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Cavity-loss-induced generation of entangled atoms
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We discuss the generation of entangled states of two two-level atoms inside an optical resonator. When the
cavity decay is continuously monitored, the absence of photon counts is associated with the presence of an
atomic entangled state. In addition to being conceptually simple, this scheme can be demonstrated with
presently available technology. We describe how such a state is generated through conditional dynamics, using
guantum jump methods, including both cavity damping and spontaneous emission decay, and evaluate the
fidelity and relative entropy of entanglement of the generated state compared with the target entangled state.
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[. INTRODUCTION conditional dynamics is necessana pure entangled state
between the two atoms results. From the experimental point

Superposition effects in composite systems are welbf view, this proposal is feasible with presently available
known in classical physics. However, when the superpositiotechnology.
principle is combined with a tensor product structure for the The paper is organized as follows. In Sec. Il we describe
space of states, an entirely quantum-mechanical effect arisetsie system of interest. This consists of two trapped atoms
Quantum states can be entangldd. This fact was early inside an optical resonator. Certain aspects of the dynamics
recognized aghe characteristic of the quantum formalism of this system, when driven by an external field, have been
[2]. However, early work concentrated on the implications ofaddressed, for instance, in the context of the two-atom mi-
entanglement on the nonlocal structure of quantum theorygrolaser[15]. The coherence properties of the fluorescence
[3], and it was considered by many as a purely philosophicajrom close-lying atoms in an optical cavity have been con-
issue. The reason for the renewed interest in the fundamentgidered recent|y using the guantum Jump apprd:a@ Our
aspects of quantum mechanics is twofold. On the one han‘ﬂ)roposal provides a probabilistic schefd] for generating
it was discovered that Bell's inequalities do not provide agn entangled state of the two atoms. This will require an
good criterion for discriminating between classical and quaninitial preparation, which involves the selective excitation of
tum correlations when dealing with mixed stafdg. New  gne of the atoms and the continuous monitoring of photons
criteria for characterizing the separability of a given quantumeaking out of the cavity. The time evolution under the con-
state have been proposgs], and measures of entanglement gition of no-photon detection is discussed in Sec. Ill. We
have been introduceﬁﬁ,?]. On the other hand, it has been will ShOW that the quantum Jump approach provides a Suit_
realized that entangled states allow new practical applicagple theoretical framework for analyzing the dynamics in a
tions, ranging from quantum computati¢8] and secure simple and intuitive way. The fidelity with respect to a maxi-
cryptographic schemef9] to improved optical frequency mally entangled state and the relative entropy of entangle-

standard$10]. The feasibility of some these applications hasment of the final atomic state will be evaluated in Sec. IV.
been demonstrated in recent experimédtd. In particular,

recent advances in ion trapping technoldd?] and cavity
QED [13] provide suitable scenarios for manipulating small
guantum systems.

In this paper we will discuss a scheme that allows the Our system consists of two two-level ions confined in a
generation of a maximally entangled state of two two-levellinear trap which has been surrounded by a leaky optical
atoms within a single-mode cavity field. The underlying ideacavity. We will refer to atona and atormb when the context
is conceptually simple, and relies on the concept of condirequires us to differentiate them, but otherwise they are sup-
tional dynamics due to continuous observation of the cavityposed to be identical. We denote the atomic ground and ex-
field. The key to understanding how the entangled state isited states by0); and|1);, and call " (I'=T,=T) the
generated in this scheme is population trapdibd]. There  spontaneous emission rate from the upper level. We assume
are three dressed states of the combined two-atom plus cathat the distance between the atoms is much larger than an
ity field mode system; one has a zero eigenvalue, which isptical wavelength, and that therefore dipole-dipole interac-
therefore stationary, whereas the other two decay in timetions can be neglectefil8]. In addition, this requirement
Provided no photon leaks out of the cavityhich is why  allows us to assume that each atom can be individually ad-

dressed with laser light. The cavity mode is assumed to be
resonant with the atomic transition frequency, and we will
*Permanent address: Departamento dsicB) Avda de Calvo denote the cavity decay rate Iy For the sake of generality
Sotelo n/s, 33007 Oviedo, Spain. we allow the coupling between each atom and the cavity

II. DESCRIPTION OF THE PHYSICAL SYSTEM
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lll. ATOM-CAVITY SYSTEM WITHOUT DECAY

atom b I In order to illustrate the main idea underlying this pro-
.

posal, let us ignore any relaxation process for the moment.
The unitary time evolution of the system will then be gov-
D erned by the Hamiltonian

H= > fwjl)i(1l|+%vb’b+i
i=a,b

FIG. 1. Experimental setup. The system consists of two two- X > (gib]1);i(0]—H.c), (4)
level atoms placed inside a leaky cavity. The decay Fatkescribes i=a,b

the spontaneous emission of the atoms, while the xatefers to ¥ o .
photons leaking through the cavity mirrors. The latter can be moni¥hereb andb’ denote the annihilation and creation opera-

tored by the detectoD. tors for the single-mode cavity field. The fourth term in this
expression is the familiar Jaynes-Cummirig€) interaction

mode,g;, to be different The relaxation of the ion-cavity between each atomic system and the cavity mode. Moving to

system can take place through two different channels, at ratéd! Interaction picture with respect to the unperturbed Hamil-
« (cavity decay andI" (spontaneous decay tonian,
In what follows we will assume that the coupling con-
stants and the decay rates are such that Ho= >, hai|1)i(1|+Avb™, 5
i=a,b

9i, «>I. 1) and assuming exact resonance between the cavity mode and

the atomic transitiony= w;, we find
The experimental setup is depicted in Fig. 1. Note the pres-
ence of a single photon detectdrin our scheme. This setup .
will allow us to monitor the decay of the system through the Hi _'ﬁi;&b (gib|1)ii(0]—H.c) ®)
fastchannel, i.e., photons leaking through the cavity mirrors.
On the other hand, spontaneously emitted photons from thehere the coupling constangs have been taken to be real.
slow decay channel in the regime of Ed), will not be In the basisB=(]100),|010),|001)), the interaction picture

detected. The initial state of the system is of the form Hamiltonian reads
0
10)©0)a®|0),=[000), @ " 9a O
H':i_ —0Ga 0 0. (7)
where the first index refers to the cavity field state. Now -g, 0 O

applying am pulse to atona, we introduce an excitation into _ _ _ _
the system, and the initial conditions for our scheme will belt is easy to check that the eigenvalues associated with this
given by the composite state operator are given by

Ao=0, ®

= +#+0%+ a2

In the following we will use Eq(3) as the basis for all the M= NG G ©
following discussions. It is important to emphasize that ourwith corresponding eigenvectors
scheme only requires the atoms to be cooled to the Lamb-
Dicke limit, i.e. each atom is localized within one wave- 1
length of the emitted light. But no further cooling to the |)\o>=\/ﬁ(9a|001>—9b|010>)y (10)
motional ground state is necessary. This notably simplifies 9at b
the experimental realizability of the proposal. 1 )

Experiments on ions in optical cavities are underway, for _ |
example, in Innsbruck. In these experiments $@-Ds), |M*2>_\/§ |100>i‘/g?+gb?(gb|00]>+ga|010> '
transition of calcium ionglifetime (2I') "*=1 s] couples to :
an optical cavity which has a decay ratdetween 1 and 10 Note that wherg, =gy, the solution\) is a tensor product
kHz. The ions are separated by many optical wavelengthf the cavity field in the vacuum state and the maximally
and can therefore be addressed separately using focused lasatangled atomic state
beamg19].

l1h0)=10)®[1),2|0),=010). )

1

l67) N
A symmetric location of the atoms with respect to the center of
the trap suffices to makg,=g,. However, experimentally this To prepare an entangled state of the atoms one now needs a
may well be hard to achieve. mechanism that destroys the population of the cavity mode.

(101)~10)). (11)
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One possibility is to use a leaking cavity, and to detect allof the system will be a tensor product of the cavity field in

photons coming through the cavity mirrors. If a photon isthe vacuum state and an entangled state of the two atoms.

detected, the system is in the ground s{@@0. Then the

experiment has to be repeated. But if not, the system goes

over into a state which cannot decay. Therefore, the atoms IV. ATOM-CAVITY SYSTEM INCLUDING DECAY

should end up in statp\y), the entangled state, where the

cavity mode is not populated. Let us now consider the experimental situation depicted in
Using the quantum jump approach, we will see that theFig. 1, in which the decay of the cavity field is monitored by

dynamics under the condition that no photon has been deneans of the detectdd. For the moment we will assume

tected outside the cavity is governed by an effective Hamilthat the detector has 100% efficiency, but later this constraint

tonian whose solutions keep track of the structure illustrateavill be relaxed. The time evolution is now governed by the

above. More precisely, for sufficiently large times the stateHamiltonian

H=i=2ab hw||1>”<l|+ﬁvbTb+%} ha)k)\al}\ak)\‘Fihi;‘;b (g|b|1>“<0|_HC)

+it 2 X (Grnann]1)i(0[€! @i @t —H.c) +ifi X, (Snablel” @a)t—H.c), (12
i=a,b k\x kX

wherealx anda,, denote the free radiation field creation and annihilation operators of a photon in the kyagle The two

remaining terms including the coupling constagts ands,, describe, respectively, the coupling of the atoms and the cavity
mode to the free radiation field. The initial state of the systpfg), is given by Eq.(3). At a timet, and provided that no

photon leaking through the cavity mirrors has been detected, the state of the system can be described in terms of a density
operator of the form

p(t,90) = (Po(t, o) | #reorl ) W o) + Psporl 1, )| 000/ (000 )/tr( ). (13

HerePy(t, 4g) is the probability for no photon emission, where neither the cavity field nor the atoms have decayednodtil
|z};c0h(t)> denotes the normalized state resulting from the coherent evolution in this case. Later we will also use the notation
|eory for the unnormalized state. The second term of the mixture takes into account that spontaneously emitted photons are
not observed. If an atom emits a spontaneous photon, then the state of the atom-cavity system is reduced {08z state

main task consists of evaluating the explicit form of the sta}t&h(t» of Po(t,10), and the probabilityPgp,{t, ;) for
spontaneously decay in (D, The quantum jump approachlso called the quantum trajectories methf2D-22 (See Ref.

[23] for a recent reviewprovides a suitable theoretical framework for this analysis.

A. Derivation of the conditional time evolution

Let us consider an idealized situation where both the photons leaking through the cavity and the spontaneously emitted
photons could be detected. In the derivation of the quantum jump approach, one envisages an equally spaced sequence o

gedanken photon measurements at tilmess, . . . t,,_1,t,, such that;—t;_,;=At. According to the projection postulate, the
subensemble for which no photon has been detected untiltijrigedescribed by théunnormalizedl state vector
|¢coh(t)>:P0U(tn vtn—l)PO s -Pou(tlato)loph>| l//(to)>E |oph>Ucont(tn ,t0)| w(t0)>u (14)

where we have defined the projector
Po= |Oph>JlA<0ph| ) (19

andl, denotes the identity over the atomic variables. Therefore, the op&saip(t,, ,tg) describes the time evolution of the
system under the condition that no photon has been detected. Using our previous notation, the state of the systery, at a time
will be given byU .on{t,,to)| #(to)) when the system has not relaxed through either the fast or the slow channel. Taking into
account Eq.(12) and the form of the projectof’y, our problem reduces to evaluating expressions of the form
(Oph|U(tn,tn_1)|Oph>, which can be done easily using second-order perturbation theory. The calculations can be simplified
moving to an appropriate interaction picture with respect toutygerturbedHamiltonian

Ho= 2 foi|1)i(1]+Avb'b+ > haonalan . (16)
i=a,b kX

In second-order perturbation theory one obtains
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1

th 1 (tn t’
(Opr Ut t-1)|Opr =1~ ﬁft At (Ol Hi ()]0 - ﬁft f“'ft A0 HI()] O, (17

n

where the interaction Hamiltonian reads

Hi=Hact Hast Hog =i 2 (gib|1)i(0]—H.c)+in X X (GadialL)i(Ole! = ~H.c)

Fih D (Spapblel v ent—Hc). (18
K\
|
In first-order perturbation theory, only the JC term contrib- N1o=(k+T%iS)/2, (24)

utes to Eq.(17) since both(0pnay,|0pw and {0y afy[0pn
are zero. On the other hand, the second-order contributiowith S= \/4(g§+ gg)—(K—F)Z. The eigenvector of the
from the JC term is quadratic gpAt and can be neglected. A smallest eigenvalue is the same entangled state as in Eqg.
contribution from the ternH, (i=a,b) appears only in (10), i.e.,
second-order perturbation theory and can be evaluated using

the usual Markov approximatidr24]. Then one finds

1
INoy= m(galoob—gblolw)- (25

1 (tn t’
- ﬁ ‘ dt J't dt"(OpnHau1(t")Har(t")[Opn M has three normalized eigenvectxs), which are in gen-
ot o eral not orthogonal. The reciprocal vectdps| are defined
=—Tj|1);(1|At, (19 by (\'[xj)=4;;. Then one can writd =X=;\;|\)(\'|. For

the conditional time evolution operator, one has the represen-
where tation
e? :
I‘i:—dwa’_ (20 Ucono(tro):e_Mt:E e_}\itl)\i><)\l|- (26)
67T€0ﬁC3 i=1

Therefore, provided that no photon has been detected during

Similarly, one can show that the terih ; yields a formally gwe fime interva[ 0] andt satisfies

analogous contribution, now replacing the atomic decay rat
by the cavity decay ratec. The form of the conditional
Hamiltonian is now easily inferred, taking into account that I istskl (27)

the exponentials exp(\it) can be neglected while

i exp(—Agt) is still close to unity and the system will be in the

IT (0ufUtn th-1/0pw) e
i (tn A
=Ucono“n’°>:TeXP( o 8 Hoan >)' [ o 1)) = Ucond 1.0 [ 0) = €N o) (Al o)l 1= o)-
(28)
(21) : : :
This state factorizes as a tensor product between the cavity
whereT indicates a time ordered expression. We find field in the vacuum state and an entangled state of the two
atoms.
More precisely, the conditional time evolution operator
. K OJa Op " Uong C@n be calculated as
Hcond:i_ —0a I' 0O Ei_M (22)
-0y, O T vt (M=A)(M=X3) . .
= e "o'+ (cyclic permutation
| | - (No—Ap(hg—rp & - Tleveliep 5
in the basisB=(|100),/010,|002)). The corresponding ei- (29

genvalues oM are given by ] ] . o )
which can easily be verified by application to the eigenvec-

tors[25]. Applying this operator to our initial state, E(B),
No=T}; (23 we obtain
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1 T T T T T . | emissions. We first calculate the probability that there is no
]P;mogg — decay at all, neither spontaneous emissions by the atoms nor
0.8 L Poor(t) -+ photons leaking out of the cavity. Subsequently we will de-
: rive the probability for(a) having a spontaneous decay from
0 L | the atoms, andb) for having photon emission from the cav-
‘ : L N ity.
; N ~—— T ' The probability to have no photon emissigreither spon-
041 | . taneously emitted nor leaking through the cavity miryors
' until time t is given by the norm squared of E@O), i.e.
0.2 —
Po(t, 40) =11U cond 1.0) | 0) > (3D)
% = . . j é 1'0 1'2 1'4 This general expression can be simplified considerably for
¢ [units of 1/] large timed. The probability to detect no photon until timhe

with t>« "1 is equal to
FIG. 2. The time dependence of the probability amplitudes for

the basis statedd400), |010), and|002) under the conditional time g2
evolution that no photon has been detected at all. We have chosen Po(t,g) = TR e 2I't (32
g.=0p,=0=« andl'=10"3g. After a short time the cavity mode is ga2t+39p
decayed, and the atoms have reached the pure entangled atomic
state. In our experimental setu@see Fig. 1, only photons leak-
ing through the cavity mirrors are monitored and, as we have
0 pointed out, the state of the system will be the mixture given
o)) = 1 goe | 9o | +ge (MR by Eq.(13). The quantum jump approa¢dl—23 provides a
g§+ gﬁ transparent way to evaluate the weight of the component
Y |000), i.e., the probability for a spontaneous emission from
2, 42 an atom.
0 2(93+9p) Let us denote by’ an intermediate time within the inter-
X\ | 9a|cCOSSV2)+ g Ja(k—T") val [0t]. The probabilityP of having anemissionat any
g gp(k—T) time in that interval will be given by
t ’ !
xsin(Sti2) ¢ |. (30 P J It Wit vo), 33

wherew, (t’, ;) denotes the probability density for the first
The probability amplitudes for the three basis states ar@hoton at timet’ for the given initial stately,) [26,27.
plotted in Fig. 2. As expected, on a time scale such thaBincew,(t’,¥y)dt equalsPq(t’,q) — Po(t’' +dt’,¢g), one
I'"I>t>x"1, the contribution from terms multiplied by a has
damping factor proportional to the suki+I" becomes neg-
ligible, and the conditional state vector is a two-particle en-
tangled state correlated with the cavity field in the vacuum wy(t’, o) = — ;Po(t’.lﬂo)
state|\g). t
— -mTt’ Ty a— Mt/
B. Calculation of the detection probabilities —(¢0|e (M+M%)e |¢°>' (34
After the derivation of the conditional time evolution, we Taking into account the explicit form d¥l in Eq. (22), we
are now in a position to calculate the probabilities for photonfind

Wl(t ' ’ ¢0) = 2K|< 1Oq Ucono(t’ -0)| ¢0>|2+ 2F(|<01q Ucono(t ' ,O)| l/’0>|2+ |<001| Uconc(t, ,0)| ¢0>|2) (35)

As expected, both relaxation channels contribute separately to the decay,ragettingt’ equal to 0, one finds that the
probability density for a photon leaking through the cavity mirrors is given by the population of the [8temultiplied by
the cavity decay rate. Similarly, the probability for spontaneous emission is determined by the population of thelfates
and|002).

In our case we are only interested in the contributio®ta Eq. (33) coming from spontaneously emitted photons. Using
Eq. (33), one finds

t
Pspor t, o) =2T fodt’ (010U condt",0)[ o) >+ {001 U gond ", 0) [ 0) ). (36)
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However, from the point of view of simplifying the calculations, it is easier to evaluate the probability of cavity decay. In a
similar way one obtains

t
Pca\“v¢O)=2Kf0dt,|<01qucono(t,!0)|‘//0>|2' (37)

Taking into account the results of the previous section for the unnormalized #tge we can write

2 —(k+T)t
KQ3 [ e , .
Pealt, )= 1- 4(g5t 9+ k') + (k+T')(Ssin(St — (k+1")cog St 38
cakt, %o) (<+T)(ge+ g2+ )| & [4(9atgpt «I) +( )(Ssin(St) — («+T")cog St))] (38)
|
and calculatePg,,, as the difference between unity and the gﬁ 92«
sumPy+ P,y Pepor £, ¥h0) =1— e - 2 .
o ol Vo) =3 g g2 (T +1)(g5+ G5 +Tx)

(39
V. FIDELITY AND ENTANGLEMENT IN THE
ASYMPTOTIC REGIME Using the expressions fdi(t)) and Pgyot, o) we can
In Sec. I, we have derived exact analytical expressiond!oW calculate the state of the atoms at tim&his expres-
for the no-decay probabilities. In this section we will now Sion can then be used to evaluate the fidelity with respect to
discuss these exact expressions ingsgmptoticegime, i.e., the maximally entangled staté~) of Eq.(11). This result is
for times longer than the cavity lifetime. Finally, we will "epresented in Fig. 4. We observe that for short timsat-
characterize the quality of the entanglement generation b{FfYing Eq.(27), the fidelity is almost unity. For times com-
cavity loss in two ways. We will calculate the fidelity with Parable to or larger thali~*, the fidelity falls off exponen-
respect to the maximally entangled sthte ), and explicitly ~ tially. For our proposal only the region with smalis
calculate a measure of entangleméhe relative entropy of elevant, so that the exponential decay of the fidelity for
entanglemenf7]) for the state of the system. largert does not limit the efficiency of our scheme. In Fig. 4
In Fig. 3 we plot the probability .. (t, ;) that a photon We a!so plc_>t _the fidelity for imperfect counter _efflc_:ler_1(1y| _
has leaked out of the cavity. As expected, this function satuthis figure it is»=0.8). We observe that the fidelity is still

rates at a point close to 0.5 whgp=g, andl is small. The high.

reason for this is that the overlap of the initial st4®4.0) When dealing with entangled states it is interesting to
with the singlet statd0)|¢ ") is preciselys. If a photon know the amount of entanglement that is contained in a state.

leaks the cavity, then the atomic statdQs), i.e., the atomic Especially for mixed states this is not directly related to the
state is a product state. If no photon leaks out of the cavitfidelity of the state. However, there exist quantitative en-
then the atoms are in an entangled state. Therefore, thténglement measures _for mixed states. In the following we
scheme presented here succeeds in 50% of the cases. In ¥ calculate the relative entropy of entanglement for the

asymptotic regime we can write

1

0.5 . . . 0.9
0.45 7 08 b
0.4 .
0.35 J . 0.7
0.3 - e
Py 025 |
09 L i 0.5
0.15 | . 04
o1 b | y e
0.05 - 50 100 150 200 250 300 350 400 450 500
0 I I L . t [units of 1/g]
0 1 2 3 4 5 FIG. 4. Fidelity of the final atomic state with respect to the

¢ units of 1/g] singlet state in the asymptotic limit, wherés large compared with

1 . .
FIG. 3. The probability for the photon leaking through the cav- X - The dotted line corresponds to the case of a detector with

ity mirrors in the time interva[0t]. We have choseg,=g,=g finite efficiency# (here»=0.8). For small times the fidelity of the

=« and'=10"3g. For these parameters the cavity mode decay@tomic state with respect to the singlet state is high, even for a

with a probability close to%. After a short time the state inside the COUNter efficiency_ ofy=0.8). For larger times the “O_'e"ty de-
cavity is stable. creases exponentially because of a spontaneously emitted photon.
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1 . . . . . . . . . can be corrected using the following idea. A nonperfect
counter or spontaneous emission lead t6G0) contribution
in the density operator; see E40). If we irradiate a system
in state|000) by a laser, cavity photons will be excited which
will eventually leak out of the cavity mirror where they will
be detected. The singlet contribution to the density operator
remains invariant under the same procedure. In the state Eq.
(40) only the|000) contribution will lead to the detection of
a cavity photon. If we detect such a photon, the state of the
system is projected to the std@00). If we fail to detect a
photon, then, even for imperfect counters, we will end up in
0 ' : : : : : — : a state that has a higher proportion of the singlet state. Few
50 100 150 200 250 300 350 400 450 500 e . . . .
¢ [units of 1/g] repetitions of this procedure reduce {00y contribution in
the density operator of the atoms to very low values. There-
FIG. 5. Relative entropy of entanglement for the final mixed fore, we conclude that our scheme is not overly sensitive to
state in the asymptotic limit, whetteis large compared with 2. the counter efficiency.
As before, we have takey,=g,=g=«x andI'=10"3g. As long as
the entangled state of the atoms does not decay spontaneously, the VI. CONCLUSIONS
entropyE is high.

We have described an experimental situation where en-
states generated by our scheme. Due to the special form §inglement between two atomic systems can be induced via
the density operatgs of the two atoms, continuous observation of the cavity I(_)s_s. Th|_s proposa_l al-

lows us to illustrate the effects of conditional time evolution
and the power of the quantum jump approach as an analyti-

= (Py(t, W™ i i i
p Po(t, o) & Peparl . 100) olt, o)™ (o™ | cal tool. From the experimental point of view the proposal
has a number of advantages that should make its experimen-
+Psp0,{t,¢0)|00)(00|), (40)  tal realization possible with existing experimental methods
- . ) [19].
it is possible to compute the relative entropy of entanglement (1) There exist open ion traps that allow us to implement
of the final statg 7] analytically. It is given by a sufficiently small cavity. This will allow us to achieve high

coupling constants between atoms and cavity.

(2) The conditions given by Eql) are experimentally
where A =P/(Po+ Pspe). We have plotted this result in achievable, as we do not require a strong-coupling regime.
Fig. 5 for perfect counter efficiency. For short tim@ehich . (3) The atoms only. need to.be cooled to the Lamb-Dicke
are nevertheless longer than the cavity lifetjirttee amount limit [29]. _In present ion trap |mplementat|ons of entangle-
of entanglement is high, while it falls off exponentially for ment manlpulatlpns, cooling to the motlpnal grounq state of
larger times. It should be noted that E40) contains en- the ions is required. I_:or more than_a_ single on this can, at
tanglement for arbitrary counter efficiencies and spontaneod%resent’ only be achieved _W"Fh a finite precision, _ano_l cur-
decay rates of the atoms. Therefore, our scheme is not "n{_ently represents a strong limit to the achievable fidelity of
ited by these experimental imperfections. the state of the e_ntangk_aq atovﬁ?é%]._ .

The fidelity of the mixed state can be determined ex- (4) The detection efficiency varies with the wavelength,
perimentally using the technique recently developed by th&Ut it can be up to 90%. Although the amount of entangle-
National Institute of Standards group in Colorgd@8] who m?”.t n th? atomic stqte decreases W'th decreasing counter
used the fact that an atom singlet state is invariant under th&TiCiency, it never vanishesee also Fig. 4 .
radiation of both atoms with an identical laser. Both the di- " addition, the_ initial preparation requires only a single
agonal elements and the relevant off-diagonal coherences !ﬂser pulse to excite selectively one of the atoms. Therefore,
mixed states of the form of E¢40) can be measured by this the experiment proposed here does seem feasible with pres-
method. Note that our approach allows us to incorporate ea&ntly available technology.
ily a nonunit efficiency for the photodetectors. All we have
to do is to modify the weight of the componej@00 to
account for the fact that there is a finite probabilityhat the We thank J. Steinbach and D. M. Segal for useful com-
photodetector has not triggered in spite of the fact that leakments on the subject of this paper. Part of this work has been
ing has occurred. The weigh®g,,, is then replaced by done during the 1998 Quantum Optics and Quantum Com-
Psport (1— 1) Pcay [26]. The effect of nonideal detectors on puting Workshop at the Benasque Center of Physics. This
the fidelity of the state is illustrated by the dotted line in Fig. work was supported by the European Community, the U.K.
3. For a counter efficiency of 80% the fidelity of the atomic Engineering and Physical Sciences Research Council, by a
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E(p)=(A—2)Iny(1—N/2)+(1—N)Iny(1—\), (41)
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