference fre-
quency ωc is referred to as the carrier frequency.

Examples of equivalent baseband signals

Example: Illustration of baseband signal. The impulse response of the
system Gc(s) = −30/(s2 + 2s + 302) is approximately given by

yc(t) = e−t cos(30t + π/2), (4.4)

The equivalent baseband signal of yc with respect to ωc = 29 is given by

y(t) = e−tei(t+π/2). (4.5)

Both the original bandpass signal yc and the equivalent baseband signal y

are illustrated in Figure 4.2.

Example: A pure sinusoid with frequency ωc,

yc(t) = A0 cos(ωct + φ0),

has a constant complex envelope

y(t) = A0eiφ0 .
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Figure 4.2 Illustration of the baseband signal in (4.5) as a function of
time (left) and in the complex plane (right).

Example: A sinusoidal bandpass signal with frequency ωc + ν,

yc(t) = cos ((ωc + ν)t) ,

has the complex envelope
y(t) = eiνt.

This signal is often referred to as a complex sinusoid with frequency ν. De-
pending on the sign of ν, this frequency is either positive or negative.

This example shows that there is nothing strange with negative frequen-
cies. A (baseband) frequency ν > 0 corresponds to physical signals with a
higher frequency than the carrier frequency, and a frequency ν < 0 corre-
sponds to a signal with a lower frequency than ωc.

Example: A sinusoid with slowly varying amplitude,

yc(t) = A(t) cos (ωct) ,

has the equivalent baseband representation

y(t) = A(t).

Example: A sinusoid with slowly varying phase,

yc(t) = cos (ωct + φ(t)) ,

has the equivalent baseband representation

y(t) = eiφ(t).

For small values of φ(t), we have that y(t) ≈ 1 + iφ(t).
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4.2 Baseband transformation of bandpass systems

4.2 Baseband transformation of bandpass systems

Assume that the LTI system Gc(s) has narrowband dynamics around a fre-
quency ωc. The relationship between an input signal Uc(s) and an output
signal Yc(s) is, as for any LTI system, given by

Yc(s) = Gc(s)Uc(s).

We would like the complex envelopes U and Y of Uc and Yc to be related
in the same way. That is, the equivalent baseband system G(s) should satisfy
the relation1

Y (s) = G(s)U(s). (4.6)

Note that there is some freedom in the choice of G(s) since baseband
signals U(s) are zero for frequencies ≤ −ωc. One option is to take

G(s) = Gc(s + iωc).

In control applications, where low-order system models are desirable, it is
not practical to insist on that the frequency response is exactly zero for
frequencies ω ≤ −ωc since this would require an infinite-dimensional model.

4.2.1 Baseband transformation of rational LTI systems

Consider a bandpass LTI system with narrowband dynamics around frequen-
cies ±ωc and assume that it has the state-space realization (Ac, Bc, Cc, Dc),
which correspond to a transfer function Gc(s) = Cc(sI − Ac)−1Bc + Dc.
It is clear that the equivalent baseband system has a state-space realization
(Ac+iωcI, Bc, Cc, Dc) since this gives a transfer function G(s) = Gc(s+iωc).

However, the system G(s) has fast dynamics around −2ωc, which makes
it numerically challenging to simulate and analyze the system. Thus, some
kind of model reduction should be applied to G(s) to get a low-order approx-
imation without high-frequency dynamics.

A more explicit construction for obtaining a low-order model is to do a
partial fraction decomposition of the transfer function Gc(s) and then base-
band transform each term individually as in the next subsection. This gives
a good approximation when the damping ratio of Gc’s poles are small, which
typically is the case.

1Note that a different definition of the equivalent baseband system is common in the
telecommunications literature [Proakis and Salehi, 2002], where it is defined in analogy
with the equivalent baseband signals: by including a factor 2 and truncating the system
dynamics at frequencies ≤ −ωc. This makes the impulse response of a baseband system
equal to the baseband transformed impulse response of the corresponding bandpass system.
However, this gives an inconvenient factor 1/2 in the relation (4.6).
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4.2.2 Baseband transformation of second-order systems

The second-order bandpass system

Gc(s) =
2(b1s + b0)

s2 + 2ζ0ω0s + (1 + ζ2
0 )ω2

0

(4.7)

has the partial fraction decomposition

Gc(s) =
(1 − iζ0)b1 + (i/ω0)b0

s + ζ0ω0 + iω0
+

(1 + iζ0)b1 − (i/ω0)b0

s + ζ0ω0 − iω0
.

Discarding the first term, which is small relative to the second one for
frequencies close to ω0, we get the following approximation to the equivalent
baseband system of Gc(s),

G(s) = Gc(s + iωc) ≈ (1 + iζ0)b1 − (i/ω0)b0

s + ζ0ω0 + i(ωc − ω0)
.

4.2.3 Baseband transformation of a time delay

Let
Gc(s) = e−sτ .

The equivalent baseband system is given by

G(s) = Gc(s + iωc) = e−iωcτ e−sτ . (4.8)

We see that the baseband model contains the same time delay as Gc(s), but
also an additional complex factor e−iωcτ . Since ωc is typically quite large,
a small change ∆τ in τ gives a significant phase change ωc∆τ of G(s), in
addition to a small change ∆τ of the delay.

4.2.4 Frequency response of equivalent baseband systems

The frequency response of an equivalent baseband system is typically not
conjugate symmetric (i.e., G(iω) 6= [G(−iω)]∗) as seen in Figure 4.1. This
means that both positive and negative frequencies need to be considered
in control analyses. Consequently, the Bode diagram should show the re-
sponse at negative frequencies and the Nyquist curve cannot be assumed to
be symmetric with respect to the real axis; see Chapter 11 for examples of
asymmetric Bode and Nyquist diagrams.

4.3 Control theory for complex-coefficient systems

In the previous section we saw that the baseband transformation of a band-
pass system typically has complex coefficients. For this reason we will discuss
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Figure 4.3 Illustration of that Bode’s integral formula (2.7) must be
taken over both positive and negative frequencies to hold for complex-
coefficient LTI systems, since these may have

∫ ∞

0
log |S(iω)| dω < 0. The

figure is a modified version of the classic illustration in [Stein, 2003].

how standard tools of automatic control generalize to the complex setting.
Overall, there are no significant difficulties but it should be remembered to
consider negative frequencies and ensure that conjugate transposition is used
instead of transposition. Previous work on control of complex-coefficient sys-
tems was mentioned in Section 1.3. To simplify the exposition we will only
consider complex-coefficient single-input single-output (SISO) systems in this
and the following sections.

4.3.1 Frequency-domain analysis

For frequency-domain analysis it is necessary to consider both positive and
negative frequencies, as was mentioned in Section 4.2.4. For example, a factor
eiǫ may give the impression of an improved phase margin if only positive
frequencies are considered.

The Nyquist stability criterion and its proof require no change since the
argument principle is valid for any meromorphic function, this was mentioned
in [Gataric and Garrigan, 1999].

Bode’s sensitivity integral (Section 2.2) is often only taken over positive
frequencies as in [Freudenberg and Looze, 1985; Stein, 2003]. For complex-
coefficient systems this formulation is not valid, and the two-sided version
in (2.7) has to be used (the proof is the same in [Freudenberg and Looze,
1985]). That both positive and negative frequencies need to be considered is
illustrated in Figure 4.3.

Bode’s gain-phase relationship relates the amplitude and phase of
a minimum-phase transfer function in an intuitive way [Skogestad and
Postlethwaite, 2007]. The derivation relies on that the transfer function
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is conjugate symmetric and there is no intuitive relationship for complex-
coefficient transfer functions.

4.3.2 State-space analysis

Essentially all standard tools and concepts of state-space-based analysis, such
as controllability, observability, stability, Gramians, computations of 2 norms
and H∞ norms, LQG design, and H∞ design, directly generalize to the com-
plex setting, as long as conjugate transposition is used. One exception to the
use of complex conjugation is the standard algorithm for computing zeros
of (possibly complex-coefficient) multivariable systems [Emami-Naeini and
Van Dooren, 1982], where it in one step of the algorithm is imperative to use
transposition without conjugation to avoid conjugating the zeros.

4.3.3 Computer tools for complex-coefficient control analysis

The popular computing environment Matlab has reasonable support for
complex-coefficient system, however, some caution is warranted. For example,
the function minreal that computes minimal realizations does not support
complex-coefficient systems and the command nyquist produces an incor-
rect Nyquist plot unless special measures are taken2. Simulink has limited
support for complex signals in continuous-time models, so the real and imag-
inary parts often have to be treated individually.

4.3.4 Decomposition of a complex-coefficient transfer function

Given a complex-coefficient system G(s) we can split its impulse response
into real and imaginary parts

g(t) = gRe(t) + igIm(t),

where gRe(t) and gIm(t) are real-valued. Denoting the Laplace transforms of
gRe(t) and gIm(t) by GRe(s) and GIm(s) respectively we can write

G(s) = GRe(s) + iGIm(s). (4.9)

Note that both GRe(s) and GIm(s) are real-coefficient (complex-valued) func-
tions of the complex variable s.

It will be convenient to define the complex-conjugate G∗ of a transfer
function G as

G∗(s) := GRe(s) − iGIm(s). (4.10)

2Confirmed in version R2019a. Both issues were reported to MathWorks in Oct. 2017.
The first issue was apparently hard to fix and the second issue was supposed to be resolved
in 2018 (but was still present in version R2019a). However, we are happy to note that a
third reported issue with hinfsyn was promptly resolved. A workaround for nyquist is to
set ShowFullContour to off and supply a frequency vector.
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This implies that G∗(s) is the Laplace transform of g∗(t) and that G∗(s) =
[G(s∗)]∗. However, the most important observation is that

G∗(iω) = [G(−iω)]∗. (4.11)

This relation says that G∗(iω) gives the frequency-response of G at negative
frequencies (up to conjugation).

With the definition (4.10), the decomposition (4.9) can be recovered from
G(s) as

GRe(s) =
G(s) + G∗(s)

2
and GIm(s) =

G(s) − G∗(s)
2i

. (4.12)

4.3.5 Rotational invariance

A complex-coefficient LTI system that maps an input signal u to an output
signal y will due to linearity also map the input signal eiθu to the output
signal eiθy. We will say that the system is rotationally invariant since mul-
tiplication by eiθ corresponds to a rotation in the complex plane.

We will more generally call a mapping f : V1 → V2 between two complex
vector spaces rotationally invariant if f(eiθu) = eiθf(u) for all u in V1. Note
that time invariance of a bandpass system corresponds to that the baseband
system is rotationally invariant.

A real-valued function f on a complex vector space V (for example, the
norm of a complex signal or the norm of a system) will be called rotationally
invariant if f(eiθu) = f(u) for all u in V . The standard 2 norms and sup
norms on complex signals and systems are rotationally invariant (even if the
system itself is not).

4.4 Relation to equivalent real-coefficient representation

Equation (4.9) in the previous section showed that a complex-coefficient SISO
transfer function G(s) can be decomposed into

G(s) = GRe(s) + iGIm(s), (4.13)

were GRe(s) and GIm have real coefficients. The action of G(s) on a signal
u(t) = uRe(t) + iuIm(t) can then be expressed as the action of the two-input
two-output (TITO) system

Gequiv(s) =
[
GRe(s) −GIm(s)
GIm(s) GRe(s)

]
(4.14)

on real-valued signals u =
[
uRe uIm

]T
. Conversely, it is seen that a real-

coefficient system of the form (4.14) can be written as an equivalent complex-
coefficient system (4.13).
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Figure 4.4 Illustration of how a complex transfer function G(s) =
GRe(s) + iGIm(s) acts on a signal u = uRe + iuIm to produce a signal
y(t) = yRe + iyIm.

Much of the previous work on cavity field control dynamics has been
based on the real TITO representation (4.13) rather than the complex SISO
representation (4.12). Also, practical implementation of a complex-coefficient
transfer function (4.13) must be done as in Figure 4.4, which corresponds
to the representation (4.14). Conversely, certain real-world processes (see
Section 4.6) which have dynamics of the form (4.14) are more intuitively
analyzed using the representation (4.13). So it is meaningful to study the
relationship between these two representations in some greater detail.

4.4.1 Diagonalization of equivalent real-valued TITO dynamics

The key to understand the relationship between the representations (4.13)
and (4.14) is to note that (4.14) has the eigendecomposition

Gequiv(s) = T

[
G(s) 0

0 G∗(s)

]
T H, T =

1√
2

[
1 1

−i i

]
. (4.15)

Recalling (4.11), we see from (4.15) that the positive- and negative-
frequency dynamics of G(s) are intertwined in Gequiv(s), which indicates that
analysis using this representation is unnecessarily complicated.

Remark 4.2 The eigendecomposition (4.15) can be understood from not-
ing that

√
2T H =

[
1 i
1 −i

]
(4.16)

maps
[
uRe uIm

]T
to

[
u u∗

]T
, and that

1√
2

T =
1
2

[
1 1

−i i

]
(4.17)

maps
[
y y∗

]T
to

[
yRe yIm

]T
. Consequently, T HG(s)T can be seen as map-

ping from
[
u u∗

]T
to

[
y y∗

]T
.
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Remark 4.3 The eigenvalue loci, i.e., the eigenvalues λi(L(iω)), where
L(s) is the open-loop transfer function of a MIMO system, is a generalization
of the classic SISO Nyquist curve. From (4.15) it follows that the eigenvalue
loci of a transfer function of the form (4.14) are given by the frequency
response of (4.13) and its conjugate. In general, the eigenvalue loci are not
too useful for robustness analysis [Skogestad and Postlethwaite, 2007]. In the
special case of TITO systems of the form (4.14) they actually give information
about the system’s sensitivity function, but it is of course easier to work with
the representation (4.13).

4.4.2 Norms

It is clear that the 2-norm of a complex signal, and its corresponding real
representation are equal, ||u||2 = ||

[
uRe uIm

]T||2.
The eigenvectors in the eigendecomposition (4.15) are orthogonal so the

magnitudes of the eigenvalues are equal to the singular values of G(iω). From
this observation we get the following theorem [Troeng et al., 2017].

Theorem 1
If G = GRe + iGIm, and Gequiv is given by (4.14), then

||Gequiv||∞ = ||G||∞ (4.18)

||Gequiv||2 =
√

2 ||G||2 . (4.19)

Remark 4.4 This theorem has an important consequence. It shows that
if a real-coefficient system Gequiv of the form (4.14) is analyzed using the
complex representation G in (4.13) and the sensitivity function is found to
have a maximum magnitude MS then the original system Gequiv has the same
level of robustness.

4.4.3 State-space realizations

If the complex-coefficient system (4.13) has a state-space realization
[

ARe + iAIm BRe + iBIm

CRe + iCIm DRe + iDIm

]
, (4.20)

then it is clear that the real-coefficient system (4.14) has a state-space rep-
resentation given by




ARe −AIm BRe −BIm

AIm ARe BIm BRe

CRe −CIm DRe −DIm

CIm CRe DIm DRe


 , (4.21)

and vice versa.
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4.4.4 Advantages of complex-coefficient representation

The real-coefficient representation (4.14) is in many respects similar to the
complex-coefficient representations (4.13), however, the complex-coefficient
representation has some advantages.

Simplicity. The insight and simplicity of working with SISO systems is
maintained. This enables the use of Nyquist diagrams and double-sided Bode
diagrams to gain an intuitive understanding of control performance. With the
real-coefficient representation one has to use the Bode diagrams of the 2 × 2
transfer-function matrix (4.14), which gives less insight.

Less computations. The amount of computations for analysis and control
design is roughly halved if the complex representation (4.13) is used instead
of the real representation (4.14) (multiplying two complex numbers requires
4 real multiplications but multiplying two 2 × 2 real matrices requires 8 real
multiplications).

Implicit structure. There is no need to explicitly impose the rotationally-
invariant structure of (4.14) when doing systems identification and control
design. The structure is implicit in the complex-coefficient representation.

4.4.5 On the structure of the optimal controller

The following two theorems are not surprising, but it is nice to know that the
optimal control does not have a more complicated structure than the plant
itself. The results are proved in Appendix G, using the same technique as in
[Bamieh et al., 2002]. Recall from Section 4.3.5 what is meant by rotational
invariance.

Theorem 2
The optimal control performance for a complex-coefficient plant with re-
spect to a convex, rotationally-invariant control objective, subject to convex,
rotationally-invariant constraints, can be attained by a complex-coefficient
controller.

Theorem 3
The optimal control performance for a real-coefficient plant with respect to
a rotationally-invariant control objective, subject to rotationally-invariant
constraints, can be attained by a real-coefficient controller.

4.5 Signals with directionality

To describe the second-order properties of stochastic complex signals it is
necessary to use both the covariance function

ruu(t1, t2) = E[u(t1)u(t2)H]
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Figure 4.5 Lissajous ovals in the complex plane generated by excitation
of 1/(s + 1 + i) by u = sin(2πft).

and the complementary covariance function [Picinbono and Bondon, 1997;
Schreier and Scharf, 2010]

r̆uu(t1, t2) = E[u(t1)u(t2)T].

The following definitions are from [Schreier and Scharf, 2010].

Definition 4.2 A complex stochastic process is called wide-sense station-
ary if its covariance and complementary covariance only depend on t2 − t1,
i.e., if ruu(t1, t2) = ruu(t2 − t1), and r̆uu(t1, t2) = r̆uu(t2 − t1).

Definition 4.3 A complex wide-sense stationary signal u is called proper
if r̆(t) = 0 for all t.

For control design, we will assume all signals to be proper. However the
actual disturbances on a field control loop tend to have certain directionality,
this will be briefly discussed in Chapter 15.2.

Response to a signal with a specific direction

The time-response of a stable complex-coefficient system G(s) to a signal
with a specific direction, say u(t) = cos(ω0t)u0, is (after transients) given by

y(t) =

[
G(iω0)

1

2
eiω0t + G(−iω0)

1

2
e−iω0t

]
u0

=
[

|GRe(iω0)| cos (ω0t + ∠GRe(iω0))

+ i |GIm(iω0)| cos (ω0t + ∠GIm(iω0))
]
u0. (4.22)

The signal (4.22) traces out a so-called Lissajous oval in the complex plane,
see Figure 4.5. In the special case of a transfer function with real coefficients
(GIm(s) = 0), the output signal has the same direction as the input signal.
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4.6 Other applications of complex-coefficient systems

There are a few other real-world control applications, apart from cavity field
control, where it is helpful to model the system dynamics as a complex-
coefficient LTI system. The complex-coefficient dynamics in these applica-
tions either arise from transforming a bandpass system to baseband (Sec-
tions 4.1 and 4.2) or from representing a system with physically rotationally-
invariant dynamics as a complex-coefficient system.

Control applications where complex-coefficient dynamics arise from con-
sideration of baseband dynamics are MEMS gyroscopes [Saggin et al., 2019]
and Cartesian feedback linearization of power amplifiers (discussed below).

An example of a physical system with rotationally-invariant dynamics is
the motion of the Foucault pendulum3 in the xy-plane. The dynamics of the
Foucault pendulum can, subject to small-angle approximation, be described
by the following complex-coefficient differential equation [Arnold, 1978]

z̈ + i2Ω sin λ0ż + ω2
0z = 0,

where z = x + iy, ω0 is the natural frequency of the pendulum, Ω is the
rotational frequency of the Earth, and λ0 is the latitude where the pendulum
is located. See [Pippard, 2007] for similar examples.

Control applications where complex-coefficient dynamics arise from rota-
tional invariance are three-phase electric machines (after dq transformation)
[Harnefors, 2007; Dòria-Cerezo and Bodson, 2016] and active vibration damp-
ing of rotary machinery [Byun and Lee, 1988]. Another rotationally-invariant
system that can be analyzed as a complex-coefficient system is the “spinning
body” from the robust control literature (discussed below).

4.6.1 “The spinning body”

“The spinning body” is a classic example from the robust control litera-
ture [Zhou et al., 1996; Skogestad and Postlethwaite, 2007] that is used for
demonstrating that loop-by-loop analysis with, e.g., the Nyquist criterion, is
insufficient to guarantee closed-loop robustness of a MIMO system.

The “spinning body” is assumed to spin around the z axis with constant
velocity; the controlled states are the rotational velocities around the x and
y axes; the control signals are torque inputs around the same axes; and the
states are measured in scaled and rotated coordinates. The system dynamics
are given by

P(s) =
1

s2 + a2

[
s − a2 a(s + 1)

−a(s + 1) s − a2

]
(4.23)

and control by unity feedback, K(s) = I, is assumed.

3An experiment conceived by Léon Foucault in 1851 to demonstrate the Earth’s rota-
tion.
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-1

Re

Im

P (s)

P (s)e−0.1s

Figure 4.6 Nyquist curve for the classic spinning-body example when
considered as a single-input single-output, complex-coefficient system

The system (4.23) has the structure in (4.14) and writing it in the equiv-
alent complex form (4.13) we get

P (s) =
1 − ia

s + ia
.

The controller corresponds to K(s) = 1. The robustness of this system is
straightforward to evaluate using its Nyquist diagram which is shown in
Figure 4.6. It clear that the robustness is miserable. Due to Remark 4.4 this
conclusion also holds for the original system (4.23).

4.6.2 Cartesian feedback linearization of RF amplifiers

Cartesian feedback linearization of power amplifiers has been studied as a
means of reducing power consumption and adjacent channel interference in
telecommunications applications [Johansson, 1991; Briffa and Faulkner, 1996;
Dawson, 2003].

H(s)

H(s)
i.PA

sin ωRFt

cos ωRFt

Σ

Σ

I ′

−

Q′

−

−θsin(ωRFt + θadj)

cos(ωRFt + θadj)

I

Q

Figure 4.7 Schematic of Cartesian feedback linearization of an RF am-
plifier [Dawson, 2003]. It is crucial to select the phase adjustment angle θadj

to cancel the phase shift θ.
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-1

Re

Im
Nominal
10° adjustment error
20° adjustment error

Figure 4.8 Nyquist curves of a Cartesian feedback loop with different
phase adjustment errors δ. The data for the nominal curve is from [Johans-
son, 1991, Sec. 4.2].

If the amplifier is operating in an almost linear region then the open-loop
system is well approximated by

G(s) = H(s)P (s)e−sτ eiδ, (4.24)

where H(s) is the loop filter, P (s) is a baseband model of the mixer and
amplifier dynamics, τ is the loop delay, and δ := θadj − θ is the phase ad-
justment error. To avoid instability and performance degradation the phase
adjustment error δ must be small.

The system (4.24) was simulated as a complex-coefficient system in
[Briffa, 1996] but the equivalent TITO representation (4.14) was used for
algebraic stability analysis; after several calculations it was shown that a
phase adjustment error δ reduces the phase margin by the same amount.

With the complex SISO representation (4.24) this conclusion follows triv-
ially [Troeng et al., 2017] from the Nyquist stability criterion and from noting
that the factor eiδ corresponds to a rotation of the nominal Nyquist curve
H(iω)P (iω)e−iωτ by δ radians, see Figure 4.8 for an illustration.
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5

Modeling: The RF System

This chapter provides baseband models of the components of the RF system.
The main responsibility of the RF system is to establish, maintain, and con-
trol the electromagnetic field in the accelerating cavity(ies). Cavity modeling
is discussed in the next chapter. An RF station for the medium-β section of
the ESS linac is shown in Figure 5.1.

Before going into components of the RF system it is a good time to explain
the operation of a typical field control loop (see Figure 5.2). The RF amplifier
generates an electromagnetic wave that propagates through the waveguide
and maintains a standing electromagnetic field in the cavity. The cavity field
accelerates the particle bunches and, as discussed in Section 3.3, it must have
the correct amplitude and phase (relative to the bunches). For this reason
the cavity field is sensed by a pickup probe (i.e., antenna) and the complex
envelope of the signal is detected by the receiver in the low-level RF (LLRF)
system. The phase of the envelope is adjusted with respect to the phase
reference. The field controller compares the adjusted complex envelope to the
given setpoint and adjusts the drive signal to the RF amplifier accordingly.

klystrons

electronics racks
(LLRF systems, etc)

klystron
power supplies
(modulators)

waveguides

Figure 5.1 RF station for the medium-β section of the ESS linac. It
drives eight cavities with one klystron per cavity. Image credit: ESS.
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5.1 The low-level RF system

5.1 The low-level RF system

The low-level RF (LLRF) system is the platform where the field controller
(the topic of this thesis) is implemented. The LLRF system could also contain
feedback controllers for the cavity’s resonance frequency, or an outer loop for
beam-energy feedback [Pfeiffer, 2014].

A schematic of a typical, digital LLRF system is shown in Figure 5.3.
Additional measured signals of, e.g., the amplifier output, the voltage of the
amplifier’s power supply, or the beam current, could also be used by the field
controller to improve the control performance. Nowadays, almost all field
controllers are implemented digitally on FPGAs, but in the old days, analog
electronics were used.

Examples of LLRF hardware are shown in Figure 5.4. For an introduc-
tion to the electronic components used in LLRF systems, see [Gallo, 2010;
Ellingson, 2016]. For details on the LLRF system for ESS, see Appendix B.

5.1.1 Receiver

Hardware for recovering the complex envelope of an RF signal is called a
receiver. A common receiver architecture for digital LLRF systems is the
heterodyne digital-quadrature architecture (Figure 5.5). First, the RF sig-
nal is downconverted to an intermediate-frequency (IF) signal to reduce the
sensitivity to ADC sampling jitter, then it is sampled by an ADC, after
which the sampled signal is digitally downconverted in the FPGA. Alterna-
tive receiver architectures are discussed in [Ellingson, 2016, Sec. 15.6]. For
example, previous-generation analog LLRF systems typically used amplitude
and phase detectors [Pedersen, 1975].

For field control, the filter HDDC(z) in Figure 5.5 is often chosen as a
moving average filter HDDC(z) = (1 + z−1 + . . . + z−(N−1))/N [Schilcher,
2007; Hoffmann, 2008], see Chapter 12 for a further discussion.

To include the receiver dynamics in a baseband model of the RF system,
we need a model of the dynamics from the complex envelope y of yRF, to its
estimate ŷ. Such a model is shown in Figure 5.6, where we have neglected
the fast dynamics of the mixer and the bandpass filter.

5.1.2 Controller implementation on FPGAs

Almost all modern field controllers are implemented on field-programmable
gate arrays (FPGAs), which are reconfigurable, integrated circuits. FPGAs
support massive parallelization of the controller computations and enable
controller rates of 10–100 MHz. Compared to previous-generation field con-
trollers based on analog electronics, the use of FPGAs allows easier recon-
figuration and more elaborate controller architectures. Programming FPGAs
requires specialized knowledge of hardware description languages.
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ADCBPF

ADCBPF

ADCBPF
ADCBPF
ADCBPF

LO & sampling
clock generation

clkLO

FPGA
(+ Memory)

Field controller

DAC

DAC

Cavity Resonance
Frequency Control

To tuning
system

Timing
Receiver

CPU

To interlock
system

Phase reference

ypu

Industrial control
network

Timing
network

Vector modulator

uRe

uIm

To RF
amplifier

Figure 5.3 Schematic of a typical LLRF system. Fast feedback loops,
such as for field control are implemented in the FPGA. A number of addi-
tional signals from the RF system are also sampled for interlocks and moni-
toring. The CPU handles local, general-purpose computations, and connects
the LLRF system with the accelerator’s industrial control system [EPICS;
TANGO]. The timing receiver receives pulses from the timing network so
that the RF pulse can be synchronized to the beam pulse.

Figure 5.4 Components of an LLRF system based on the MicroTCA
standard. Left: Digitizer SIS8300-KU, containing ADCs and an FPGA
(Struck). Middle: Signal conditioning board DWC8VM1, containing analog
down- and upconversion (Struck). Right: 12-slot MicroTCA4 crate (Schroff).
Photo Credit: Struck Innovative Systeme GmbH, and nVent Schroff.
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ADC HDDC(z)
yIF[k] ŷ[k]

Analog bandpass filter Digital (low-pass) filter

Digital downconversion

cos ωLOt

yRF(t) yIF(t)

FPGA

2e−iωIFtk
clk

Figure 5.5 Typical LLRF receiver architecture for recovering the com-
plex envelope y of an RF signal yRF(t) = Re

{
y(t)eiωRFt

}
.

n[k] = 2n[k]e−iωIFtk

HDDC(z)
y[k]y(t) ŷ[k]

Figure 5.6 Baseband model of the receiver in Figure 5.5. Note that all
signals are complex, so single lines can be used without confusion.

Every clock cycle of processing from the measurement signal to the control
signal adds to the delay of the field control loop so careful implementation of
the field controller is crucial. Current FPGAs used for field control operate
with clock frequencies on the order of 100 MHz [Doolittle et al., 2016].

Other automatic control applications that rely on FPGAs are those with
fast dynamics, such as power electronics [Monmasson et al., 2011] and lasers
[Leibrandt and Heidecker, 2015]; or where the control strategies are com-
putationally demanding, for example, model predictive control [Ling et al.,
2006].

5.1.3 Digital-to-analog conversion and upconversion

There are different architectures for upconverting a digital baseband sig-
nal [Ellingson, 2016, Figure 17.1d–f]. Both direct quadrature upconversion
[Schilcher, 2007, Section 4] (Figure 5.7) and heterodyne upconversion of a
digitally synthesized intermediate-frequency signal are used.

DAC quantization errors. DACs give rise to quantization errors which
act as a load disturbance in a similar way as the amplifier ripple and beam
current ripple. However, the errors have relatively small magnitude and high
frequency so it has a small impact on the control performance.
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Σ
DAC

DAC

FPGA

0◦

cos ωRFt

90◦

sin ωRFt
cos ωRFt

uRe

uIm

u uRF

Figure 5.7 Schematic for direct quadrature upconversion. Often, the hy-
brid, mixers and the combiner are collectively referred to as a vector mod-

ulator, or a quadrature modulator.

5.1.4 Upconverter IQ imbalance

The baseband signal u should ideally be upconverted to the bandpass signal

uRF(t) = Re
{

u(t)eiωRFt
}

= uRe(t) cos(ωRFt) − uIm(t) sin(ωRFt). (5.1)

However, in the case of direct quadrature upconversion, this is typically not
the case. In the next subsection we discuss how this can be modeled; not
because it tends to be a severe problem, but because it is an example of how
widely linear dynamics arise in the field control loop (see Appendix A).

Analog quadrature upconversion suffers from different hardware imper-
fections [Schilcher, 2007]:

1. The phase between the RF signals to the two mixers may differ from π/2
by an angle θskew known as the quadrature skew or the phase imbalance.

2. The gains of the Re (I) and Im (Q) branches may differ by a factor
ρgain known as the gain imbalance.

3. The DACs may have DC offsets.

The first two effects are collectively referred to as IQ imbalance and they
amount to that the output of the upconverter is not given by (5.1) but instead

ŭRF(t) = uRe cos(ωRFt) − uImρgain sin(ωRFt + θskew).

Denoting the complex envelope of ŭRF by ŭ = ŭRe + iŭIm, we have
[
ŭRe

ŭIm

]
=

[
1 −ρgain sin θskew

0 ρgain cos θskew

] [
uRe

uIm

]
. (5.2)

This relation can also be written [Zou et al., 2008]

ŭ = K1u + K2u∗ (5.3)

where K1 = (1 + ρgaineiθskew)/2, and K2 = (1 − ρgaineiθskew)/2.
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ηconj(·) u∗

u ŭ

Figure 5.8 Baseband model of how IQ imbalance in the upconverter
affects the complex envelope of the RF output. Note that the conjugation
operation breaks the rotational invariance in the relation between u and ŭ.

By redefining ŭ to include the factor 1/K1, we can write

ŭ = u + ηu∗, (5.5)

where
η := K2/K1 ≈ K2 ≈ (1 − ρgain)/2 − iθskew/2. (5.6)

The approximations hold when ρgain and θskew are small.
Equation (5.5) which describes the impact of IQ imbalance can be visu-

alized as in Figure 5.8. Due to the conjugation operation, this effect cannot
be modeled as a linear, complex-coefficient system (the system is still widely
linear, see Appendix A.

To reduce IQ imbalance to acceptable levels one may either do analog
calibration1, or estimate the matrix in (5.2) and apply its inverse at the con-
troller output. The DAC offsets can similarly be compensated digitally. One
approach to estimate the IQ imbalance and the DC offset is to use Fitzgib-
bon’s elegant ellipse-fitting method [Fitzgibbon et al., 1999] as discussed in
[Rojas et al., 2011]. Typically, the imperfections can be well compensated.
Furthermore, the remaining imperfections occur at the output of the con-
troller, and is hence much less problematic than if they would have occurred
at the input, see Chapter 8. For these reasons we will not consider IQ imbal-
ance in what follows.

Remark 5.1 The problem with IQ imbalance is not present in the re-
ceiver since digital quadrature downconversion is used for exactly this reason.

5.2 Phase-reference system

The absolute phase between the particle bunches and the cavity fields can-
not be measured or estimated with sufficient speed and accuracy for feedback

1This approach was used at SNS, but their newest LLRF systems use heterodyne up-
conversion from a digitally synthesized intermediate-frequency signal to avoid the problem
altogether [Personal communication with Mark Crofford, SNS].
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control. Instead, the phases of all cavities are controlled relative to an ex-
tremely stable phase reference (master oscillator) that is distributed along
the linac. The bunch phase in a high-intensity ion linac is determined by the
phase of the radio-frequency quadrupole that bunches the beam. Since the
RFQ is controlled with respect to the phase reference, it is possible to use
the phase references as a substitute to the true beam phase.

A common approach to phase-reference distribution along a linac is to use
a rigid coaxial line [Piller et al., 2005]. Temperature stabilization is important
to avoid phase drifts [Olofsson et al., 2018]. Reference phase distribution by
a laser through optical fibers is used when high precision is necessary in long
linacs [Sikora et al., 2018].

One approach to measure the cavity signal relative to the phase reference
is to sample both the cavity signal and the phase reference and subtract the
reference phase from the cavity signal. This approach is sometimes called
reference tracking [Ludwig, 2011]. If both the LO frequency, sampling clock
and the upconversion are locked to the master oscillator it suffices to only
sample the cavity signal, however, this approach is prone to drifts. Drift
calibration for field control was discussed in [Ludwig, 2017].

Good phase stability of the master oscillator and the phase distribution
system is crucial for keeping the phase between the beam and cavity field
constant. Drifts in the phase distribution system leads to systematic phase
errors unless calibration is done. The impact of the master oscillator’s phase
noise is discussed in [Ludwig et al., 2006].

The stability issues of the master oscillator and the phase-distribution
system are orthogonal to the field control problem. In what follows we will
assume that all signals are measured with respect to perfect phase reference.

5.3 RF cables

RF cables are used for connecting the cavity pickup probe to the LLRF
system, and the LLRF system to the RF amplifier. Typical group velocities
in RF cables range from 0.66c up towards c [Kaiser, 2005].

Example: The ESS linac will use a 3/8 inch, dielectric, coaxial cable
(SCF38-50JFN from Radio Frequency Systems) between the pickup probes
and the LLRF systems. The propagation velocity in this cable is 0.82c, which
gives a delay of 160 ns for a typical cable length of 40 m.

5.4 RF distribution system

The RF distribution system transfers the electromagnetic waves generated by
the RF amplifier to the cavity. This is most commonly done with rectangular
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waveguides. Alternatives are coaxial waveguides, and coaxial cables (for low-
power test setups). In many circumstances there is a reverse wave traveling
backward from the cavity through the waveguide [Wangler, 2008]. The reverse
wave could damage the RF amplifier so circulators are used for directing the
reverse wave to an RF load where it is absorbed [Wangler, 2008].

The dynamics of a waveguide is given by its propagation delay. The elec-
tromagnetic wave is also attenuated as it passes through the waveguide. From
a field control perspective this corresponds to a constant gain which disap-
pears after normalization.

Rectangular Waveguides

The group velocity at which an electromagnetic wave propagates through
a rectangular waveguide is given by vwg =

√
1 − (c/(2af))2 · c, where f is

the frequency of the wave, a is the longest side of the waveguide’s cross
section, and c is the speed of light. Staying within recommended waveguide
dimensions gives group velocities in the range 0.60c–0.85c [EIA RS-216-B].

Example: In the first part of the ESS linac the RF frequency is fRF =
352.21 MHz and the waveguide dimension is a = 0.5842 m which gives
vwg = 0.68c. In the second part of the linac the frequency is doubled and the
waveguide dimensions are halved which also gives vwg = 0.68c. The propa-
gation delay through a 40 m long waveguide is given by 40 m/0.68c = 200 ns.

5.5 High-power RF amplifiers

Many types of RF amplifiers are used for particle accelerators, depending on
the operation frequency and required output power. Klystrons, solid-state
amplifiers, tetrodes, and inductive output tubes are the most common ones.
For an introduction to RF amplifiers, see [Carter, 2010].

In reality, there are no ideal amplifiers. Below we discuss the nonidealities
that are most relevant for field control performance, namely:

• the limited bandwidth,

• the nonlinear dependence on input signal’s amplitude,

• the gain and phase dependence on the supply voltage (klystrons), and

• noise and spurious components (solid-state amplifiers).

5.5.1 Limited bandwidth

We will model the limited bandwidth of the RF amplifier by a first-order
low-pass filter as in [Schilcher, 1998; Serrano et al., 2017],

Pamp(s) =
ωamp

s + ωamp
, (5.7)
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where ωamp is the 3dB bandwidth in rad/s.
The bandwidth of typical RF amplifiers is at least 1 MHz which is more

than ten times the cross-over frequency of a typical field control loop. Hence
the amplifier dynamics has a rather small impact on the field control loop,
but it is prudent to account for it in field control analysis.

Bode magnitude curves for two klystrons that will be used at ESS are
shown in Figure 5.9. The model (5.7) is obviously not a good model for the
Thales klystron but well-designed field controllers should have sufficient roll
off to avoid instability from the resonance peak2, see Figure 8.9.

A more detailed model should account for that klystrons contain several
high-bandwidth cavities that are coupled via an electron beam. Each cavity
has baseband dynamics of the form γk/(s+γk−i∆ωk) where γk is the cavity’s
decay rate and ∆ωk is the difference between the cavity resonance frequency
and the nominal RF frequency.

5.5.2 Nonlinearity

The gain and the phase shift of an RF amplifier has a nonlinear dependence
on the magnitude of the input signal [Schenk, 2008]. Assuming that the
nonlinearity is static (memoryless) it can be represented as

famp(u) = famp(|u|)ei(∠u+θamp(|u|)), (5.8)

where famp is the baseband output of the amplifier (in normalized units),
u is the input signal, and θamp and famp are nonlinear functions describ-
ing the nonlinearity. Typical nonlinear amplifier characteristics are shown in
Figure 5.10. Note that the output saturates at a level famp sat.

The magnitude curve of Figure 5.10 shows that the nonlinearity becomes
more severe closer to saturation. For this reason RF amplifiers for field control
are often operated with some overhead (back-off) to saturation. Overheads
in the range of 25–40 % are typical3.

The linearization of equation (5.8) around the operating point correspond-
ing to a real input signal u0 = u0 > 0 is (up to the phase shift from θamp(u0))
given by [̃

fRe

f̃Im

]
=

[
f ′
amp(u0) 0

famp(u0)θ′
amp(u0) famp(u0)/u0

] [
ũRe

ũIm

]
. (5.9)

The matrix in (5.9) is not rotationally invariant (i.e., of the form (4.14)) and
shows that the linearization of a complex-valued nonlinearity may give rise
to IQ imbalance (or widely linear dynamics, see Section A).

2At Linac4 at CERN, a notch filter was added to the (LQG) controller to avoid in-
stability from the interaction between a similar resonance in their Thales klystrons and a
parasitic mode in their pi-mode-structure cavities [Personal communication with Robert
Bonner and Philippe Baudrenghien, CERN].

3The target value for ESS is 25 % [Personal communication with Morten Jensen, ESS].
In [Omet, 2014] it is stated that 40 % is common.
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Figure 5.9 Bode magnitude curves (in baseband) for two 352 MHz
klystrons that will be used at ESS. Phase curves are typically not provided
by klystron manufacturers. The CPI klystron will power the RFQ and two
DTLs and a Thales klystron with similar characteristics will power the re-
maining three DTLs. Note that the Thales klystron has a resonance peak
at around 3 MHz. Peaks like these are typical for klystron from the manu-
facturers Thales and Canon. Credit: Data from Thales and CPI, provided
by Chiara Marrelli, ESS.

One obvious approach to deal with the nonlinearity is to include an inverse
model of it in the field controller (called pre-distortion in the telecommunica-
tions literature) [Omet, 2014; Ellingson, 2016]. Another approach is to close
an inner loop around the klystron [Baudrenghien et al., 2014], but the loop
delay of the inner loop is often too long for this to be efficient.

Remark 5.2 Higher-order harmonics from RF amplifiers (typically quan-
tified by the third-order intercept point (IP3)) is a major concern in telecom-
munications due to the strict requirements on adjacent channel interference.
However, such higher-order harmonics are of little concern for field control
due to the relatively narrow bandwidth of the cavities.

5.5.3 Gain and phase-shift variations

Small variations g̃amp and θ̃amp of the RF amplifier’s gain and phase-shift
can be seen as a multiplicative disturbance (1 + g̃amp)eiθ̃amp acting at the
amplifier output.

Pushing. Variations in an RF amplifier’s supply voltage changes its gain
and phase shift. This effect is called pushing and can be modeled as

g̃amp(t) = ξgdps(t) and θ̃amp(t) = ξθdps(t), (5.10)
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Figure 5.10 Nonlinear input-output characteristics (transfer curves) of
the same klystrons as in Figure 5.9; the phase curve was not available for
the CPI klystron. The circles indicate an operating point at 25% below
saturation (in terms of power) corresponding to fg0 = 0.87 · famp sat. Credit:
Data from Thales and CPI, provided by Chiara Marrelli, ESS.

where dps(t) is the relative variation of the supply voltage, ξg is the amplitude-
pushing factor and ξθ is the phase-pushing factor. The pushing factors depend
on the amplifier’s operating point.

Pushing factors for klystrons. For klystrons it holds that ξg ≈ 5/4
(to first order) [Gilmour, 2011]. The phase-pushing factor ξθ depends on the
operating point and the design parameters of the klystron [Hara et al., 1998].
Typical values are around 10 °/%. For the klystrons at ESS values of ξθ in
the range 6–8°/% ≈ 10–13 rad have been measured4. Note that these values
are significantly larger than ξg = 5/4 = 1.25, i.e., the phase variations from
supply-voltage ripple are large compared to the amplitude variations.

Noise and spurious components. Certain power amplifiers, in par-
ticular solid-state amplifiers, contribute both flicker noise, with a 1/f -
dependence in the baseband, spurious peaks originating from combinations of
switching and nonlinear phenomena, and to a minor extent also white, ther-
mal noise. These disturbances are most conveniently described by a spectral
model.

4Personal communication with Morten Jensen, ESS.

70



5.5 High-power RF amplifiers

|u|
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|u|
θ

Pamp(s)
u famp

(1 + g̃amp(t))e−iθ̃amp(t)

Figure 5.11 RF amplifier model which accounts for nonlinearity, limited
bandwidth, and gain and phase variations from, e.g., DC-supply voltage
variations. Note that the nonlinearity is complex valued, with the output
amplitude and phase shift depending on the amplitude of the input. Of
course, this separated RF amplifier model is only an approximation and the
order of the three blocks was chosen to simplify analysis.

Table 5.1 The RF amplifiers that will be used for the ESS accelerator.

Cavity Type fRF Output Power Amplifier Type
(No. Units) [MHz] (peak) [kW]

RFQ (1) 352.21 2900 Klystron∗

Buncher (3) –”– 30 Solid-State Amplifier
DTL (5) –”– 2900 Klystron∗

Spoke (26) –”– 2×200 Tetrode
Medium-β (36) 704.42 1500 Klystron†

High-β (84) –”– 1500 Klystron†

∗Will have 500 W preamplifiers.
†Will have 200 W preamplifiers.

5.5.4 Example: High-power RF amplifiers for ESS4

High-intensity ion linacs, as the one at ESS, have several different cavity
types, which calls for different RF amplifier technologies. At ESS it is planned
to use three different amplifier types5, as shown in Table 5.1.

In-house designed DC power supplies will be used to power the klystrons,
since a pulsed draw of 200 MW at 14 Hz would induce excessive flicker on the
regional power gridThese power supplies, which are called modulators, will
have capacitors banks which are charged continuously and then discharged
during the pulses.

5The initial plan was to use multi-beam inductive output tubes, which are more energy-
efficient than klystrons, for the high-β section [Jensen et al., 2018]. This would have made
ESS the first particle accelerator with such amplifiers. Unfortunately, these plans were
abandoned due to a lack of funding and that the manufacturers had problems to meet the
reliability requirements.
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5.6 Typical delays in field control loops

Field control loops with digital LLRF systems tend to have time delays in
the range of 1–2 µs. Approximate values for a few different linacs are:

• 1 µs for ESS,

• 1 µs for LCLS-II [Huang et al., 2016]6, and

• 2 µs for the European XFEL7.

A break-down of the estimated delay of the field control loops at ESS is
shown in Table 5.2. Note that 400 ns of the delay are from propagation of
electromagnetic waves.

Table 5.2 Estimated time delays in the field control loops at ESS. The
dynamics of the RF amplifier is modeled by a first-order system Pamp(s)
instead of as a group delay, see Section 5.5.

Source of delay Delay [ns]

Propagation of electromagnetic waves
Amplifier to cavity (waveguide), 40 m ÷ 0.68c 200
LLRF to amplifier (cable), 10 m ÷ 0.82c 40
Cavity probe to LLRF (cable), 40 m ÷ 0.82c 160

LLRF system
ADC 100
FPGA, 48 clock cycles @117 MHz 400
DAC 80

Total 980

6Not counting time constants of filters in the controller.
7About 1 µs is due to master–slave communication. Personal communication with Sven

Pfeiffer, DESY.
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6

Modeling: The Accelerating

Cavity

6.1 Introduction

For field control analysis it is essential with a model of how the cavity field
interacts with the beam and the RF system. To a very good approximation,
the cavity field can be described as a linear combination of modes that evolve
independently. For most analyses it is sufficient to consider just one of these
modes, namely the accelerating mode, that is intended for beam acceleration.
In some cases, as for multi-cell elliptical cavities, it is necessary to consider
parasitic modes to ensure feedback stability.

In this chapter we discuss how to model and understand the dynamics of
the electromagnetic modes of an accelerating cavity. We begin with a short in-
troduction to electromagnetic fields in accelerating cavities (Section 6.2), and
then present a convenient, energy-based parameterization of the accelerating
mode (Section 6.3) [Troeng, 2019]. The model is an extension (with beam
loading) of Haus’ approach to model optical cavities [Haus, 1983]. As we dis-
cuss in Section 6.4, this model avoids the problems of previous parametriza-
tions that were inspired by equivalent electric circuits. We then introduce
a type of phasor diagram in Section 6.5, which is helpful in illustrating the
dynamics of the accelerating mode, and which will be used throughout the
thesis. In Section 6.6 we discuss how the detuning and waveguide coupling
of the accelerating mode should be selected to minimize the steady-state
energy consumption. After that, we provide a suitable normalization of the
accelerating mode in Section 6.7. Then, in Section 6.8 we introduce parasitic
modes, and discuss how these can be normalized. Finally, in Section 6.9 we
state some special relationships that hold between the properties of parasitic
same-order modes in elliptical multicell cavities.
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Cavity field: A

Forward wave: Fg

Reverse wave: Rg

Beam current: Ib

Figure 6.1 Illustration of the quantities involved in the derivation of the
cavity dynamics. Measurements of the reverse wave can be used in various
calibration schemes and for estimating the detuning, but we will not use it
in this thesis.

6.2 Electromagnetic fields in accelerating cavities

Mode expansion of the cavity field

The dynamics of the electromagnetic cavity field is given by Maxwell’s equa-
tions. If there is no beam present, then the electric field E can be shown to
satisfy

∇2
E − ǫ0µ0

∂2

∂t2
E = 0 (6.1)

in the interior of the cavity, where ǫ0 denotes the vacuum permittivity and
µ0 denotes the vacuum permeability. For a closed cavity with perfectly con-
ducting walls, the electric field can be expanded as a sum of orthogonal
eigenmodes Ek

E(r, t) =
∞∑

k=a,1,2,...

ek(t)Ek(r), (6.2a)

where the mode amplitudes ek(t) evolve independently as

d2

dt2
ek(t) = −ω2

kek(t). (6.2b)

The subscript k = a in (6.2a) indicates the accelerating mode. We see from
(6.2b) that the amplitude of each mode varies sinusoidally with frequency
ωk. We will assume Ek and ek to be scaled so that the oscillation amplitude
of ek equals the square root of the energy stored in mode k.

Cavity–beam interaction

The acceleration provided by the cavity field to a particle with charge q
traversing the cavity along straight trajectory z(t), is commonly modeled
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6.2 Electromagnetic fields in accelerating cavities

under the approximation that the trajectory does not depend on the cavity
field [Wangler, 2008]. Due to the linearity of Maxwell’s equations, the effect of
the cavity modes on the charge can then be considered individually. In what
follows we will assume that only the accelerating mode is excited; parasitic
modes are treated similarly. The energy gained by the particle from crossing
the cavity is given by

∆W = q

∫ L

0

ea(t(z))Eaz(z) dz, (6.3)

where we have expressed time as a function of the particle position.
Recall that ea(t) evolves sinusoidally, with an amplitude that equals the

square root of the mode energy
√

Ua. Thus we can write (6.3) as

∆W = q

∫ L

0

Eaz(z) cos(ωat(z) + φ) dz
√

Ua, (6.4)

for some φ. The maximum value of the integral with respect to φ equals
[Wangler, 2008, Exercise 2.12]

αa :=

∣∣∣∣∣

∫ L

0

Eaz(z)eiωat(z) dz

∣∣∣∣∣ . (6.5)

We will refer to αa as the cavity–beam-coupling parameter. It can be seen,
perhaps most easily from (6.4), that αa has units V/

√
J.

With this definition we can re-write (6.4) as

∆W = qαa

√
Ua cos φb, (6.6)

where the angle φb is defined with respect to the bunch phase that would
give maximum energy gain.

Remark 6.1 The existing accelerator literature uses the normalized
shunt impedance (r/Q)a = α2

a/ωa (also called r-over-Q) [Wangler, 2008],
for relating the accelerating voltage seen by a particle traversing the cavity
to the energy stored in a cavity mode. Note that both (r/Q)a and αa depend
on the particle velocity which is implicitly given by cavity position along the
linac. Apart from the particle velocity, the two quantities only depend on the
cavity geometry.

Remark 6.2 The particle bunches should arrive to the cavity slightly be-
fore the instant when they would obtain maximal acceleration (quantified by
the phase φb), to ensure that they are kept together by longitudinal focusing
[Wangler, 2008, Sec. 1.3]. Longitudinal focusing is particularly important in
ion linacs, where φb typically is chosen in the range −30◦ to −15◦. Typical
values of φb for electron linacs are in the range −3◦ to 0◦.
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6.3 Baseband model of the accelerating cavity mode

Let the nominal operating RF frequency of the cavity be given by ωRF, and
denote the complex envelope (Chapter 4) of ea by A, i.e.,

ea(t) = Re{Aa(t)eiωRFt}.

From the definition of ea it follows that also Aa has units
√

J, and that |Aa|2
equals the energy stored in the accelerating mode.

Up until the sections on parasitic modes we will only consider the accel-
erating mode and we therefore drop the mode index (when possible).

Transforming the differential equation (6.2b), which assumed a closed
cavity with no losses, to baseband gives

d

dt
A = i∆ωA (6.7)

where ∆ω := ωa − ωRF is the so-called detuning. By also including resistive
losses, beam loading, coupling to a waveguide, and an incident wave in the
waveguide (from the RF amplifier) we get (see Appendix C) the following
equation for the accelerating mode

dA

dt
= (−γ + i∆ω)A +

√
2γextFg +

α

2
Ib. (6.8)

Here, γ = γ0 + γext is the total decay rate of the cavity field (γ0 corresponds
to resistive losses and γext to decay through the power coupler); Fg models
the incident wave from the RF amplifier with |Fg|2 equal to the wave power
(Fg has units

√
W); Ib models the beam of charged particles with |Ib| equal

to the corresponding DC current.
We will refer to Fg as the RF drive (phasor) and Ib as the beam phasor.

These quantities and reverse wave Rg (see Remark 6.3 below) are illustrated
in Figure 6.1. Typical cavity parameters are given in Table 6.1.

Remark 6.3 (Reverse wave) As shown in Figure 6.1, there is typically
a reverse wave in the waveguide that propagates away from the cavity. The
complex envelope of the reverse wave, which also has units

√
W, takes the

form

Rg = −Fg +
√

2γextA, (6.9)

i.e., it is a superposition of the reflection of the incident wave, and a term
from field decay through the power coupler. See Appendix C.5 for details.
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Table 6.1 Parameters for some different real-world cavities in high-energy
linacs [Altarelli, 2007; Doolittle et al., 2016]. The first group of parameters
are inherent to the cavity (sometimes γext can be tuned), the second group
of parameters gives the nominal operating point, and the third group are
derived quantities of interest. The cavities of the ESS linac were illustrated
in Figure 3.3.

γ0/2π γext/2π α A0 IDC φb ∆W |Fg0|2
Cavity kHz kHz MV/

√
J

√
J mA ° MeV kW

RFQ (ESS) 24 36 3.1 1.6 62.5 −45∗ 3.5 1000
DTL (ESS) 3.2 8.8 3.7 5.2 62.5 −25 18 2200
Medium-β (ESS) 0 0.5 1.3 11.2 62.5 −15 14 900
TESLA (Eu-XFEL) 0 0.14 2.9 8.1 5.0 −3 24 120
TESLA (LCLS II) 0 0.016 2.9 5.5 0.1 −3 16 2.5

∗ The beam loading in an RFQ is always relative to the phase of the accelerating
mode, i.e., Ib(t) = Ib(t)ei(π−φb) · ei arg A(t). The value φb for the whole RFQ is
never given in RFQ specifications; the value −45◦ is an estimate by the author
based on the parameters of the individual RFQ cells.

Remark 6.4 The effective accelerating voltage V, which is commonly
used in existing cavity models, is related to A through V = αA. If an
equation in V is desired, multiplying (6.8) by α gives

dV

dt
= (−γ + i∆ω)V + α

√
2γextFg +

α2

2
Ib. (6.10)

Most of the advantages mentioned in Section 6.4 apply to this parametriza-
tion as well.

Remark 6.5 In equation (6.8) there are four parameters: γ = γ0 + γext,
γext, ∆ω and α. The beam-coupling coefficient α is intrinsic to the geome-
try of the cavity, but depends on the particle velocity. The resistive decay
rate γ0 depends on the material of the cavity and its geometry (to some ex-
tent they also depend on the field amplitude). The waveguide coupling γext

is sometimes tunable (depending on the coupler design). The detuning ∆ω,
corresponding to the resonance frequency of the cavity, varies due to per-
turbations of the cavity geometry. For normal conducting cavities, these are
typically due to temperature variations which have time-scales of minutes.
For superconducting cavities, the variations have time-scales of milliseconds,
and are due to the Lorentz force (the electromagnetic force of the cavity
field on the cavity walls), microphonics (vibrations and pressure variations
in the cryogenic systems), and intentional actuation by tuning mechanisms
to counter-act previous two effects.
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Remark 6.6 (Decay rates) In the proposed parametrization (6.8) we
considered the factor γ as a decay rate, rather than a bandwidth as in (6.11b)
in the next section. This is consistent with the laser literature [Siegman,
1986], and makes it natural to write the total decay rate as γ = γ0 + γext; a
relation that would be less intuitive in terms of bandwidths. For frequency-
domain considerations, one should, of course, think of γ as a bandwidth.

6.4 On equivalent-circuit-based cavity parametrizations

Since the accelerating mode provides a voltage to the charged particles and
the particle beam corresponds to a current, it is natural to model the acceler-
ating mode as an equivalent (electric) circuit. This is the standard approach
to model accelerating cavities [Schilcher, 1998; Tückmantel, 2011]1 and is
also a common technique in RF engineering [Montgomery et al., 1948].

However, equivalent-circuit-based parameterizations have a number of is-
sues. These mainly stem from that the amplifier drive needs to be considered
as a fictitious (generator) current to fit it into the equivalent-circuit frame-
work [Tückmantel, 2011].

In this section we compare the energy-based parameterization (6.8) to
two of the most popular equivalent-circuit-based parametrizations. It should
be emphasized that all three parametrizations describe exactly the same
dynamics.

Equivalent-circuit-based parametrizations in the existing literature

Two popular, equivalent-circuit-based parametrizations in the existing liter-
ature are: Tückmantel’s [Tückmantel, 2011]2,

dV

dt
= −

[
ωa

2Qext
+

ωa

2Q0
−i∆ω

]
V+ωa

r◦

Q
Ig + ωa

1
2

r◦

Q
Ib,RF, (6.11a)

and Schilcher’s [Schilcher, 1998]3,

dV

dt
= (−ω1/2 + i∆ω)V + RLω1/2 (2Ig + Ib,RF) . (6.11b)

In the above equations, V denotes the complex envelope of the effective
accelerating voltage of the cavity field; Ig denotes the “generator current”

1Often the emphasis is on steady-state relations [Padamsee et al., 2008; Wangler, 2008]
which is not enough when transients and field control are considered. See also [Wangler,
2008, Sec. 5.7] for an interesting explanation of the dynamics of a waveguide-coupled cavity,
and the classic references [Montgomery et al., 1948; Slater, 1950; Pedersen, 1975].

2Eq. (53), with minor modifications for consistency.
3Eq. (3.49) interpreted for complex signals, with I = 2Ig + Ib,RF.
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which models the RF amplifier drive; and Ib,RF denotes the RF component
of the beam current (|Ib,RF| = 2IDC [Schilcher, 1998, A4]), see Tables 6.2a
and 6.2b for a complete list of the quantities involved. The normalized shunt
impedance r◦/Q in (6.11a) is defined with respect to the equivalent-circuit
convention, and so is the loaded resistance RL in (6.11b). There is also the
linac convention for which r/Q = 2(r◦/Q), [Tückmantel, 2011].

Note that the generator current Ig is a fictitious quantity that is intro-
duced to make the RF drive term fit into the equivalent-circuit framework.
An additional relation is needed for how Ig relates to the drive power Pg,
which is the physical quantity of interest,

Pg =
1
2

r◦

Q
Qext |Ig|2 . (6.11c)

With Table 6.2 it is easy to verify that the three parametrizations (6.11a),
(6.11b) and (6.8) are equivalent. Next we compare the advantages of the pro-
posed energy-based parametrization (6.8) and the equivalent-circuit-based
parametrizations (6.11a) and (6.11b). Note that field error requirements of
the form x% amplitude error and y◦ phase error are identical for V and A.

Advantages of the energy-based parametrization (6.8)

1. The dynamic equation is cleaner. The expression for the drive power
(6.11c) is simplified to Pg = |Fg|2 and there is no need to consider the
“RF component” of the beam current.

Remark: Quantifying signal amplitudes in terms of square root of
power, as for Fg, is common in RF engineering. It is with respect
to such power waves that scattering matrices (S matrices) are defined
[Pozar, 2009].

Example: The RF drive power necessary to maintain an accelerating
voltage V0 = αA0, while accelerating a beam modeled by Ib0, is easily
found from (6.8) as

Pg =
1

2γext

∣∣∣(−γ + i∆ω)V0/α +
α

2
Ib0

∣∣∣
2

.

This expression is more convenient, and easier to remember, than
(6.11a/6.11b) together with (6.11c).

2. The effect of variations in the cavity–waveguide coupling γext and
cavity–beam coupling α are transparent. The same cannot be said for
the parametrizations (6.11a)/(6.11b).

Example: The quantity Fg that represents the RF drive is indepen-
dent of γext. Contrast this to (6.11c) which includes both Qext and

79



Chapter 6. Modeling: The Accelerating Cavity

Table 6.2 Physical quantities in the equivalent-circuit-based
parametrizations (6.11a)/(6.11b), and in the proposed parametriza-
tion (6.8). The rightmost column contains the quantities expressed in the
parameters of the other parameterization.

a) Quantities common to (6.11a)/(6.11b) and (6.8)

ωa rad/s Resonance frequency of the accelerating mode
∆ω rad/s Detuning of the accelerating mode, = ωa − ωRF

b) Quantities in (6.11a)/(6.11b)

V V Accelerating voltage V = αA
Ig A Generator current 2

√
2γext/αFg

Ib,RF A Beam current (RF component) 2Ib

Q0 – Unloaded quality factor ωa/(2γ0)
Qext – External quality factor ωa/(2γext)

β – Coupling factor = Q0/Qext γext/γ0

QL – Loaded quality factor = Q0/(β + 1) ωa/(2γ)
ω1/2 rad/s Cavity bandwidth = ωa/(2QL) γ
r/Q Ω Normalized shunt impedance, α2/ωa

linac convention
r◦/Q Ω Normalized shunt impedance, α2/(2ωa)

equivalent-circuit convention =(r/Q)/2
RL Ω Loaded shunt impedance α2/(4γ)

= (r◦/Q) · Q0/(1 + β)

c) Quantities in (6.8)

A
√

J Mode amplitude V/
√

ωa(r/Q)
Fg

√
W RF drive

√
(r/Q)Qext/4Ig

Ib A Beam current Ib,RF/2

α V/
√

J Field–beam coupling parameter
√

ωa(r/Q)
γ0 1/s Resistive decay rate ωa/(2Q0)

γext 1/s External decay rate ωa/(2Qext)
γ 1/s Total decay rate = γ0 + γext ω1/2
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r/Q. Thus, the parameterization (6.8) avoids the issue mentioned in
[Tückmantel, 2011]4.

Example: From (6.11b) we see that the transfer function from beam-
current variations to cavity field errors is

GIb→e(s) =
ω1/2

s + ω1/2
RL.

Recognizing the first factor as a low-pass filter with bandwidth ω1/2,
one is led to believe that reducing ω1/2 reduces the field errors from
beam-current ripple. However, this is incorrect, since RL depends in-
versely on ω1/2. This confusion does not arise from (6.8).

3. The mode amplitude A is intrinsic to the cavity field, while the effective
cavity voltage V depends on the velocity of the accelerated particles
[Wangler, 2008]. Without a given particle velocity V is not well-defined.

For electron linacs, one could assume that the velocity equals c and
hence uniquely quantify the amplitude of the accelerating mode by its
effective voltage. But the amplitudes of parasitic same-order modes of
multi-cell cavities can obviously not be quantified this way. For exam-
ple, the same-order modes of the TESLA cavity all have a negligible
coupling to the beam, i.e., zero effective voltage, but they are crucial
to consider in field-control analysis.

4. The equation (6.8) can be derived using basic properties of Maxwell’s
equations (see Appendix C). This arguably allows for a better under-
standing of how the model parameters relate to physical cavity prop-
erties.

Disadvantages of the energy-based parametrization (6.8)

A natural objection to the parameterization (6.8) is that it does not explicitly
contain the accelerating voltage, which is the most important quantity from
a beam perspective. In that case (6.10) could be used which retains the
understandable structure of (6.8). Overall, there is less reason to use the
energy-based parametrization (6.8) when the focus is on how the beam is
affected by the cavity field. It is when the focus is on the cavity field, as from
an RF system perspective, that (6.8) brings helpful intuition.

Another objection would be that the parameters in (6.8) are not the ones
commonly used to for specifying cavities. However, the parameters in (6.8)
arguably have more physical significance than those in (6.11a) and (6.11b).

4“One word of caution is required here: /.../ for considerations where Qext varies—as
for a variable coupler e.g. in context with RF vector feedback loop gain—or where (R/Q)
varies—as when particles of different speed v = βc pass the same cavity /.../—the model
currents cannot be considered constant; they have to be re-adapted each time Qext or
(R/Q) change.”
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Mode amplitude A [
√

J] Terms of
d

dt
A [

√
J/s]

Re
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√

2γextFg

α

2
Ib

(−γ+i∆ω)A
φg

φb

Re

Im

Figure 6.2 Phasor diagrams for visualizing the terms in the differential
equation for the accelerating cavity mode (6.8). Left: Phasor for the mode
amplitude. Right: Terms that affect the time derivative of the mode ampli-
tude. The phasors sum to zero which indicates steady-state operation.

6.5 Phasor diagrams

To better understand the dynamics of the accelerating mode (6.8), which we
restate for convenience,

dA

dt
= (−γ + i∆ω)A +

√
2γextFg +

α

2
Ib,

it will be helpful to use phasor diagrams as in Figure 6.2. The coloring of
the phasors coincides with that in the above equation. To avoid clutter, the
phasor for the cavity field is drawn separately from the phasors that affect
its derivative. We will refer to them as the field-decay phasor (blue), the
RF-drive phasor (green) and the beam-loading phasor (red).

Remark 6.7 (Phasor diagrams in existing literature) Phasor dia-
grams are common in existing accelerator [Wangler, 2008; Padamsee et al.,
2008; Wiedemann, 2015]. In these diagrams the phasors for the RF drive and
the beam loading are typically shown together with their so-called induced
voltages, i.e., their steady-state effect on the cavity field. For cavity field con-
trol, one needs to understand how variations of the phasors Fg and Ib affect
the cavity field. In this regard, the induced voltages are of little interest and
leaving them out reduces clutter.

Remark 6.8 (The choice of reference phase) In previous litera-
ture, the reference phase is often chosen so that the beam phasor Ib is
oriented along the negative real axis [Wangler, 2008, p. 348]. This is reason-
able, since after all, the beam phase is the phase reference relative to which
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6.6 Power-optimal coupling and detuning

the cavity field should be controlled. However, in a field-control context,
where the objective is to keep the cavity field close to a setpoint and beam
variations act as disturbances, it is arguably more natural to choose the
reference phase so that the cavity-field phasor lies on the positive real axis.

With this convention we get a nice symmetry in the phasor diagrams for
optimally tuned cavities (Figure 6.3), with the cavity-field phasor and the
RF-drive phasor lying on the real axis. Also, amplitude variations and (small)
phase variations of these two phasors correspond to variations of their real
and imaginary parts, respectively.

6.6 Power-optimal coupling and detuning

In this section we compute the detuning ∆ω and coupling γext that minimize
the RF-drive power for steady-state operation. These are standard calcula-
tions [Schilcher, 1998; Wangler, 2008], but we go through them to show what
they look with the parametrization (6.8) and because we need the results in
the next section.

Assume that the nominal cavity field is given by5 A0 = A0 > 0 and the
nominal beam phasor is given by

Ib0 = Ibei(π−φb) = −Ib cos(φb) + iIb sin(φb), (6.12)

where6 −π/2 ≤ φb ≤ 0. Note that φb 6= ∠Ib0.
The corresponding stationary RF drive Fg0 satisfies

0 = (−γ + i∆ω)A0 +
√

2γextFg0 +
α

2
Ib0, (6.13)

which gives an RF drive power of

Pg = |Fg0|2 =
1

2γext

∣∣∣(−γ + i∆ω)A0 +
α

2
Ib0

∣∣∣
2

=
1

2γext

[ (
(γ0 + γext)A0 +

α

2
Ib cos φb

)2

+
(

∆ωA0 +
α

2
Ib sin φb

)2
]
.

From this expression we see that the detuning ∆ω that minimizes the power
consumption is given by

∆ω⋆ = −
α

2
Ib sin φb

A0
. (6.14)

5Recall Remark 6.8.
6This condition is necessary in order for the beam to be both accelerated and longitu-

dinally focused [Wangler, 2008, p. 179].
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Mode amplitude A [
√
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d

dt
A [

√
J/s]

√
2γextFg

α

2
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(−γ+i∆ω)A

Figure 6.3 Phasor diagram for a superconducting cavity that is optimally
tuned and optimally coupled.

If the cavity is optimally tuned, then (at steady-state) the RF-drive pha-
sor lies on the positive real axis, and the imaginary parts of the decay phasor
and the beam-loading phasor have equal magnitudes, but opposite signs. It
can be seen that Figures 6.3 and 6.4 correspond to optimally tuned cavities,
but that Figure 6.2 does not.

With power-optimal detuning we have

Pg

∣∣∣
∆ω=∆ω⋆

=
1

2γext

(
(γ0 + γext)A0 +

α

2
Ib cos φb

)2

.

Minimizing this expression with respect to γext, gives the power-optimal cou-
pling coefficient7

γ⋆
ext = γ0 +

α

2
Ib cos φb

A0
. (6.15)

Thus, given A0 and Ib0, the minimal power consumption equals

P ⋆
g = 2γ0A2

0 + αA0Ib cos φb.

That is, all energy in the forward wave is either dissipated in the cavity walls,
or is transferred to the particle beam—no power is wasted in the reverse wave.

The total decay rate, assuming optimal coupling, is given by

γ = 2γ0 +

α

2
Ib cos φb

A0
. (6.16)

7We wish to minimize 2f(x) = (ux + v)2/x = u2x + 2uv + v2/x wrt x > 0. Differenti-
ating gives 2f ′(x) = u2 − v2/x2, from which we find the optimal point x⋆ = v/u, at which
f(x⋆) = 2vu.
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−γ0A−γextAi∆ωA
√

2γextFg

α

2
Ib

Terms of
d

dt
A [

√
J/s]

Figure 6.4 Phasor diagram with the terms of the time derivative of
the cavity field. The considered cavity is optimally tuned (∆ωA0 =
−(α/2)Im Ib0), optimally coupled (γextA0 = γ0A0 − (α/2)Re Ib0), and nor-
mal conducting (γ0 > 0); compare (6.14) and (6.15).

We have found that it sometimes gives insight to think about the second
term in (6.15) as the decay rate of the cavity field due to beam loading (at
the nominal operating point). This motivates the definition

γbeam = γbeam(A0, Ib0) :=

α

2
Ib cos φb

A0
. (6.17)

Using (6.17), we can write (6.15) more intuitively as

γ⋆
ext = γ0 + γbeam.

Remark 6.9 For pulsed accelerators, the value of γext that minimizes
the overall power consumption is somewhat larger than γ⋆

ext since this gives
a shorter filling time [Ayvazyan et al., 2010]. This is particularly important
when the pulses are short compared to the filling time. It is also better to
choose γext larger than γ⋆

ext if there are significant detuning variations during
the flat-top (e.g., from microphonics) [Merminga and Delayen, 1996].

6.7 Normalized cavity dynamics

Normalization

Requirements on cavity-field errors, and specifications on amplifier ripple and
beam-current ripple are typically given in relative terms, i.e., on the form x%
and y°. By normalizing the dynamics from disturbances to field errors (of the
accelerating mode), it is easy to compute the relative field errors that result
from relative disturbances.
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Chapter 6. Modeling: The Accelerating Cavity

For control design, it is convenient if the static gain from control action
to mode amplitude equals 1.

Let us therefore introduce normalized phasors for the cavity field, RF
drive, and beam loading,

a :=
1

A0
A (6.18a)

fg :=
1

γA0

√
2γextFg (6.18b)

ib :=
1

γA0

αIb

2
. (6.18c)

Scaling equation (6.8) by 1/A0, now gives

ȧ = (−γ + i∆ω)a + γ(fg + ib). (6.19)

The transfer function from fg and ib to a is given by

Pa(s) :=
γ

s + γ − i∆ω
, (6.20)

where the subscript a indicates that we are considering the accelerating mode.

Relations at nominal operating point

Consider steady-state operation at some nominal operating point (a0 =
1, fg0, ib0). For an optimally tuned cavity it follows from (6.14) that

γIm ib0 + ∆ω = 0. (6.21)

For an optimally coupled cavity, it follows from (6.15) that

−1 ≤ Re ib0 ≤ 0. (6.22)

For an optimally tuned and optimally coupled cavity we have that fg0 =
1 − i∆ω/γ − ib0 is real, and that

1 ≤ fg0 ≤ 2. (6.23)

For a superconducting cavity (γ0 = 0) that is optimally tuned and cou-
pled, we have that Re ib = −1 and fg = 2.

Dynamics around nominal operating point

Cavity field stability is typically evaluated around some nominal operating
point. For this reason it is meaningful to introduce the normalized field error
z through

z = a − 1.
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6.7 Normalized cavity dynamics

Table 6.3 Normalized parameters for the cavities in Table 6.1.

γ/2π ∆ω/2π fg0 |ib0| φb

Cavity kHz kHz – – °

RFQ (ESS) 60 5.1 1.1 0.2 −45
DTL (ESS) 12 1.5 1.3 0.3 −25
Medium-β (ESS) 0.5 0.1 2.1 1.1 −15
TESLA (Eu-XFEL) 0.14 ≈ 0 2.0 1.0 ≈0
TESLA (LCLS II) 0.016 ≈ 0 1.3 0.3 ≈0

It is clear that a small field error z = zRe + izIm approximately corresponds
to an amplitude error of zRe · 100 % and a phase error of zIm rad.

In the case of an ideal amplifier, we would have fg = fg0 + f̃g where
f̃g corresponds to control action from the field controller. However, due to
variations of the amplifier’s gain and phase shift, denoted by g̃amp and θ̃amp

(see Section 5.5), we have

fg = (1 + g̃amp)e−iθ̃amp(fg0 + f̃g). (6.24)

We will assume that the variations g̃amp and θ̃amp are small, and introduce,
dg := g̃amp − iθ̃amp, which allows us to write

(6.24) ≈ (1 + dg)(fg0 + f̃g) ≈ fg0 + f̃g + fg0dg. (6.25)

Similarly, relative beam loading variations db affect ib according to

ib = (1 + db)ib0.

Plugging these expressions into (6.19) and ignoring second-order terms
give

ż = (−γ + i∆ω)z + γ
(
f̃g + fg0dg + ib0db

)
. (6.26)

We see that the transfer function from relative disturbances dg and db

to relative field errors z are given by

Pdg→z(s) = fg0Pa(s), (6.27a)

Pdb→z(s) = ib0Pa(s), (6.27b)

where Pa(s) is defined in (6.20). In these equations, the nominal phasors fg0

and ib0 act as complex-valued coefficients that quantify the impact of relative
disturbances.

Example: The corresponding normalized cavity parameters γ, fg0, and ib0

for the cavities in Table 6.1 are shown in Table 6.3.

87



Chapter 6. Modeling: The Accelerating Cavity

Remark 6.10 (Time-varying detuning) In superconducting cavities,
the detuning ∆ω varies over time due to microphonics and (in pulsed accel-
erators) Lorenz-force detuning. Denote the detuning variations by ∆̃ω and
the define the normalized detuning variations d∆ω := ∆̃ω/γ. These normal-
ized detuning variations correspond to a term γ · id∆ω on the right-hand side
of (6.26). The transfer function from normalized detuning variations to field
errors is given by Pd∆ω→z(s) = Pa(s).

The effect of Lorenz force detuning can be mitigated by iterative learning
control and fast cavity-resonance-frequency control. The microphonics are
typically infeasible to predict, but they are relatively slow (20–200 Hz) and
have a magnitude of tens of hertz. Hence, it is only for the most narrow-
bandwidth cavities and strictest requirements on control performance that
this effect is non-negligible. For this reason, it was not included in (6.26).

An example8 of where the impact of detuning on field errors is significant
is for the superconducting cavities of LCLS-II which have bandwidths γ =
16 Hz and need a phase-stability better than 0.01◦.

Directionality of disturbances

The cavity dynamics around an operating point (6.19) is rotationally invari-
ant, in the sense that its complex-valued dynamics is linear (corresponds to
time-invariance of the physical bandpass system). However, the disturbances
dg and db have far from circular distributions, and rather tend to have cer-
tain directionality (Section 4.5).

For example, RF amplifiers such as klystrons, typically have more phase
variations than amplitude variations, corresponding to that the dg is domi-
nantly imaginary. Beam-current ripple on the other hand affects the magni-
tude of ib (corresponding to a real db)9. The directionality of these distur-
bances are readily visualized as in Figure 6.5, using the phasor diagrams of
Section 6.5. For circular accelerators, synchrotron oscillations would corre-
spond to an imaginary db.

6.8 Parasitic modes

When parasitic modes need to be considered in addition to the accelerat-
ing mode, the subscript a will indicate the accelerating mode, and numeric
subscripts 1, 2, . . . will indicate parasitic modes.

8Personal communication with Larry Doolittle, LBNL.
9There will also be variations in the beam phase (arrival time of the bunches) due

to field-control errors in the upstream cavities; but with satisfactory field control these
variations should be small.
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Terms of
d

dt
a

γib0db

γfg0dg

Figure 6.5 Visualization of the directions in which phase variations of
the RF drive (dg purely imaginary) and amplitude variations of the beam
current (db purely real) affect the cavity field. The effect on the accelerat-
ing cavity mode obtained by filtering the illustrated variations through the
transfer function Pa(s) in (6.20).

Model in physical units

The complex envelopes of the parasitic modes in (6.2) satisfy essentially the
same dynamics as the accelerating mode, namely

dAk

dt
= (−γk + i∆ωk)Ak +

√
2γextkFg +

αk

2
Ib.

The phase of complex envelope Ak of the kth mode has been defined so that
the coefficient in front of Fg is real. Note that the cavity–beam-coupling
parameters αk of the parasitic modes in general are complex. The coupling
between the cavity modes and the pickup probe is quantified by complex
coefficients ck, i.e., the voltage sensed by the pickup probe is given by

Vpu =
N∑

k=a,1,2,...

ckAk.

The model is conveniently visualized with the block diagram in Figure 6.6.

Example: Figure 6.7 shows the variation of the cavity–beam-coupling pa-
rameter of the accelerating mode and a few parasitic modes of the supercon-
ducting cavities along the ESS proton linac.
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Figure 6.6 Block diagram of how the accelerating mode and the parasitic
modes of a cavity couple to the RF system (through the power coupler and
the pickup probe) and the beam. The coefficients ck quantify the coupling
between the modes to the pickup probe.
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Figure 6.7 The cavity–beam-coupling parameter as a function of the
particle velocity for the accelerating mode and the closest parasitic modes of
the superconducting cavities along the ESS linac. The relation between the
cavity–beam-coupling parameter and the more commonly used parameter
r/Q is given in Remark 6.1. Data provided by Aaron Farricker.
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Figure 6.8 Normalized model of a cavity with parasitic modes which is
derived from the model in Figure 6.6 by normalizing according to (6.28)

Normalized model with parasitic modes

For field control analysis, it is useful to normalize the model in Figure 6.6 as
in the previous section, by introducing the dimension-free variables

ak :=
1

Aa0
Ak (6.28a)

fg :=
1

γaAa0

√
2γextaFg (6.28b)

ib :=
1

γaAa0

αaIb

2
(6.28c)

vpu := Vpu/(caAa0). (6.28d)

This gives the model in Figure 6.8.

Lumped model

The model in Figure 6.8 can be lumped into the one in Figure 6.9, where

Pa(s) =
γa

s + γa − i∆ωa
,
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Pa(s)

Px(s)

Pxb(s)

fg

ib

aa

vpu

Figure 6.9 Lumped normalized cavity model which is equivalent to the
one in Figure 6.8, but with the dynamics of the parasitic modes lumped
into Px(s) and Pxb(s), which are defined in (6.29) and (6.30). Note that
Pxb(s) = 0 for elliptical cavities operating at their design velocity (typically
holds for electron cavities), see Remark 6.12.

defined in (6.20), is the dynamics of the accelerating mode,

Px(s) := γa

N∑

k=1

√
2γextk√
2γexta

ck

ca

1
s + γk − i∆ωk

(6.29)

is the transfer function from fg, through the parasitic modes, to vpu, and

Pxb(s) := γa

N∑

k=1

αk

αa

ck

ca

1
s + γk − i∆ωk

(6.30)

is the transfer function from ib, through the parasitic modes, to vpu.

Simplified, normalized model

In many cases it is acceptable to approximate the model in Figure 6.9, with
the one in Figure 6.10, where

Pcav(s) := Pa(s) + Px(s). (6.31)

The model in Figure 6.10 has only one input, which simplifies analysis.
Comparing the simplified model to the full model in Figure 6.8, we see

that the simplification amounts to putting αn = αa
√

2γextk/
√

2γexta. This
approximation is far from true, but since Pa(s) is narrowband, these approx-
imation errors have little impact on aa, which is the quantity of interest. The
fact that the spectrum of ib tends to be narrowband around zero frequency
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fg

ib

Pcav(s)

Pa(s)
aa

vpu

Figure 6.10 Simplified normalized cavity model, obtained from the
model in Figure 6.9 by replacing the coupling Pxb(s) between the beam and
the pickup probe through the parasitic modes by Px(s). The error due to this
approximation is typically small, since the spectrum of the beam-variations
tend to narrowband around the nominal RF frequency. Note that this model
does not capture the issue with beam-loading induced control errors that is
discussed in Section 11.6. Recall from (6.31) that Pcav(s) = Pa(s) + Px(s).

x1 x2 x3 x4 x5 x6

Re{FgeiωRFt} Re{VpueiωRFt}
power

coupler
pickup
probe

Figure 6.11 Illustration of a 6-cell elliptical cavity. The following quanti-
ties of the bandpass model in Appendix D are indicated: the RF drive, the
probe voltage, and the electromagnetic-field amplitudes in each cell. The
fields in the cells are weakly coupled and give rise to the same type of mode
shapes as for a chain of weakly-coupled oscillators.

and that notch filters often are introduced at the parasitic-mode frequencies,
further reduce the errors resulting from this approximation.

However, the issue with beam-loading-induced field-control errors that is
discussed in Section 11.6 is not captured by this simplified model.

6.9 Parasitic same-order modes of elliptical multicell
cavities

Elliptical multicell cavities (Figure 6.11) are suitable for accelerating particle
beams with velocities greater than 0.5c (half the light speed). However, these
cavities intrinsically have parasitic electromagnetic modes that are close in
frequency to the accelerating mode. These modes are known as same-order
modes, or fundamental-passband modes, and arise from the coupling between
the fundamental electromagnetic modes of each cell. They correspond to the
eigenmodes of a chain of weakly coupled oscillators.
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Chapter 6. Modeling: The Accelerating Cavity

The dynamics of the parasitic same-order modes of elliptical cavities are
captured by the general mode structure in Figure 6.8. However, due to the
special cavity geometry the parameters γextk, ck and ∆ωk are related and
depend only on the number of cells N , the cell-to-cell coupling factor kcc,
the coupling γpc between the waveguide and the first cell through the power
coupler, and the cell resonance frequency ωcell.

Remark 6.11 There are two different definitions of the cell-to-cell cou-
pling factor kcc in the accelerator literature. There is the full-passband-width
definition, for which kcc is the relative frequency difference between the same-
order modes with lowest and highest frequencies [Wangler, 2008; Sekutowicz,
2010]. For this definition, kcc corresponds to the per-cycle decay rate of a
cell’s electromagnetic energy due to coupling to one neighboring cell. There
is also the half-passband-width definition [Ferrario et al., 1996; Padamsee et
al., 2008], for which kcc is half as large. In this thesis we will use the second
definition since this simplifies the computations in Appendix D.

Notation. Instead of labeling the modes by a, 1, 2, . . . as in the previous
chapter, we will use the standard notation for same-order modes. In an N -cell
cavity, the modes are referred to as the π/N mode, the 2π/N mode, up to the
π mode. This naming indicates the cell-to-cell phase of the mode. Typically,
it is the π mode that is used as the accelerating. We will denote the π mode
with a subscript π, and quite opposite to the previous convention, denote the
nπ/N mode by a subscript n.

Parameters for the dynamics parasitic same-order modes

The coefficients of the parasitic same-order modes (n < N) are shown Ap-
pendix D to be related to the coefficients of the π mode according to

∆ωn ≈ (R2
n − 2)kccωcell (6.32)

γextn = R2
nγextπ (6.33)

cn = (−1)N−nRn, (6.34)

where Rn :=
√

2 sin(nπ/(2N)). Values of R2
n for some different N and n are

shown in Table 6.4. The resistive decay rate equals γ0 for all the modes. The
parameters for the same-order modes of the ESS medium-β cavities are given
in Table 6.5.

With the relationships (6.32)–(6.34) the general model in Figure 6.8 sim-
plifies to the special form in Figure 6.12.

Remark 6.12 When the particle velocity equals the design velocity of an
elliptical cavity it holds that αk = 0 for the same-order modes. This relation
typically always holds for elliptical cavities in electron linacs, since electrons
quickly approach the speed of light, due to their small rest mass.
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6.9 Parasitic same-order modes of elliptical multicell cavities

Table 6.4 The ratio γextn/γextπ = R2
n = 2 sin2(nπ/(2N)) evaluated for

different values of n and N .

N n

8 7 6 5 4 3 2 1

5 1.81 1.31 0.69 0.19
6 1.87 1.50 1.00 0.50 0.13
9 1.94 1.77 1.50 1.17 0.83 0.50 0.23 0.06

γπ

s + γπ − i∆ωπ

fg
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γπ

s+γN-1−i∆ωN -1

αN -1
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RN -1 −RN -1aN -1
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απ

R1 (-1)N -1R1a1

γπ

s + γ1 − i∆ω1

aπ

...

...
...

...

vpu

Figure 6.12 Normalized cavity model with parasitic same-order modes.
A subscript n indicates the nπ/N mode.

Table 6.5 Parameters of the same-order modes of an ESS medium beta
cavity (6 cells, kcc = 0.0077). The table shows the offset frequencies ∆ωn

relative to the accelerating π mode and the external decay rates γextn which
correspond to the (half) bandwidths of the modes. Note that it is only the
5π/6 mode that is within 1 MHz of the accelerating mode.

π 5π/6 4π/6 3π/6 2π/6 π/6

∆ωn [MHz] 0 −0.7 −2.7 −5.3 −8.0 −10
γextn [Hz] 500 940 750 500 250 70
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Transfer function from RF drive to pickup probe

For field control analysis, it is important to be familiar with the transfer
function from fg to vpu in Figure 6.12; it is given by

Pcav(s) = γπ

N∑

n=1

(−1)N−n R2
n

s + γn − i∆ωn

=
γπ

γextπ

N∑

n=1

(−1)N−n γextn

s + γn − i∆ωn
, (6.35)

where γn := γ0 + γextn is the total decay rate of the nπ/N mode. For su-
perconducting cavities with γ0 ≪ γextn, i.e., γextn ≈ γn, (6.35) simplifies
to

Pcav(s) =
N∑

n=1

(−1)N−n γn

s + γn − i∆ωn
. (6.36)

Transfer function characteristics of elliptical multicell cavities

Let us observe some characteristics of the transfer function (6.35). First, since
the numbers γn are small relative to the differences between the numbers
∆ωn, the transfer function Pcav(s) has sharp resonance peaks at (baseband)
frequencies ∆ωn. Note that ∆ωn < 0 for n < N , so all parasitic same-order
modes have negative (baseband) frequencies.

For superconducting cavities (γ0 ≪ γextn) we see from (6.36) that all
peaks approximately have magnitude one. For the opposite extreme of γ0 ≫
γextn which could correspond to S21-measurements of a room-temperature
cavity with a network-analyzer, we have instead that the peak magnitude
of the nπ/N mode equals γextn/γextπ = R2

n. See Table 6.4 for values of
R2

n for some different number of cells. Other cases fall in between these
extremes. See Figures 6.13 and 6.14 for Bode magnitude plots of the extreme
cases. Figure 6.14 additionally shows the good agreement of the model to
measurement data.
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Figure 6.13 Bode magnitude plot of the transfer function (6.35) with the
parameters of a superconducting 6-cell ESS medium-β cavity which has the
nominal parameters ωπ/(2π) = 704.42 MHz, kcc = 0.0077 (half-passband-
width definition), γextπ/(2π) = 500 Hz, and γ0 = 0.
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Figure 6.14 Parameter fit of the model (6.35) to the measured transfer
function of a room-temperature ESS medium-β cavity (6 cells). The data
was frequency-shifted so that the peak of the π mode was at zero frequency.
The resistive decay rate was estimated to γ0/(2π) = 35 kHz. Note that for
superconducting cavities where the external decay rate γextπ is significantly
larger than γ0 the resonance peaks have equal magnitudes (Figure 6.13), but
for a normal conducting cavity as in this figure, the peak magnitudes are
related by R2

n. Note also that the models in this and the preceding figure are
normalized with respect to the accelerating mode; the peaks of the normal
conducting cavity would all be lower than the peaks of the superconducting
cavity in absolute terms. The measurement was done by P. Pierini, ESS.
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7

Modeling: Summary

7.1 Modeling for cavity field control

7.1.1 Full nonlinear model

Collecting the results from the two previous chapters we get the baseband
model of the field control loop in Figure 7.1, where τLLRF is the delay from
signal processing in the LLRF system, τ1 is the propagation delay of the
electric waves from the RF amplifier to the cavity, and τ2 is the propagation
delay from the cavity pickup probe to the LLRF system. The factors e−iθ1

and e−iθ2 are phase shifts from considering the propagation delays in the
baseband (see Section 4.2). We have left out the phase shift between the
LLRF system and the amplifier since we will not consider inner loops around
the amplifier.

The control objective is to keep the mode amplitude of the accelerating
mode, aa, at some nominal value a⋆

a, which due to normalization is given
by a⋆

a = 1. However, the mode amplitude aa is not directly measured by
the LLRF system, since the measurement vpu from the pickup probe is a
linear combination of all the mode amplitudes, including those of parasitic
modes. The problem of deciding the setpoint ysp so that aa is controlled to
its desired value is an interesting calibration problem. Another problem is to
decide on a desirable value for aa. These questions are outside the scope of
cavity field control. We will simply assume that aa should be controlled to
its nominal value of 1.

7.1.2 Linear large-signal model

A full model as the one in Figure 7.1 is straightforward to implement and
simulate using a modeling language such as Simulink. However, we will make
some minor simplifications that allow for linear control analysis and a better
understanding of the field control dynamics. All these assumptions are rather
standard in the field control literature.
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Chapter 7. Modeling: Summary

field
controller

Pamp(s) e−iθ1

Fig. 6.9

e−iθ2 e−sτ

u fg

uILC

ib

aa

ysp

y

dg

vpu

n

Figure 7.2 Linear, large-signal, baseband model of the field control loop,
which has been derived from the nonlinear model in Figure 7.1 through
some simplifying assumption.

1. The amplifier will be assumed to be linear. Often the amplifier is oper-
ated with some margin from saturation (back-off) which makes this a
reasonable approximation. If amplifier nonlinearity is an issue, it could
be considered to invert the nonlinearity in the controller (i.e., predis-
tortion) [Omet, 2014], in which case the amplifier would behave very
linearly.

2. We will model the impact of the RF amplifier’s gain and phase vari-
ations (which are assumed to be small) by an additive disturbance
fg0dg as in (6.25). This approximation assumes that gain and phase-
shift variations are small, and that the amplifier drive is close to its
nominal value.

For klystrons we have that dg = g̃amp − iθ̃amp = (5/4 − iξθ) dps, where
ξθ is the phase-pushing factor and dps is the variation of power-supply
voltage (see Section 5.5).

3. It will be assumed that the controller operates in continuous time. The
typical controller frequencies for field controllers are on the order of
tens of MHz, while typical closed-loop bandwidths of field controllers
are on the order of 100 kHz, making this an acceptable approximation
[Åström and Wittenmark, 1997].

4. The discrete digital-downconversion filter will be neglected. Its dynam-
ics could be approximated by increasing the loop delay, see Chapter 12.

We will also lump the time delays into τ := τ1 + τ2 + τLLRF.
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7.2 Types of disturbances

C(s) eiθadj

yspe−iθ̂2
+

y −

uILC

e u

Figure 7.3 Typical structure of a field controller.

Remark 7.1 We could of course have kept the discrete-time controller,
modeled the field-control loop by its zero-order hold equivalent, and then
analyzed the resulting discrete-time system. This would have been somewhat
more correct but the continuous-time formulation simplifies the exposition
and most textbooks in process control take this approach.

7.1.3 Linear small-signal model

To study field control performance around a nominal operating point (flat-
top operation), it is helpful to consider the relative error z = a − 1 of the
accelerating mode, as in Section 6.7.

We will assume that the controller has the form in Figure 7.3, and since
we are considering the dynamics around a nominal operating point, we can
neglect uILC. We will also assume that the loop-phase adjustment angle is
chosen so that θadj = θ1 + θ2. For the analysis we will do, we may assume
that θ2 = 0 (this corresponds to re-defining the phase at which the inputs
and outputs of the controller are considered).

We will use the simplified cavity model in Figure 6.10, and lump the two
disturbances into one1,

d = fg0dg + ib0db. (7.1)

with these simplifications we get the model in Figure 7.4. It may seem that
we have made many approximations in this and the previous subsection, but
all of them are very reasonable since the involved components (except the
amplifier), have linear, well-behaved dynamics. A simple model as the one
in Figure 7.4 thus captures the essential aspects of field control around a
nominal operating point.

7.2 Types of disturbances

For pulsed linacs it is meaningful to separate the disturbances acting on the
field control loop into those that are repetitive from pulse to pulse, and those
that are not.

1If the disturbance dg is not stationary, then it should be delayed by τ1 in (7.1).
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C(s) Pamp(s) Pcav(s)

Pa(s)

e−sτ

the accelerating mode

uysp = 0 +

d z

y

−

n

Figure 7.4 Small-signal version of the model in Figure 7.2. The loop
phase is assumed to be perfectly calibrated. We have reused y and u for
denoting the small-signal variations of the measured and controlled signals.

For continuously operating linacs one may use repetitive control to reject
repetitive disturbances of a certain frequency [Inoue et al., 1981; Hara et al.,
1988; Wang et al., 2009], but we will not consider this topic further2.

Repetitive disturbances

Disturbances that are similar from pulse to pulse include

• The nominal beam pulse ib.

• Variations of ∆ωa, from mechanical deformation of the accelerator cav-
ity caused by the Lorentz force3.

Since these disturbances can be anticipated, it is in principle possible to
cancel them completely by adding a suitable signal uILC[k], which is syn-
chronized to the start of the beam pulse, to the control signal. A common
technique for updating the compensation signal uILC[k], based on the control
error e[k] in the previous pulse, is iterative learning control (ILC)4. We will
not consider this topic in this thesis and refer to the ILC literature [Norrlöf,
2000; Bristow et al., 2006; Rogers et al., 2010].

Non-repetitive disturbances

Disturbances which are not repeatable from pulse to pulse include

2Historic remark: Repetitive control was developed to improve the control performance
of a synchrotron magnet power supply [Inoue et al., 1981].

3The electromagnetic field acting on the cavity walls.
4Frequently referred to as adaptive feedforward in the accelerator literature.
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7.2 Types of disturbances

• variations of the beam current (db),

• variations of the detuning ∆ωa due to microphonics5,

• spurious noise from the RF amplifier (dg),

• switching ripple from the amplifier’s power supply (dg)
(unless it is synchronized to the pulse6).

In some cases, it is possible to measure these disturbances and reduce their
impact through feedforward. However, this is often challenging due to the
fast time scales, and the quality of typically available measurements. Except
for feedforward, there is no way to avoid that these disturbances give rise to
field errors. The only way to reduce the errors is by feedback.

Remark 7.2 With feedforward from beam-current monitors (BCMs) it
could be possible to reduce the impact of non-repetitive beam-current varia-
tions. The effectiveness depends on the time-delay of the feedforward signal
relative to the beam. Even if the feedforward correction arrives later than
the disturbance it may still improve the performance7. The scheme is more
effective for ion linacs where the initial beam velocity is relatively low. Ana-
log feedforward of beam current variations was discussed in [Jameson and
Wallace, 1971]. See also [Butkowski et al., 2018].

Example: Beam current variations at ESS

The ESS will have a pulsed microwave discharge ion source [Neri et al., 2014;
Celona et al., 2016] that generates free protons (H+) by ionizing hydrogen
gas (H2) to a plasma. From the plasma, which is confined by magnetic fields,
a proton current of up to 70 mA is extracted by a 75 keV potential.

From a field control perspective, the most important characteristic of an
ion source is the beam current variations. For overall accelerator performance
it is typically more important with a low beam emittance.

A normalized beam pulse from the ESS ion source together with its repet-
itive and non-deterministic components are shown in Figure 7.5. The repeti-
tive component can be canceled by iterative learning control while feedback
is necessary to cancel the non-deterministic component. An estimate of the
power spectrum of the non-deterministic components of the ESS beam pulse
is shown in Figure 7.6.

5Unwanted mechanical vibrations, for example, from nearby traffic or the cryo plant.
6Good rejection of repeatable switching ripple has been demonstrated in practice

by synchronizing the switching pattern to the RF pulse. [Personal correspondence with
Thomas Schilcher, Paul Scherrer Institute].

7Investigations by B. Bernhardsson for the ESS linac, based on the beam spectrum of
the LINAC2 ion source, indicated that with a delay of 0.5 µs, the errors could be reduced
by 40 %, under ideal conditions. A delay of 1 µs gave an error reduction by 25 %.
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Figure 7.5 Top: Normalized beam pulse from the ESS ion source (mag-
nitude 62.5 mA before normalization). Note that the beam pulse is shorter
than the nominal length of 2.86 ms. Bottom row: The beam pulse can be
divided into a repetitive component and a non-deterministic component.
Additional info: The data (49 pulses) was collected on 2019-07-02 by Ry-
oichi Miyamoto, ESS. The measurement is from downstream the LEBT
chopper and has been truncated according to the 10 ns rise time of the
MEBT chopper (which is not installed). The ripple characteristics depend
on several tuning parameters which have not yet been decided.
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Figure 7.6 Estimated power spectral density of the non-deterministic
components in the beam pulse from of the ESS ion source.
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7.3 Parameter variations

7.3 Parameter variations

The disturbances in the previous section enter additively in the linearized
model in Figure 7.2, but from the original nonlinear model in Figure 7.1, we
see that some of them correspond to parameter variations in the linearized
model. In this section we briefly mention some of these parameter variations.
Neither of them tends to be severe enough to warrant the use of an adaptive
controller, but it is prudent to give them some attention when considering
controller robustness.

Droop. In pulsed linacs the supply voltage to the RF amplifiers com-
monly decreases (droops) during the pulse. As discussed in Section 5.5.3,
this changes the gain and phase-shift of the RF amplifier through gain and
phase pushing. Assuming a phase-pushing factor of ξθ = 10 °/% then 1 %
droop gives a phase shift of θ̃amp = 10°. As will be discussed in Section 8.4,
this may give a phase-margin reduction of up to 10° which is significant.

Temperature variations. Temperature variations change the electrical
length of waveguides and RF cables, which correspond to variations of the
phase shifts θ1 and θ2 in Figure 7.2. Variations of up to 10° per day (correlated
with the building temperature) were reported in [Brandt, 2007]. The temper-
ature variations are slow, and the variations in θ1 and θ2 can be handled by
re-calibrating the controller’s phase-adjustment angle θadj (see Figure 7.3).
Loop-phase adjustment will be further discussed in Section 8.4.

Detuning variations. The detuning ∆ωa may vary due to Lorenz force
detuning and microphonics. However, the variations are small (hundreds of
hertz) compared to the typical bandwidths of field-control loops (tens of
kilohertz), the variation in the dynamics should not be significant. The inter-
action between detuning variations and mechanical resonance modes of the
cavity may (for very narrowband cavities) give rise to so-called ponderomo-
tive instabilities [Delayen, 2006], however this topic is outside the scope of
this thesis.

Variations of parasitic-mode frequencies. The resonance frequencies
of the parasitic modes ∆ω1, . . . , ∆ωN vary for the same reasons as the detun-
ing ∆ωa. Chapter 11 will discuss how notch filters can be used for avoiding
feedback instability from parasitic modes. It is important that these notch
filters are sufficiently wide to handle variations of the ∆ωk’s.
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8

Essentials of Cavity Field

Control

To explain the essential principles of cavity field control in the clearest way
possible we will in this chapter assume that: the detuning is zero (∆ω = 0),
the loop phase is perfectly adjusted, there are no parasitic modes, and the
RF amplifier is ideal; these assumptions give the block diagram in Figure 8.1.

8.1 A water-tank analogy

The process in Figure 8.1 can be recognized as a first-order system with a
time-delay. The dynamics are the same as for a water tank linearized around
a nominal operating point, together with a measurement delay. A difference
is that the signals in Figure 8.1 are complex valued, but for the discussions
in this chapter (except Section 8.4), this is of no importance.

C(s)
γ

s + γ

e−sτ

controller cavity

u zysp = 0 +

d

−

n

Figure 8.1 A simplified model of a field-control loop that captures many
of the important control aspects.
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8.1 A water-tank analogy

Water level apump

γu

γ0a γexta

C(s)

LT

Figure 8.2 From a control perspective, the cavity field control loop can
be thought of as a water tank (with a complex-valued water level). The
water level corresponds to the amplitude of the electromagnetic field. (LT
= level transmitter)

A water tank with a time-delay is a common first lab process in un-
dergraduate control education [Åström and Östberg, 1986], see Figure 8.2.
Practically all students are able to achieve acceptable performance with a PI
controller that they tune by trial and error [Tank Lab]. This indicates that it
should be possible to achieve reasonable field control performance by rather
simple means.

Process models consisting of a first-order system together with a time-
delay are studied extensively in the process control literature, where they are
referred to as FOTD models. A good book on the control of such systems is
[Åström and Hägglund, 2006].

Differences

The field control problem has two very important features which are not
captured by the water-tank analogy, namely

• the need for loop-phase adjustment and

• parasitic modes.

Either one of these features is likely to cause instability if not properly mit-
igated. However, if the loop-phase is properly adjusted (Section 8.4) and
notch filters are introduced at the frequencies of problematic parasitic modes
(Chapter 11) then the resulting system is well described by a water tank with
a delay.

Some other, less crucial, differences are that the disturbances and the
objective function have certain directionality in the complex plane (Chap-
ter 15.2), the measurement process, i.e., the digital downconversion is a bit
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Figure 8.3 Normalized transfer function for the accelerating mode of a
superconducting cavity with 500 Hz bandwidth.

more involved than measuring the water level (Chapter 12), and the detuning
makes the dynamics for positive and negative frequencies slightly different.

While the water-tank analogy captures many of the essential control as-
pects of the field-control problem, it should be emphasized that the physical
behavior of the water tank and cavity system differ significantly1.

8.2 Basic aspects of cavity field control

8.2.1 The need for feedback

Without feedback, the impact of relative amplifier disturbances dg and beam
variations db on the accelerating cavity mode is given by the signal d =
fg0dg+ib0db in (7.1) filtered through Pa(s). The frequency response of Pa(s)
is shown in Figure 8.3. It is seen that the cavity acts as a low-pass filter; only
high-frequency disturbances are attenuated. With a feedback controller, it is
possible to reduce the impact of low-frequency disturbances.

8.2.2 Closed-loop transfer functions

The change in disturbance rejection due to a feedback controller C, is, as
discussed in Section 2.2, quantified by the so-called sensitivity function

S = 1/(1 + PC). (8.1)

The examples of transfer functions given in this chapter correspond to a
superconducting cavity with 500 Hz bandwidth controlled by a PI controller.

1The physics of electrical DC circuits can be described by hydraulic models but the
cavity model (6.8) is a baseband model of an RF system.
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Figure 8.4 Sensitivity function S = 1/(1 + P C) for a superconducting
cavity controlled with a PI controller.

The PI controller has high gain at low frequencies, which reduces the sensi-
tivity to low-frequency disturbance, see Figure 8.4. While the figure shows
an improved disturbance rejection for low frequencies, it also shows that dis-
turbances around 10–100 kHz are amplified. This is unavoidable and known
as the waterbed effect (recall Section 2.2).

8.2.3 Impact of load disturbances on field errors

With feedback, the transfer function from disturbances to field errors be-
comes

Gzd = Pa/(1 + PC) = PaS, (8.2)

A typical transfer function Gzd(s), together with the open-loop cavity dy-
namics Pa(s), are shown in Figure 8.5. Recall that, similarly to (6.27), we
have that the closed-loop transfer functions from relative amplifier variations
and relative beam variations, to field errors, are given by fg0Gzd and ib0Gzd.

8.2.4 Impact of measurement noise on field errors

The transfer function
Gzn = PaC/(1 + PC) (8.3)

quantifies the impact of measurement noise on the controlled signal z and
the response to setpoint changes. A typical transfer function Gzn is shown
in Figure 8.6.

For pulsed linacs, the step response characteristics can typically be im-
proved to acceptable levels using iterative learning control, so this is not a
crucial aspect in the design of C(s).

Typical field-control loops have bandwidths of about 30–100 kHz, so the
impact of measurement noise on field errors is, unlike the impact of load
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Figure 8.5 Transfer functions from disturbances d to field errors z, with
feedback (Gzd = Pa(1 + P C), solid line), and without feedback (Pa, dashed
line).
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Figure 8.6 The transfer function Gzn = PaC/(1 + P C) from measure-
ment noise n to field errors z.

disturbances, relatively similar for different cavities and linacs. For FEL
linacs, which require field errors below 0.01 %, the impact of measurement
noise through Gzn(s) is a concern. Nevertheless, field errors below 0.01 % are
achieved for these linacs. Hence, for field-error requirements of 0.1–1 % the
direct impact of measurement noise through Gzn(s) should be quite negligible
(assuming a decent LLRF system).

8.2.5 Impact of measurement noise on control signal activity

The transfer function

Gun = C/(1 + PC) = CS (8.4)

quantifies how measurement noise n is amplified to the control signal u.
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Figure 8.7 The transfer function Gun = C/(1 + P C) from measurement
noise n to the control signal u.

High control signal activity tends to give poor control performance due
to excitation of unmodeled dynamics and an increased impact of amplifier
nonlinearities. Another good reason to limit the control signal activity is to
avoid excessive transversal kick to the beam [Hellert and Dohlus, 2018]. This
effect cannot be seen or understood from the models that we have presented.

The effects of excessive control signal activity are hard to quantify, but
it is prudent to put conservative limits on control signal activity during pre-
liminary design and analysis. A high controller gain is typically used for
superconducting cavities, so a low-pass filter in the controller is needed to
limit the amplification of high-frequency measurement noise to the control
signal.

The transfer functions (8.1)–(8.4) are collectively known as the “gang of
four” [Åström and Murray, 2010] and capture the essentials of the closed-
loop control performance. Typical gang-of-fours for a superconducting cavity
and a normal conducting cavity are shown in Figure 8.8.

8.2.6 Stability

It is not sufficient to look at the magnitude of the closed-loop transfer func-
tion, but as discussed in Section 2.2, it is also important to consider stability
when feedback is involved. For the applications in this thesis, closed-loop
stability is conveniently verified by the Nyquist criterion (Section 2.2). The
Nyquist and Bode diagrams for the normal conducting and superconducting
cavities from our previous examples are shown in Figure 8.9.
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Figure 8.8 The transfer functions known as the “gang of four” for a nor-
mal conducting cavity (12 kHz bandwidth, orange lines) and a supercon-
ducting cavity with (0.5 kHz bandwidth, blue lines). Both cavities are con-
trolled with PI controllers tuned to have a maximum sensitivity MS ≤ 1.6.
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Figure 8.9 Nyquist and Bode diagrams for a normal conducting and
a superconducting cavity controlled by a PI controller. The gray circle in
the Nyquist diagram corresponds to a sensitivity constraint of MS ≤ 1.6,
and the gray lines in the phase curve of the Bode diagram illustrate phase
margins of about 45°; both measures indicate good closed-loop robustness.
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8.3 Disturbance sensitivity vs. external coupling

The block diagram in Figure 8.1 suggests that the bandwidth γ = γ0 + γext

determines a field-control loop’s relative disturbance sensitivity and one is
led to believe that by decreasing γext (and thus γ) the disturbance sensitivity
could be made arbitrarily small (if γ0 = 0). The analysis in [Ludwig et al.,
2006] points in the same direction. However, this conclusion only valid if the
beam loading is negligible, an assumption that rarely holds.

In this section we clarify how the disturbance sensitivity depends on γ0,
γext, and γbeam (γbeam is the decay rate due to beam loading, see (6.17)).

To simplify the discussion, we will assume that ∆ω = φb = 0, in which
case γib0 = −γbeam and γfg0 = γ0 +γext +γbeam. This lets us re-write (6.27)
as

Pdg→z(s) =
γ0 + γext + γbeam

s + γ0 + γext
, (8.5a)

Pdb→z(s) =
γbeam

s + γ0 + γext
. (8.5b)

From these expressions we observe the following effects of decreasing γext.

• Decreasing γext reduces the impact of high-frequency RF-drive varia-
tions. However, the impact cannot be made smaller than

γ0 + γbeam

s + γ0
.

Relative to an optimally tuned cavity (γext = γ0 + γbeam), this cor-
responds to a reduction by factor smaller than 2. At low frequencies,
there are competing effects from the γext in the numerator and the
denominator of (8.5a).

• Decreasing γext hardly affects the impact of high-frequency beam vari-
ations. The impact of low-frequency beam variations is increased.

Increasing γext gives the opposite effects. In this analysis we did not account
for the effect of feedback. This effect is captured by the sensitivity function
S(s) = 1/(1 + C(s)P (s)) which was introduced earlier in this chapter. In-
creasing γext allows a slightly faster controller and slightly better rejection
of low-frequency disturbances.

It should be remembered that deviations of γext from γ⋆
ext = γ0 + γbeam

increase the steady-state power consumption (Section 6.6). Hence there is
limited freedom in selecting γext in practice. However, small changes of γext

from γ⋆
ext are tolerable. For example, 0.82γ⋆

ext < γext < 1.22γ⋆
ext gives less

than one percent increase in power consumption.
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.

C e−iθ1 Pa(s)

e−iθ2 e−sτ

ysp
u fg
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Figure 8.10 Linear, large-signal model of a field control loop, which is
a simplified version of the model in Figure 7.2. This model will be used to
illustrate the importance of correct loop phase adjustment. In this section
we will consider a linear controller C, but a nonlinear controller will be
considered in Chapter 10. The transfer function for the accelerating mode
is given by Pa(s) = γ/(s + γ − i∆ω).

8.4 Loop-phase adjustment

We will now discuss the importance of the loop-phase adjustment angle θadj.
Consider the model in Figure 8.10 which is a simplification (only considers
the accelerating mode) of the model in Figure 7.2. The transfer function of
the plant is given by

P (s) := e−iθP0(s), (8.6)

where P0(s) := Pa(s)e−sτ is the nominal transfer and θ := θ1 + θ2.
We will assume that the field controller has the structure in Figure 7.3

and thus has the transfer function eiθadjC(s). The open-loop transfer function
then takes the form

L(s) = eiθadjC(s)e−iθP0(s) = eiδL0(s) (8.7)

where L0(s) = C(s)P0(s), and δ = θadj − θ. It follows that the Nyquist curve
of L(s) equals the Nyquist curve of L0(s) rotated by δ radians around the
origin, see Figure 8.11.

If L0(s) has real coefficients (i.e., detuning and parasitic modes are ne-
glected) then it is clear that choosing δ = 0 gives the best robustness (Theo-
rem 3 on p. 52). It is also clear that a non-zero value of δ gives a phase-margin
reduction by δ radians (if the nominal feedback loop is stable).

To illustrate the importance of δ, note that the transfer function from the
control error e = −z to the corrective control action is given by

e−sτ C0(s)eiδ.
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-1

Re L(iω)

Im L(iω)
δ = 0
δ = π/6 ↔ 30°
δ = 2π/3 ↔ 120°

Figure 8.11 Nyquist curves of a normal conducting cavity controlled
with a proportional controller. It is seen that a loop-phase misadjustment δ
gives a corresponding phase-margin reduction which may cause instability.

Mode amplitude a

and control error e

a
e

Terms of
d

dt
a

γfg0

γib0

(−γ+i∆ω)a
∠fg

δ = 0δ = π/6
δ = π/3

Figure 8.12 Phasor diagram illustrating the effect of a loop-phase mis-
adjustment δ. The control action should ideally be applied in the direction
of the control error e = −z which corresponds to the solid orange arrow.
With a loop-phase misadjustment δ 6= 0, the corrective action is applied in
a less helpful direction. The extreme case of δ = π corresponds to positive
feedback which is likely to cause instability.

From this we see that the direction in which the control action is applied
depends on δ. A poorly chosen value of δ may give amplified control errors
and instability, see Figure 8.12.

Remark 8.1 In the field control literature the phase shift (θ1 + θ2) is
typically referred to as the loop phase [Brandt, 2007]. This terminology is
somewhat unfortunate, since in a control context, the term loop phase refers
to the quantity ∠L(iω) as a function of the frequency ω. Other texts refer
to θ1 + θ2 as the fractional time delay. In this thesis we will avoid referring
explicitly to θ1 + θ2, but will refer the process of choosing a suitable value of
θadj as loop-phase adjustment.

Remark 8.2 Loop-phase adjustment is also important for Cartesian feed-
back linearization of RF amplifiers, as was discussed in Section 4.6.
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Calibration of the loop-phase adjustment angle

To calibrate the loop-phase adjustment angle θadj, the most straight-forward
approach would be to do systems identification of L(s) and then adjust θadj

for optimal robustness. Realizing that adequate phase margins are most crit-
ical around the open-loop system’s cross-over frequency, the identification
should focus on this frequency range. Automation of this calibration task
was discussed in [Brandt, 2007]. Causes for variations in the parameters θ1

and θ2 were discussed in Section 7.3.

Remark 8.3 (Mathematics-free loop-phase adjustment) The fol-
lowing calibration approach2 has the advantage of being very simple:

1. find a value of θadj such that the field control loop is stable and denote
this value by θinit;

2. increase θadj from θinit until the feedback loop starts to oscillate and
denote the corresponding value of θadj by θmax;

3. decrease θadj from θinit until the feedback loop starts to oscillate and
denote the corresponding value of θadj by θmin; and finally

4. select θadj = (θmax + θmin)/2.

Remark 8.4 It might be tempting to estimate the loop phase by sim-
ply taking the argument of the steady-state response P (0). However, this is
not a good idea since this estimate would also include the “detuning angle”
tan−1(∆ω/γ), since P (0) = e−iθγ/(γ − i∆ω). It is not at low-frequencies
that the phases at positive and negative frequencies should be balanced, but
rather for frequencies around the open-loop cross-over frequency ωco. Namely,
one would like to have ∠L(iωco) = −∠L(−iωco). A better approach to loop-
phase calibration could be to excite the process with a real-valued (baseband)
signal 2 cos ωcot = eiωcot + e−iωcot and then compare the frequency shifts of
the positive and negative frequency components.

2Oral tradition of the field control community. The author learned about it from Mark
Crofford, SNS.
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9

Limits of Field Control

Performance

9.1 Introduction

An important aspect of control design is to decide on the controller
structure—it should be flexible enough to allow good control performance
but also as simple as possible for ease of understanding and implementation.
For field control it has been proposed to use: PI(D) control, linear–quadratic–
Gaussian (LQG) control [Baudrenghien et al., 2014], and Smith predictor-
based control [Simrock, 2005]. All these controllers types are linear and time
invariant (LTI). Regardless of the controller structure there are fundamen-
tal limitations on the achievable control performance. One such fundamental
limitation is given by Bode’s integral formula (2.7).

For LTI systems it is often possible to compute the best control perfor-
mance achievable by any LTI controller [Boyd and Barratt, 1991]. In this
chapter we will do this for the field control problem and compare the per-
formance of PI(D) controllers and the optimal LTI controller. The work in
this chapter was inspired by [Garpinger, 2009], where similar1 investigations
were made for low-order process models.

We will compare the performance of three classes of controllers:

• all linear time-invariant controllers C(s);

• PI controllers of the form

CPI(s) = K

(
1 +

1
sTi

)
· 1

sTf + 1
, (9.1)

where Tf is the time-constant of the low-pass filter; and

1The performance objective considered in [Garpinger, 2009] was the integrated absolute
value (L1 norm) of the control error and the load disturbance was assumed to be a step. In
this chapter we will minimize the rms control error and consider a slightly higher-frequency
disturbance spectrum.

117



Chapter 9. Limits of Field Control Performance

• PID controllers of the form2

CPID(s) = K

(
1 +

1
sTi

+
sTd

sTd/N + 1

)
· 1

sTf + 1
, (9.2)

where Td is the derivative time and N is a constant that limits the
derivative action at high frequencies.

To make meaningful comparisons, the field control requirements from
Section 8.2 are formulated mathematically in Section 9.2. In Section 9.3 we
provide the disturbance and plant model for the comparison. In Section 9.4 we
compare the performance of the optimal LTI controller to the performance
of optimal PI and PID controllers for different loop delays and different
levels of control signal activity. In Appendix E.1 we give some details on how
the optimal linear controllers were designed and in Appendix E.2 we briefly
discuss how the PI and PID controllers were tuned.

9.2 Mathematical formulation of control specifications.

In Section 8.2 we discussed that a good field controller should keep the field
errors small in the presence of load disturbances, avoid excessive control sig-
nal activity, and be sufficiently robust. Next, we formulate these requirements
mathematically using the signal and system norms from Section 2.3.

Cavity field errors. Denoting the spectrum of the normalized load dis-
turbances d by D(s), the resulting normalized error (rms) of the accelerating
mode’s amplitude is given by

normalized field errors (rms) = ||GzdD||2 .

The impact of measurement noise on field errors has not been included since
it should only be a concern for reaching the field errors necessary for FEL
linacs (see Section 8.2.4). Leaving this term out makes it possible to scale
the results to different levels of noise and disturbances.

Control signal activity. The control signal activity resulting from mea-
surement noise with spectrum N(s) is given by

control signal activity (rms) = ||GunN ||2 .

This control signal activity should be compared to the power overhead of
the RF amplifier. In the preliminary field control analysis for LCLS-II, the
control signal activity was constrained to 4 % rms [Doolittle et al., 2016].

2Another PID-controller parametrization [Åström and Hägglund, 2006] which only use
four parameters is CPID(s) = K(1 + 1/(sTi) + sTd)/(1 + sTf + (sTf )2/2). However, this
parameterization can sometimes give slightly worse than a PI controller [Garpinger, 2009].
This may seem confusing and therefore we consider the form (9.2).
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Robustness. The robustness of the feedback loop is conveniently quanti-
fied by the maximum value of the sensitivity function (8.1),

MS = sup
ω

|S(iω)| = ||S||∞ .

This robustness measure is, as we discussed in Section 2.2, more general and
convenient than the traditionally used gain and phase margins. A typical
upper bound on MS is between 1.4 and 2 with better robustness for smaller
values.

Mathematical formulation of the field control problem. We are
now in a position to formulate the field control problem mathematically.

Control Problem
From a given class C of LTI controllers, find the controller C that solves the
optimization problem

minimize
C ∈ C

∣∣∣∣
∣∣∣∣

Pa

1 + PC
D

∣∣∣∣
∣∣∣∣
2

(9.3a)

subject to

∣∣∣∣
∣∣∣∣

1
1 + PC

∣∣∣∣
∣∣∣∣
∞

≤ Smax (9.3b)
∣∣∣∣
∣∣∣∣

C

1 + PC
N

∣∣∣∣
∣∣∣∣
2

≤ Bun. (9.3c)

where D is the spectrum of load disturbances, N is the spectrum of measure-
ment noise, Smax is the limit on maximum sensitivity and Bun is the limit
on control signal activity due to measurement noise.

9.3 Problem formulation

Below we introduce the assumed process models P (s) and Pa(s), the distur-
bance spectrum D(s), and the measurement noise spectrum N(s).

Plant dynamics. We will consider the plant model in Figure 8.1 which
has the transfer function

P (s) =
γa

s + γa
Pamp(s)e−sτ .

For this model it was assumed that the detuning is zero to get a conjugate
symmetric transfer function. The assumption that the detuning is zero has
little impact on field control performance since the closed-loop bandwidth is
much larger than typical values of detuning.
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Table 9.1 Parameters used in the numerical experiments of Section 9.4.

Parameter Unit Value

Amplifier bandwidth, ωamp/(2π) MHz 1.5
Loop-delay, τ µs 1.0

n.c. s.c.
cavity cavity

Bandwidth of the accel. mode, γa/(2π) kHz 12 0.5

Two bandwidths γa of the accelerating mode will be considered: 12 kHz
which corresponds to the (normal conducting) DTLs at ESS and 0.5 kHz
which is typical for the superconducting cavities at ESS.

We also assume that θadj = θ = 0. The amplifier dynamics Pamp(s) is
given by (5.7). The parameter values that will be considered in the next
section are given in Table 9.1. The loop delay of 1 µs is typical for field
control loops and matches the expected loop delay at ESS (see Table 5.2).

Disturbance spectrum It will be assumed that the disturbances are ro-
tationally invariant and have a power spectral density

Φ(ω) = |D(iω)|2 with D(s) = 30 · (s + a)
s(s + b)

, (9.4)

where a = 2π · 3 × 103, and b = 2π · 3 × 104, see Figure 9.1. The large magni-
tude of |D(iω)| at low frequencies corresponds to amplifier droop and pulse-
to-pulse variations of the beam current, while the higher-frequency spectrum
corresponds to beam current ripple and switching ripple from the RF ampli-
fier’s power supply.

Measurement noise spectrum Since we only consider how the measure-
ment noise drives control signal activity we only model the broadband white
noise that mostly originates from the ADC. We will assume that the white
measurement noise is normalized to unity with respect to the Nyquist fre-
quency of the controller. This corresponds to

N(iω) = 1/
√

freg

where freg is a controller frequency. We will assume that freg = 100 ns which
is typical for current-generation LLRF systems. The normalization makes
it possible to compare the results for different noise levels and different con-
straints on control signal activity. The assumption of white noise also enables
a numerically better problem formulation to design optimal LTI controller.

White noise was also assumed in the field control analysis in [Serrano et
al., 2017]. For an example of receiver noise in an LLRF system see [Ludwig
et al., 2019, Fig. 1].
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Figure 9.1 Assumed load disturbance spectrum for the numerical exam-
ples considered in this section. Since we will consider the performance of
different control approaches relative to each other, the absolute scale of the
disturbance spectrum is not important.

9.4 Results

We consider the following nominal case: time delay L = 1 µs, maximum
sensitivity Smax = 1.6, and maximum control signal activity Bun = 30. For
this nominal a case, a comparison of the open-loop frequency responses and
the gang-of-fours for the considered controllers are shown in Figure 9.5 and
Figure 9.4. How the cavity field errors depend on the allowed control signal
activity Bun is shown in Figure 9.2 and how cavity field errors depend on
the time delay τ is shown in Figure 9.3.

Remark 9.1 The sensitivity constraint of MS ≤ Smax = 1.6 is moti-
vated by that MS ≤ 1.4 is commonly used in process control [Åström and
Hägglund, 2006]. In process control, the large number of controllers makes
it infeasible to obtain accurate process models and robustness is often more
important than pushing the performance to its limits.

The typical field control loop has linear dynamics (apart from the ampli-
fier) and for a billion-euro accelerator it is economically justifiable to spend
more time on system identification. This makes it reasonable to allow slightly
larger values of Smax which enables better control performance.

The nominal constraint Bun = 30 corresponds to that −60 dB measure-
ment noise gives to control signal variations of less than 3 % rms.
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Figure 9.2 Optimal control performance vs. allowed control signal ac-
tivity Bun, for different controller types. For a small value of Bun it is not
possible for the general LTI controller to use its flexibility to suitably shape
the open-loop dynamics, since this requires a large control signal. With
greater values of Bun, the performance advantage of the general LTI con-
troller over the PI and PID controllers increases. For the superconducting
cavity there is little advantage of using anything other than a PI controller.
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Figure 9.3 Field errors vs. loop delay τ (with Smax = 1.6 and Bun =
30).n It is seen that the achievable control performance, both for the normal
conducting and the superconducting cavity depends strongly on the time-
delay τ . This is most noticeable for the normal conducting cavity where the
control performance is almost proportional to the time delay.
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Figure 9.4 Comparison between the open-loop frequency responses for
three different controller types. Note that the Nyquist curve of the optimal
LTI controller in subfigure (a) makes a huge turn into the upper half plane
before going to zero for high frequencies.
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Figure 9.5 Gang of four for different controllers that have been optimized
for minimal field errors subject to the constraints MS ≤ 1.6 and ||Gun||2 ≤
30.
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9.5 Conclusions

From the Bode diagrams in Figure 9.4 we see that the open-loop trans-
fer functions for the different controllers are similar, with high gain at low
frequencies and roll-off for higher-frequencies. However, the optimal LTI con-
trollers do a better job of pushing up the loop gain at around 30 kHz, giving
better disturbance rejection around that frequency (see also the sensitivity
function in Figure 9.5). This is enabled by the high flexibility of the LTI
controllers which allows them to push the sensitivity function all the way to
the sensitivity constraint MS ≤ 1.6. This is also seen in Figure 9.4 where the
Nyquist curves for the LTI controllers tightly follow the sensitivity circles.

In order to both push up the loop gain at around 30 kHz, while still re-
specting the sensitivity constraint, the optimal LTI controller for the normal
conducting cavity makes a big turn into the upper half-plane before finally
going to zero for high frequencies. To implement such a controller in practice
is very challenging, and it would likely be sensitive to implementation errors
and process variations.

Field errors vs. control signal activity

From Figure 9.2 we see that control performance is strongly dependent on
the allowed control signal activity Bun, in particular for superconducting
cavities. Superconducting cavities have low bandwidths, so it is necessary to
increase the system bandwidth with a high-gain controller. The high gain
makes the controller sensitive to measurement noise and the constraint on
control signal activity leaves little freedom for the general LTI controller to
achieve better performance than the PI(D)-controllers.

With the given constraints on control signal activity there is little benefit
from using a more complicated controller than a PI controller for control-
ling superconducting cavities. For normal conducting cavities there are some
benefits of using a PID controller or a more complicated controller over a PI
controller. Note that decreased levels of measurement noise directly leads to
a corresponding allowed increase of Bun, and thus quite significant perfor-
mance improvements.

Field errors vs. loop delay

From Figure 9.3 it is seen that the field control performance is strongly
dependent on loop delay. In particular, for normal conducting cavities for
which the field error is almost proportional to the loop delay. This is because
the limiting factor on the control performance of the normal conducting
cavity is the robustness constraint MS ≤ 1.6, which becomes easier to satisfy
for shorter delays. For the superconducting cavity, the performance is also
limited by the constraint on the control signal activity.
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10

Cartesian vs. Polar

Feedback

10.1 Introduction

In the Section 8.4 we considered controllers of the form C(s) = C0(s)eiθadj .
If C0(s) has real coefficients it can be seen as a decoupled controller between
the real and imaginary parts of the measured signal and the control signal
with the decoupling matrix [Skogestad and Postlethwaite, 2007] given by the
rotation matrix

R(θadj) :=
[
cos θadj − sin θadj

sin θadj cos θadj

]
, (10.1)

see Figure 10.1a. We will refer to this controller structure as a Cartesian con-
troller. Modern LLRF systems rely on quadrature up- and downconversion
for interfacing the baseband field controller to the bandpass dynamics of the
RF system. For these platforms it is natural to use Cartesian feedback.

Another controller structure for (nonlinear) decoupled field control is the
polar controller where separate loops are used between the amplitudes and

−yRe

−yIm

Re ysp

Im ysp

C0(s)

C0(s)

eRe

eIm
R(θadj)

uRe

uIm

(a) Cartesian controller.

yA−

yφ −

|ysp|

∠ysp

CA(s)

Cφ(s)

eA

eφ

uA

uφ

(b) Polar controller.

Figure 10.1 Two alternatives to implement decoupled field control. The
rotation matrix R(θ) is defined in (10.1).
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phases of the measured and controlled signals (Figure 10.1b). This controller
structure is typical for previous-generation analog LLRF systems that used
amplitude and phase detectors for detecting the complex envelope of the
cavity signal. However, even for digital LLRF systems, there are certain ad-
vantages of polar feedback, in particular for circular accelerators [Salom et
al., 2017].

A number of publications have briefly touched upon various aspects of this
design decision between Cartesian and polar feedback [Pirkl, 1994; Garoby,
1996; Brandt, 2007; Plawski, 2014; Salom et al., 2017], often in the context
of analog LLRF systems. We are not aware of that the performance and
robustness around a nominal operating point has been analyzed, which is the
main topic of this chapter. We also discuss a number of additional aspects
for the case of linacs and digital LLRF systems.

For feedback linearization of RF amplifiers (Section 4.6 and [Ellingson,
2016]) there is similar design decision between Cartesian or polar feedback,
however the considerations are quite different from the field-control setting.

Remark 10.1 The terminology Cartesian and polar feedback was chosen
for consistency with the literature on telecommunications [Ellingson, 2016].
Existing field control literature often refer to the two approaches as IQ (in-
phase-and-quadrature) control and amplitude-and-phase control.

10.2 Small-signal robustness of polar feedback

We will consider the model in Figure 8.10 with the polar controller in Fig-
ure 10.1b. The transfer function of the plant is given, as in (8.6), by

P (s) = e−iθP0(s),

where P0(s) is the nominal open-loop transfer function and θ is a phase shift.

Polar feedback

The two controllers CA(s) and Cφ(s) in Figure 10.1b can be seen as interfaced
to the model in Figure 8.10 through the coordinate transformations

fC→Aφ(·) : x + iy 7→
(√

x2 + y2, arctan(y, x)
)

= (A, φ), (10.2a)

fAφ→C(·) : (A, φ) 7→ (A cos φ, A sin φ) = x + iy, (10.2b)

where arctan(·, ·) refers to four-quadrant inverse tangent. This is illustrated in
Figure 10.2. Note that the second output of fC→Aφ is not defined at (0, 0),
this would have to be handled in practical implementations. In an analog
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fIQ→Aφ

yA −

yφ −

|ysp|

∠ysp

CA(s)

Cφ(s)
fAφ→IQ

eA

eφ

uA

uφ

y u

Figure 10.2 Model for how a polar controller is connected to the
complex-baseband model in Figure 8.10.

LLRF system the polar transformations (10.2a)–(10.2b) would be implicitly
implemented with amplitude and phase detectors together with variable-
gain amplifiers and phase shifters. Digital implementations, using so-called
CORDICs, add a delay of about 15 clock cycles1 for each of the operations
in (10.2a) and (10.2b).

The controller in Figure 10.2 is nonlinear and it is thus challenging to
investigate global stability properties. We will not pursue this question here,
but one may note that polar feedback has worked sufficiently well to have seen
extensive practical use for field control. Our objective is instead to consider
robustness and local stability for operation around a nominal operating point
(a0 =1, fg0, y0, u0).

The qualitative behavior of polar feedback around the given operating
point is illustrated in Figure 10.3. It is seen that control errors are compen-
sated at an angle equal to the angle of the RF-drive phasor relative to the
cavity field. This angle equals 0 for a perfectly tuned cavity (∆ω = −Im γib0).

A quantitative analysis of the robustness and performance around the
nominal operating point is possible by linearizing the static nonlinearities
(10.2a) and (10.2b). Around a point x0 = x0Re + ix0Im = A0eiφ0 , we have

∂fC→Aφ

∂(xRe, xIm)

∣∣∣∣
(A0,φ0)

=




cos φ0 sin φ0

− 1
A0

sin φ0
1

A0
cos φ0


 =

[
1 0
0 1/A0

]
R(−φ0)

(10.3a)

∂fAφ→C

∂(A, φ)

∣∣∣∣
(A0,φ0)

=
[
cos φ0 −A0 sin φ0

sin φ0 A0 cos φ0

]
= R(φ0)

[
1 0
0 A0

]
, (10.3b)

1A total delay of 32 clock cycles for the two transformations was reported in [Salom
et al., 2017]. Delays of 10–15 clock cycles per transformation were reported by Christian
Amstutz, ESS (the original implementation is due to Fredrik Kristensen).
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Mode amplitude a

and control error e

a
e

Terms of
d

dt
a

γfg0

γib0

(−γ+i∆ω)a
∠fg

ũ

Figure 10.3 Illustration of the direction in which a polar controller ap-
plies the control action in response to a phase error. If the cavity is poorly
tuned (i.e., ∠fg0 6= 0) then, as illustrated in the figure, the control action is
not applied in the correct direction. Qualitatively this has the same effect
as a loop-phase misadjustment δ = ∠fg0.

R(−∠y0)
CA(s)

Cφ(s)
1

|y0|

ỹA

ỹφ

R(∠u0)
|u0|

ỹ ũ

Figure 10.4 Linearization of the controller in Figure 10.2 around its
nominal operating point. Small deviations of the control signal and mea-
sured signal are denoted by ũ and ỹ, respectively. By assuming Cφ(s) =
(|y0| / |u0|)CA(s) the controller becomes rotationally invariant, and can be
represented as a complex-coefficient LTI system.

where R(·) denote rotation matrices as in (10.1). Using (10.3) it follows that
the controller in Figure 10.2 can be linearized2 as in Figure 10.4.

If the disturbances and control objective are assumed to be rotationally
invariant then it follows from Theorem 2 on page 52 that it is optimal to
choose the amplitude and phase controllers so that

CA(s) = C0(s)

Cφ(s) = (|y0| / |u0|)C0(s).

With these choices, the polar controller in Figure 10.4 can be represented by

2Some justification of the linearizations (10.3) are in order. Typical field controllers
keep the field errors well within 1 %/1°, while the control signal activity is kept within
15 % due to the RF amplifier’s limited power-overhead. A similarly tuned phase loop gives
0.15 rad ≈ 9° phase variations of the control signal. This implies that our small-angle
approximations are reasonable.
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the complex-baseband system

CAφ(s) = ei(−∠y0+∠u0)C0(s). (10.5)

Assuming that the closed-loop system converges to the given operating
point (a0 = 1, fg0, y0, u0), we see from Figure 8.10 that u0 = eiθ1 · fg0, and
y0 = e−iθ2 · 1. Using these relations, we can re-write (10.5) as CAφ(s) =
ei(θ2+θ1+∠fg0)C0(s).

Together with the system dynamics (10.2) we get the open-loop system

LAφ(s) = ei∠fg0P0(s)C0(s). (10.6)

From (10.6) we see that ∠fg0 plays the role of δ in (8.7).
Recall from Section 6.6 that ∠fg0 = 0 corresponds to that the cavity

is optimally tuned. Consequently, a poorly tuned cavity degrades the ro-
bustness and performance of polar feedback in the same way as loop-phase
misadjustment does in the case of Cartesian feedback.

10.3 Aspects of Cartesian vs. polar feedback

We first summarize the implications from the previous section and then dis-
cuss other aspects of the choice between Cartesian or polar feedback.

Performance around a nominal operating point. With Cartesian
feedback it is crucial to adjust the loop phase with θadj to ensure stabil-
ity and acceptable phase margins. Although it is rather easy to calibrate
θadj, this entails additional system complexity. With polar feedback there is
no need to worry about the loop phase. It is instead the tuning of the cavity
that affects the performance.

Linearity and transients during pulsed operation. The Cartesian
controller is linear so transients from the pulsed operation and beam loading
are easily handled. With polar feedback the effective gain in the φ direction
depends on the magnitude of the input u and the output y. It is certainly
possible to patch this up by changing the gain based on |u| and |y| (instead
of using |u0| and |y0|), but this adds complexity.

For pulsed operation, one should probably also include a good initial guess
of the integral state in the φ-controller to minimize the required settling time
at every pulse. At y0 = 0 the phase is undefined, this is another issue that
needs consideration if polar feedback is used.

Implementation of iterative learning control for compensation of repet-
itive disturbances is less straight-forward if done in polar coordinates. One
may of course convert to Cartesian coordinates for the iterative learning con-
trol but this would add complexity.
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Control signal limitation and anti-windup. Limiting the output sig-
nal from the LLRF system is necessary to avoid over-driving the klystron.
The limitation is trivial to implement in polar coordinates, but is more com-
plicated in Cartesian coordinates if the number of clock cycles are to be
kept low. Similarly, the implementation of anti-windup is simpler with po-
lar feedback since it suffices to augment the amplitude loop with standard
anti-windup. Anti-windup for a Cartesian controller is somewhat more com-
plicated, see, Appendix F.

Delay. Implementing polar feedback on a digital LLRF system requires
two polar transformation to be implemented in hardware, which as discussed
above, adds a delay of about 30 clock cycles. This delay is significant com-
pared typical delays of the field-control loop and it would hence give notice-
ably reduced control performance.

10.4 Summary

With Cartesian feedback it is crucial to adjust the loop-phase-adjustment
angle θadj, either manually or with high-level software routines. However, for
digital LLRF systems it is rather straightforward to implement such a cali-
bration scheme. The loop phase is not an issue with polar feedback but it is
necessary to ensure that the cavity is properly tuned. All aspects of transient
operation are also more involved with polar feedback. Both controllers can
provide similar levels of performance but Cartesian feedback seems to be the
most convenient choice for typical field control loops (in linacs). The different
aspects that have been discussed are summarized in Table 10.1.

Table 10.1 Pros and cons of Cartesian and polar feedback for digital
field control (of linacs). Aspects for analog LLRF systems are mentioned in
[Simrock and Geng, 2013] and [Garoby, 1996].

Cartesian feedback Polar feedback

+ Simple and linear

+ Not sensitive to cavity tuning

− Control signal limitation and anti-
windup are slightly more compli-
cated to implement

− Loop-phase adjustment is crucial

+ No need to adjust loop phase

+ Easy implementation of saturation
and anti-windup

− Inherently nonlinear, transient oper-
ation needs extra consideration

− Reduced robustness for poorly tuned
cavities

− Increased loop delay
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11

Field Control of Cavities

with Parasitic Modes

11.1 Introduction

Accelerating cavities have infinitely many parasitic modes in addition to the
accelerating mode (Section 6.8). The interaction of these parasitic modes with
the beam and the field control loop is detrimental to beam quality and control
performance. The beam interacts with the modes that are close in frequency
to the machine lines (integral multiples of the bunch frequency). These in-
teractions need consideration to ensure sufficient beam quality [Ainsworth
and Molloy, 2012]. For field control it is the modes that are close to the RF
frequency that need consideration. It is often sufficient to consider just the
one or two parasitic modes closest to the RF frequency, see Figure 11.1.

An early work on field control of cavities with parasitic modes is
[Schilcher, 1998]. In [Pfeiffer et al., 2012; Schmidt et al., 2012], parasitic
modes were handled by designing an H∞ controller for a plant model on the
real TITO form (4.14). Another work is [Vogel, 2007] which only considered
the element GRe(s) of the real-coefficient TITO representation (4.14). This
approximation is valid if only the accelerating mode is considered but is not
adequate for analyzing parasitic modes, since in this case GIm(s) cannot be
neglected (cf. Section 9.6 in [Zhou et al., 1996] and Section 4.6).

In this chapter we present and compare different approaches for dealing
with parasitic modes in the control design, demonstrating how the complex-
coefficient SISO representation (4.13) brings insight to the analysis. The in-
vestigations in this chapter are qualitative in nature and are mainly intended
to demonstrate the utility of double-sided Bode diagrams and to illustrate
approaches for dealing with parasitic modes in the field control design.
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Figure 11.1 Pole–zero diagram and Bode diagram of the transfer func-
tion of a 6-cell elliptical cavity.

The danger of parasitic modes

Consider the plant model P (s) from Section 9.3 where the cavity model does
not include parasitic modes and assume that a nominal PI controller C0(s)
is used for this plant. The resulting Nyquist curve is shown to the left in
Figure 11.2.

If the same controller C0(s) is used when a parasitic mode is accounted
for in the cavity model we get the Nyquist curve to the right in Figure 11.2.
It is seen that there is a huge “bubble” from the parasitic mode encircling the
point −1 which implies that the closed-loop system is unstable. This simple
example illustrates that parasitic modes need to be considered in the design
of field controllers.

11.2 Process model

Throughout this chapter we will consider the model in Figure 7.4, where the
plant has the transfer function

P (s) = Pcav(s)Pamp(s)e−sτ .

The time delay and amplifier dynamics will be assumed to be the same as in
Section 9.3 (τ = 1 µs, ωamp = 1.5 MHz). The cavity will be assumed to have
a single parasitic mode

Pcav(s) =
γa

s + γa
− γ1

s + γ1 − i∆ω1
. (11.1)
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−1 Re L(iω)

Im L(iω)

−1 Re L(iω)

Im L(iω)

Figure 11.2 Left: Nyquist diagram for a superconducting cavity with-
out parasitic modes controlled by a nominal PI controller. The dotted line
indicates negative frequencies. Right: Nyquist curve for when the same nom-
inal controller is used for a cavity with a parasitic modes. It is seen that
the “bubble” from the parasitic mode encircles the point −1 which implies
closed-loop instability. This example illustrates that parasitic modes must
be considered in the controller design.

The cavity parameters will be taken as those of the ESS medium-β cavities,
namely, γa/(2π) = 500 Hz, ∆ω1/(2π) = 700 kHz, and γ1/(2π) = 930 Hz,
see Table 6.5. The red dashed line of Figure 11.1 shows the transfer function
(11.1) for these parameter values. In practice it could be necessary to consider
more than one parasitic mode, but in this chapter we consider only one mode
to simplify the exposition.

11.3 Control strategies for parasitic modes

To avoid instability from the parasitic mode, the corresponding bubble in
the Nyquist curve L(iω) = C(iω)P (iω) should not encircle or come close to
the point −1. This can be achieved in two ways:

1. By sufficient attenuation of the parasitic mode so that the open-loop
transfer function L(s) is well below 1 around this frequency ∆ω1.

2. By using the controller C(s) for phase adjustment of the open-loop
transfer function L(s) around ∆ω1 so that the bubble from the parasitic
mode is directed away from the critical point −1.

For the first option, the phase of L(iω) around ∆ω1 is not important for
stability and the closed loop is robust to variations of the loop delay. However,
for the second option, where the bubble from the parasitic mode is allowed
to remain be large, the design is sensitive to phase variations at the parasitic-
mode frequency ∆ω1.
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Attenuation

To attenuate the parasitic mode one may use a controller with a high-order
low-pass filter or a notch filter.

High-order low-pass filter. Augmenting the controller with low-pass fil-
ters of the form

F1(s) =
1

sTf + 1
(11.2)

and

F2(s) =
1

s2T 2
f + sTf + 1

, (11.3)

attenuates not only the closest parasitic mode with frequency ∆ω1 but also
higher-frequency parasitic modes. This strategy is not sensitive to the exact
frequency of the parasitic mode.

Notch filter. To specifically reduce the controller gain around ∆ω1 one
may use a single-sided notch filter of the form

Fn(s) =
s − iωn

s + ζnωn − iωn
(11.4)

and choose ωn = ∆ω1.

Remark 11.1 (Alternative notch filter implementation) A discrete-
time notch filter with very low implementation complexity is

F̃n(z) =
1
2

(
1 + z−Nn

)
, (11.5)

which was suggested in [Vogel, 2007]. Denoting the sampling frequency by h,
the filter (11.5) gives a notch at the frequency 1/(2Nnh). A more sophisti-
cated version of the filter that allows the notch frequency to be adjusted was
also presented in [Vogel, 2007]. Disadvantages of the filter (11.5) are that the
notch width cannot be adjusted and that it typically gives an unnecessarily
large phase drop in the control loop.

11.4 Numerical comparison

We have considered the same objective and constraints as in Chapter 9. The
disturbance spectrum and measurement noise spectrum was assumed to be
the same, as well as the constraints on robustness and sensitivity (Smax = 1.6
and Bun = 30). The approach to find the optimal controller parameters was
the same as for the PI(D) controllers in the Chapter 9 (see Appendix E.2).
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Figure 11.3 Pole–zero diagram and Bode diagram for the single-sided
notch filter Fn(s) in (11.4).

To enforce attenuation of the parasitic modes, the following constraint was
imposed in the controller design

|P (iω)C(iω)| ≤ 1 − 1
Smax

for |ω| ≥ ωlim. (11.6)

The frequency ωlim should be greater than the assumed cross-over frequency
and lower than the frequencies of the parasitic modes.

Controller structures

We considered PI controllers of the form

C(s) = K

(
1 +

1
sTi

)
F (s)eiθadj (11.7)

where the filter F (s) was chosen as either:

1. The first-order low-pass filter F1(s) in (11.3).

2. The second-order low-pass filter F2(s) in (11.3).

3. A third-order low-pass filter F3(s) := F1(s)F2(s).

4. A fourth-order low-pass filter F4(s) := F2(s)F2(s).

5. A first-order low-pass filter plus a notch filter, F1(s)Fn(s).

6. A second-order low-pass filter plus a notch filter, F2(s)Fn(s).
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Table 11.1 The performance for different approaches of dealing with par-
asitic modes in the control design. The table is normalized with respect to
the performance for a cavity model without parasitic modes controlled by
a PI controller with a first-order low-pass filter.

Type Controller Structure Objective

Baseline, no
parasitic mode PI+1st order filter 1.0

Attenuation of the PI+1st order filter (Figure 11.4) 4.4
parasitic mode PI+2nd order filter (Figure 11.5) 2.4

PI+3rd order filter 2.1
PI+4th order filter 2.0

PI + notch filter + 1st order filter 1.1
PI + notch filter + 2nd order filter 1.1

(Figure 11.6)

Phase adjustment of PI+1st order filter 4.3
the parasitic mode PI+2nd order filter 2.1

PI+3rd order filter (Figure 11.7) 1.6
PI+4th order filter 1.4

The reason for including the factor eiθadj in (11.7) is that the transfer
function P (s) has complex coefficients from the parasitic mode and hence it
is typically suboptimal to choose θadj = 0 as was done in Chapter 9.

Results

For the case of attenuation of the parasitic mode the filters 1–6 were consid-
ered and for the case of phase adjustment the filters 1–3 were considered.

The field errors relative to a baseline field control loop without parasitic
modes (i.e., the model in Chapter 9), are given in Table 11.1. For some
controller designs we have provided illustrative frequency domain plots, see
Figures 11.4 to 11.7. A frequency-domain comparison between four different
control approaches is provided in Figure 11.8.
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Figure 11.4 Attenuation of the parasitic mode with a PI controller with
a first-order filter. The constraint on sufficiently low attenuation of the
parasitic mode has resulted in a low cross-over frequency. This implies poor
rejection of low-frequency disturbances.
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Figure 11.5 Attenuation of the parasitic mode with a PI controller with
a second-order low-pass filter.
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Figure 11.6 Attenuation of the parasitic mode using a PI controller with
a notch filter and a second-order low-pass filter. Note that the parasitic mode
is attenuated by the notch filter so the second-order low-pass filter can have
a relatively fast time constant. This enables a higher cross-over frequency
and better rejection of low-frequency disturbances.
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Figure 11.7 Phase adjustment of the parasitic mode with a PI controller
and a third-order low-pass filter. Note the big bubble in the Nyquist curve
that results from that the parasitic mode is not attenuated. Even a small
changes in the loop phase might lead to that the bubble encircles the critical
point −1 which would give instability.

142



11.4 Numerical comparison

−103−104−105−106

10−2

100

102

|L(iω)|

103 104 105 106

Baseline (no parasitic modes)
PI + 1st order filter
PI + 1st order filter
PI + 2nd order filter
PI + notch + 2nd order filter
PI + 3rd order filter (phase adjust)

−103−104−105−106

10−2

10−1

100

|S(iω)|

103 104 105 106

−103−104−105−106

10−2

10−1

100

|Gzd(iω)|

103 104 105 106

Frequency [Hz]

Figure 11.8 Comparison between different control strategies to avoid
instability from parasitic cavity modes. It is seen that the achievable control
bandwidth depends on the controller structure. The controller with a notch
filter achieves the highest bandwidth.
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11.5 Conclusions

To avoid instability from parasitic cavity modes that are close in frequency to
the accelerating mode, the gain of the field controller must be reduced around
the problematic modes (unless the dubious approach of phase adjustment is
used). The performance degradation from parasitic modes depends strongly
on the strategy chosen for dealing with them, see Table 11.1.

One simple approach to deal with parasitic modes is to design robust
controller for a cavity model without parasitic mode and then augment it with
notch filters at the frequencies of problematic parasitic modes. A perhaps
better approach would be to include notch filters with desired characteristics
in the process model and then design the controller based on this model. The
main consideration with a notch-filter approach is that the zero frequencies of
the notch filters need to be matched sufficiently well with the parasitic-mode
frequencies.

If notch filters are not used, the bandwidth of the control loop must
be reduced to achieve acceptable robustness, see Figure 11.8. This leads to
reduced attenuation of low-frequency disturbances.

This investigations in this chapter have been far from exhaustive. The
relative performance of the different control approaches depend on the as-
sumed spectrum of the load disturbances. If the disturbance spectrum would
have been assumed to have more low-frequency character than the one in
Figure 9.1 then it would have been more important to push up the controller
bandwidth.
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11.6 Beam-loading-induced field-control error

In this section we discuss another problem with parasitic modes that arises
when a linac is calibrated with a lower beam current than nominal.

Typical field controllers measure and regulate the voltage vpu measured
by the cavity pickup probe to some given setpoint v⋆

pu. The actual objective,
however, is to keep the voltage of the accelerating mode aa at some desired
value a⋆

a. If parasitic modes couple to the pickup then beam loading may
induce a systematic field-control error δ = aa − a⋆

a. We demonstrate this
by using the lumped model in Figure 6.9 and by considering two situations,
tuning and operation.

A. Tuning

Let a⋆
a denote the accelerating-mode amplitude that is optimal from a

beam-physics perspective. During accelerator tuning, beam-physicists
search for a setpoint v⋆

pu, that makes field amplitude aa = a⋆
a. This is

typically done using short, or low-current pulses. In these situations
the beam will not significantly affect the cavity fields that it sees, and
we may assume that ib = 0. At the desired conditions (in stationarity),
we have, for some fA

g0,

v⋆
pu = [Pa(0) + Px(0)] fA

g0 (11.8a)

a⋆
a = Pa(0)fA

g0. (11.8b)

B. Operation

During nominal operation with beam loading ib0 the field-controller
keeps the pickup voltage at the desired setpoint v⋆

pu. This gives

v⋆
pu = [Pa(0) + Px(0)] fB

g0 + [Pa(0) + Pxb(0)] ib0 (11.9a)

aB
a = Pa(0)fB

g0 + Pa(0)ib0. (11.9b)

It can be seen that there will be a systematic error δ = aB
a − a⋆

a during
operation. To see this, note that from (11.8a) and (11.8b) we have v⋆

pu =
(Pa(0) + Px(0))/Pa(0)a⋆

a. Plugging this expression into (11.9a) gives

fB
g0 =

1
Pa(0)

a⋆
a − Pa(0) + Pxb(0)

Pa(0) + Px(0)
ib0.

Substituting this expression for fB
g0 in (11.9b) we see that

δ = aB
a − a⋆

a = −Pa(0)
Pa(0) + Pxb(0)
Pa(0) + Px(0)

ib0 + Pa(0)ib0

=
Px(0) − Pxb(0)
Pa(0) + Px(0)

Pa(0)ib0 ≈ (Px(0) − Pxb(0))ib0. (11.10)
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Note that δ is (approximately) proportional to ib0. From (6.29) and (6.30)
we see that δ is also (approximately) proportional to γπ.

Remark 11.2 There will be a non-zero error δ even if the beam does not
couple to the parasitic modes.

Remark 11.3 This issue cannot be observed from the simplified model
in Figure 6.10, since there Px(s) = Pxb(s).

Example: Let us compute the beam-loading-induced error for a medium-β
cavity at the European Spallation Source. These are superconducting, 6-cell
elliptical cavities with γπ/(2π) = 500 Hz and ∆ω5π/6/(2π) = −700 kHz. For
simplicity, include only the 5π/6 mode in Px(s), assume that the particle
velocity equals the cavity’s design velocity (Pxb(s) = 0), and that ib0 = 1.
This gives

δ = Px(0)ib0 ≈ γ5π/6

γ5π/6 + i∆ω5π/6
≈ γ5π/6

i∆ω5π/6
=

R2
5γπ

i∆ω5π/6
≈ 0.0013i.

This corresponds to a phase error of 0.0013 rad ≈ 0.076°. This value is signif-
icant relative to field error requirement of 0.1° for the ESS medium-β section.

Possible remedies

The issue with beam-loading-induced biasing could be remedied by using a
Kalman filter to estimate the true value of aa and use this value for feedback
and calibration. Another possibility is to recalibrate the setpoint v⋆

pu during
operation with nominal beam current. If the error δ is much smaller than
the allowed phase errors one could just ignore it.
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12

Digital Downconversion for

Cavity Field Control

Digital LLRF systems typically use digital (quadrature) downconversion to
recover the complex envelopes of the cavity signal and other RF signals of
interest. Digital downconversion is illustrated in Figure 12.1 and was also
discussed in Section 5.1.1. The focus of this chapter is the filter H(z) in
Figure 12.1 which should attenuate the double-frequency component of the
mixer output and reduce aliasing. The filter H(z) must have a low latency
to minimize the impact on field control performance.

There is much literature on how to design the filter H(z) for communi-
cations applications [Crochiere and Rabiner, 1983; Creaney and Kostarnov,
2008; Ellingson, 2016], but in this literature the main design objectives for
H(z) are passband flatness, stopband attenuation, and resource usage. The
latency is usually not a major concern.

This chapter presents and compares two approaches to digital downcon-
version that have successfully been used for cavity field control: moving aver-
aging [Simrock et al., 2006; Hoffmann, 2008; Schilcher, 2007] and two-sample
reconstruction [Doolittle et al., 2006; Doolittle, 2008].

ADC
yc(t)

2e−iωctk

H(z)
yc[k]

1 2
N

ŷ[k]

3

decimation
low-pass

filter

Figure 12.1 Typical implementation of digital downconversion. The out-
put ŷ is an estimate of the complex envelope of yc. The low-pass filter should
reject the double-frequency components of the mixer output and reduce
aliasing (if the signal is decimated).
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Remark 12.1 Control of MEMS gyroscopes [Saggin et al., 2019] and
single-phase phasor estimation by phasor-measurement units in three-phase
power systems [Phadke et al., 1983; Phadke and Thorp, 2017] are two other
feedback applications where low-latency digital downconversion is used.

12.1 Background on digital downconversion

Recall the following representation of a bandpass signal from (4.2),

yc(t) = Re{y(t)eiωct},

where the complex envelope y varies slowly. In Section 4.1 we briefly discussed
how the complex envelope of y can be recovered from yc. In many applica-
tions this recovery is implemented digitally. Assume that yc(t) is sampled
with period h at time instances tk = kh. A sampled version of the complex
envelope y can then be recovered by digital downconversion as shown in
Figure 12.1.

To better understand Figure 12.1, note that the signals at the indicated
points are given by

1 yc[k] = Re
{

y[k]eiωctk
}

= (y[k]eiωctk + y[k]∗e−iωctk )/2,

2 y[k] + y[k]∗e−2iωctk .

The low-pass filter removes the double-frequency component around −2ωc,
giving an estimate ŷ[k] ≈ y[k] at 3 .

As illustrated in Figure 4.1, one may think of downconversion in the
frequency-domain as a translation of the frequency spectrum by −ωc fol-
lowed by truncation of low frequencies. For an illustration more specific to
digital downconversion that shows the aliased spectral components present
in sampled signals, see Figure 18.14 in [Ellingson, 2016].

Baseband model of digital downconversion

For detailed analysis of control performance it is convenient with a complex-
baseband model of Figure 12.1. Such a model of the dynamics from the
complex envelope y of the measured signal to the downconverted signal ŷ is
shown Figure 12.2. It is seen that the baseband behavior of digital downcon-
version amounts to addition of complex-valued, cyclostationary noise n[k]
and filtering through a linear, time-invariant (LTI) filter H(z). For cavity
field control the filter H(z) is selected to have low-latency and hence lit-
tle impact on closed-loop performance. It is nevertheless prudent to include
the filter dynamics H(z) and the measurement noise n[k] in performance
analysis.
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12.1 Background on digital downconversion

n[k] = 2n[k]e−iωctk

H(z)
y[k] ŷ[k]

Figure 12.2 Baseband model of digital downconversion that includes
measurement noise. The double-frequency component y∗[k]e−2iωctk is not
included since it should be rejected by properly designed filters H(z).

Digital downconversion for communications applications

In communications applications, the signal of interest has a relatively flat
spectrum across the channel bandwidth. It is desirable to extract this sig-
nal without distortion, while avoiding unwanted spectral content which is
typically present close to the channel. This calls for a filter H(z) that has
flat amplitude characteristics over the channel bandwidth and then a fast
transition to a well-attenuated stop band.

The desired features H(z) could be summarized as

1. flat amplitude response in the passband, and

2. excellent stopband suppression.

In particular the second item requires significant engineering efforts since it
is often difficult to achieve sufficient attenuation of adjacent channels and
spurious interference1.

Typically, H(z) is taken as an FIR filter H(z) = h0 + h1z−1 + · · · +
hN−1z−(N−1) with symmetric coefficients (hk = hN−1−k). The symmetry
ensures that H(z) is a linear phase2 filter which has the same phase response
as a time delay of (N − 1)/2 samples. This time delay is often referred to
the group delay3 of the system. For communications applications the delay
requirement is rarely a major concern1.

The impulse and frequency responses of a typical filter H(z) for commu-
nications applications are shown in Figures 12.3 and 12.4.

In addition to the requirements 1–2 above, the design of H should allow
an implementation with

3. low power consumption, and

4. few hardware resources.

1Personal communication with Bo Bernhardsson, former filter expert at Ericsson.
2The phase is a linear function of frequency.
3The group delay τg(ω) := −d∠H(iω)/dω of a linear system H(s) is a common concept

in physics and filter design. Group delay is rarely considered in control since it is rather
the phase ∠H(iω) of the linear systems that is of interest.
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Figure 12.3 Impulse response of a typical low-pass filter for digital down-
conversion in communications applications.

ωNq

100

10−1

10−2

10−3

Frequency [rad/s]

Figure 12.4 Magnitude response of the filter in Figure 12.3. The phase
response equals that of a 42-sample time delay.

For these reasons, the filter H(z) is typically implemented as a cascade
of filters at different rates. The first filter in the cascade is often a cascaded-
integrator–comb filter [Hogenauer, 1981]. For more details, see [Creaney and
Kostarnov, 2008; Ellingson, 2016].

To reduce the computations in the downstream baseband processing, the
signal downstream H(z) is typically decimated as much as possible. This can
be done without loss of information due to that the spectrum of the baseband
signal is centered around zero frequency.

12.2 Low-latency digital downconversion for field control

12.2.1 Desired features for low-latency downconversion

The requirements on digital downconversion for control applications are quite
different from those in communications. The signal of interest has (due to the
feedback) very narrow spectrum and hence it gives rise to ADC and mixer4

harmonics, as well as a strong double-frequency component. It is important
to avoid that decimation folds these products onto the signal of interest.
However, unlike in communications applications, there is no need to worry
about folding of spectral content from adjacent channels.

4If a heterodyne architecture is used.

150



12.2 Low-latency digital downconversion for field control

A main concern is instead to attenuate measurement noise (mostly ADC
quantization noise) since it gives rise to control errors and increased con-
trol signal activity. However, most important is to maintain sufficient phase
margins. The desired features of H(z) for low-latency feedback applications
could be summarized as

1. small phase drop around the cross-over frequency of the open-loop sys-
tem,

2. rejection of (ADC) measurement noise,

3. high attenuation of the double-frequency component,

4. high attenuation of the DC-offset spur, and

5. attenuation of mixer and ADC harmonics.

The trade-off between 1 and 2 is studied in the control literature [Åström
and Wittenmark, 1997, Sec. 7.4]. The next three subsections introduce filters
that address points 3–5, however it may still be necessary with additional
low-pass filtering to meet requirement 2.

The filters H(z) that we consider in this section are rather simple, so re-
source usage should not be a concern when using modern FPGAs. Addition-
ally, the hardware tends to be less penny pinched than for communications
applications, so resources are less of an issue in the first place.

Since neither power consumption nor hardware resources tend to be an
issue for field control it is feasible to use little, or no, decimation after the
filter H(z). Decimation by a factor N gives a controller period hreg = Nh.
The trade-offs in the selection of hreg are discussed extensively in [Åström
and Wittenmark, 1997]. A controller period hreg effectively gives a latency of
hreg/2 compared to an ideal, continuous-time controller [Åström and Witten-
mark, 1997]. For this reason hreg should be kept small. On the other hand,
this increases the resolution necessary for coefficients and computations in
the controller.

Remark 12.2 Requirement 2 in the list above is typically understood in a
2-norm sense, while the requirement on stop-band suppression in Section 12.1
is typically understood in a sup-norm sense.

12.2.2 IQ sampling

Define the sampling frequency fs := 1/h and let fc := ωc/(2π). A simple,
computationally efficient, and low-latency approach to digital downconver-
sion is to take fc = fs/4 and H(z) = 1 + z−1. This is known as IQ sampling
[Doolittle et al., 2006] or fs/4 sampling [Ellingson, 2016]. The zero of H(z)
in −1 eliminates the double-frequency component at −fs/2. This scheme is
efficient to implement since it requires no multiplications [Ellingson, 2016].
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Chapter 12. Digital Downconversion for Cavity Field Control

The narrow bandwidth of the cavity signal gives rise to mixer and ADC
harmonics. With IQ sampling, all odd harmonics alias to the zero baseband
frequency [Doolittle et al., 2006].

12.2.3 Near-IQ sampling

To avoid the drawbacks of IQ sampling one can use near-IQ (non-IQ) sam-
pling [Doolittle et al., 2006; Schilcher, 2007] where N samples are taken over
M periods of the carrier signal, i.e., M/fc = N/fs.

For near-IQ sampling, a slightly more complex filter H(z) is necessary
to eliminate the double-frequency component. Two alternatives for the filter
H(z) are the moving average filter and two-sample reconstruction; these are
discussed in the following subsections.

It will be convenient to introduce the phase advance between consecutive
samples as

∆ := ωch = 2πM/N. (12.1)

Note that ∆ corresponds to ωc in normalized angular frequency.

Example: The LLRF systems for ESS use moving averaging (with deci-
mation). The sampling frequency is fs = 704.42 MHz/6 = 117.403 333 MHz
and the intermediate frequency is 25.1579 MHz which gives M/N = 3/14.

Example: The LLRF systems for LCLS-II use two-sample reconstruction.
The sampling frequency is fs = 94.3 MHz and the intermediate frequency is
fc = 20 MHz which gives M/N = 7/33 [Doolittle et al., 2016].

12.2.4 Near-IQ filter: Moving averaging

With near-IQ sampling, the N -sample moving average filter

HMA-N (z)=
1
N

(
1 + z−1 + . . . + z−(N−1)

)
=

1 − z−N

1 − z−1
(12.2)

is a common choice [Schilcher, 2007; Phadke and Thorp, 2017].
The impulse and frequency responses of an 11-sample moving average

filter are shown in Figures 12.5 and 12.6. An attractive feature of the moving
average filter (12.2) is that it has zeros at the frequencies of the double-
frequency component, the DC-offset spur, and all ADC and mixer harmonics
(except multiples of N).

If decimation by a factor N is used after the moving average filter (12.2)
is a special case of a single-stage cascaded-integrator–comb (CIC) filter
[Hogenauer, 1981]. In [Hoffmann, 2008] this is referred to as step window
detection and the case of no decimation is referred to as sliding window de-
tection.
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Figure 12.5 Impulse response of an 11-sample moving average filter.
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Figure 12.6 Magniude response of an 11-sample moving average filter;
ωs = 2π/h. The phase response is that of a time delay of 11h/2.

Digital downconversion with a moving average filter has two somewhat
illuminating interpretations: (1) as a short-time, discrete-time Fourier trans-
form with a single bin (at frequency ωc) [Hoffmann, 2008]; and (2) as the
least-squares estimate of y given N observations y[k], . . . , y[k + N − 1]
[Schilcher, 2007].

Note that the moving average filter is linear phase with relatively little
amplitude drop up for low frequencies. Thus, it can be modeled as a time-
delay of (N−1)h/2 for stability and disturbance-rejection analysis. The power
spectrum of white noise filtered through a moving average filter is given by
[Hogenauer, 1981] |N(iω)|2 =

[
sin(ω/2)

/
sin(ω/(2N))

]2
.

Moving average filters have relatively high side lobes which indicates that
there would be significant aliasing if the filter output is decimated. However,
if the signal is decimated by the filter length N these side lobes fold away
from the zero frequency, allowing them to be rejected by a low-pass filter
operating at the lower rate [Hogenauer, 1981].

12.2.5 Near-IQ filter: Two-sample reconstruction

Two-sample reconstruction estimates the complex envelope y of a signal yc

based on only two samples. In this chapter we take a slightly different ap-
proach than in [Doolittle, 2008] and represent the algorithm on the form in
Figure 12.2. This representation is good for analysis but the formulation in
[Doolittle, 2008] gives a more efficient implementation.
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Chapter 12. Digital Downconversion for Cavity Field Control

To motivate the algorithm, assume that two samples of yc are taken at
times tk−1 = (k − 1)h and tk = kh, and that y does not change between
these two samples. The two consecutive samples can be written

yc[k − 1] = Re{yeiωctk−1} =
1
2

(
yeiωctk−1 + y∗e−iωctk−1

)
(12.3a)

yc[k] = Re{yeiωctk } =
1
2

(
yeiωctk + y∗e−iωctk

)
(12.3b)

Now, taking (12.3b) times e−iωctk minus (12.3a) times e−2i∆e−iωctk−1 gives

e−iωctk yc[k] − e−2i∆e−iωctk−1yc[k − 1] =
1
2

(
y − e−2i∆y

)
.

Thus, y can be recovered as

y =
2

1 − e−2i∆

(
e−iωctk yc[k] − e−2i∆e−iωctk−1yc[k − 1]

)
. (12.4)

The process of recovering y according to the equation above can be seen as
filtering the signal 2e−iωctk y[k] through the filter

H2S(z) =
1

1 − e−2i∆

[
1 − e−2i∆z−1

]

=
ei∆

2i sin ∆

[
1 − e−2i∆z−1

]
(12.5)

according to Figure 12.1. The complex factor ei∆/i may be discarded if only
relative phase is of interest, but for our analysis it is convenient to have
∠H2S(1) = 0. From the magnitude plot in Figure 12.5 we see that H2S(z) is
not low-pass filter but rather a notch filter with notch frequency −2ωc (from
the zero in e−2i∆). The notch eliminates the double-frequency component of
the mixer output.

Note from (12.5) that H2S(z) has complex coefficients which implies that:
(1) its frequency-response is not conjugate symmetric (see Fig 12.7) and
(2) the complex-signal representation in Figure 12.1 must be used to de-
scribe two-sample reconstruction, the version with two real-valued branches
in [Ellingson, 2016, Sec. 18.4] is not sufficiently general.

From (12.5) it is seen that ∆ should be close to π/2 so that |sin ∆| ≈ 1
which avoids amplification of measurement noise [Doolittle, 2008].

For implementation details and Verilog code for two-sample reconstruc-
tion see [Doolittle, 2008].

DC-spur rejection. The communications-grade ADCs used in LLRF sys-
tems can have significant DC offset errors5. From Figure 12.2 it is seen that

5The offset error can be on the order of 1 % of the maximum amplitude of the sine
wave yc [Personal communication with Larry Doolittle, LBNL]. For example, LTC2175
from Linear Technologies may have an offset error of up to 1.2% relative to the maximum
sine wave amplitude.
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12.2 Low-latency digital downconversion for field control

such an offset n0 at the ADC output generates a spur 2n0e−iωctk . This spur
can be removed by introducing a DC-rejection filter (1 − z−2)/2 before the
digital mixer in Figure 12.1 [Doolittle, 2008]. The DC-rejection filter is con-
veniently analyzed by transforming it to the baseband (z 7→ eiωchz = ei∆z)
where it corresponds to a filter (1 − e−2i∆z−2)/2. Normalizing for unity gain
at zero baseband frequency gives

HDCR(z) =
1 − e−2i∆z−2

1 − e−2i∆
=

ei∆

2i sin (∆)

[
1 − e−2i∆z−2

]
. (12.6)

This filter should only be used if ∆ ≈ π/2 to avoid amplifying measurement
noise. An alternative is to reject the DC component at the mixer input by a
high-pass filter (z − 1)/(z − p) where p is a real number slightly smaller than
one6. This filter is used for the LLRF systems at LCLS-II where nominally
p = 15/16. The filter corresponds to an IIR notch filter in the baseband.

Magnitude responses of the filters HDCR(z) and H2S(z) are shown in
Figure 12.7.
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Figure 12.7 Magnitude responses for the two-sample reconstruction fil-
ter (12.5) for near-IQ ratios of 4/17 and 2/17; with DC rejection filters
(12.6) (solid lines) and without (dashed lines). Note that sin 2π/17 ≈ 0.36,
sin 4π/17 ≈ 0.67, sin 8π/17 ≈ 1.00.

6Personal communication with Larry Doolittle, LBNL.
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H(z) FLP(z)
n n2

Figure 12.8 An additional low-pass filter FLP(z) can be used to achieve
acceptable levels of filtered noise n2 if the noise rejection of the downcon-
version filter H(z) is insufficient.

12.3 Additional low-pass filtering

Typically, the noise rejection from the filters H∗(z) in the preceding subsec-
tions is not sufficient and additional low-pass filtering by a filter FLP(z) is
necessary. Such a filter FLP(z) is often considered and designed as part of the
controller. In this section we will analyze two aspects related to additional
low-pass filtering. To simplify the analysis we will study the interconnection
in Figure 12.8 rather than a full feedback loop. We will assume the noise n

to be white and that FLP(z) is a first-order low-pass filter with bandwidth
ωLP,

FLP(z) =
1 − a

1 − az−1
, a = e−ωLPh.

The quantity that we will be interested in is the rms level of the filtered noise
n2. We can compute this quantity as the 2-norm of the impulse response of
H(z)FLP(z). We will assume a sampling period of h = 10 ns which is typical
for current-generation LLRF systems.

Noise rejection vs. phase-margin reduction

The moving average filter (12.2) has a longer latency than two-sample re-
construction (12.5) but it rejects more high-frequency noise which is helpful
in reducing the control signal activity. A comparison of the noise rejection
relative to the phase drop at typical cross-over frequencies for two moving av-
erage filters of different lengths and two-sample reconstruction (for a specific
ratio M/N) is shown in Figure 12.9. It is seen that two-sample reconstruc-
tion comes out on top but that the performance difference between the two
approaches is small.

Order of low-pass filtering and decimation

If decimation is used, a natural question is whether to implement the filter
FLP(z) before or after the decimation operation, see Figure 12.10. Imple-
menting the filter at the lower rate facilitates the implementation but gives
more aliasing. However, due to the nice folding properties of the filters (12.2)
and (12.5) (if sin ∆ ≈ 1) the increase in aliasing is not as severe as one would
expect.
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Figure 12.9 Comparison of the noise rejection as a function of phase
drop for three different DDC filters in series with a first-order low-pass
filter FLP(z) (Figure 12.8). The bandwidth of the low-pass filter was swept
over a wide range of frequencies to generate the plot. The phase drop at
two different frequencies are considered. This figure shows that even if two-
sample reconstruction has a shorter delay than a moving average filter the
difference becomes small if noise rejection is desired. Nevertheless there is
a slight performance advantage to using two-sample reconstruction.

H(z) FLP(z) N

(a) Decimation after FLP(z).

H(z) N FLP(z)

(b) Decimation before FLP(z).

Figure 12.10 Two alternatives for introducing additional low-pass fil-
tering with a low-pass filter FLP(z) (note that the filter coefficients differ
between (a) and (b) due to the different sampling rates). The approach in
(a) is advantageous in that it reduces aliasing from the decimation but it
requires the filter to run at a higher rate than in (b).

Figures 12.11 and 12.12 show comparisons of how the order of filtering
and decimation affects the resulting noise level as a function of the bandwidth
ωLP of the low-pass filter.

In the case of moving average filters, we see from Figure 12.11 that the
order of low-pass filtering and decimation has little impact on the noise re-
jection if the bandwidth ωLP is lower than 100 kHz. For higher bandwidths
ωLP there is a significant difference for the longer moving average filters.

In the case of two-sample reconstruction, we see from Figure 12.12 that
it is crucial to have the ratio M/N ≈ 4 if decimation is used before low-pass
filtering.
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Figure 12.11 A comparison of the remaining noise for decimation before

low-pass filtering (dashed, Figure 12.10b) and decimation after low-pass
filtering (solid, Figure 12.10a), when using an N -sample moving average
filter in series with a first order low-pass filter FLP(z). The results are shown
relative to only using FLP(z). Three different lengths of the moving average
filter and a range of bandwidths of the filter FLP(z) were considered. The
difference in noise rejection becomes apparent when the bandwidth of the
filter FLP(z) is high and the moving average filter is long.

12.4 Summary

This chapter has discussed low-latency digital downconversion for cavity field
control. The requirements on digital downconversion for this application were
seen to be quite different from those for communications applications. We
considered two approaches for low-latency rejection of the double-frequency
component at the output of the complex mixer: moving averaging and two-
sample reconstruction.

With moving averaging there is no need for additional filters to reject
the DC-offset spur. If decimation is used there is little need to worry about
aliasing due to its nice folding properties. For two sample reconstruction it
is crucial that the ratio of the intermediate frequency and the sampling fre-
quency is approximately 1/4 to avoid excessive noise amplification. Their
performance was similar in terms of noise rejection relative to phase drop
around typical cross-over frequencies, with two-sample reconstruction per-
forming slightly better. Taking these observations into account the moving
average filter is the simple and care-free option. Advanced users may go with
two-sample reconstruction. In particular if low-latency is more important
than noise rejection.
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Figure 12.12 The same comparison as in Figure 12.11 but for the case
of two-sample reconstruction, dashed lines correspond to decimation before

low-pass filtering (Figure 12.10b) and solid lines corresponds to decimation
after low-pass filtering (Figure 12.10a). If M/N is not close to 1/4 there is
a significant advantage in low-pass filtering before decimation.

An alternative to these two filters could be to use a first-order IIR notch
filter to reject the double frequency component. This avoids both the delay
from a long moving average filter and the constraint ∆ ≈ π/2 for two-sample
reconstruction. However, implementing an IIR filter at the sampling rate of
the ADC could be technically challenging.
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13

Energy-Optimal Cavity

Filling

13.1 Introduction

For pulsed linacs, the energy required to fill the cavities (build up the elec-
tromagnetic fields) is significant but does not contribute to particle accel-
eration. As remarked in [Bhattacharyya et al., 2015], little work has been
done on energy-optimal filling of accelerating cavities. In that article it was
also analytically derived how to minimize the energy reflected from a cav-
ity during filling, which corresponds to minimization of the wall-plug energy
consumption for ideal amplifiers. This chapter, which is based on [Troeng and
Bernhardsson, 2017], shows how to minimize the wall-plug energy consump-
tion for arbitrary power-consumption characteristics. We will also discuss
energy-optimal filling subject to non-zero time-varying detuning ∆ω(t).

In Section 13.2 we formulate an optimal-control problem for the RF drive
that minimization the fill energy. In Section 13.3 we solve the optimal-control
problem by decoupling it into two problems: one for the phase (corresponding
to [Ayvazyan et al., 2010]) and one for the amplitude. In Section 13.4 we
compare the energy-optimal filling strategies for different power-consumption
characteristics and different amplifier saturation levels. We conclude with a
remark on cryogenic losses and a discussion of the results.

γ

s + γ − i∆ω

fg a

Figure 13.1 This chapter considers energy-optimal cavity filling, i.e.,
finding the RF-drive profile fg(t) that drives the mode amplitude a(t) of
the accelerating mode to its nominal value a0 = 1 at final time tf , while
minimizing the energy consumption

∫ tf

0
pamp(|fg(t)|)dt.
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13.2 Problem formulation

Remark 13.1 The optimization of the RF-drive amplitude is only of in-
terest for amplifiers whose power consumption depends on the output power,
such as solid-state amplifiers and inductive output tubes (IOTs). Klystrons,
which is the most common RF amplifier for high-energy accelerators, have
constant power consumption and the energy-optimal filling strategy is simply
to minimize the fill time by driving them at saturation.

The investigations of this chapter were motivated by that the 84 high-β
cavities of the ESS linac would be powered by multi-beam inductive output
tubes. However, as mentioned in Footnote 5 on page 71, the plan has changed
to use klystrons instead.

13.2 Problem formulation

We will compare the wall-plug energy consumption for different filling ap-
proaches relative to each other. Hence, we may use the normalized dynamics
of the accelerating mode (6.8), where we put ib = 0 since the beam pulse
starts after the filling. To further simplify the exposition, we also scale time
by the cavity time constant γ which gives

da

dt
= (−1 + i∆ω(t)) a + fg, (13.1)

where the time-scaled detuning ∆ω is redefined to include a factor 1/γ.
We want to determine the amplifier drive fg(t) that fills the cavity, i.e.,

achieves a(tf ) = 1 at some final time tf , while minimizing the normalized
energy consumption

w =
∫ tf

0

pamp(|fg|) dt, (13.2)

where pamp(fg) is the normalized power-consumption as a function of RF-
drive amplitude. The final time tf will be considered as a free parameter and
there is an upper limit famp sat on |fg|, see Figure 13.2 for an illustration.

We may now state the optimal-control problem as

minimize
fg, tf

∫ tf

0

pamp(|fg|) dt (13.3a)

subject to ȧ = (−1 + i∆ω(t))a + fg (13.3b)

|fg| ≤ famp sat (13.3c)

a(0) = 0 (13.3d)

a(tf ) = 1. (13.3e)

In the problem formulation (13.3), we have assumed the detuning ∆ω(t)
for 0 ≤ t ≤ tf to be known in advance, that the amplifier has no dynamics,
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Figure 13.2 Normalized amplitudes of the cavity field and the RF drive
during an RF pulse, for minimum-time filling, i.e., |fg| = famp sat (solid
lines), and energy-optimal filling for an inductive output tube (dotted lines).

that there are no disturbances, and that the cavity parameters are perfectly
known. These assumptions are approximations, and the computed results
should be seen as an indication of what can be achieved in practice.

13.3 RF drive for energy-optimal filling

The cavity equation in polar coordinates

In polar coordinates the cavity equation (13.3b) takes the form [Brandt, 2007,
(3.22)],

aφ̇a − ∆ωa = fg sin(φg − φa) (13.4a)

ȧ + a = fg cos(φg − φa), (13.4b)

where a ≥ 0, φa, fg ≥ 0, and φg are defined via

a(t) = a(t)eiφa(t) (13.5)

fg(t) = fg(t)eiφg(t). (13.6)
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13.3 RF drive for energy-optimal filling

Mode amplitude a RF drive fg

t t

Figure 13.3 For energy-optimal cavity filling, the RF drive should have
the same phase as the cavity field, see equations (13.7)–(13.8).

Optimal phase of the RF drive

By considering (13.4b), we see that choosing φg as

φ⋆
g(t) = φa(t), (13.7)

maximizes ȧ for all fg ≥ 0. Since the cost (13.3a) is independent of φa and
we wish to minimize the cost for reaching a(tf ) = 1, it is clear that (13.7)
is optimal. With this choice of φg(t), equation (13.4a) reduces to φ̇a = ∆ω;
since we want φa(tf ) = 0, we must have

φa(t) = −
∫ tf

t

∆ω(t′) dt′. (13.8)

From (13.7) it follows that the optimal phase profile φ⋆
g(t) of the RF drive

equals the right-hand side of (13.8). This is the same conclusion that was
reached in [Ayvazyan et al., 2010]. See Figure 13.3 for an illustration.

Remark 13.2 For superconducting cavities, the detuning ∆ω(t) depends
on the cavity field amplitude a(t) via the Lorentz force detuning. However,
since the optimization of φg and fg is decoupled, the optimal fg(t) and corre-
sponding a(t) can be found first, before finding the optimal phase via (13.8).

Optimal amplitude of the RF drive

The optimal phase of the RF drive is given by (13.7) so we only need to
consider the amplitude dynamics given by (13.4b). This gives the following
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optimization problem for the RF-drive amplitude fg(t)

minimize
fg, tf

∫ tf

0

pamp(fg(t)) dt (13.9a)

subject to ȧ(t) = −a(t) + fg(t) (13.9b)

|fg(t)| ≤ famp sat (13.9c)

a(0) = 0 (13.9d)

a(tf ) = 1. (13.9e)

From (13.9), it seems reasonable that the optimal fg(t) should, at each
time instant, maximize the ratio between the increase of the cavity field and
the power consumption, i.e.,

f⋆g(t) = argmax
fg

−a(t) + fg
pamp(fg)

. (13.10)

That (13.10) indeed is optimal follows from the Hamilton–Jacobi–Bellman
equation. See Appendix G.3 for a self-contained proof and some comments.

13.4 Comparison of filling strategies

In this section we compare the energy consumption for three filling strategies,

• Minimum time, i.e., fg(t) = famp sat

• Minimum reflection, i.e., fg(t) = min(et/ sinh tf , famp sat) with tf = 2
[Bhattacharyya et al., 2015]

• Energy optimal, according to (13.10),

considering typical efficiency characteristics η(fg) := f2g/pamp(fg) of four dif-
ferent RF amplifier types [Bhattacharyya et al., 2015], see Figure 13.4,

• Tetrode,

• Solid-state amplifier (SSA),

• Inductive output tube (IOT),

• Constant efficiency (ideal) amplifier,

and two saturation levels,

• famp sat = 1.5,

• famp sat = 2.25.

The normalized saturation levels correspond to a normal conducting cavity
and an optimally coupled superconducting cavity, respectively.
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Figure 13.4 Efficiency η(fg) = f2
g/pamp(fg) as a function of the relative

output power (fg/famp sat)2, for different amplifiers types. The data is from
[Bhattacharyya et al., 2015, Fig. 9], and has been slightly smoothed.

The energy consumption for the different filling strategies and parameter
combinations are shown in Figure 13.5. The relative energy consumption of
energy-optimal filling compared to minimum-time and minimum-reflection
filling is given in Table 13.1. The corresponding profiles for the mode ampli-
tude a and RF drive fg are shown in Figure 13.6.

Remark 13.3 If multi-beam IOTs would have been used for the high-β
section (famp sat = 2.25) of the ESS linac the energy reduction from using
energy-optimal filling, relative to minimum-time filling, would be 13% which
corresponds1 to 17 ke/year.

Remark 13.4 (Cryogenic losses) From Figure 13.6 it is seen that the
energy-optimal filling profiles take longer time than those for minimum-time
filling. This implies increased RF heating of the cavities and a higher load
on the cryogenic system. Cryogenic losses can be incorporated into the op-
timization problem (13.9) by adding a term kcryoa(t)2 to the integrand in
(13.9a). Experiments of including cryogenic losses gave similar, but slightly
faster, filling profiles.

1The filling constitutes 0.2 ms/(2.86 + 0.2) ms = 6.5 % of the RF pulse and the average
power consumption of the RF amplifiers of the high β section would have been 6.5 MW.
This gives the cost estimate of the filling energy: 6 % × 6 MW × 5000 h/year × 0.07 e/kWh
= 130 ke/year.
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Table 13.1 Energy consumption of minimum-time (MT) and minimum-
reflection (MR) filling relative energy-optimal (EO) filling.

famp sat = 1.5

Amplifier Type
wEO

wMT

wEO

wMR

Tetrode 98 % 94 %
Doherty Arch. SSA 90 % 98 %
IOT 92 % 98 %
Constant Efficiency 83 % 96 %

famp sat = 2.25
wEO

wMT

wEO

wMR

97 % 82 %
82 % 94 %
87 % 92 %
68 % 96 %

Tetrode Doherty
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IOT Const.
Efficiency
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(b) famp sat = 2.25.

Figure 13.5 Comparison of the energy consumption for minimum-time
filling (standard approach), minimum-reflection filling according to [Bhat-
tacharyya et al., 2015], and energy-optimal filling according to (13.10). Four
different amplifier types and two different saturation levels are considered.
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Figure 13.6 Accelerating-mode amplitude and RF drive for different fill-
ing strategies: minimum-time, minimum-reflection (↔ constant efficiency
amplifier) and energy-optimal for the efficiency characteristics in Fig-
ure 13.4. Note that minimum-time and minimum-reflection filling are in-
dependent of the amplifier efficiency characteristics. Two saturation levels
are considered.
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13.5 Conclusions

We have shown how to minimize the energy consumption for establishing the
electromagnetic field in accelerating cavities. We proved that the amplitude
and phase for the optimal RF-drive profile (normalized with respect to the
cavity time constant) are given by

f⋆g(t) = argmax
fg

−a(t) + fg
pamp(fg)

φ⋆
g(t) = −

∫ tf

t

∆ω(t) dt.

We compared the energy savings for different amplifier characteristics
and found that the energy consumption could be reduced by up to 30%. If
inductive output tubes would have been used for the high-β section of the
European Spallation Source we estimated the yearly savings could be 17 ke.
Since the energy-optimal filling profiles, or at least approximate versions
thereof, are relatively easy to implement, they provide a straight-forward
way to reduce the operating costs and environmental footprint of pulsed
particle accelerators.
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14

Ripple-Rejecting Peak

Filters

14.1 Introduction

The PI(D) controller is an attractive choice when the plant has simple dynam-
ics (e.g., accelerating cavities) and the load disturbances have low-frequency
character (see Chapter 9). However, the PI(D) controller is outperformed by
more advanced controllers in the case of narrowband load disturbances. This
shortcoming of the PID controller can be understood from Francis’ internal
model principle [Francis and Wonham, 1976], which states that the controller
needs to contain a model of any disturbance that it should reject; the PID
controller is too simplistic in this regard.

By augmenting a nominal (e.g., PID) controller with a second-order peak
filter it is possible to selectively increase the controller gain and reject dis-
turbances with a specific frequency (see Figure 14.1). This approach gives
only a small increase in controller complexity. The filter can be seen as a
model of the narrowband disturbance; see [Åström and Hägglund, 2006] for

C0(s)

F (s)

P (s)
CF (s)

−1

u z

d

Figure 14.1 A nominal controller C0(s) can be augmented with a peak
filter CF (s)=1+F (s) for improved rejection of narrowband disturbances d.
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an insightful interpretation. Peak filters have been used for improved distur-
bance rejection in hard-disk-drive track following [Kim et al., 2005; Zheng
et al., 2006; Atsumi et al., 2007; Xu et al., 2012] and several other real-world
applications [Sievers and Flotow, 1992; Han et al., 2008; Castilla et al., 2009].

Although the basic idea is straightforward it is crucial that the filter
has the proper phase at the peak frequency to avoid robustness degradation
or closed-loop instability. This critical detail has received surprisingly little
attention in the control literature. We are only aware of [Sievers and Flotow,
1992] and [Kim et al., 2005] which provide qualitative discussions based on
root-locus arguments, and [Zheng et al., 2006] that derives suitable filter
coefficients by considering a transformed system.

This chapter discusses the approach to peak-filter design that was in-
troduced in [Troeng and Bernhardsson, 2018]. The approach is based on
consideration of the open-loop Nyquist curve, which makes the design trade-
offs easier to understand than in previous approaches. The most natural
filter design, based on Nyquist diagram consideration, recovers the design in
[Zheng et al., 2006]. However, the flexibility of our approach makes it easy
to consider other performance metrics as well, and it also readily extends to
complex-coefficient systems. We will also discuss the convergence time of the
filter, and provide practical implementation details.

The work in this chapter was motivated by early simulations of the
klystron power supplies for ESS1 that indicated significant ripple at 90 kHz.
This ripple frequency falls within the range where field control loops are the
most sensitive to disturbances (see Chapter 9). Simulations indicated that it
would not be possible to achieve the field-error requirement for the normal
conducting cavities at ESS (0.2 %/0.2◦) with only PI(D) control.

14.2 Intuitive design of disturbance-rejecting peak filters

Assume that a single-input single-output plant P (s) and a controller C(s) are
given. We will assume that they both have real coefficients and operate on
real signals; this is done in order to show that this approach has applications
outside of cavity field control. The extension to complex-coefficient systems,
such as field control loops, are straight-forward and are discussed at the end
of this section.

Recall from Section 2.2 that the magnitude of the sensitivity function

S(iω) =
1

1 + P (iω)C(iω)

1A single time series from a Simulink simulation provided by the power-converter group
at ESS in November 2015. It was also stated that the ripple would not be synchronized
with the beam pulse (i.e., it would not be rejected by iterative learning control).
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quantifies the closed-loop robustness and how the feedback from C(s) affects
the disturbance rejection.

We will consider how the disturbance rejection around a specific frequency
ω0 can be improved by augmenting a nominal controller (e.g., a PID con-
troller) C0 with a second-order filter

CF (s) =
s2 + 2ζzωzs + ω2

z

s2 + 2ζ0ω0s + ω2
0

, (14.1)

where ωz ≈ ω0, and ζz > ζ0. We will refer to CF (s) as a peak filter, since
this captures the feature that is relevant to us; the terms resonant filter and
bandpass filter are also common.

If ωz is chosen equal to ω0, we have CF (0) = 1, CF (±∞) = 1, and
CF (iω0) = ζz/ζ0, enabling the gain of the augmented controller C = C0CF

to be selectively increased at the disturbance frequency ω0. For maintained
robustness, and closed-loop stability, also the phase of the open-loop system

L(s) = P (s)C0(s)CF (s)

around ω0 needs to be considered.
Choosing ωz different from ω0 gives two degrees of freedom, ωz and ζz,

making it possible to place L(iω0) arbitrarily in the complex plane. We will
see that this allows robustness and stability to be maintained.

To clarify the behavior of the filter CF , we introduce the parametrization

CF (s) = 1 + F (s) (14.2)

with

F (s) := K
2∆(s cos α − ω0 sin α)

s2 + 2∆s + ω2
0

, (14.3)

where K and α are new parameters and ∆ = ζ0ω0 is the width of the peak.
Note that F (±iω0) = Ke±iα. The parametrization (14.2)–(14.3) is inspired
by the one in [Zheng et al., 2006], but we have modified it slightly to simplify
the exposition2. See Figure 14.1 for an illustration of the controller structure
and Figure 14.2 for a typical pole–zero diagram of CF (s).

2The definition Fzheng(s) := Ks(ω0 cos α − s sin α)/(s2 + 2ζ0ω0s + ω2
0) in [Zheng et al.,

2006] gives that Fzheng(iω0) = Ke−iα/(2ζ0); the ζ0 dependence of peak magnitude and
the minus sign in front of α makes this parameterization slightly less intuitive.
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Figure 14.2 Typical pole–zero diagram for the peak filter CF (s) = 1 +
F (s) with F (s) given by (14.2). Having different imaginary parts for the
poles and zeros gives freedom to select the phase of CF (s) at ω0. In the
limit of ∆ → 0 the poles are given by p1,2 = −∆ ± iω0 and the zeros by
z1,2 = p1,2 − K∆e±iα.

14.2.1 Nyquist bubbles

Instead of considering the second-order filter (14.3) we simplify the situation
even further and introduce the first-order (complex-coefficient) filter

B(s) = Keiα

(
1
2

+
1
2

1 − (s − iω0)/∆
1 + (s − iω0)/∆

)

= Keiα ∆
s − iω0 + ∆

. (14.4)

For small ∆ we now have

F (s) ≈ B(s) + B∗(s), (14.5)

where B∗(s) is the complex-conjugate transfer function defined in (4.10).
Equality holds in the limit3 ∆ → 0. Note that the right-hand side in (14.5)
has real coefficients even if B(s) does not.

The Nyquist curve of B(s) in (14.4) is shown in Figure 14.3. It is seen
to be a circle/bubble with diameter K that passes through the origin and
is directed at an angle α. The frequency ω0 is mapped to the point on the
circle that is furthest away from the origin and the frequencies ω0 ± ∆ are
mapped to the points on the circle that are exactly between B(iω0) and the
origin4.

3The exact expression is given by

B(s) + B∗(s) = K
2∆ (s cos α − ω0 sin α + ∆ cos α)

s2 + 2∆s + ω2
0 + ∆2

.
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Re B(iω)

Im B(iω)

Figure 14.3 The Nyquist curve of the first-order system (14.4).

Remark 14.1 From (14.4) it is seen that the frequency response of the
Nyquist bubble B(s) goes to zero at high frequencies and that B(0) 6= 0. If
the peak is inserted at a frequency above or close to the open-loop cross-over
frequency it might be better to use a peak filter of the form

B̃(s) = B(s)
s

iω0
, (14.6)

which distorts the nominal system less in the critical cross-over region.

14.2.2 Nyquist diagram interpretation

For studying control performance and robustness it often gives more insight
to consider the Nyquist curve of the open-loop system L = PC than the
sensitivity function S = 1/(1 + L). The distance between a point L(iω) on
the open-loop Nyquist curve and the point −1 equals 1/ |S(iω)|, but the
Nyquist curve also shows useful phase information.

To understand the effect of the peak filter, let L0 = PC0 be the nominal
open-loop system and let L = L0CF = L0(1 + F ) be the augmented system.
If the peak filter is narrow, we have that

L(s) ≈ L0(s) + L0(iω0)F (s). (14.7)

From the discussion in the previous section it is clear that the Nyquist curve
of the augmented system is similar to the nominal one but with two circular
bubbles at frequencies ±ω0 due to the term L0(iω0)F (s). The bubble at

4Note that the linear fractional transformation B0(s) =
1

2
+

1

2

1 − s

1 + s
maps the imag-

inary axis to a circle with radius 1/2 centered around the point 1/2. It is also seen that
B0(0) = 1, |B0(±1)| = 1/

√
2, and |B0(±∞)| = 0. Scaling B0(s) gives the middlemost

expression of (14.4).
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frequency ω0 is oriented in the direction α′ = α+∠L0(iω0) and have diameter
K ′ = K · |L0(iω0)|, see Figure 14.4 for an illustration.

14.2.3 Filter design for maximum sensitivity reduction

For a given value of K, it is clear that maximum sensitivity reduction at ω0 is
achieved by directing the bubbles away from the point −1. This corresponds
to α′ = ∠(L0(iω0) − (−1)) which gives

α = ∠ (L0(iω0) − (−1))−∠L0(iω0) = −∠
L0(iω0)

L0(iω0) + 1
= −∠T0(iω), (14.8)

where T0 = L0/(1 + L0) is the complementary sensitivity function of the
nominal system.

The choice (14.8) is the same as in [Zheng et al., 2006] but the Nyquist-
bubble-based derivation in this section arguably provides more intuition.

It will be convenient to denote the nominal sensitivity function by S0(s) :=
1/(1 + L0(s)). Recall that 1/ |S0(iω)| is the distance between the nominal
open-loop Nyquist curve L0(iω) and the point −1. Choosing α according to
(14.8) and K according to

K =
N

|S0(iω0)|
1

|L0(iω0)| =
N

|T0(iω0)| , (14.9)

increases the distance between Nyquist curve L(iω) at ω0 by a factor (N +1),
which gives a sensitivity reduction by the same factor at that frequency. The
choices (14.8) and (14.9) are illustrated in Figure 14.4.

14.2.4 Closed-loop behavior

With the choices of α and N in (14.8)–(14.9), we can derive an approximate
expression for how the filter affects the closed-loop sensitivity around ω0.
First, re-write the sensitivity function of the augmented system as

S(s) =
1

1 + L0(s)(1 + F (s))

=
1

(1 + L0(s)) + L0(s)F (s)
= S0(s) · 1

1 + T0(s)F (s)
. (14.10)

Then, using (14.8)–(14.9) and that T0(s)F (s) ≈ T0(iω0)F (s),

S(s) ≈ S0(s)
s2 + 2ζ0ω0s + ω2

0

s2 + 2(N + 1)ζ0ω0s + ω2
0

. (14.11)

For N > 0 the second factor (14.11) is a notch filter with a convergence
time on the order of

TF = 1/((N + 1)ω0ζ0). (14.12)
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Figure 14.4 By augmenting a nominal controller with a peak filter it is
possible to introduce a bubble in the open-loop Nyquist curve which allows
the Nyquist curve at ω0 to be moved to an arbitrary point. The figure
illustrates the bubble when the filter parameters are chosen according to
(14.8) and (14.9). With these choices the sensitivity is reduced by a factor
(N + 1) at ω0.

The convergence time TF indicates how long it takes the peak filter to reject
a narrowband disturbance.

Since (N +1)ω0ζ0 is the 3 dB bandwidth of the notch around ω0, the same
number also determines the degradation of the closed-loop performance at
frequencies away from ω0, due to the waterbed effect.

14.2.5 Implementation aspects

When the filter CF is used for augmenting a PI(D) controller, it will probably
be advantageous to place it before the PI(D) controller in order to reduce
the impact on the anti-windup implementation.

A discrete-time counterpart to the filter (14.1), obtained through pole–
zero matching, is given by

CF (z) =
(z − rzeiωzh)(z − rze−iωzh)
(z − r0eiω0h)(z − r0e−iω0h)

=
z2 − 2rz cos (ωzh)z + r2

z

z2 − 2r0 cos (ω0h)z + r2
0

,

where h is sample time, r0 = e−ζ0ω0h and rz = e−ζzωzh.

14.2.6 Design guidelines

The filter F (s) in (14.3) has four parameters which gives freedom to select

• the frequency of the peak,

• the phase of the peak,

• the magnitude of the peak, and
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• the width of the peak (which affects settling time, robustness, and
numerical stability).

One approach to select the parameters of the peak filter (14.3) is:

1. Select ω0 as the disturbance frequency.

2. Select the desired sensitivity reduction N at ω0, and put K =
N/ |T0(iω0)|.

3. Select ∆ based on the spectral width of the disturbance, the required
convergence time, and numerical implementation considerations.

4. Select α to achieve the best possible robustness, the typical choice
would be according to (14.8).

Some comments on point 3) are in order. If it is considered more important
to maintain a large amplitude or phase margin, it would make sense to choose
α different than in (14.8). Another case where a different value of α should be
considered, is when the bubbles are far away from their ideal circular shape.
This is seen in Figure 14.10a, where a small increase of α would improve the
closed-loop robustness. Note that the intuition from Section 14.2.1 makes
these modifications obvious

14.2.7 Peak-filter design for complex-coefficient systems

In the case of complex-coefficient systems, the frequency response and dis-
turbance spectrum might not be symmetric about the zero frequency. The
filter F (s) defined in (14.3) is not sufficiently flexible in this situation since
the positive- and negative-frequency bubbles B(s) and B∗(s) have the same
parameters (up to conjugation). In the complex-coefficient case one should
instead take F (s) := B+(s) + B−(s) which allows the parameters of the
positive- and negative-frequency bubbles B+(s) and B−(s) to be chosen in-
dependently. If the disturbance only occurs at one side of the frequency spec-
trum then a single bubble is sufficient.

14.3 Example: Rejection of RF-drive ripple

The motivation for this chapter was that preliminary simulations5 indicated
that the power supplies for the klystrons at ESS would have significant 90 kHz
voltage ripple, see Figures 14.5 and 14.6. These supply-voltage variations
would change the output phase of the klystron (Section 5.5.3) and conse-
quently act as a disturbance on the cavity fields. The design method pre-
sented in this chapter makes it easy to design disturbance-rejecting peak
filters that reduce the impact of this disturbance.

5Simulink simulations performed by the Power Converter group at ESS in Nov. 2015.
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Figure 14.5 Simulated voltage pulse from the DC power supply that will
be used for the ESS klystrons (see footnote on p. 176). The zoom reveals
the presence of 90 kHz switching ripple.
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Figure 14.6 Estimated power spectral density of the DC supply ripple.
The dominant harmonic at 90 kHz lies in the frequency range where the
disturbance rejection of the cavity feedback loop is the worst.
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Plant dynamics. We will model the field control with the following nor-
malized baseband model from Chapter 9,

P (s) =
γa

s + γa
Pamp(s)e−sτ , (14.13)

where γa is the bandwidth of the accelerating cavity mode, Pamp is the ampli-
fier dynamics, and τ = 1 µs is the loop delay of the field control loop. In our
numerical example we will consider three different values of the bandwidth
γa which correspond to the ESS cavities in Table 6.3.

Impact of ripple. The voltage ripple dps of the DC power supply acts as
a load disturbance given in (5.5.3) by

d(t) = fg0ξθdps(t),

where fg0 is the nominal RF drive (assuming optimal tuning real so that fg0

is real) and ξθ = 8◦/% is a typical phase-pushing factor of the RF amplifier
at ESS.

Nominal controller design. For each cavity type, a nominal PI controller
C0 was designed for rejection of low-frequency disturbances subject to the
same constraints on the control signal activity (Bun = 30) as in Chapter 9. A
slightly tighter constraints on sensitivity than in Chapter 9 was used (Smax =
1.5) due to that there is a small sensitivity degradation from introducing the
peak filter.

A typical transfer function from load disturbances d to control errors,
when the cavity is controlled by a PI controller is shown in Figure 14.7. It
is seen that the disturbance rejection is worst at around 50 kHz to 100 kHz,
which is due to the fundamental limitations from the 1 µs loop delay.

Peak-filter design. The nominal controllers were augmented with peak
filters designed according to (14.8) and (14.9). The same peak filter param-
eters ω0/(2π) = 90 kHz, ∆/(2π) = 1 kHz, and N = 5 were used for all three
cavity types.

Simulation results. The improvement in ripple rejection provided by the
peak filters is shown in Table 14.1. The Nyquist plots for the different designs
are shown in Figure 14.10. Note that the bubbles from the peak filters are
oriented quite different, showing the advantage with an automatic design
procedure.

The resulting closed-loop transfer function from disturbances to control
errors for a DTL and different controllers are shown in Figure 14.7, and the
corresponding power spectra are shown in Figure 14.8. As can be seen in
Figure 14.7, there is significant improvement in rejection of the disturbance
at 90 kHz, with small performance degradation for other frequencies. The
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time response of a DTL controlled with and without a peak filter is shown
in Figure 14.9. The Nyquist plots in Figure 14.10 show that the filters only
give a small impact on robustness.

Table 14.1 Comparison of the remaining phase errors for PI controllers
with and without peak filters. The numbers only include the impact
of power-supply ripple—during operation there will be additional distur-
bances. Recall that the ripple data is from a preliminary simulation. Reli-
able measurements of the ripple of the production series power supply that
will be used at ESS are not available at the time of writing.

RFQ DTL Medium-β

Bandwidth γa/(2π) [kHz] 60 12 0.5
fg0 1.1 1.3 2

Phase error (rms)
Requirement 0.20° 0.20° 0.10°
PI 0.35° 0.11° 0.01°
PI + peak filter 0.14° 0.05° 0.006°
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Figure 14.7 Transfer functions from load disturbances d to cavity field
errors z for a DTL with different types of field control.
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Figure 14.8 Simulated power spectral density of the field control errors
of a DTL subjected to the DC supply ripple in Figure 14.6. It is seen that
the ripple filter significantly reduces the impact of 90 kHz ripple.
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Figure 14.9 Field control errors for a DTL due to the voltage ripple in
Figure 14.5 for three different types of control. Note the fast convergence
rate of the controller with the peak filter which is consistent with the es-
timate TF ≈ 20 µs from (14.12). The convergence will mostly occur during
the filling of the RF cavity, i.e., before the beam is turned on.
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14.3 Example: Rejection of RF-drive ripple

−1 Re L(iω)

Im L(iω)

(a) Radio-frequency quadrupole.

−1 Re L(iω)

Im L(iω)

(b) Drift-tube linac.

−1 Re L(iω)

Im L(iω)

(c) Elliptical medium-β cavity.

Figure 14.10 Nyquist curves for three different field control loops. The
blue solid lines correspond to nominal open-loop systems, and the green
dashed lines to systems augmented with peak filters.
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14.4 Summary and discussion

This chapter has discussed how to improve a nominal controller’s ability to
reject narrowband disturbances of a specific frequency. The idea is to aug-
ment the controller with a peak filter that selectively increases the controller
gain at the disturbance frequency. The peak filter can be seen to add two
bubbles to the nominal system’s Nyquist curve. These bubbles need to have
the correct phase to achieve disturbance rejection and avoid instability. This
chapter proposed a parameterization of the peak filter that captures the be-
havior of the bubbles that it produces. This interpretation made it easy to
understand how the peak filter parameters should be chosen for good distur-
bance rejection and maintained closed-loop robustness.
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15

Conclusions and

Future Work

15.1 Summary

This thesis has addressed amplitude and phase control of the accelerating
electromagnetic cavity fields in linear particle accelerators. The topics covered
were selected based on their relevance to the high-intensity proton linac at
ESS, but the material is also relevant for other linacs.

Chapter 3 discussed the drivers of field stability for different linac types.
Field-control challenges for some specific linacs were also mentioned.

Chapter 4 introduced how systems with narrowband dynamics, like ac-
celerating cavities, can be modeled by complex-coefficient baseband systems.
This representation is common in physics and telecommunications where it
greatly simplifies understanding and analysis. However, this representation
has seen little use for field control analysis and is relatively unheard of in the
control community. Therefore we discussed how standard tools of automatic
control generalize to complex-coefficient LTI systems. The extensions were
mostly straight-forward and the main difference is in that negative frequen-
cies must be considered.

Part I. The first part of the thesis addressed baseband modeling of the
field control loop and essential aspects of cavity field control.

In Chapter 5 we provided baseband models of the components in the
RF system. In Chapter 6 we discussed the dynamics of accelerating cavities
which is a key to understand cavity field control. We proposed an energy-
based parameterization of the cavity dynamics that gives more intuition and
avoids certain issues with previous parameterizations. We also proposed a
suitable normalization of the cavity dynamics. In Chapter 7 we collected the
results from Chapters 5 and 6, proposing models of the field control loop
with varying levels of complexity. We also discussed the different types of
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disturbances that are relevant to field control. The modeling in all these
chapters was greatly simplified by the complex coefficient representation.

Chapter 8 considered basic aspects of cavity field control and discussed
the features of a good field controller. In this chapter it was also demonstrated
how the complex-coefficient representation makes it possible to interpret the
crucial aspect of loop-phase adjustment as a rotation of the Nyquist curve
around the origin.

If only the accelerating cavity mode is considered the field control loop
is essentially a first-order system with a time-delay. Assuming that the dis-
turbance spectrum has low-pass character it was demonstrated in Chapter 9
that PI(D)-controllers achieve close to optimal control performance. Since
PI(D)-controllers are intuitive and easy to implement we argued that they
are a suitable choice for cavity field control.

Part II At the end of Part I it was shown that PI(D) control is suitable
for cavity field control if parasitic modes can be neglected and the distur-
bances have low-pass character. If parasitic modes are present or if the dis-
turbances have narrow spectra, one can retain the simple PID structure if
it is augmented with notch filters (Chapter 11) and peak filters. A simple
and intuitive tuning method for such disturbance-rejecting peak filters was
introduced in Chapter 14.

Three additional topics were also discussed. Chapter 10 compared Carte-
sian and polar feedback for cavity field control in the context of a digital
LLRF system and a linear accelerator. Low-latency digital downconversion
for cavity field control was discussed and analyzed in Chapter 12. The prob-
lem of minimizing the energy consumption for filling the accelerating cavities
at the start of each RF pulse was solved in Chapter 13.
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15.2 Future work: Directionality in the field control problem

Throughout this thesis it has been assumed that the field control loop can
be modeled as a single-input single-output complex-coefficient system P (s)
(if IQ imbalance and amplifier nonlinearity are compensated). This repre-
sentation implies that the dynamics of the field control loop is rotationally
invariant (see Section 4.3.5). However, as have been discussed in this thesis,
the objective function, the disturbances distributions, and the control signal
limitation (around a nominal operating point) are typically not rotationally
invariant.

Directionality of disturbances and their impact. The disturbances
acting on the field control loop have certain directionality, as was mentioned
in Section 6.7. For example, the RF amplifier predominantly gives rise to
phase variations of the RF drive. A robust field control loop should have
G(iω) ≈ [G(−iω)]∗ around the open-loop cross-over frequency where the
disturbance sensitivity is the greatest (see Chapter 8.4). This implies that
GIm(iω) = (G(iω) − G∗(iω))/(2i) is small compared GRe(iω) in this fre-
quency range. From (4.22) it then follows that a directional disturbance in
this frequency range gives rise to field errors in its own direction.

Directionality of the objective function. Field error requirements are
typically stated in terms of the allowed rms errors of the amplitude and
the phase of the accelerating mode. Often the maximum level of amplitude
errors in percent is equal to the maximum level of phase errors in degrees.
This requirement is somewhat asymmetric if considered in the complex plane
since 1° = 0.017 rad, see the solid rectangle in Figure 15.1a. For some FEL
linacs the phase requirements of certain cavities are even further relaxed
relative to the amplitude requirements. For example, the X-band cavities at
SwissFEL have the error requirement 0.018%/0.072◦ [Ganter, 2012].

The beam in an ion linac experiences an acceleration proportional to
Re{A·I∗

b} where A is the phasor of the accelerating mode and Ib is the beam-
current phasor. The longitudinal focusing of the beam depends on Im{A·I∗

b}.
The directions in which field errors affect these two quantities are indicated in
Figure 15.2a. In ion linacs, where the beam is accelerated with a synchronous
phase φb significantly lower than zero, these two quantities that the beam
cares about are not quite captured by requirements on amplitude and phase.

The optimal controller. Given a rotationally-invariant plant P (s), a
rotationally-invariant control objective, and rotationally-invariant distur-
bances it follows from Theorem 2 on p. 52 that optimal control performance
can be achieved with a rotationally-invariant controller C(s). However, if the
control objective, the signal constraints, and the disturbances are not rota-
tionally invariant then it is unlikely that the optimal controller is rotationally
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acceleration

longitudinal
focusing

A

(a) Directionality of the control objective.

Ib0

Fg0

Ib0db

Fg0dg

(b) Directionality of disturbances.

Figure 15.1 Left: The directions in which field control errors affect ac-
celeration and focusing of the particle bunches. The small solid rectangle
corresponds to a specification in terms of amplitude and phase errors. The
dotted rectangle shows a specification in terms of acceleration and longitudi-
nal focusing. Such a specification could potentially lead to better accelerator
performance at a lower cost. Right: Illustration of the directions that mod-
ulator ripple (green dashed line) and the beam current ripple (red dashed
line) affect the cavity field in.

invariant. The optimal controller must hence be represented as a widely linear
system (see Appendix A) which makes analysis and controller optimization
more involved. So even if a complex-coefficient LTI controller is not optimal
in a mathematical sense it is likely quite optimal in a practical sense if also
understandability and maintainability are considered.

Open questions. We are not aware of that the directionality of the field
control problem has been discussed in the existing literature and it seems like
an interesting topic for further studies. For example, it would be interesting
to know how much performance that is sacrificed by restricting the controller
structure to complex-coefficient LTI systems rather than widely linear sys-
tems. To compute the optimal control performance achievable by a widely
linear controller one could use Q design as in Chapter 9.

Another question is how to specify the field error requirements for an ion
linac. It would be interesting to know if the beam losses are better quanti-
fied in terms of field errors in the direction indicated in Figure 15.1a than
using uncorrelated amplitude and phase errors. Such requirements could be
captured by a cost function of the field errors z = a − 1 of the form

J(z) =
[
Re z Im z

]
QJ

[
Re z

Im z

]
(15.1)

where QJ is a symmetric positive-definite matrix. A bound on the cost func-
tion in (15.1) would correspond to an ellipsoidal constraint in Figure 15.1a.
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15.3 Future work: Transient operation and
iterative learning control

This thesis has focused on closed-loop performance around a nominal op-
erating point (flat-top operation). For pulsed linacs it is also important to
consider transient operation. Iterative learning control (ILC) is a good tool
for reducing the errors from repetitive set-point changes and disturbances,
as was briefly discussed in Section 7.2. The update law of the filter-based
ILC formulation in [Norrlöf, 2000] is conveniently modeled using complex-
coefficient systems as

uILCk+1 = Q(z) (uILCk − L(z)ek) ,

and where uILCk is the (complex) feedforward signal, ek is the error vector
from the previous pulse, L(z) is a suitably chosen (possibly non-causal) filter,
and Q(z) is a zero-phase low-pass filter.

It is planned to use this ILC filter-based approach for the ESS linac. The
author implemented and experimentally demonstrated it on a bench-top test
cavity in October 2015, but due to FPGA hardware upgrades it has not been
feasible to repeat the experiments.

15.4 Conclusions

The thesis has provided a solid foundation for cavity field control in terms
of normalized complex-baseband models. Based on this foundation, several
aspects of field control were analyzed from novel directions and novel results
were provided. It is hoped that this thesis has convinced the reader of the
merits of complex-coefficient SISO models in field control analysis for linear
accelerators.
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Appendices





A

Widely Linear Systems

Certain systems which are conveniently modeled with complex signals do not
have a strictly complex-linear relationship between the input signal u and
the output signal y, but rather depend on both u through a transfer function
G(s) and the conjugate u∗ through a transfer function Ğ(s), see Figure A.1.
We will refer to the system in Figure A.1 as a widely linear1 system and
denote it by the two-tuple [G, Ğ].

The widely linear system [G, Ğ] can, similarly to (4.14), be written as an

equivalent real-coefficient TITO system acting on signals
[
uRe uIm

]T
,

Gequiv(s) =

[
GRe(s) −GIm(s)
GIm(s) GRe(s)

]
+

[
ĞRe(s) −ĞIm(s)

ĞIm(s) ĞRe(s)

] [
1 0
0 −1

]
. (A.1)

Another, possibly more insightful representation of (A.1), is obtained by
applying the same unitary transformation T as in (4.15), to obtain the so-
called augmented system [Schreier and Scharf, 2010]

Gaug(s) = T HGequiv(s)T =

[
G(s) Ğ(s)

Ğ∗(s) G∗(s)

]
. (A.2)

G(s)

Ğ(s)conj(·) u∗

u y

Figure A.1 The action of the widely linear system [G, Ğ] on a complex
signal u. Both G(s) and Ğ(s) have complex coefficients in general.

1Widely linear is the term used in the telecommunications literature [Picinbono and
Chevalier, 1995; Schreier and Scharf, 2010]. The power-electronics literature use the terms
unbalanced [Dòria-Cerezo and Bodson, 2016] and asymmetric [Harnefors, 2007].
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Appendix A. Widely linear systems

This system can (recall Remark 4.2) be thought of as mapping signals[
u u∗

]T
to signals

[
y y∗

]T
. The augmented representation (A.2) is the

standard representation of widely linear systems in the communications lit-
erature [Schreier and Scharf, 2010]. Note that the second row of Gaug is re-
dundant in that it can be obtain from the first row through conjugation.

For cavity field control, widely linear behavior arises from IQ imbalance
in analog quadrature up- and downconversion and from the amplifier non-
linearity (when linearizing around a nominal operating point). In the first
case, the widely linear behavior is due to a lack of time-invariance and in
the second case it is due to that the linearization of a rotationally-invariant
system around some operating point other than 0 is not guaranteed to be
linear.

Much of the dynamics of electrical machines is rotationally invariant, but
the rotor dynamics give rise to widely linear dynamics [Harnefors, 2007].
Similarly, for optical feedback in diode lasers, the optical cavity and the
feedback path have linear dynamics. However, the lasing dynamics (linearized
around an operating point) is widely linear [Van Tartwijk and Lenstra, 1995].
In signal processing it is not uncommon with widely linear models, see for
example [Schreier and Scharf, 2010; Mandic and Goh, 2009].

Remark A.1 Any real-coefficient system with an even number of inputs
and outputs can be identified with a widely linear system. However, there
is only reason to expect that this representation is helpful if the system is
almost rotationally invariant in the sense that Ğ is small relative to G.

Interconnections of widely linear systems

The set of widely linear systems [G, Ğ] constitute an associative algebra over
the complex numbers if addition is defined by

[G, Ğ] + [H, H̆] := [G + H, Ğ + H̆], (A.3)

multiplication by a complex number w is defined by

w[G, Ğ] := [wG, wĞ], (A.4)

and the bilinear product is defined by

[G, Ğ] · [H, H̆] := [GH + ĞH̆∗, GH̆ + ĞH∗]. (A.5)

This is equivalent to consider widely linear systems to be represented by
their augmented representation (A.2), however, the notation [G, Ğ] avoids
redundancy.
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Appendix A. Widely linear systems

Worst-case robustness degradation due to unbalanced dynamics

Definition A.1 The H∞ norm of a widely linear system is defined by

∣∣∣
∣∣∣[G, Ğ]

∣∣∣
∣∣∣
∞

:=

∣∣∣∣
∣∣∣∣
[

G Ğ

Ğ∗ G∗

]∣∣∣∣
∣∣∣∣
∞

.

Theorem 4
Assume that the complex-coefficient system L0 subject to unity negative
feedback is stable and has a maximum sensitivity of MS0 := ||1/(1 + L0)||∞ .

Then the widely linear system [L0, L̆] where L̆ is a small unbalance contri-
bution with ||L̆||∞ < 1/MS0 has, subject to unity feedback, its maximum
sensitivity M̆S bounded as

M̆S ≤ MS0

1 − MS0||L̆||∞
(A.6)

Remark A.2 If the unbalance is small, a first-order expansion gives that
M̆S / MS0 + (MS0)2||L̆||∞.

Proof. The proof follows the lines of the proof of Theorem 9.7 in [Zhou
et al., 1996]. From the small-gain theorem it follows that the feedback inter-
connection is stable. The equivalent real-coefficient TITO representations of
G0 and Ğ are

G0 =

[
G0Re −G0Im

G0Im G0Re

]
, Ğ =

[
ĞRe −ĞIm

ĞIm ĞRe

] [
I 0
0 −1

]

Note that for any two complex matrices A and B it holds that σ(A+B) ≥
σ(A) − σ(B), where σ denotes the largest singular value and σ denotes the
smallest singular value. Also note that the assumptions of the theorem en-
sure that σ(I + G0 + Ğ) > 0. These two observations show that the frequency
response of the sensitivity function S̆ = (I + G0 + Ğ)−1 at each frequency
ω satisfies the following inequalities (where the frequency argument is sup-
pressed)

σ(S̆) = σ
(

(I + G0 + Ğ)−1
)

=
1

σ(I + G0 + Ğ)
≤ 1

σ(I + G0) − σ(Ğ)
≤ MS0

1 − MS0σ(Ğ)
.

This inequality together with ||Ğ||∞ = ||Ğ||∞ show (A.6). ✷
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B

The LLRF System for ESS

The LLRF system for the ESS linac will be based on components that are
compliant with the MicroTCA.4 standard [MTCA.4 2017], which was devel-
oped as a subspecification of the MicroTCA standard [Jamieson, 2006], to
allow a flexible, carrier-grade platform for big science projects.

Table B.1 Components of the ESS LLRF system.

Component Model/Comments

12-slot chassis nVent Schroff 11850-026

MicroTCA Carrier Hub NAT-MCH-PHYS

Power Supply Unit Wiener MTCA.4 1000 W PS

Digitizer (AMC∗) Struck SIS8300-KU
Kintex Ultrascale FPGA
10 ADCs, 16-bit, 125 MS/s
2 high speed DACs
2 GByte DDR4 Memory

Downconversion & Struck DWC8VM1(-LF)

vector modulator (RTM†) 8 down-conversion channels
1 up-conversion channel
(vector modulator)

Timing receiver (AMC∗) Micro-Research Finland mTCA-EVR-300U

CPU (AMC∗) Concurrent Technologies AM G64/471 99

LO-generation 352.21 MHz In-kind contribution form ESS Bilbao
(stand-alone unit)

LO-generation 704.42 MHz In-kind contribution from
(RTM†) the Polish Electronic Group‡

∗Advanced Mezzanine Card, inserted from the front of the chassis.
†Rear Transition Module, inserted from the back of the chassis.
‡Collaboration between National Centre for Nuclear Research,
TU Warsaw, and TU Łódź.
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C

Derivation: Dynamics of a

Cavity Mode

The following derivation of (6.8) is based on [Haus, 1983, Section 7.2], but
additionally includes beam loading. We will consider the kth mode but will
drop the mode index except in Section C.3 where we also mention the ac-
celerating mode. The starting point of this derivation will be the baseband
dynamics (6.7) (relative to the nominal RF frequency ωRF) of a closed and
lossless cavity. We restate this equation for convenience;

d

dt
A = i∆ωA,

where ∆ω := ωa − ωRF.

C.1 Waveguide coupling

Next, let us introduce a coupling port to a waveguide. This allows an incident,
forward wave in the waveguide to excite the cavity mode, but energy will
also escape the cavity through the port, and propagate away in a reverse
wave (see Figure 6.1). We will denote the complex-envelopes (with respect to
ωRF) of the forward and reverse waves by Fg and Rg. We also assume them
normalized so that |Fg|2 is the power carried by the forward wave (Fg has
units

√
W), and similarly for Rg.

Due to the linearity of Maxwell’s equations, we have

d

dt
A = i∆ωA − γextA + κgFg (C.1)

where γext is the decay rate of the cavity field through the coupling port,
and κg is a, possibly complex-valued, proportionality constant quantifying
the effect of the forward wave on the cavity field. It turns out that γext and
κg are in fact related and we next derive how.
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Appendix C. Derivation: Dynamics of a cavity mode

C.2 Relation between γext and κg

Throughout this section we will consider a particular solution to (C.1): from
the initial condition A(0) = 1, with ∆ω = 0 and Fg(t) ≡ 0. It is clear that
the solution is given by

A(t) = e−γextt, t ≥ 0.

Recall that the stored energy in the cavity equals |A|2. The stored energy
changes by d

dt |A|2 = −2γexte−2γextt, and due to conservation of energy, this
power is carried away by the reverse wave, so

|Rg|2 = 2γexte−2γextt. (C.2)

If E(r, t) is a solution to (6.1)—valid in the cavity and the waveguide—
then so is the time-reversed solution Er(r, t) := E(r, −t).

We next consider the time-reversed version of the particular solution of
this section. The mode amplitude for the time-reversed solution is given by

Ar(t) = A(−t) = eγextt, t ≤ 0, (C.3)

and the forward wave turns into reverse wave, and vice versa. Thus, for Fgr

(the forward wave in the time-reversed solution) we have that |Fgr| = |Rg|,
which gives

Fgr = eiφ0 ·
√

2γexteγextt (C.4)

for some phase φ0.
Recalling that ∆ω = 0, and plugging (C.3) and (C.4) into (C.1) gives

γexteγextt = −γexteγextt + κgeiφ0 ·
√

2γexteγextt,

from which it follows that

κg = e−iφ0 ·
√

2γext.

Since we are free to define the reference phase for the forward wave, we
may assume φ0 = 0, and thus get

κg =
√

2γext.

d

dt
A = i∆ωA − γextA + κgFg. (C.5)

We have now recovered the same cavity equation as in [Haus, 1983]. To model
accelerating cavities we also need to include beam loading.
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C.3 Beam loading

Original solution

undef.

0

1

t

A

Time-reversed solution

undef.

0

1

t

Ar

0

t

|Fg|

0

t

|Fgr|

0

t

|Rg|

0

t

|Rgr|

Figure C.1 Illustration of the specific solution considered in Section C.2.

C.3 Beam loading

A sufficiently closely spaced bunch train traversing the cavity can be modeled
by a complex envelope Ib whose magnitude |Ib| equals the corresponding DC
current of the bunch train. The phase of Ib (i.e., the bunch phase) is defined
so that ∠Ib = −π gives maximum acceleration from the nominal field of the
accelerating mode (corresponding to ∠Aa = 0).

Introduce the cavity–beam-coupling parameter αk of the mode1 accord-
ing to (cf. [Wangler, 2008])

power to beam from mode k = −Re{α∗
kI∗

bAk}. (C.6)

Note that the cavity–beam-coupling parameter of the accelerating mode is
real and non-negative, αa = αa ≥ 0, due to the definition of the Ib.

The bunch train induces an electromagnetic field in the cavity, corre-
sponding to a term −µ0 dJ/dt, where J is current density, on the right-hand
side of (6.1). This effect is linear and assuming for a moment that ∆ω = 0
and there is no waveguide coupling (γext = 0, this effect is linear and can be

1The cavity–beam-coupling parameter depends on the velocity of the particle bunches
and is related to the traditionally used parameter (r/Q)k (linac convention) as |αk| =√

ωk(r/Q)k.
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Appendix C. Derivation: Dynamics of a cavity mode

added by the superposition principle) we have that the impact on the kth
mode is given by

dAk

dt
= κbkIb

where κbk is a complex coefficient. Using this expression we have that the
energy of mode k changes due to beam loading as

d

dt
|Ak|2 = 2Re{κ∗

bkI∗
bAk}. (C.7)

Conservation of energy yields that (C.6) and (C.7) sum to zero. Since this
holds for all Ib it follows that κbk = αk/2.

C.4 Putting it together

By combing the results from the two preceding sections and adding a term
−γ0A for resistive losses (assuming that these do not significantly change
the mode distribution) we arrive at

dA

dt
= (−γ + i∆ω)A +

√
2γextFg +

α

2
Ib

where γ = γ0 + γext. This is exactly (6.8).

C.5 Reverse wave

As in [Haus, 1983, (7.36)] we may derive an expression for the envelope of
the reverse wave. From the linearity of Maxwell’s equations we know that
the reverse wave Rg depends linearly on the forward wave and the mode
amplitude:

Rg = cF Fg + cAA,

where cF and cA are complex constants. We already know from (C.2) that
|cA| =

√
2γext, and by selecting which phase Rg is defined with respect to,

we can make cA =
√

2γext.
Next, we derive an expression for cF . Conservation of energy gives that

|Fg|2 − |Rg|2 =
d

dt
|A|2 , (C.8)

and from (C.5) it follows that

d

dt
|A|2 = −2γext |A|2 +

√
2γext

(
A∗Fg + F∗

gA
)

. (C.9)
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C.5 Reverse wave

Putting (C.8) equal to (C.9), and then substituting A = (Rg−cF Fg)/
√

2γext

gives

|Fg|2 − |Rg|2 = −2γext |A|2 +
√

2γext

(
A∗Fg + F∗

gA
)

= −
(

|Rg|2 − cF R∗
gFg − c∗

F F∗
gRg + |cF |2 |Fg|2

)

+
(

R∗
gFg − c∗

F |Fg|2 + F∗
gRg − cF |Fg|2

)
.

From this equation it follows that

|(1 + cF )Fg − Rg|2 = |Rg|2 .

For this equality to hold for all Fg and Rg, we must have that

cF = −1.

Thus the reverse wave is given, as in [Haus, 1983, (7.36)], by

Rg = −Fg +
√

2γextA.
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D

Derivation: Dynamics of

Elliptical Multicell Cavities

Dynamic models of same-order modes have been used for studying how beat-
ing of same-order modes affects the voltage seen by the beam [Henke and
Filtz, 1993; Ferrario et al., 1996]. Models that capture the shapes of the
modes and their resonance frequencies (but not their dynamics and decay
rates) have been considered for field-flatness tuning Padamsee et al., 2008,
Sec. 7.2; Wangler, 2008; Sekutowicz, 2010; Doolittle, 1989.

For field-control design in the frequency domain it is useful to know the
(S21) transfer function from the incident RF drive to the pickup-probe signal.
A real-coefficient, two-input two-output transfer function from RF drive to
pickup probe (valid for superconducting) cavities was presented without mo-
tivation in [Schilcher, 1998]. An incorrect attempt to derive the same transfer
function was made in [Vogel, 2007] (see Remark D.1).

In this appendix, we will start from the bandpass state-space model of
an N -cell cavity in [Ferrario et al., 1996], perform modal decomposition (di-
agonalization), and then transform the diagonal model to baseband.

D.1 Bandpass model of an N -cell cavity

Consider the elliptical N -cell cavity in Figure 6.11 which has N − 2 identical
inner cells and two end-cells that are joined with the beam pipe. Cell 1 can
be excited through a power coupler connected to the beam pipe. Adjacent
cells are connected by irises which allow the electromagnetic field to disperse
throughout the cavity. Cell N contains a pickup probe for measuring the
electric field.

We will only consider the lowest energy mode in each cell, and denote
the electric field amplitudes of these by x =

[
x1 · · · xN

]
T. We will assume

that xj is normalized so that the squared magnitude of its complex envelope
equals the energy stored in cell j. Let the coupling between cells be quantified
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D.2 Eigenvectors and eigenvalues of the matrix K

by the cell-to-cell coupling factor kcc; the resonance frequencies of the inner
cells be given by ωcell; the resonance frequencies of the end cells be given
by ωcell

√
1 + 2kcc; the RF drive (i.e., the forward wave entering the power

coupler) be modeled by its complex envelope Fg, with |Fg|2 equaling the
power in the forward wave; the coupling between the waveguide and the field
in cell 1 be quantified by the decay rate γpc of the field in this through
the power coupler; and assume that field decay through the pickup probe
is negligible. See Figure 6.11 for an illustration. This is a rather standard
description of a multicell cavity [Padamsee et al., 2008; Sekutowicz, 2010],
although the notation is slightly different.

According to [Ferrario et al., 1996, (B-1)] the cell amplitudes x evolve as
a chain of weakly coupled oscillators, with the dynamics

ẍ + 2γ0ẋ + 2γpcE1ẋ + ω2
cellx + ω2

cellkccKx

= 2
√

2γpce1
d

dt
Re{FgeiωRFt}, (D.1)

where

K =




3 −1 0 · · · 0

−1 2 −1 0
...

0 0
. . . 0

... −1 2 −1
0 · · · 0 −1 3




, (D.2)

E1 = diag(1, 0, . . . , 0),

e1 =
[
1 0 . . . 0

]T
.

D.2 Eigenvectors and eigenvalues of the matrix K

By recalling standard trigonometric identities and doing some algebra—
alternatively looking up [Padamsee et al., 2008, Sec. 7.2]—it can be verified
that the matrix K in (D.2) has the eigenfactorization QΛQT = K, where

Q :=




| | |
q1 q2 . . . qN

| | |


 , (D.3)

Λ := diag(λ1, λ2, · · · , λN ), (D.4)

and the eigenvalues λn are given by

λn = 2
(

1 − cos
nπ

N

)
, (D.5)
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Appendix D. Derivation: Dynamics of elliptical multicell cavities

and the orthonormal eigenvectors qn are given by

qn =

√
2
N

(n < N)




sin
[
(1 − 1

2 ) nπ
N

]

sin
[
(2 − 1

2 ) nπ
N

]

...

sin
[
(N − 1

2 ) nπ
N

]




, qN =

√
1
N




1

−1
...

(−1)N−1



. (D.6)

The entries of the Nth mode have equal magnitude and opposite signs. For
this reason, it is almost always used as the accelerating mode.

We will, as in existing literature, refer to the nth mode as the nπ/N
mode, due to the cell-to-cell phase advance. However, to keep the notation
manageable, we keep the subscripts n, except for when we wish to emphasize
its special nature of the π mode (the Nth mode).

D.3 Diagonalizing the dynamics

With the change of variables x = Qξ (ξ corresponds to the mode amplitudes
in the case of no losses), we can diagonalize all of (D.1) except the third
term,

ξ̈ + 2γ0ξ̇ + 2QTE1Qγpcξ̇ + ω2
cell(I + kccΛ)ξ

= 2
√

2γpcQe1
d

dt
Re{FgeiωRFt}, (D.7)

where I is the identify matrix. For convenience, denote Q’s first row times√
N by

R :=
[

R1 · · · Rn · · · RN

]

=
[√

2 sin
π

2N
· · ·

√
2 sin

nπ

2N
· · · 1

]
.

Then we can write the third term of (D.7) as 2RTR/Nγpcξ̇. This term, which
originates from field decay through the power coupler, dynamically couples
the modes. We may however assume that this interaction averages out to 0,
since the beating period between the different modes is significantly shorter
than the timescales at which the (complex) mode amplitudes change. Thus it
suffices to keep the diagonal entries of RTR, which correspond to the external
decay rates of the modes. Denoting them by

γextn := R2
n γpc/N, (D.8)
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D.4 Baseband state-space model

we get N uncoupled differential equations from (D.7), one for each mode,

ξ̈n + 2γ0ξ̇n + 2γextnξ̇n + ω2
cell(1 + kccλn)ξn

= 2
√

2γextn

d

dt
Re{FgeiωRFt}. (D.9)

It can be seen from (D.8) that the external decay rate for the π mode is
given by γextπ = γpc/N , and that the external decay rates of the parasitic
same-order modes (n < N) are related to γextπ as

γextn = R2
nγextπ = 2 sin2 nπ

2N
· γextπ (D.10)

D.4 Baseband state-space model

The eigenfrequencies of the modes in (D.9) are given by

ωn = ωcell

√
1 + kccλn.

Denote their offsets from the nominal RF frequency ωRF by ∆ωn := ωn−ωRF.
Note that the eigenvalues in (D.5), for n < N , can be written λn = 2R2

n.
Assuming that the nominal RF frequency approximately equals the resonance
frequency of the π mode, ωRF ≈ ωπ = ωcell

√
1 + 2 · 2kcc, then for n < N

∆ωn ≈ ωcell

√
1 + R2

n · 2kcc−ωcell

√
1 + 2 · 2kcc ≈ (R2

n−2)kccωcell. (D.11)

Introducing An as the complex envelope of the nπ/N mode we see that
the baseband transformation of (D.9) with respect to ωRF is given by1

Ȧn = [−(γ0 + γextn) + i∆ωn] An +
√

2γextnFg. (D.12)

By introducing A :=
[
A1 · · · AN

]T
, ∆Ω := diag(∆ω1, . . . , ∆ωn), and

Γext := diag(γext1, . . . , γextN ), we can write the equations (D.12) as

Ȧ = [−(γ0I + Γext) + i∆Ω] A +
√

2γextπRTFg. (D.13)

The voltage signal Vpu from the pickup probe is proportional to the field
amplitude in cell N , Vpu ∝ QN :A where QN : is the Nth row of Q. Noting
that2

√
NQNn = (−1)n−1Rn, we can write

Vpu = CA,

1A reasonable baseband approximation of 2s/(s2 + 2ζ0ω0s + ω2
0) with respect to the

frequency ωRF is 1/(s + ζ0ω0 − i(ω0 − ωRF)).
2QNn = sin

[
(N − 1

2
) nπ

N

]
= sin

[
nπ − nπ

2N

]
= (−1)n−1 sin nπ

2N
= (−1)n−1Q1n =

(−1)n−1Rn/
√

N.
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Appendix D. Derivation: Dynamics of elliptical multicell cavities

where

C =
[
c1 · · · cN -1 cπ

]
:= κpuR




(−1)N−1

. . .
−1

1


, (D.14)

and κpu is a proportionality constant (which can be assumed to be real since
the phase that Vpu is defined with respect to can be chosen freely).

Combining (D.13) with (D.14) and also including cavity–beam interac-
tion, quantified by parameters αn as in Section 6.8, we have the following
state-space realization for the dynamics of the same-order modes

Ȧ = AA + BgFg + BbIb (D.15)

Vpu = CA (D.16)

where

A = −(γ0I + Γext) + i∆Ω

Bg =
√

2γextπRT

Bb =
1
2

[
α1 · · · αN-1 απ

]T

C = given by (D.14) .

Remark D.1 (Previous transfer-function models) In [Schilcher,
1998] it was correctly stated (but without motivation) that the same-order
modes of a superconducting cavity have the dynamics (6.36). This is also
consistent with Figure 5.9 in [Liepe, 2001], which indicates equal peak mag-
nitudes of |Pcav(iω)|. However, in [Vogel, 2007] the mode terms in (6.36) are
additionally multiplied by their coupling strengths to the RF system (essen-
tially R2

n) although these factors are already included in the numerators of
middlemost expression of (6.35).
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E

Controller Optimization

E.1 Design of optimal linear controllers

Approximately optimal LTI controllers can often be found by utilizing the
Youla parametrization [Youla et al., 1976], whereby all internally stable
closed-loop transfer functions are parametrized by a stable transfer function
Q(s). If the objective and constraints are convex functions of the closed-loop
transfer functions, which they often are, it is possible to find an approximate
solution with standard convex solvers [Boyd and Barratt, 1991]. This method
is called Q design; see [Hespanha, 2009] for a practical implementation in the
modeling system cvx [CVX Research Inc, 2012].

The basic ideas of Q design are straight-forward, but it is common to en-
counter various numerical issues for all but the smallest problems [Kjellqvist
and Troeng, 2019]. Some key ideas for simple and successful implementa-
tion of Q design were presented in [Troeng, 2017]. For the problem that we
consider in Chapter 9 it is sufficient with the following version of the Youla
parametrization.

Youla Parametrization (Simplified Version)
Assume that the SISO system P (s) is stable, then

C(s) =
Q(s)

1 − P (s)Q(s)

is an internally stabilizing controller for P (s), if and only if Q(s) is stable.✷

With this parametrization, all closed-loop transfer functions become affine in
Q(s), for example, the sensitivity function S = (1−PQ), and we can re-write
the control problem (9.3) as

minimize
Q

||Pa(1 − PQ)D||2 (E.1a)

subject to ||1 − PQ||∞ ≤ Smax. (E.1b)

||QN ||2 ≤ Bun. (E.1c)
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Appendix E. Controller optimization

Note that the objective and the constraints are convex in Q.

Obtaining a finite-dimensional problem

To solve the problem (E.1) numerically, Q is approximated using a basis
{Qk}N

k=1 of stable transfer functions,

Q =
N∑

k=1

βkQk. (E.2)

The norms in (E.1) are furthermore evaluated over a discrete frequency grid
Ω = {ωm}M

ℓ=1. To allow for arbitrary disturbance spectra D(iω), perhaps
empirically measured, the 2-norms in (E.1) can be expressed as frequency-
domain integrals

||G||22 =
1

2π

∫ ∞

−∞

|G(iω)|2 dω ≈ 1
2π

M−1∑

m=1

|G(iωm)|2 ∆ωm, (E.3)

where ∆ωm = ωm+1 − ωm. In principle we could have selected the frequency
grids differently for each of the three norms in (E.1). For example, the sen-
sitivity constraint typically only needs to be enforced around the bandwidth
of the closed-loop system.

Practical considerations

Basis functions. The basis functions were selected according to

Qk(t) =

{
1 if t ∈ [tk, tk+1),

0 otherwise
(E.4)

see Figure E.1. This is similar to the choice in [Garpinger, 2009] where a
discrete-time formulation was used (corresponding to tk+1−tk = h). However,
allowing the interval length to be adjusted makes it possible to increase the
resolution of the impulse response of Q for small times t, where fast variations
typically occur. Also note that the basis functions Qk are orthogonal in H2.

Constraint on control signal activity. If the measurement noise is
white, i.e., N(iω) = N(0), and if the basis functions Qk are orthogonal,
the constraint on control signal activity (E.1c) can be expressed as

||QN ||22 = N(0)2 ||Q||22 = N(0)2
N∑

n=1

|βn|2 ||Qn||22 ≤ B2
un. (E.5)

This expression can be seen as a regularization constraint on the coefficient
vector {βn}. Numerical experiments indicates that a constraints of this form
alleviates some of the numerical issues in Q design [Troeng, 2017]. A con-
straint of the form (E.5) was also likely contributing to the successful solution
of the Q design problem in [Gonzalez-Cava et al., 2019].
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E.2 Design of low-order controllers

0 t1 t2 t3 t4 t5

0

β1 β2

β3

β4 β5

t

Figure E.1 Illustration of the impulse response of Q =
∑

βkQk when
the basis functions are of the form (E.4).

E.2 Design of low-order controllers

It is challenging to hand-tune controller parameters well enough to make a
fair comparison between different controller structures. Hence, locally opti-
mal controller parameters for the different controller structures considered
in Chapters 9 and 11 were found by local, gradient-based search with the
Matlab function fmincon. Since the problem is non-convex there are no
guarantees that optimal parameters are found. The command Multistart

was used for running multiple local searches from different starting points to
increase the likelihood of finding good parameter values.
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F

Anti-Windup for

Complex-Coefficient

Systems

For feedback controllers with integral action, a notorious effect called inte-
grator windup can arise when the actuator is driven into saturation [Åström
and Hägglund, 2006]. It is caused by integration of a persistent non-zero
control error during a period of actuator saturation. When the control error
eventually changes sign, it takes significant time before the controller begins
to counter-act the error, due to the large value of the integral part.

For most field control loops, integrator windup should not be an issue
since all but the smallest control errors are unacceptable and care is taken to
have sufficient overhead to avoid RF amplifier saturation. However, it is good
practice to always implement some means of anti-windup for controllers with
integral action. Therefore, we briefly discuss anti-windup of field control.

In the standard (real-valued) single-input single-output setting, there are
several anti-windup strategies to choose from [Åström and Hägglund, 2006].
One simple approach called clamping, is to stop increasing the I part when
the control signal saturates. Another approach is back-calculation [Åström
and Hägglund, 2006] (Figure F.1), which directly generalizes to the com-
plex setting if saturation of a complex signal is defined by saturating the
magnitude and leaving the phase unchanged,

sat(u(t)) =

{
u(t) if |u(t)| ≤ 1

u(t)/ |u(t)| if |u(t)| > 1.
(F.1)

A nice feature of back-calculation in the complex setting, is that the phase
of the resulting control signal usat(t) equals that of the nominal control signal
u(t). This seems tricky to achieve with clamping-based approaches to anti-
windup.
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Appendix F. Anti-windup for complex-coefficient systems

sat(·)Σ
1
s

Σ

Σ

1
Ti

K

1
Tt

u(t)

− +

usat(t)e(t)

uILC(t)

Figure F.1 Illustration of complex-valued anti-windup based on back-
calculation for a nominal PI controller given by C(s) = K (1 + 1/(sTi)).
The saturation function is defined in (F.1). The tracking time constant Tt

should be smaller than the integral time Ti [Åström and Hägglund, 2006].
The signal uILC(t) is the feedforward term that is updated by the ILC
algorithm.
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G

Proofs

G.1 Proof of Theorem 2

The Youla parametrization [Youla et al., 1976] gives that all internally stable
closed-loop transfer functions with a widely linear controller (Appendix A)
from a set of external inputs w to a set of controlled variables z can be
parameterized as

Gzw = H1 + H2

[
Q, Q̆

]
H3

where H1, H2, H3 ∈ H∞ and [Q, Q̆] is a stable widely linear system.
Let [Q⋆, Q̆⋆] be the Q parameter corresponding to a controller that

achieves optimal performance (and satisfies the constraints). We will now
show, reasoning as in [Bamieh et al., 2002], that just the strictly linear part
Q⋆, achieves the same performance (and also satisfies all constraints).

The transfer function from a subset w′ of the external signals, to a subset
z′ of the controlled signals can be written

Gz′w′ = H ′
1 + H ′

2

[
Q⋆, Q̆⋆

]
H ′

3.

where H ′
k is a submatrix of Hk.

For any widely linear system [G, Ğ] and rotationally-invariant systems
norm ||·|| we have

∣∣∣
∣∣∣
[
G, Ğ

]∣∣∣
∣∣∣ =

∣∣∣
∣∣∣−iI

[
G, Ğ

]
iI

∣∣∣
∣∣∣ =

∣∣∣
∣∣∣
[
G, −Ğ

]∣∣∣
∣∣∣ , (G.1)

where I denotes the identity system. The first equality follows from the ro-
tational invariance of the norm and the second equality follows from (A.4).
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Appendix G. Proofs

Using (G.1) we have that
∣∣∣
∣∣∣H ′

1 + H ′
2

[
Q⋆, Q̆⋆

]
H ′

3

∣∣∣
∣∣∣

=
1

2

(∣∣∣
∣∣∣H ′

1 + H ′
2

[
Q⋆, Q̆⋆

]
H ′

3

∣∣∣
∣∣∣ +

∣∣∣
∣∣∣H ′

1 + H ′
2

[
Q⋆, −Q̆⋆

]
H ′

3

∣∣∣
∣∣∣
)

≥
∣∣∣∣∣

∣∣∣∣∣H
′
1 + H ′

2

[
Q⋆,

Q̆⋆ − Q̆⋆

2

]
H ′

3

∣∣∣∣∣

∣∣∣∣∣ = ||H ′
1 + H ′

2Q⋆H ′
3|| (G.2)

This shows that better performance cannot be achieved with the widely linear
Q-parameter [Q⋆, Q̆⋆], than with the strictly linear Q⋆. ✷

G.2 Proof of Theorem 3

From Theorem 2 on p. 52 it follows that optimal performance is attained by
a strictly linear Q⋆. Similarly to the preceding proof of Theorem 2, averaging
this Q⋆ = Q⋆

Re + iQ⋆
Im with its complex conjugate (Q⋆)∗ = Q⋆

Re − iQ⋆
Im

(defined in (4.10)) shows that also Q⋆
Re attains optimal performance. ✷

G.3 Theorem on optimal control of first-order systems

Theorem 5
Consider the optimal control problem

minimize
u, tf

∫ tf

0

r(u(t)) dt (G.3a)

subject to ẋ(t) = f(x(t), u(t)) (G.3b)

x(0) = 0 (G.3c)

x(tf ) = 1 (G.3d)

u(t) ∈ U , (G.3e)

where U is a compact set, r(u) > 0 for all u ∈ U , f(x, u) and r(u) are
continuous functions of u. We will assume that there is a constant c > 0 such
that

∀x ∈ [0, 1] ∃u ∈ U so that f(x, u) ≥ c. (G.4)

Define

u⋆(x) := argmax
u ∈ U

f(x, u)

r(u)
. (G.5)

and assume that u⋆ is sufficiently well-behaved for ẋ = f(x, u⋆(t)) to have
a unique solution x⋆(t). Then the optimal control signal is given by
u(t) = u⋆(x⋆(t)).
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Appendix G. Proofs

Proof The following is a self-contained proof based on the Hamilton–Jacobi–
Bellman principle, cf. Example 5.1 in [Liberzon, 2012].

Define the optimal cost-to-go function

V (x) :=
∫ tf

x

r(u⋆(x′))
f(x′, u⋆(x′))

dx′.

Let u be an arbitrary control signal with u(t) ∈ U , such that the corre-
sponding state trajectory x satisfies (G.3b)–(G.3d). It then holds that

r(u) +
d

dt
V (x(t)) = r(u) +

dV

dx
f(x, u)

= r(u) − r(u⋆(x))
f(x, u⋆(x))

f(x, u)

=
r(u)r(u⋆(x))
f(x, u⋆(x))

(
f(x, u⋆(x))

r(u⋆(x))
− f(x, u)

r(u)

)
≥ 0, (G.6)

where the inequality follows from f(x, u⋆(x)) > 0, r(u) > 0 and the definition
(G.5) of u⋆. Equality holds for u = u⋆.

Integration of (G.6) gives, since x(0) = 0 and x(tf ) = 1,

∫ tf

0

r(u(t)) dt ≥ V (x(0)) − V (x(tf )) = V (x(0)),

with equality for u = u⋆. This proves optimality of u⋆. ✷

Remark G.1 The assumption (G.4) guarantees finite-time feasibility.

Remark G.2 The maximum in (G.5) exists since a continuous function
is optimized over a compact set. If several u maximize the expression, any
can be chosen.

Remark G.3 It is clear that the functions r(u) and f(x, u) considered in
the optimal control problem (13.9) give a well-behaved u⋆.

Remark G.4 A constraint tf ≤ tmax on the final time can be handled by
adding a constant term to r(u), and doing a binary search over that constant.
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Reglering av elektriska fält i linjära

partikelacceleratorer
Olof Troeng

Institutionen för Reglerteknik

Populärvetenskaplig sammanfattning av doktorsavhandlingen Cavity Field Con-

trol for Linear Particle Accelerators, November 2019.

Avhandlingen kan laddas ner från: https://portal.research.lu.se

ESS fungerar ungefär som en rönt-

genmaskin, men neutronerna avslöjar

detaljer som är osynliga för röntgen-

strålar. Bildrättigheter: ESS.

Världens starkaste neutronmikroskop,
ESS (European Spallation Source),
håller just nu på att byggas utan-
för Lund i ett samarbete mellan tret-
ton europeiska länder. ESS kommer att
bidra till förståelsen och utvecklingen av
framtidens läkemedel, solceller, bränsle-
celler och tekniska material.

Neutronerna kommer att frigöras
genom att wolframatomer krossas med
protoner som accelererats till nära
ljusets hastighet. För att få skarpa
bilder behövs många neutroner, och
alltså även många protoner. Små moln med cirka en miljard protoner kommer
att accelereras av växlande elektriska fält inneslutna i acceleratorkaviteter.
För att protonerna ska accelereras på rätt sätt måste styrkan på de elektriska
fälten vara rätt inom 0.1 %. Det är också nödvändigt att protonmolnen och
de elektriska fälten är synkroniserade så när som på en biljondels sekund.
För att klara dessa krav kommer styrkan och fasen på de elektriska fälten
att mätas och justeras miljontals gånger i sekunden av snabba regulatorer.

en miljard
protoner acceleratorkavitet

Protonerna på ESS kommer att ac-

celereras av växlande elektriska fält

som skjutsar på protonerna när de

passerar. De elektriska fälten kom-

mer att vara inneslutna i accelera-

torkaviteter som den på bilden.

Bildrättigheter: G. Constanza.

Avhandlingen belyser olika aspek-
ter av hur man kan förbättra och
lättare designa dessa regulatorer. Ett
genomgående tema är att förståelsen
underlättas om man ser det som att re-
glersystemet arbetar med komplexvärda
signaler, dvs. signaler med både realdel
och imaginärdel. Med detta synsätt får
systemet en mätsignal och en styrsig-
nal, vilket underlättar förståelsen jäm-
fört med det traditionella synsättet med
två reella mätsignaler och två reella
styrsignaler.
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Idén att representera två signaler med en komplexvärd signal är vanlig
inom telekommunikation, men det finns mycket få exempel på reglersystem
där denna representation är meningsfull. På grund av detta har praktiska och
teoretiska aspekter av reglerdesign för komplexvärda system varit relativt
outforskade. I avhandlingen utvecklas därför viss ny och grundläggande teori
för sådana system.

Nyttan av en komplexvärd systembeskrivning exemplifieras av att den
förenklat härledningen av ett flertal av avhandlingens nya resultat. Bland
dessa kan nämnas en intuitiv designmetod för att minska verkan av pe-
riodiska störningar från t.ex. förstärkarelektronik. Ett annat exempel är en
förenkling av de digitala filter som förhindrar att oönskade elektriska svängn-
ingsmoder ger instabilitet i regleringen.

De nya resultat och intuitiva synsätt som presenteras i avhandlingen kom-
mer att underlätta förståelsen för regleringen av de elektriska fälten på ESS
och i världens många andra partikelacceleratorer.
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