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Cavity frequency-dependent theory for vibrational
polariton chemistry
Xinyang Li1, Arkajit Mandal 1✉ & Pengfei Huo 1,2✉

Recent experiments demonstrate the control of chemical reactivities by coupling molecules

inside an optical microcavity. In contrast, transition state theory predicts no change of the

reaction barrier height during this process. Here, we present a theoretical explanation of the

cavity modification of the ground state reactivity in the vibrational strong coupling (VSC)

regime in polariton chemistry. Our theoretical results suggest that the VSC kinetics mod-

ification is originated from the non-Markovian dynamics of the cavity radiation mode that

couples to the molecule, leading to the dynamical caging effect of the reaction coordinate and

the suppression of reaction rate constant for a specific range of photon frequency close to the

barrier frequency. We use a simple analytical non-Markovian rate theory to describe a single

molecular system coupled to a cavity mode. We demonstrate the accuracy of the rate theory

by performing direct numerical calculations of the transmission coefficients with the same

model of the molecule-cavity hybrid system. Our simulations and analytical theory provide a

plausible explanation of the photon frequency dependent modification of the chemical

reactivities in the VSC polariton chemistry.
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P
olariton Chemistry is an emerging field1–5 that provides
opportunities for new chemical reactivities or selectivities
by coupling molecular systems to quantized radiation fields

inside an optical cavity. By hybridizing electronic excitation of
the molecule and the photonic excitation of the radiation inside
the cavity, new light-matter entangled states, so-called
polariton states are generated. Recent experimental and theore-
tical works have demonstrated the possibility of changing
photo-isomerization reactivities3,6–9, modifying electron transfer
kinetics10–12, and remotely controlling chemical reactions13.
These new polaritonic photochemical reactivities are attributed to
the modification of the excited state landscape1,3,6–9,11,12 due to
the formation of the polariton states.

Similarly, hybridizing molecular vibrations and the photonic
excitations inside an optical cavity14,15 forms vibrational polaritons
(Fig. 1a). For the vibrational polaritonic hybrid system, it is a well-
known result that the Rabi splitting observed in the infrared (IR)
spectrum (due to light-matter couplings) scales as

ffiffiffiffi
N

p
with N as the

number of molecules14,15 inside the cavity. Whether or not such a
collective effect also manifests itself into chemical kinetics has been a
subject of a debate16–19. Recent experiments have demonstrated that
it is possible to suppress20–24 or enhance25,26 the ground-state che-
mical reactivities by placing an ensemble of molecules in an optical
microcavity through the resonant coupling between the cavity and
vibrational degrees of freedom (DOF) of the molecules. This so-called
vibrational strong coupling (VSC) regime5 operates in the absence of
any light source21,22, and was hypothesized to utilize the hybridiza-
tion of a vibrational transition of a molecule and the zero-point
energy fluctuations of a cavity mode21,22. This new strategy of VSC, if
feasible, will allow one to bypass some intrinsic difficulties (such as
intramolecular vibrational energy transfer) encountered in the mode-
selective chemistry that uses IR excitation to tune chemical reactiv-
ities, offering a paradigm-shift of synthetic chemistry through cavity
enabled bond-selective chemical transformations21,22.

Unfortunately, a clear theoretical explanation of such remark-
able VSC ground-state reactivities remains missing, including
explaining both (i) the collective (N-dependent) effects on che-
mical reaction rates, and (ii) the resonant effect where the sup-
pression of the rate is achieved with a particular cavity photon
frequency. Recent theoretical works that use simple transition
state theory (TST) suggest that there is no collective effect nor
resonant effect in VSC polariton chemistry17–19,27. On the other
hand, both effects do show up in a VSC non-adiabatic electron
transfer reaction28, with an enhancement of the rate upon reso-
nant coupling between molecular vibration and the cavity,
although the applicability of this theory on the VSC ground-state
adiabatic reactions remains an open question.

In this work, we provide a different perspective on understanding
the resonant effect of the VSC ground-state reactivities. Note that we
refer to the photon frequency-dependent modification of the ground-
state kinetics as the resonant effect. Through both analytical theory
and numerical simulations, we demonstrate that the non-Markovian
nature of a cavity radiation mode leads to significant suppression of
the chemical reaction rate constant at a particular photon frequency
that is related to the reaction barrier frequency. At such a “resonant”
frequency, the cavity radiation mode induces the dynamical caging
effect29,30, such that the molecular reaction coordinate becomes
trapped in a narrow “photonic solvent cage” near to the top of the
barrier region, leading to a suppression of the chemical kinetics. Such
effects are dynamical and are not captured within a simple transition
state theory. This work underscores the importance of “dynamical
solvent effect” of the cavity radiation modes and provides an
understanding of the VSC polariton chemistry, paving the way
toward an ultimate theoretical understanding of VSC polariton
chemistry.

Results
Theoretical model. The model QED Hamiltonian used in this
work is expressed as31–33

Ĥ ¼ P̂
2

2M
þ EðRÞ þ Ĥvib þ

p̂
2
c

2
þ 1

2
ω2
c q̂c þ

ffiffiffiffiffiffiffiffi
2

_ω3
c

s
χ � μðRÞ

 !2

; ð1Þ

Fig. 1 Vibrational strong coupling (VSC) regime in polariton chemistry.

a Schematic representation of a molecule placed inside an optical cavity.

b Proton-coupled electron transfer reaction of a Shin–Metiu model. Ground-

state potential energy surface (PES) of the molecule as a function of the

mass-weighted proton coordinate
ffiffiffiffiffi
M

p
R (in atomic unit) for the Shin–Metiu

molecular model system. The ground-state electronic density at two

different nuclear configurations (at the donor and acceptor minima) are

illustrated in the insets. c Ground-state permanent dipole (solid red line) as

a function of the mass-weighted proton coordinate
ffiffiffiffiffi
M

p
R. d Cavity

Born–Oppenheimer (CBO) surface along photonic coordinates qc and mass-

weighted reaction coordinate
ffiffiffiffiffi
M

p
R, with the white dash line representing

the minimum energy path at the resonant frequency ℏω0= ℏωc= 0.1706

eV and with a coupling strength η= 0.047. e A zoom-in to the reactant well

of the CBO surface at the resonant frequency ℏωc= 0.1706 eV and η=

0.376. The arrows in d and e represent the directions of two polariton

normal modes. f Schematic diagram showing the Rabi splitting ℏΩR due to

the light-matter coupling between photon-dressed vibronic-Fock states,

ν0; 1
�� �

(photonic excitation) and ν1;0
�� �

(vibrational excitation).
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which is the Pauli–Fierz (PF) QED Hamiltonian (see “Methods”)
with the matter Hamiltonian operator and the dipole operator
projected on the electronic ground state

��ΨgðRÞ
�
. Here, E(R) is the

ground-state potential energy surface for a Shin–Metiu (SM)
model (an electron and a proton confined between two fixed
charged ions) depicted in Fig. 1b, where R is a proton transfer
coordinate, μðRÞ ¼ hΨgðRÞjμ̂jΨgðRÞi is the ground-state perma-

nent dipole moment depicted in Fig. 1c, with μ̂ as the total dipole

operator of the molecule. In addition, Ĥvib (see “Methods” for its
expression) is the vibrational system-bath Hamiltonian that
describes the interactions between reaction coordinate R and

other vibrational phonon modes in the molecule. Further, q̂c ¼ffiffiffiffiffiffiffiffiffiffiffiffi
_=2ωc

p
ðây þ âÞ and p̂c ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffi
_ωc=2

p
ðây � âÞ are the photon

mode coordinate and momentum operator, respectively, where ây

and â are the photon mode creation and annihilation operators.
Under the dipole gauge, the matter interacts with the quantized
radiation mode of the cavity by displacing the photonic coordi-

nate (Fig. 1d–e) with the amount of
ffiffiffiffiffiffi
2

_ω3
c

q
χ � μðRÞ, where χ

characterizes the coupling strength between the molecule and the
cavity (see “Methods”). Note that the molecule-cavity coupling
strength per molecule used in this work would be much stronger
than the realistic coupling strength in the VSC experiments21 that
includes many molecules. On the other hand, the Rabi splitting
(from the IR spectrum) of the current work is within the range of
the recent VSC experiments21,22. This is because in these VSC

experiments, the collective coupling strength is scaled up by
ffiffiffiffi
N

p
.

In this study, we have also explicitly assumed that the dipole
moment is always aligned with the cavity polarization direction.

Vibrational polariton Rabi splitting. At the equilibrium position
of the reactant R0, one can approximate the permanent dipole

as μðRÞ � μ0 þ μ00ðR� R0Þ, where μ0= μ(R0) and μ00 ¼
∂μðRÞ
∂R

jR0
.

The light-matter interaction term in Ĥ (Eq. (1)) at

R0 becomes15,17
ffiffiffiffiffi
2ωc

_

q
q̂cχ � μðR0Þ ¼

ffiffiffiffiffiffiffiffiffi
_

2Mω0

q
χ � μ00ðâ

y þ âÞðb̂y þ b̂Þþ
ffiffiffiffiffi
2ωc

_

q
q̂cχðμ0 � μ00R0Þ, where ω0 ¼ ∂E2ðRÞ

∂R2 jR0
is the vibrational fre-

quency at the equilibrium nuclear configuration R0, M is the

effective mass of the nuclear vibration, b̂
y
and b̂ are the creation

and annihilation operators for the nuclear vibration associated
with the coordinate R. At the resonant condition of ωc= ω0, the
photon-vibration interaction couples photon-dressed vibronic-
Fock states ν0; 1

�� �
(photonic excitation) and ν1; 0

�� �
(vibrational

excitation), inducing a Rabi splitting ℏΩR as follows15,17

_ΩR ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
_

2Mω0

s
χ � μ00 � 2_ωc � η; ð2Þ

where the normalized coupling strength η ¼ μ00

ffiffiffiffiffiffiffiffiffi
_

2Mω0

q
χ

_ωc
char-

acterizes the light-matter coupling strength. Note that the
above relation between ΩR and η only holds under the linear
approximation of the dipole operator, and it breaks down
for ultra-strong coupling (USC) regime when 0.1 < η < 134.
The ℏΩR presented in Fig. 2 are instead obtained numerically

from Ĥ (Eq. (1)), with details provided in Supplementary Fig. 4.

Reaction rate constant. The VSC polariton chemical kinetics can
be viewed as a barrier crossing process on the cavity
Born–Oppenheimer surface (CBO)17,31,35 VCBOðR; qcÞ ¼ EðRÞþ
1
2
ω2
cðqc þ

ffiffiffiffiffiffi
2

_ω3
c

q
χ � μðRÞÞ2, which is a function of both qc and R.

Note that the correct QED description in Eq. (1) includes the

dipole self-energy (DSE) (χ⋅μ(R))2/ℏωc (see “Methods”). Without
this term, one would get artificial changes of the barrier height
and predicts a significant modification of the polariton potential
energy barrier17 (see Supplementary Fig. 3b). Since we are
interested in the VSC regime, the cavity mode has a similar range
of frequency as the molecular vibrations, meaning that qc evolve
at a similar time scale as R. Based upon this consideration, we
decide to follow the previous work17–19 to treat both nuclear and
photonic DOF classically. The electronic DOF is considered fully
quantum mechanically, described by the adiabatic electronically
ground-state wavefunction

��ΨgðRÞ
�
.

It is formally rigorous to express the rate constant as the TST
rate kTST and the transmission coefficient κ as follows

k ¼ lim
t!tp

κðtÞ � kTST; ð3Þ

where tp refers to the plateau time of the flux-side correlation
function, and κ(t) is the transmission coefficient that captures the
dynamical recrossing effects, measuring the ratio between the
reaction rate and the TST rate. It has been shown that classically
the potential mean force is invariant to the change in coupling
strength or photon frequency18, and other theoretical investiga-
tions based on a simple TST analysis for N molecules coupled to
cavity also suggest no significant change of the reaction rate19,27.
Since kTST does not change under the VSC condition, it is
reasonable to conjecture that the change is purely dynamical and
completely irrelevant to the potential barrier changes or free
energy barrier changes. Thus, it is highly likely that VSC chemical
reactivities are purely originated from the transmission coefficient
κ. It can be numerically calculated from the flux-side correlation
function formalism36–38 as follows

κðtÞ ¼
hFð0Þ � h½RðtÞ � Rz�i
hFð0Þ � h½ _Rzð0Þ�i

; ð4Þ

where h[R− R‡] is the Heaviside function of the reaction
coordinate R, with the dividing surface R‡ that separate the
reactant and the product regions (for the model system studied

here, R‡= 0), the flux function FðtÞ ¼ _hðtÞ ¼ δ½RðtÞ � Rz� � _RðtÞ
measures the reactive flux across the dividing surface (with δ(R)
as the Dirac delta function), and 〈. . .〉 represents the canonical
ensemble average (subject to constrain on the dividing surface

which is enforced by δ[R(t)− R‡] inside FðtÞ). Further, _Rzð0Þ
represents the initial velocity of the nuclei on the dividing surface.
The above flux-side formalism of the reaction rate can be derived
from Onsager’s regression hypothesis, with derivations presented
in standard text books (e.g., ref. 38). The numerical simulation
details of κ are provided in Supplementary Note 5.

To obtain a more intuitive understanding of how VSC light-
matter interactions influence κ, let us consider a simplified model,

Ĥ � Ĥvib which only has two DOFs {R, qc} such that we can
obtain an analytic expression of the rate as k= kTST ⋅ κGH. The
transmission coefficient κGH (under the limit t→ tp) can be
obtained from the Grote–Hynes (GH) theory29,39–43. The TST
rate is kTST ¼ ω0

2π e
�βEb , where Eb= E(R‡)− E(R0) is the potential

energy barrier height measured from the bottom of the well R0 to
the top of the barrier R‡ (see Fig. 1b), and ω0 is the vibrational

frequency of the reactant at R= R0, and β ¼ ðkBTÞ�1. When
explicitly considering the DSE, Eb remains invariant as changing
the light-matter coupling strength or the photon frequency (see
Eq. (1)), explaining why one can not observe any effects from a
simple TST analysis18. The total rate constant k in the GH theory
can be obtained using the multidimensional TST40,44–46
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(see “Methods”) as follows

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðΩz

�Þ
2

q

ωb

� ω0

2π
e�βEb � κGH � kTST; ð5Þ

where Ω
z
� is the unstable imaginary normal-mode frequency on

top of the barrier (ðΩz
�Þ

2
< 0) and ωb is the barrier frequency

with Mω2
b ¼ � ∂

2EðRÞ
∂R2 jRz

as the curvature of the reaction barrier.

The transmission coefficient κGH for this simple 2D model is (see
details in the “Methods” section as well as Supplementary Note 4)

κGH ¼ 1

ωb

1

2
�Δω2

z þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔω2

zÞ
2 þ 4ω2

bω
2
c

q� �� �1
2

; ð6Þ

where Δω2
z � ω2

c � ω2
b þ

C2z
ω2
c
, with Cz ¼

ffiffiffiffiffi
2ωc

M_

q
χ � μ0z characterizes

the effective coupling between photonic coordinate qc and nuclear

reaction coordinate R in the transition state region, and μ0z ¼
∂μ
∂R
jRz

is the slope of the dipole moment on the dividing surface R‡. Based
on Eq. (6), one can derive that κGH will have a minimum when

ωc ¼ � _

2
eη2μ02z þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_
2eη4μ04z þ 4ω2

b

q
ð7Þ

where eη ¼ χffiffiffiffi
M

p
_ωc

(note that the normalized coupling strength is

η ¼ μ00

ffiffiffiffiffiffi
_

2ω0

q
eη). Note that the term _eη2μ02z arises from

C2z
ω2
c
¼ 2_ωc �

eη2μ02z which is related to the light-matter coupling strength and

appears within Δω‡ in Eq. (6). Further, the term
C2z
ω2
c
also appears as

an amplitude to the photonic friction kernel (see Supplementary
Eq. 51) in the generalized Langevin equation. We emphasize that
Eq. (7) provides a resonant effect of the reaction rate constant
(through the transmission coefficient) when the cavity frequency
ωc is tuned to the above value. When η is small (such that

eη4μ04z � 4ω2
b), the resonant frequency is close to the original

barrier frequency ωb. As the coupling strength η increases, the
minimum will be shifted to the low-frequency region (with a red-
shift). Note that this resonant condition to achieve a minimum in κ
(Eq. (7)) is different from the one (which is ωc=ω0) to form the
vibrational polariton in Eq. (2). When explicitly considering the

vibrational coupling to R within Ĥvib, κGH has a more complicated
expression as shown in Supplementary Note 4. Nevertheless, the

presence of Ĥvib does not change the resonant condition in Eq. (7)
(see Supplementary Fig. 1). The detailed procedure for obtaining
the transmission coefficient as well as several key parameters of our
current model system is provided in the “Methods” section.

Central hypothesis. With the above analysis, we conjecture that
the cavity radiation mode inside the optical cavity is effectively
acting as a “solvent” degree of freedom (DOF) that is coupled to
the molecular reaction coordinate R, such that the presence of
photonic coordinate enhance the recrossing of the reaction
coordinate and reduces the transmission coefficients. A similar
phenomenon is commonly referred to as the “dynamical caging”
regime in simple organic reactions30,47,48 and enzymatic cata-
lysis49–51, which have been successfully explained by the GH
theory. Due to the low frequency of the photonic cavity mode
(which is in the same range of the vibrational frequencies), we
treat both R and qc as the classical DOFs17–19, and use the GH
theory to explore the role of the cavity mode on reaction
dynamics.

Decreasing κ as increasing ΩR. Figure 2 presents the influence of
increasing light-matter coupling η (thereby increasing ΩR) on the
reaction transmission coefficient κ with the model Hamiltonian
presented in Eq. (1). Figure 2a presents the IR spectrum com-
puted based on the quantum light-matter interaction (Eq. (13) in
“Methods”). The numerically exact Rabi splitting ℏΩR is slightly
deviated from 2ℏωc ⋅ η (as indicated by Eq. (2)) due to the linear
approximation (μðRÞ � μ0 þ μ00R) used in Eq. (2) (see the Sup-
plementary Fig. 2). Figure 2b presents the transmission coefficient
κ obtained from direct numerical simulations (Eq. (4) under the
t→ tp limit) as well as from the GH theory (solid lines) κGH (by
solving Eq. (12) in “Methods”). The GH theory quantitatively
agrees with the results from the direct numerical simulations.
With an increasing Rabi splitting ΩR, the transmission coefficient
κ decreased by almost one order of magnitude, whereas the TST
rate kTST remains unchanged (due to the unchanged barrier
height in the PF QED Hamiltonian). These numerical results
corroborate our hypothesis that the suppression of chemical rate

Fig. 2 Decrease in the rate constant as increasing light-matter couplings. a Infrared absorption spectrum by changing the normalized light-matter

coupling strength η (see Eq (2)). b The transmission coefficient κ (under the limit t→ tp) under various light-matter coupling strength (indicated by ΩR) at

the resonant frequency ℏωc= ℏω0= 0.1706 eV. c The "effective change" of the Gibbs free energy barrier Δ(ΔG‡) with respect to the coupling strength ΩR

at 300 K. d Time-dependent transmission coefficient κ(t) at various light-matter coupling strengths at the resonant frequency ℏωc= 0.1706 eV. e, f Cavity

Born–Oppenheimer surfaces V̂CBOðR; qcÞ at η= 0.047 and η= 0.376, respectively, with representative reactive trajectories indicated with black solid lines.
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originates from κ, which closely resembles the experimental result
(e.g., Fig. 3D in ref. 22).

Figure 2c presents another interesting result in this work. For
the PF Hamiltonian description that explicitly includes the DSE
term, there is no change in kTST because there is no change of
potential energy barrier (see Fig. 1d) nor free energy barrier18.
The only change in the rate comes from κ. However, one can back
out the “effective change” of the free energy barrier height due to
the changing κ. To this end, we use the Eyring rate equation (see
“Methods”) to convert the change of rate from κ into an effective
Δ(ΔG‡). The 4 times decrease in κ presented in Fig. 2b results in
~4 kJ/mol change in “effective” Δ(ΔG‡) in Fig. 2c at ~700 cm−1 of
ΩR. We emphasize that this is not the real change of the free
energy barrier height, but rather an “effective” change of ΔG‡

according to the change of κ based on our theoretical analysis.
Interestingly, the experimentally measured results of Δ(ΔG‡) (Fig.
3C in ref. 22, for example) closely resemble our theoretical finding
in Fig. 2c, with the key difference that our theoretical results
suggest that these are not the actual free energy barrier changes,
but entirely due to the change of κ, i.e., kinetics. Note that if one
hypothesizes that an unknown mechanism to force the upper or
lower vibrational polariton states to be a gateway of VSC
polaritonic chemical reaction52, then the activation energy change
should shift linearly18 with ΩR. The experimental results, on the
other hand, demonstrate a non-linearity of reaction barrier22.
Our theory indicates a non-linear increase of the “effective” Δ

(ΔG‡) as increasing ΩR due to the change of κ, closely resembles
the experimental discoveries (Fig. 3C, D in ref. 22).

Figure 2d presents the time-dependent simulation of the
transmission coefficient κ(t) defined in Eq. (4). With an
increasing light-matter coupling hence a larger ΩR, the plateau
value of κ(t) keeps decreasing, and at the same time, κ(t) becomes
more oscillatory. This is a typical behavior of the reaction
dynamics in the solvent caging regime53. As the coupling between
qc and R increase, the non-Markovian dynamics of qc can
significantly influence the recrossing dynamics of the reaction
coordinate R, from the “non-adiabatic” limit of a weak coupling
regime to the “dynamic caging” of a strong coupling regime39,53.

To clearly demonstrate the difference between these two

regimes, we further present the Cavity BO surface VCBO ¼

H � P2

2M
� p2c

2
�Hvib ¼ EðRÞ þ 1

2
ω2
cðqc þ

ffiffiffiffiffiffi
2

_ω3
c

q
χ � μðRÞÞ2 along R

and qc in panel (e) and (f), with a representative reactive
trajectory on top (black solid curve). Figure 2e presents a typical
non-adiabatic case of the GH theory. When the instantaneous

friction is weak (
jCj
ωc

� ωb), the GH theory becomes a model of

non-equilibrium solvation, where the friction from the photonic
coordinate qc does not severely impede the transitions53. In this
case, the transmission coefficient remains close to the case
without the cavity (black curve in Fig. 2d), and the reactive
trajectory crosses the barrier without much influence from qc.
Figure 2f presents a typical “dynamical caging” regime of the GH
theory, where the instantaneous friction from qc to R is strong

(
jCj
ωc

� ωb), such that the reaction coordinate R becomes trapped

in a narrow “solvent cage” on the barrier top53. At longer times,

the bath relaxations of Ĥvib allow the R to move away from the
barrier top, but at shorter times, the reaction coordinate R
oscillates within the cavity-induced “solvent” cage54. The
trajectory recrosses the dividing surface (R‡= 0) many times,
resulting in oscillations of κ(t) at a short time and with a small
plateau value of κ(t) at tp (see red curve in Fig. 2d). Similar
dynamical caging effects from the solvent have been extensively
studied in simple organic reactions (SN1 and SN2)30,47,48 and
enzymatic reactions49–51, where the solvent dynamics signifi-
cantly influences the reaction rate constant39,40,53,55,56. Here, the
cavity photonic coordinate qc acts like a “solvent coordinate”, and
for strong couplings between qc and R, the system exhibits the
dynamical caging effect which effectively slows down the reaction
rate constant. This is our theoretical explanation for the observed
suppression of the rate constant for VSC polariton chemical
reactions20,21,23,24.

The origin of the resonant effect. Figure 3a presents the trans-
mission coefficient κ (when t→ tp) as a function of the photon

Fig. 3 Resonant effect in vibrational strong coupling regime of polariton chemistry. a Transmission coefficient κ as a function of the photon frequency at

three different values of the coupling strength η. b–d The cavity Born–Oppenheimer surfaces VCBO(qc, R) under the normalized coupling strength η= 0.094

(corresponding to the blue solid line in panel (a)) at the photon frequency b ℏωc= 2.5 meV, c 80meV, and d 1.0 eV, with the representative reactive

trajectories indicated with black solid curves.
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frequency ωc with three normalized coupling constant η (defined in
Eq. (2)). The results are obtained from the GH theory (solid line) as
well as the direct numerical simulation of Eq. (4) (filled circles).
One can clearly see a resonant behavior of κ when changing the
photon frequency, agreeing with the analytical result (Eq. (7)) of a
simpler model. These findings in Fig. 3a closely resemble recent
experimental results of desilylation reaction (Fig. 3A in ref. 21, Fig.
3B in ref. 20), aldehyde/ketone Prins cyclization (Fig. 3 in ref. 24),
and enzymatic reaction in pepsin (Fig. 3C in ref. 23). Note that
under a relatively small light-matter coupling η= 0.047 (green), the
resonant frequency that gives a minimal κ is close to ωb, which is
also close to the reactant equilibrium frequency of the reactant ω0

in our SM model. For the parameter regime η < 0.1 (not entering
into the USC), we find that the resonant condition (based on
Eq. (7)) is close to ωb.

Note that experimentally, one often plot the cavity frequency-
dependent reaction kinetics against the absorption curve of
vibrational polariton. With our theoretical understanding and
model calculations, we conclude that these two resonant behavior
have two different origins and resonant frequencies. The resonant
condition observed in the IR spectrum for Rabi Splitting requires
ωc= ω0, whereas the resonant effects for a minimum of the rate
constant require ωc ≈ ωb. However, it is possible for a given
molecular system which has ω0 ≈ ωb. For example, in a theoretical
work (at the level of MP2 perturbation theory) by Merkel and co-
workers57, a well-studied SN2 reaction (CH3F+ H−→ CH4+F−)
has a ωb= 975.5 cm−1, which is close to one ground-state
vibrational frequency ω0= 978.7 cm−1. In fact, this reaction
could be also an ideal one subject to future investigations of VSC
modifications of reactivities. On the other hand, there are also
cases where ω0 and ωb are different. For example, in an SN2
reaction involving a Si–C bond cleavage in 1-phenyl-2-trimethyl-
silylacetylene, we find (using the geometries reported in ref. 58 at
the same level of electronic structure theory) that the computed
imaginary barrier frequency to be ωb ≈ 74 cm−1, whereas the Si–C
stretching frequency in the reactant well58 is ω0 ≈ 860 cm−1.

When increasing the coupling strength to the USC regime
(0.1 < η < 1.0), the resonant frequency is significantly red-shifted
from ωb. For example, when η= 0.188 (red curve), the resonant
condition for reaching a minimum value of κ is 25 meV.
Nevertheless, in the range of 10 meV < ℏωc < 100 meV, κ remains
a very low value around 0.2, similar to the value at ωc= ωb. This
red-shift of resonant frequency at which the rate constant is most
significantly reduced has not been observed experimentally. Our
theory predicts that if VSC experiments can reach the ultra-
strong coupling regime, then the resonant frequency will be
significantly shifted.

The origin of this resonant behavior in VSC chemical reaction
rate constant (as indicated in Eq. (7)) can also be intuitively
understood by examining representative trajectories (black solid
curves) on the cavity BO potential energy surfaces presented in
Fig. 3b–d, with the black solid lines, indicate representative
trajectories. At a very low frequency ℏωc= 2.5 meV shown in
Fig. 3b, the photon coordinate essentially remains frozen
compared to the dynamics of the reaction coordinate R during
the course of the reaction. As a result, under this frozen solvent
limit, the transmission coefficient remains close to the no-

coupling scenario. At ℏωc= 80 meV in Fig. 3c, with
jC j
ωc

� ωb, the

light-matter interactions lead to the dynamical caging of the
reaction coordinate at the barrier top, leading to significant
decrease in the transmission coefficient κGH. When the photon
frequency is further increased (ℏωc= 1 eV), the reactant and the
product wells become separated with a narrow channel as shown
in Fig. 3d. At such a high photon frequency, the reactive channel
connecting the reactant and product becomes extremely narrow59

(much narrower than the usual dynamical caging scenario
depicted in Fig. 3c or Fig. 2f), such that the reactive trajectories
almost follow a straight path and is no longer caged near the
dividing surface. As opposed to the dynamical caging regime, the
transmission coefficient in Fig. 3d is less suppressed than the
minimum κ when the photon frequency is near ωb. Similar
behavior of the reaction dynamics is also observed for the USC
regime (η= 0.188 in Fig. 3), where the results are provided in
Supplementary Fig. 6. Therefore, the suppression of the chemical
kinetics through the dynamical caging effect by the photon mode
is highly sensitive to the photon frequency, proving a plausible
mechanism for explaining the resonant behavior21,23,24 of the
reaction rate constant in VSC polariton chemistry.

Discussion
In this work, we provide a theoretical explanation of the resonant
VSC polariton chemistry reactivities. We demonstrate that the
resonant suppression of the reaction rate constant using the ana-
lytical GH rate theory as well as performing numerical calculations
for a SM model molecular system coupled to a single-radiation
mode inside an optical cavity. As opposed to the previous theore-
tical studies17–19,27 that only focuses on the transition state theory,
our investigation suggests that the coupling between a cavity pho-
tonic mode and a molecule leads to the suppression of the trans-
mission coefficient of the rate constant, exhibiting the resonant
behavior which can be explained by simple GH rate theory.
Through both analytical theory and numerical simulations, we
demonstrate that the cavity photon mode acts like a “solvent” DOF
which influences the chemical kinetics and leads to the suppression
of the transmission coefficient. Such an effect is purely dynamical
and is not captured within a simple transition state theory.

Further, our theoretical hypothesis provides a plausible expla-
nation to the observed resonant effects of the electronically
adiabatic ground-state reactions coupled to an optical cavity,
whereas previous theoretical studies17–19,27 based upon a simple
TST always conclude a frequency-independent VSC rate con-
stant. The suppression of the rate constant is sensitive to the
photon frequency, such that the maximum suppression is
achieved when the photon frequency is close to the barrier fre-
quency in the vibrationally strong coupling regime when η < 0.1
and is red-shifted in the vibrationally ultra-strong coupling
regime when 0.1 < η < 1. Our results indicate that the resonant
condition for achieving the Rabi splitting in the IR spectrum and
the resonant condition for achieving a maximum suppression of
the reaction rate constant are fundamentally different. While the
former is related to the frequency of the reactant, the latter is
related to the top of the barrier frequency and the molecule-cavity
coupling strength.

We want to remind the reader that the present work is limited
to a single molecule coupled to a single radiation mode, whereas
the experimentally observed frequency-dependent modification
of the chemical kinetics in the collective coupling regime. It was
suggested in ref. 19 that the resonant effects will disappear under
the N→∞ limit, where N is the number of molecules coupled to
the cavity. However, we believe that the effect we have seen will be
present under the few N limit (in the current paper, N= 1).
Whether our current theory can also be extended to the collective
regime remains an open question. The present formalism can be
extended to include cavity losses and their impact on the caging
effect. The VSC experiments often use low-quality factor cavities,
where the cavity loss should also be explicitly included. Inter-
estingly, these far-field modes which are responsible for the cavity
loss can be modeled as dissipative modes coupled to the quan-
tized modes of a cavity, providing an additional dissipative
environment for the hybrid system. The frequency dependence as
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well as the collective phenomenon might also emerge when cavity
loss is explicitly included60.

Overall, our work emphasizes the importance of the dynamical
effect induced by the cavity photon modes on chemical kinetics to
explain new chemical reactivities observed in recent experimental
studies on vibrational strong coupling of molecules and cavity.
Future investigations will focus on understanding the collective
VSC reactivities by coupling many molecules with the cavity18,19.

Methods
Pauli–Fierz QED Hamiltonian. The minimal coupling QED Hamiltonian in the
Coulomb gauge (the “p ⋅ A” form) is expressed as

ĤC ¼
X

j

1

2mj

ðp̂j � zjÂÞ
2 þ V̂ðx̂Þ þ Ĥph; ð8Þ

where the sum is performed over all charged particles, including electrons and
nuclei, mj and zj are mass and charge for particle j, respectively, and p̂j ¼ �i_∇j is

the canonical momentum operator. Further, under the Coulomb gauge, ∇ � Â ¼ 0,

the vector potential becomes purely transverse Â ¼ Â? . Under the long-

wavelength approximation, Â ¼ A0ðâþ âyÞ ¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffi
2ωc=_

p
q̂c , where

A0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_=2ωcε0V

p
� e, with V as the quantization volume inside the cavity, ε0 as the

permittivity, and e is the unit vector of the field polarization. Using the
Power–Zienau–Woolley (PZW) gauge transformation operator61,62

Û ¼ exp½ � i
_
μ̂ � Â� ¼ exp½ � i

_
μ̂ � A0ðâþ âyÞ�, as well as a unitary transformation

operator Ûϕ ¼ exp½�i π
2
âyâ�, the Pauli–Fierz (PF) Hamiltonian is obtained as

ĤPF ¼ ÛϕÛĤCÛ
y
Û

y
ϕ ¼ ĤM þ 1

2
p̂
2
c þ

1

2
ω2
c q̂c þ

ffiffiffiffiffiffiffiffi
2

_ωc

s
μ̂ � A0

 !2

; ð9Þ

where the matter Hamiltonian is ĤM ¼ T̂R þ Ĥel � T̂R þ T̂r þ V̂ , with T̂R and T̂r

representing the nuclear and electronic kinetic energy, respectively, and V̂ repre-
senting the Coulomb interaction potential among all charged particles (electrons

and nuclei), and Ĥel is the electronic Hamiltonian. The detailed derivation is

provided in Supplementary Note 1. The presence of DSE (the A2
0 term in Eq. (9)) is

necessary in order to have a Gauge invariant Hamiltonian63,64 and it has shown to
be crucial for an accurate description of light-matter interactions under the dipole

gauge63–65. Projecting ĤM and μ̂ in the ground electronic state Ψg

���
E
(which is

obtained by solving Ĥel Ψg

���
E
¼ EðRÞ Ψg

���
E
), we obtain the model Hamiltonian in

Eq. (1).

Grote–Hynes rate theory. In multidimensional transition state theory, the reac-
tant to product rate constant is given as40,44–46

k ¼ 1

2π

QN
i¼1 Ω

0
iQN

i¼2 Ω
z
i

e�βEb ; ð10Þ

where fΩ0
i g are normal-mode frequencies of the Hamiltonian in the reactant well,

and fΩz
2 ; :::;Ω

z
N g are the stable normal-mode frequencies at the barrier, such that

Ω
z2
i > 0 for i > 1, and Ω

z2
1 < 0 is the imaginary frequency of the transition state.

Considering a simplified (classical) model of the molecule-cavity hybrid system,

H � Hvib ¼ P2

2M
þ EðRÞ þ p2c

2
þ 1

2
ω2
c ðqc þ

ffiffiffiffiffiffi
2

_ω3
c

q
χ � μðRÞÞ

2
which only contains two

DOFs {qc,R} (and are viewed as classical DOFs), the normal-mode frequencies at R0 are

Ω
2
± ¼ 1

2
ðω2

0 þ
C20
ω2
c
þ ω2

c Þ± 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2

0 þ
C20
ω2
c
þ ω2

cÞ
2

� 4ω2
cω

2
0

r
, where C0 ¼

ffiffiffiffiffiffi
2ωc

M_

q
χ � μ00 .

The normal-mode frequencies at R‡ are

Ω
z2
± ¼ 1

2
ð�ω2

b þ
C2z
ω2
c
þ ω2

cÞ± 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�ω2

b þ
C2z
ω2
c
þ ω2

cÞ
2

þ 4ω2
cω

2
b

r
, where

Cz ¼
ffiffiffiffiffiffi
2ωc

M_

q
χ � μ0z . Details of the derivation of these normal-mode frequencies are

provided in Supplementary Note 2. Using these normal-mode frequencies, the rate

constant in Eq. (10) for the Ĥ � Ĥvib model is expressed as k ¼ 1
2π

ΩþΩ�
Ω

z
þ

e�βEb , where

Eb is the energy barrier. Using the fact that ðΩz
þΩ

z
�Þ

2 ¼ �ω2
bω

2
c and ðΩþΩ�Þ2 ¼

ω2
0ω

2
c (see the general proof in ref. 42), the rate constant can be further expressed as

follows

k ¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðΩz

�Þ
2

q
ω0ωc

ωbωc

e�βEb ¼ λ

ωb

� ω0

2π
e�βEb � κGH � kTST; ð11Þ

where kTST ¼ ω0

2π e
�βEb , κGH ¼ λ

ωb
is the transmission coefficient in the GH theory,

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðΩz

�Þ
2

q
, which is Eq. (6). Same procedure can also be used to derive the

expressions46 of the κGH for the model Hamiltonian in Eq. (1). Alternatively, one can

derive the transmission coefficient κGH from the equation of motion39,56, with the
details provided in Supplementary Note 4.

When considering the phonon bath Ĥvib under the Markovian limit (while
consider qc as the non-Markovian coordinate), λ can be obtained by solving the
following equation

λ4 þ ζ

M
λ3 þ ω2

c � ω2
b þ

C2z
ω2
c

 !
λ2 þ ζ

M
ω2
cλ� ω2

cω
2
b ¼ 0; ð12Þ

where κGH ¼ λ
ωb
. We consider a bath friction coefficient ζ= 400 cm−1 according to

the spectral density J(ω). The detailed derivations of Eq. (12), as well as the
assessment of the validity of the Markovian limit of the phonon bath are provided
in Supplementary Note 4.

Model molecular Hamiltonian. The potential energy surface (PES) and permanent
dipole moment are taken from a SM model66, which is illustrated in Fig. 1. The SM
model is a one-dimensional molecular system that describes a proton-coupled
electron transfer reaction between a donor and an acceptor ion. The model consists
of a transferring proton, an electron, and two fixed ions. The molecular Hamil-

tonian is ĤM ¼ P̂
2

2M
þ Ĥel þ Ĥvib , where M is the mass of the nuclei (proton in the

SM model), Ĥel ¼ T̂r þ V̂eN þ V̂NN is the electronic Hamiltonian, where T̂r ¼
p̂
2
r=2me represents the kinetic energy operator of the electron with mass me, V̂eN

describes the interaction between the electron and the three nuclei, and V̂NN that
describes the Coulomb repulsion between the proton and the static ions. The

resulting PES EðRÞ ¼ hΨg ðRÞjðĤM � T̂RÞjΨg ðRÞi and the permanent dipole

moment μðRÞ ¼ hΨg ðRÞjμ̂jΨg ðRÞi are shown in Figs. 1b and 1c, respectively. The

details of this model, as well as the numerical procedure to obtain the ground-state
potential and dipole are provided in Supplementary Note 3 and Supplementary
Note 5.a.

In addition, Ĥvib ¼
P

k

P2
k

2Mk
þ 1

2
Mkω

2
kðRk þ ck

Mω2
k

� RÞ2 is the vibrational system-

bath Hamiltonian that describes the interactions between reaction coordinate R
and other vibrational phonon modes in the molecule. The coupling constant ck and
the frequency ωk is characterized by an ohmic spectral density

JðωÞ ¼ π
2

P
k

c2
k

Mkωk
δðω� ωkÞ ¼ ζωe�ω=ωp , with a characteristic phonon frequency

ωp and a friction constant ζ. In Table 1, we outline several key parameters in our
model system, whereas the full details are provided in Supplementary Note 3.

Numerical simulation of κ(t). All simulations were performed under T= 300 K
by evolving the classical dynamics governed by H(R, qc) in Eq. (1). Langevin
dynamics is used to model the influence of Hvib on the light-matter hybrid system,
whereas qc is explicitly propagated in time and treated as a non-Markovian “sol-
vent” DOF. The friction constant in the Langevin dynamics was chosen to be ζ=

400 cm−1 according to the spectral density of the Ĥvib (see details in Supple-
mentary Note 3 and 4). The time step used in the simulation is dt= 4 a.u., which
was carefully checked to produce stable integration for all simulations. From a long
constraint MD trajectory on the dividing surface R‡= 0, the constrained config-
urations {qc, R‡} are sampled for every 270 fs along that constrained trajectory. A
total of 100,000 trajectories are released from the dividing surface, with the initial
velocities randomly sampled from the classical Maxwell–Boltzmann distribution.
Each of the sampled configuration is propagated for 200 fs, which guaranteed that
the flux-side correlation function would plateau. The flux-side correlation function
in Eq. (4) is computed through the ensemble average. Details of the numerical
simulation procedure are provided in Supplementary Note 5.d.

Effective Δ(ΔG‡). To account for the “effective change” of the Gibbs free energy
barrier Δ(ΔG‡) corresponding to the changes in κ, we consider the Eyring rate

equation k ¼ kBT
h
e
�ΔGz

kBT , and thus ΔGz ¼ � 1
β ln ð2πβ � kÞ. With k= κ ⋅ kTST, we can

rewrite the above ΔG‡ as ΔGz ¼ � 1
β ln κ� 1

β ln 2πβkTST. Because kTST is a constant

at any coupling strength and cavity frequency and is the same for bare molecular
case, the effective Δ(ΔG‡) solely depends on the change of κ. The change of free

energy barrier compared to the bare molecular reaction (with κ0 and ΔG
z
0) is then

ΔðΔGzÞ ¼ ΔGz � ΔGz
0 ¼ � 1

β ln
κ
κ0
, which is used to compute the value presented in

Fig. 2c.

Table 1 Key parameters of model.

ℏω0 (meV) ℏωb (meV) μ00 (a.u.) μ0 (a.u.)

170.6 162.05 0.225 −1.887

The frequency of the reactant well ω0 and the top of the barrier ωb, as well as the derivative of

dipole moment at the equilibrium geometry μ00 and on the dividing surface μ0z .
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Absorption spectrum. We employ a simple approach67 to compute the absorption
spectrum of the molecule-cavity hybrid system. The absorption cross section σðEÞ
as a function of excitation energy E is expressed67,68 as follows

σðEÞ ¼ 4πE
c

Im
X

ν≠0

jhΦ
ν
jμðRÞjΦ0ij2

E
ν
� E0 � E � iε

" #
; ð13Þ

where ε a phenomenological width parameter that accounts for the broadening of
the absorption spectrum, and c is the speed of the light. Further, E

ν
is the energy of

the νth vibrational polaritonic state of Ĥvpl ¼ P̂
2

2M
þ EðR̂Þ þ 1

2
p̂
2
c þ 1

2
ω2
c ðq̂c þ

A0μðR̂Þffiffi
_

p
ωc

Þ
2

,

and E0 is ground-state vibrational polaritonic eigenenergy. Details of this calcu-
lation are provided in Supplementary Note 5.b.

Data availability
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