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Cavity magnonics deals with the interaction of magnons — elementary excitations in
magnetic materials — and confined electromagnetic fields. We introduce the basic
physics and review the experimental and theoretical progress of this young field that
is gearing up for integration in future quantum technologies. Much of its appeal is de-
rived from the strong magnon-photon coupling and the easily-reached nonlinear regime
in microwave cavities. The interaction of magnons with light as detected by Brillouin
light scattering is enhanced in magnetic optical resonators, which can be employed to
manipulate magnon distributions. The cavity photon-mediated coupling of a magnon
mode to a superconducting qubit enables measurements in the single magnon limit.
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I. INTRODUCTION

Spectroscopy, the study of the reflection and transmis-
sion of radiation (or its quanta, the photons) by a given
sample as a function of frequency, relies on the interac-
tion between electromagnetic (EM) fields and matter. In
condensed matter physics, the electric and magnetic field
components of an EM wave dominantly interact with the
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charge and spin of the electrons by the Coulomb and Zee-
man interactions. Spectroscopy relies on the weakness of
these interactions that allows treating the scattering pro-
cess by perturbation theory. The observed amplitudes
and intensities then give direct information about the
electronic and magnetic structure of the scattering ob-
ject.

The EM cavities trap photons in a finite spatial region
in which they interfere to form standing waves. Accord-
ing to Fermi’s Golden Rule the modulation of the photon
density of states affects the scattering amplitudes. (Pur-
cell et al., 1946) pointed out that the light emission of
excited matter can be strongly enhanced or suppressed
in a cavity via the available photon states for the emitted
radiation. When the confinement is efficient, the cavity
modes develop a discrete spectrum with a nearly singu-
lar density of states. At the cavity mode frequencies an
intrinsically weak interaction may become so strong that
perturbation theory breaks down. In this strong coupling
regime hybrid polariton states arise in which matter and
radiation cannot be distinguished anymore.

Cavities and resonators differ in size and nature de-
pending on the frequency of the photons they are de-
signed to trap and many forms of matter can be in-
serted. Cavity quantum electrodynamics (cavity QED)
studies Rydberg atoms and trapped ions in optical and
microwave (MW) cavities (Haroche and Kleppner, 1989;
Walther et al., 2006). Micro and nanostructured devices
such as superconducting qubits or quantum dots behave
in the MW regime like two-level systems or tunable “arti-
ficial atoms” (Girvin, 2014). Their study in MW cavities
or circuit QED (Blais et al., 2020, 2004; Wallraff et al.,
2004), has paved the way for quantum information pro-
cessing. Cavity optomechanics studies the forces exerted
by radiation pressure (Braginski and Manukin, 1967) on
devices such as mechanical resonators, i.e. the photon-
phonon coupling. An important breakthrough has been
the cavity-assisted cooling of the vibration of a macro-
scopic object to its (zero-phonon) quantum ground state
(Aspelmeyer et al., 2014; Teufel et al., 2011).

The present review addresses the electrodynamics of
cavities that are filled by a magnetic material and tuned
to the interaction of the cavity photons with magnons,
the elementary excitations of the magnetic order.

Soykal and Flatté (Soykal and Flatté, 2010a) predicted
strong coupling of photons in a MW cavity to the quan-
tum dynamics of a small ferromagnetic sphere. Subse-
quently, (Huebl et al., 2013) reported the observation
of strong coupling in the form of an anticrossing of the
collective magnetic precession of the magnetization with
MW cavity modes. These studies kick-started an inter-
national research activity on the coupling of magnons to
photons, predominantly at MW and infrared frequencies.
We call this field cavity magnonics but the terms cavity
optomagnonics, cavity spintronics, and spin cavitronics
are in use as well.

We review here the considerable progress achieved to
understand cavity magnonics in terms of semiclassical
physics. The field is presently in a watershed situation
in which low temperature experiments dedicated to iden-
tify quantum effects on the level of cavity/circuit QED or
cavity/circuit optomechanics are on their way. We there-
fore believe that a review of the concepts and main results
will consolidate the present understanding and help with
the challenges ahead.

We organized this review as follows. Sec. II summa-
rizes the concepts of an EM cavity, Sec. III the physics of
ferromagnets and their low energy excitations, and Sec.
IV the coupling between them. The remaining sections
summarize and explain selected experiments, in MW cav-
ities (Sec. V) and optical resonators (Sec. VI). We ad-
dress a hybrid system of a magnet and a superconducting
qubit in Sec. VII. In Sec. VIII we anticipate the devel-
opments in the near future.

II. ELECTROMAGNETIC CAVITIES

Classical and quantum waves that are trapped in a
limited space or “cavity” where multiple scattering leads
to interference have the photon density of states strongly
modulated by this interference. Here we focus on EM
cavities, i.e. structures that serve to confine EM fields.
The cavity modes are the solutions of Maxwell’s equa-
tions with appropriate boundary conditions at the con-
fining potentials and contacts to the environment.

Wave guides confine the EM waves in one or two di-
rections but are open in another direction. Fabry-Perot
interferometers are one-dimensional wave guides that are
partially open at the endpoints. Full confinement of the
EM field in all directions with a discrete spectrum can
be achieved when photons have a long lifetime, i.e. when
they are not absorbed and cannot escape except through
non-invasive ports.

The functionality and quality of a cavity depends on
the design, size, and material. The modulation of the
photon density of states is optimized when the size of
the cavity in the confining direction is comparable to the
wavelength. MW cavities are made from metals (that
may be superconducting) with dimensions in the cen-
timeter range. Confined MW modes also exist on top
of metallic (superconducting) strips such as co-planar
waveguides fabricated on insulating substrates. An in-
terface between materials with a large dielectric constant
mismatch can reflect light efficiently, so solid objects of
10–1000 microns size and a large dielectric constant trap
optical (infrared to visible light) fields. Absorption and
quality factor of such resonators is high when the ma-
terial is an electric insulator with a fundamental energy
gap higher than the light frequency. In the following we
briefly discuss the main concepts of EM cavities as open
quantum systems, see also e.g. Aspelmeyer et al. (2014);
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FIG. 1 (Color online) (a) Classical RLC circuit in series driven
by a time-dependent potential V . (b) Fabry-Perot type of cavity
defined by two semi-transparent mirrors 1 (left) and 2 (right). The
ratio of the signal amplitude transmitted through 2 and the input
amplitude entering through 1 is S21 and analogous for reflection
S11. When the second mirror is totally reflecting or not monitored
we call the cavity “one-sided”.

Heebner et al. (2008); Meystre and Sargent (2007); Walls
and Milburn (2008).

A. Free LC circuit

We first illustrate the basic physics of a MW cavity
by considering an LC resonator. i.e. an electrically con-
nected inductance L and capacitance C. A voltage V
charges the capacitor as QC = CV , while the the cur-
rent I generates a flux Φ = LI in the inductor. With
Q̇C = I and Φ̇ = −V , where the overdot indicates the
time derivative, we arrive at the equation for a harmonic
oscillator,

LCÏ + I = 0, (1)

with frequency ωc = 1/
√
LC. For MWs typically

ωc/2π ∼ 5 GHz. The LC circuit stores energy

U =
CV 2

2
+
LI2

2
. (2)

In reality, a cavity loses energy at a rate κc that is
the sum of internal Ohmic dissipation κ0 and radiation
leakage κex loss rates,

κc = κ0 + κex. (3)

An important parameter is the cavity quality factor,

Q = ωc/κc. (4)

Including a dissipative element — a resistor R — into the
(RLC) circuit, see Fig. 1(a), introduces a viscous term
into the equation of motion,

Ï +
R

L
İ + ω2

cI = 0 , (5)

and we have Q = (1/R)
√
L/C.

We may quantize a classical LC-oscillator by replac-
ing the amplitudes I and V by operators (Devoret, 1997;
Girvin, 2014),

V̂ =

√
~ωc

2C

(
â+ â†

)
, Î = i

√
~ωc

2L

(
â† − â

)
, (6)

expressed in terms of photon creation â† and annihilation
â operators that obey the boson commutation relation
[â, â†] = 1. The photon number operator is n̂ = â†â,
and the energy Eq. (2) becomes the Hamilton operator
or Hamiltonian,

Ĥc = ~ωc

(
â†â+ 1/2

)
, (7)

where zero-point energy ~ωc/2 contributes a constant
shift that we often simply disregard.

In the Heisenberg picture, an operator Â obeys the
equation of motion (d/dt)Â = (i/~)[Ĥc, Â] that for the
voltage operator,

d

dt
V̂ =

i

~

[
Ĥc, V̂

]
=

1

C
Î, (8)

agrees with the classical equation CV̇ = I. The time
dependence of the annihilation operator, found from

d

dt
â =

i

~

[
Ĥc, â

]
= −iωcâ, (9)

is â ∝ exp(−iωct), while the creation operator â† ∝
exp(iωct). It is convenient to work in a rotating frame
by introducing the operators ˆ̃a and ˆ̃a†,

â = ˆ̃ae−iωct, â† = ˆ̃a†eiωct, (10)

that are time-independent. The voltage operator in the
rotating frame becomes

ˆ̃V =

√
~ω0

2C

(
ˆ̃ae−iωct + ˆ̃a†eiωct

)
. (11)

The number of photons ni = 〈Ψi|â†â|Ψi〉 in an eigenstate
|Ψi〉 vanishes in the ground state. At a finite tempera-
ture T , the photon number fluctuates with an average
given by the Planck (or Bose-Einstein with zero chemi-
cal potential) distribution function,

nB =

[
exp

(
~ωc

kBT

)
− 1

]−1

, (12)

where kB is the Boltzmann constant. Thermal photons
are called “incoherent” since their phases are uncorre-
lated and the thermal average vanishes, 〈â〉B = 0.
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B. Driven LC circuit

A time-dependent perturbation at or close to the res-
onance frequency ωc “drives” an LC circuit into ex-
cited states. When adding a time-dependent voltage
VD cosωDt to Eq. (2) with driving frequency ωD the clas-
sical instantaneous energy becomes

U(t) =
CV 2

2
+ CV VD cosωDt+

CV 2
D

2
cos2 ωDt+

LI2

2
.

(13)
The term proportional to V 2

D is the energy of the external
drive. The interaction term in Eq. (13) is linear in both
V and VD cosωDt and contributes a drive CVD sinωDt to
Eq. (1) that enhances the undamped oscillator amplitude
by ∝ 1/∆, where ∆ = ωD−ωc is the detuning. Damping
removes the divergence at a resonance (∆ = 0) with a
response proportional to the quality factor Q.

The first term in the Hamiltonian of the driven quan-
tum cavity Ĥ = Ĥc + ĤD is Eq. (7). The four time-
dependent terms in the drive,

ĤD =
VD

2

√
~ωcC

2

(
â† + â

) (
eiωDt + e−iωDt

)

=
VD

2

√
~ωcC

2

(
â†e−iωDt + âeiωDt

)
+ h.c., (14)

are not equivalent since a harmonic oscillator apprecia-
bly responds to a time-dependent external force only
close to its resonance. In the Heisenberg representation,
â ∝ exp(−iωct), so â exp(iωDt) oscillates with frequency
|ωD − ωc|, while â exp(−iωDt) oscillates with frequency
ωD+ωc. When ∆ is of the order or less than the damping
rate of the cavity κc, the term â exp(iωDt) becomes nearly
constant, while the cavity cannot react to the rapidly
oscillating â exp(−iωDt). The amplitude amplification
under resonant drive conditions corresponds to the gen-
eration of a large photon number that in contrast to the
thermal one are coherent, i.e. phase-locked to the drive
with 〈â〉 6= 0.

The rotating wave approximation (RWA), commonly
used for driven systems, is equivalent to disregarding the
Hermitian conjugate in Eq. (14),

ĤD ≈
VD

2

√
~ωcC

2

(
â†e−iωDt + âeiωDt

)
. (15)

It holds for sufficiently small detunings or drive ampli-
tudes, i.e., when the resonant response at ∆ ≤ κc is much
larger than the non-resonant one (∆� κc). If this is not
the case, we enter the ultra-strong coupling regime, at
which the RWA breaks down, see Sec. IV.

C. Microwave and optical cavities

MW resonators in the GHz regime come in various
designs, see Table I in Sec. V. Conducting metal films

on an insulating substrate, such as co-planar waveguides
or notch filters, confine MW modes in their vicinity and
populate them by applied ac currents. Lumped-elements
LC resonators are electric circuits consisting of inductors
and capacitors. Traditional cavities are boxes made from
a metal with high conductivity with small holes (ports)
for the input and output that confine MWs by screening
electric fields and expelling magnetic ones. Cavities have
in general more than one resonant frequency. Usually the
line broadening governed by the quality factor Q in Eq.
(4) is much smaller than the mode separation that scales
roughly with the square of the inverse cavity size. The
single-mode approximation and the simple RLC circuit
picture are then appropriate.

Optical cavities operate typically for infrared light at
frequencies of hundreds of THz. They consist of insula-
tors with high dielectric constants and µm sizes to match
the corresponding wave lengths. The can be filled with
photons by proximity optical fibers or prism that are il-
luminated by external lasers. While the magnetic field
component of the radiation dominates the interaction
with spins in the MW regime, the direct Zeeman inter-
action is suppressed at high frequencies until the second
order interaction of the spin with the electric field as me-
diated by spin-orbit coupling (Fleury and Loudon, 1968)
takes over at optical frequencies. In the intermediate
THz regime, the spin-photon interactions with both elec-
tric and magnetic fields are significant (Kampfrath et al.,
2013).

The textbook example of a cavity is a Fabry-Perot
interferometer (Fig. 1b). The solution of the Maxwell
equations with reflecting boundary conditions at the two
mirrors at a distance ` may be labeled by an positive inte-
ger p with mode frequencies ωp = πpc/` and amplitudes
up(r), where c is the speed of light. When the mirrors
are slightly transparent or contain small holes, a cavity
mode with frequency ωD can be populated by photons
from a source on the left, leading to observable transmis-
sion S21(ωD) and reflection S11(ωD) amplitude spectra
peaked at the mode frequencies ωp.

The cavity fields can be quantized analogously to an
LC resonator. By expanding the Cartesian components
of the electric field into the cavity eigen modes up(r)

Ex(r, t) =
∑

p

Epup(r)
(
âpe
−iωpt + â†pe

iωpt
)
, (16)

where Ep ∝ √ωp and âp is the creation operator for
a photon in the mode p with bosonic commutators[
âp, â

†
p′

]
= δpp′ ,

[
â†p, â

†
p′

]
= [âp, âp′ ] = 0. The EM Hamil-

tonian is then a sum of harmonic oscillators,

Ĥc = ~
∑

p

ωpâ
†
pâp , (17)

in which we disregarded the zero-point energy ~
∑
p ωp/2,

even though it can affect quantum noise correlations
(Clerk et al., 2010).
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More generally, we can quantize the vector potential
A(r, t) (with B = ∇ × A(r, t) and E = −∂A(r, t)/∂t),
which is convenient in the Coulomb gauge ∇·A(r, t) = 0.
The Maxwell equations in the absence of sources read

∇ ·D =0, ∇×E = −∂B/∂t, (18)

∇ ·B =0, ∇×H = ∂D/∂t.

The magnetic induction B and the displacement field D
depend on frequency and material dependent response
functions. In linear response,

B =←→µ H, D =←→ε E, (19)

where←→µ and←→ε are the magnetic permeability and elec-
tric permittivity tensors, respectively. The magnetic in-
duction then satisfies the wave equation,

∇×
[
εε0
←→ε −1 ·

(
∇× µµ0

←→µ −1 ·B
)]
− k2B = 0, (20)

where k2 = ω2εε0µµ0 = (nω/c)2 with ε0 (ε) and µ0 (µ)
are the scalar vacuum (relative) permittivity and perme-
ability of the medium, respectively. Here c = (µ0ε0)−1/2

is the speed of light in vacuum and n =
√
ε is the refrac-

tive index of the cavity medium. A similar equation is
satisfied by D.

In air or non-magnetic dielectrics,←→µ = µ01, where 1 is
the unity tensor, is an excellent approximation at optical
frequencies at which the magnetic response is negligibly
small. In an isotropic medium D = ε0εE. At interfaces,
the fields inside and outside of a body obey boundary
conditions at the surface such as

n× (Eout −Ein) = 0, n · (Bout −Bin) = 0, (21)

where the unit vector n is the outward normal.
Equations (18) reduce to the wave equation for the

vector potential A(r, t). In a homogeneous material,

∇2A = µ0ε∂
2A/∂t2 . (22)

Working with complex phase factors implies working
with positive and negative frequencies with time depen-
dence A(r, t) = A+(r, t) + A−(r, t), and A+(r, t) =
[A−(r, t)]

∗
. The function A+(r, t) =

∑
k akuk(r)e−iωkt,

with ωk = ck/n, solves Eq. (22). Quantization proceeds
by promoting the amplitudes ak and a∗k to bosonic anni-

hilation and creation operators âk and â†k, respectively.
The Hamiltonian reduces again to collection of harmonic
oscillators, as in Eq. (17). The solutions of the Helmholtz
equation,

(
∇2 + k2

)
uk(r) = 0, (23)

form an orthogonal complete set that that can be nor-
malized, for example, to the volume of the cavity

∫
uk ·

u∗k′d
3r = V δk,k′ . The eigenstates uk are two-dimensional

vectors in a given polarization basis. They are subject

to boundary conditions as Eq. (21), which in turn de-
pend on the specific cavity, e.g. geometry and material.
Dissipation can be taken into account by imaginary com-
ponent of ωk that is proportional to the the loss rate κc

that to leading order does not modify the mode functions
uk(r) of the ideal cavity.

We thus arrive at the operators for electric and mag-
netic field

Ê+(r, t) = i
∑

k

√
~ωk

2V ε0ε
âkuk(r)e−iωkt, (24)

B̂+(r, t) = i
∑

k

√
~

2V ε0εωk
âkk× uk(r)e−iωkt, (25)

with Ê−(r, t) =
(
Ê+(r, t)

)†
, B̂−(r, t) =

(
B̂+(r, t)

)†
.

For dielectric cavities it can be convenient to replace
the volume V in Eqs. (24) and (25) by an effective mode
volume Vk, defined as

Vk =

∫
|Ek(r)|2d3r

max |Ek(r)|2 , (26)

where Ek is the mode function for mode k with arbi-
trary normalization. When the amplitude Ek is chosen
such that the energy stored in the mode is that of a sin-
gle photon ~ωk as in the Hamiltonian (17), we obtain
the maximum amplitude of the electric field per photon
max |Ek(r)| =

√
~ωk/(2ε0εVk) and the modified normal-

ization condition
∫
uk · u∗k′d3r = Vkδk,k′ (Safavi-Naeini

and Painter, 2014). The effective mode volume is a mea-
sure of the spatial extension of the light field which can
useful when dealing e.g. with optical surface states, see
Sec. VI.

The polarization degeneracy of photons in a contin-
uum is broken at interfaces. The polarization states
can often be classified as transverse electric (TE) and
transverse magnetic (TM) modes, in which there are no
magnetic and electric field components along the prop-
agation direction, respectively, also at curved interfaces
(Joannopoulos et al., 2010). The electric field compo-
nents of quasi-TE and TM modes at dielectric resonators
as in Sec. VI.C are polarized normal and parallel to the
interface, respectively. In the the following, we return to
labeling the modes by a discrete index p rather than a
wave number k.

D. Input-output formalism

When a cavity is in contact with a photon source such
as a MW drive or laser at frequency ωD, the coupling
term,

ĤD =
∑

p

~Ap
(
âpe

iωDt + â†pe
−iωDt

)
, (27)
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should be added to Eq. (17) , where the interaction Ap
with a cavity mode p depends on the driving power P as
|Ap|2 ∝ P, and we use the rotating wave approximation
introduced in Sec. II.B. Focusing on a single mode, we
can simplify the time dependence by the unitary transfor-
mation to the rotating frame Ĥ → ÛĤÛ† − i~Û∂Û†/∂t
with Û = e−iωDtâ

†
pâp . The transformed single-mode cav-

ity Hamiltonian including the driving term is

Ĥc + ĤD → −~∆pâ
†
pâp + ~Ap(âp + â†p), (28)

where the operators âp, â
†
p are now in the rotating frame

(denoted by ˆ̃a in Sec. II.B) When ∆p = ωD − ωp > 0
(∆p < 0) the system is “blue” (“red”) detuned. (Lee
et al., 2015) discuss the complications occurring when
the cavity mode couples to multiple input channels.

The external ports serve to drive and also to probe
the cavity, by measuring the transmission or reflection of
input photons, while coupling of a closed cavity to the
environment induces noise and dissipation. In the fol-
lowing, we introduce the input-output formalism (Clerk
et al., 2010; Gardiner and Collett, 1985; Walls and Mil-
burn, 2008) that addresses these effects. For technical
details we refer to Appendix E of Clerk et al., 2010.
The total Hamiltonian of the system is given by Ĥtot =
Ĥsys+Ĥbath+Ĥint. In this expression, Ĥsys is the Hamil-

tonian of the empty cavity Ĥc and additionally can con-
tain other terms describing the load such as a magnet
(see Sec. IV). Furthermore, Ĥbath represents the environ-
ment, and Ĥint its interaction with the system including
ĤD. Heisenberg equation of motion ~∂â/∂t = i[Ĥtot, â]
then governs the cavity field dynamics. As discussed
in textbooks such as (Meystre and Sargent, 2007), con-
tact with an environment treated as a large ensemble of
harmonic oscillators without memory (Markov approxi-
mation) turns the Heisenberg equation into a stochastic
Langevin equation. Focusing on the empty cavity, drop-
ping the mode index p, and going to the rotating frame
(Aspelmeyer et al., 2014), we write

∂

∂t
â(t) = i∆â(t)− κ

2
â(t) +

√
κexâin(t) +

√
κ0d̂0(t). (29)

The amplitude decays via the loss term ∼ −â(t), while
actuation and detection are represented by an input
mode that drives or probes the cavity (here âin). The

thermal environment introduces noise via d̂0. The
fluctuation-dissipation theorem governs the statistics of
the bosonic operators âin and d̂0 in terms of the extrinsic
and intrinsic loss rates κex and κ0 (see Eq. (3)). In a
Fabry-Perot cavity, for example, a semi-transparent mir-
ror can serve as the input and output channel, see Fig.
1(b), whereas non-monitored losses through the second

mirror would be covered by d̂0. Note that â and âin, d̂0

have different units. In particular, 〈â†inâin〉 is the rate
of incoming photons that is proportional to the input
power, P = ~ωD〈â†inâin〉. Furthermore, âin is a coherent

drive with a finite expectation value 〈âin〉 = αin, whereas

〈d̂0〉 = 0 is incoherent. We assume memoryless Markov-

like fluctuations for both δ̂ = âin − αin and d̂0,

〈δ̂(t′)δ̂†(t′′)〉 = (np + 1)δ (t′ − t′′) , (30)

〈δ̂†(t′)δ̂(t′′)〉 = npδ (t′ − t′′) ,

where np = nB(ωp) is the Planck distribution Eq. (12).

The fluctuations of d̂0 obey Eq. (30) as well. This ap-
proximation holds when the interaction with the bath
acts only over a narrow frequency band around ωp. Ther-
mal noise may be disregarded when ~ωp/kBT � 1, which
for MWs requires cooling to the temperatures below 1 K.
On the other hand, setting np = 0 is allowed for optical
cavities even at room temperature.

The input photons that enter the cavity can be re-
flected as an output field âout, see Fig. 1(b). An equation
analogous to Eq. (29) for âout is fulfilled by

âout = âin −
√
κexâ . (31)

The expectation value of âout is the reflection amplitude
or scattering matrix element S11 = 〈âout〉/〈âin〉 while the
reflected intensity is |S11|2. In the steady-state defined
by (∂/∂t)〈â(t)〉 = 0, Eq. (29) for an empty cavity leads
to 〈â〉 =

√
κexαin/ (κ/2− i∆) and therefore, using Eq.

(31),

S11(∆) =
〈âout〉
〈âin〉

= 1 +
κex

i∆− κ/2 . (32)

At the resonance (∆ = 0) in a high quality cavity with
κex � κ0, one has S11(0) ≈ −1. When on the other
hand κex = κ0, |S11(0)| = 0, i.e. all photons have been
absorbed or lost inside the cavity. For a general κex,
the reflected intensity |S11|2 has a minimum at the res-
onance. A two-port cavity has a second input-output
field (b̂in, b̂out), leading to the transmission amplitude

S21 = 〈b̂out〉/〈âin〉.
Standing cavity modes are the result of constructive

wave interference. In a single-port empty cavity, the res-
onances always leads to dips in reflection (32) and max-
ima in the transmission. A two-port (or loaded) cavity
can also display anti-resonances with opposite amplitude
and phase characteristics. A resonance (anti-resonance)
is detected as a maximum (minimum) transmission am-
plitude with a phase jump of π (−π), as shown in Fig.
2. Both can be modelled by the equivalent RLC circuits
in Fig. 2. In a high-quality closed cavity, input/output
ports are weak perturbations, the photons in the cav-
ity have a long dwell time, and constructive interference
shows up as resonances. When a cavity is “lossy”, e.g.
by invasive input/output ports or internal dissipation, is
may become opaque by the destructive interference at
anti-resonances.

The discussion above for empty cavities lays the
ground for understanding the properties of cavities in-
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FIG. 2 (Color online) Equivalent RCL circuits (top) and their
transmission spectra (bottom) that model a cavity resonance and
anti-resonance. At resonance, the transmission amplitude exhibits
a peak, and the phase jumps by π. In contrast, at anti-resonance
the transmission amplitude dips with phase jumping by −π (J.
Rao, U. Manitoba, unpublished.

cluding magnets or magnetic optical resonators in Sec.
V.

III. MAGNONS

In this review we are interested in describing the in-
teraction of photons with magnons, the elementary ex-
citations of magnetically ordered systems. The simplest
example of a magnetically ordered system is a ferromag-
net, which can present a finite large magnetization even
in the absence of a magnetic field. The magnetization is
a result of the presence of permanent magnetic moments
in the material, which align to form an ordered state be-
low what is denominated the Curie temperature. These
magnetic moments are determined by the spin and or-
bital angular momentum of the participating atoms. The
dynamics of the magnetization is, therefore, that of an
angular momentum. In this section we discuss the nor-
mal modes of the magnetization dynamics or spin waves
and their quanta, the magnons.

A. Landau-Lifshitz-Gilbert equation of motion

A material with uniform course-grained magnetization
M in the presence of an external magnetic field H0 gives
rise to a Zeeman energy density,

hZ = −µ0H0 ·M, (33)

and experiences the torque

Ṁ = −γM× µ0H0, (34)

where γ = gZµB/~ is the gyromagnetic ratio in which µB

is the Bohr magneton and gZ is the Landé factor. The
Landau-Lifshitz (LL) equation can be derived by Pois-
son bracket algebra in classical mechanics or by quan-
tum mechanical spin commutation rules in the Heisen-
berg equation of motion. Therefore, the dynamics of clas-
sical amplitudes and quantum magnetic operators both
obey Eq. (34). Its solution for a homogeneous system
describes a precession of the total magnetization vector
or “macrospin” S = −VsM/γ around the magnetic field,
where Vs is the volume of the magnet. A small angle
anti-clockwise precession can be mapped on a harmonic
oscillator. Its quantum is the simplest incarnation of the
magnon, i.e. the bosonic elementary excitation of the
magnetic order.

In real materials dissipation damps the precession.
This can be treated by adding a damping term to Eq.
(34) that reflects the viscosity by being proportional to
Ṁ, leads the magnetization back to its equilibrium, and
conserves the norm. This is achieved by the Landau-
Lifschitz-Gilbert (LLG) equation (Gilbert, 2004),

Ṁ = −γµ0M×H0 +
α

Ms

(
M× Ṁ

)
, (35)

where α, the phenomenological Gilbert damping constant,
approximates possible tensor character, non-locality, and
memory effects. The solution of LLG equation without
an external drive is an exponentially damped precession.
The linearized LLG equation leads to a resonant response
to an ac magnetic field at the ferromagnetic resonance
(FMR, see Sec. III.E) frequency ω0 = γµ0H0 with a line
width αω0. For magnetic metals typically α = 0.01 but
it can be as small as 10−4—10−5 for YIG thin films and
bulk crystals, cf. Sec. III.G.

The uniform magnetization of Kittel mode is a good
description for the FMR at sufficiently high magnetic
fields and a homogeneous MW magnetic fields. In gen-
eral, the magnetization forms equilibrium textures such
as domain walls, dynamic textures such as spin waves,
and can be driven easily into non-linear regimes. The
LLG equation handles these effects by replacing the ap-
plied field by an effective Heff(r) that is the functional
derivative of the magnetic free energy. Thermal effects
can be treated by the stochastic LLG equation in which
fluctuating magnetic fields depend on the damping pa-
rameter and temperature by the fluctuation dissipation
theorem. For more details we refer to Sec. III.C).

B. Heisenberg Hamiltonian

According to the Bohr-van Leeuwen theorem, magnetic
order does not exist in classical physics. The culprit is
the quantum mechanical exchange interaction, a spin-
dependent modification of the Coulomb interaction by
the effects of Heisenberg uncertainty and Pauli exclusion



9

principle. A good model for electrically insulating mag-
nets with localized magnetic moments of half-filled 3d or
4f shells is the isotropic Heisenberg Hamiltonian,

ĤH = −1

2

∑

ij

JijŜi · Ŝj , (36)

where the operators Ŝi and Ŝj represent spins at lattice
sites i and j that obey angular momentum commuta-

tion rules
[
Ŝαi , Ŝ

β
j

]
= i

∑
γ εαβγδijŜ

γ
i , in which εαβγ is

the Levi-Civita tensor and α, β, γ = {x, y, z}. The ex-
change parameter Jij is short-ranged and dominated by
the nearest neighbor interactions and often approximated
by a constant. When J ≥ 0, the ground state is then
a ferromagnet (FM). At zero temperature all spins are
aligned with total spin Stot = NS, where S is the spin of
a local moment and N is the total number of spins. The
ferromagnetic ground state is an example of spontaneous
symmetry breaking at the critical (Curie) temperature.
In the absence of an external magnetic field it is highly
degenerate with (2Stot + 1) states of equal energy, which
corresponds to the classical notion that the energy does
not change when rotating the magnetization.

The classical ground state of the antiferromagnetic
(AF) Heisenberg model with Jij = Jji ≤ 0 ∀i,j , the clas-
sical ground state on a square bipartite sublattice is the
Néel state — a state with staggered magnetization with
opposite spin directions of the two sublattices. However,
this is not the ground state of the quantum model (Nolt-
ing and Ramakanth, 2009). It rather is a non-degenerate

spin singlet, 〈Ŝtot〉 = 〈∑i Ŝi〉 = 0. This statement is
known as Marshall’s theorem (Auerbach, 1994). The ac-
tual form of this singlet depends on the, for example, the
lattice structure and the interaction range. The quantum
magnetic ground state of a general Heisenberg model in
three dimensions is simply not known (Auerbach, 1994).

The local moments in the following chapters are
“large”, Fe3+ ions which have a half-filled 3d-shell with
ordered spins that add up to S = 5/2. For our purposes it
is then an excellent approximation to interpret the local
moments as classical vectors with fixed modulus |Si| = S
that obey coupled LL equations in the external magnetic
and local exchange fields. This model is analogous to
that for lattices of classical ions, in which quantum ef-
fects appear only in the collective dynamics.

The Heisenberg Hamiltonian is usually augmented by
symmetry breaking terms, such as the Zeeman interac-
tion with an effective magnetic field Beff ,

ĤZ = −gZµBBeff ·
∑

i

Ŝi, (37)

where Beff represents applied and dipolar fields,
Dzyaloshinskii–Moriya spin-orbit interactions with
neighboring moments, magnetoelastic interactions, and
the magnetocrystalline anisotropies. The competition

between different interactions depends on materials,
geometry, temperature, etc., and can favor magnetic tex-
tures such as domain walls or skyrmions. A sufficiently
strong uniform external magnetic field always recovers
a homogeneous ferromagnetic ground state. The LL
equation can be recovered in the continuum limit of the
classical Heisenberg model.

C. Micromagnetic theory

The field of micromagnetics addresses the ground state
and time-dependence of magnetic textures by the solving
the LLG equation. When the relevant length scale of the
magnetic texture is much larger than atomic distances,
the discrete local magnetic moments become a smooth
magnetization field M(r). Since the exchange energy cost
of changes of its modulus is very high, it may taken to
be constant |Ms(r)| = Ms (Braun, 2012).

The equilibrium configuration of the magnetization
minimizes the free energy functional (disregarding mag-
netoelastic, antisymmetric exchange, and other contribu-
tions),

E =

∫

V

d3r


 A

M2
s

∑

i=x,y,z

|∇Mi|2 + Uan[M]

− µ0M ·H0 −
µ0

2
M ·Hd[M]

]
. (38)

The first term in the integral is the exchange energy den-
sity, since it follows from a gradient expansion of the
Heisenberg Hamiltonian and A ∝ J (Stancil and Prab-
hakar, 2009). Uan[M] is the anisotropy energy density.
An “easy axis” anisotropy along z, for instance, takes
the form −KeM

2
z with a positive constant Ke. Further-

more, −µ0M ·H0 is the Zeeman interaction induced by
an applied magnetic field H0. The dipolar or demagneti-
zation self energy by the stray field Hd[M] is a functional
of the entire magnetization, and the factor 1/2 corrects
for double counting. The scalar potential φ defined as

Hd = −∇φ (39)

obeys the Poisson equation

∇2φ = ∇ ·M, (40)

where the right-hand side is the magnetic charge density.
The integral representation

φ = − 1

4π

∫

V

d3r′
∇ ·M
|r− r′| +

1

4π

∫

∂V

d2r′
n̂(r′) ·M
|r− r′| , (41)

has contributions from the volume∇·M and surface n̂·M
charges at the sample boundaries ∂V . The dipolar energy
depends strongly on the sample geometry and thereby
causes “shape anisotropies”. According to

Ed = −µ0

2

∫

V

d3rM ·Hd =
µ0

2

∫

all space

d3r|Hd|2, (42)



10

the dipolar energy can be minimized by suppressing the
stray field outside the sample by magnetic configuration
without surface charges, i.e. when M is parallel to the
surface. Flux-closure configurations often come at the
expense of the exchange energy cost of introducing do-
main walls. The crossover scale is the exchange length
lex =

√
2A/µ0M2

s , obtained by comparing the exchange
energy cost of a domain wall of width lex, εex ∼ A/(l2ex),
with the dipolar energy cost of its absence, εd ∼ µ0M

2
s /2.

Samples smaller than the exchange length of typically a
few tens of nm are usually uniformly magnetized.

At equilibrium δE/δM(r) = 0, where

δE =− µ0

∫

V

d3rHeff · δM− l2ex

∮

∂V

d2r
∂M

∂n
· δM,

(43)

and Heff = H0 + Hd + Han + Hex with

Han = − 1

µ0

∂Uan

∂M
,Hex =

2A

µ0M2
s

∇2M. (44)

Since |M(r)| = Ms, the variation δM(r) must be trans-
verse,

δM = M× δv, (45)

where δv(r) is a small arbitrary vector. Substituting
Eq. (45) into Eq. (43) and using v ·(w×u) = u ·(v×w),
we get

M×Heff [M] = 0,
∂M

∂n

∣∣∣∣
∂V

= 0. (46)

In second equation we assumed absence of a surface
anisotropy. The nonlinear equations (46) paint a complex
energy landscape with possibly multiple local minima
that correspond to (meta) stable magnetic textures such
as magnetic vortices in thin-film magnetic disks (Gus-
lienko, 2008).

The generalization of the LLG equation (35),

Ṁ = −γµ0M×Heff [M] +
α

Ms
M× Ṁ, (47)

is the self-consistent and nonlinear problem for the lo-
cal magnetization dynamics M(r) that evolves under the
effective magnetic field Heff [M] governed by an inte-
gral over the entire magnetization. Analytic solutions
can be obtained only in limiting cases. In general, the
LLG equation must be solved numerically by micromag-
netic simulations. Thermal noise perturbs the magneti-
zation by a stochastic magnetic field h(t) whose correla-
tion function is linked to the Gilbert damping and tem-
perature by the fluctuation-dissipation theorem (William
Fuller Brown, 1963). The noise power is colored by the
Planck distribution function (Barker and Bauer, 2020),
but becomes white in the high-temperature limit. In par-
ticular, for the homogeneous case, M(r, t) → M(t), we

have

〈hp(t)hq(0)〉ω =
2αδpq
γMsV

~ω

e
~ω
kBT − 1

−−−−−−→
kBT�~ω

2αkBT

γMsV
δpq.

(48)

D. Magnons

A magnon is the quantum of a spin wave excitation
in a magnetically ordered ground state, i.e. a coherent
precession of the spins around their equilibrium direc-
tion. In extended systems, the precession phase is a plane
wave with wave vector k. The Kittel mode described in
Sec. III.A corresponds to k = 0. The magnon frequency
dispersion ωk is affected by all interactions that govern
the ground state. The exchange energy cost to twist the
magnetizations leads to a quadratic dispersion ∝ Jk2

that dominates at large and is negligible at small wave
numbers k compared to other contributions. When the
size and shape of the sample are of the order of k−1, the
dipolar energy is important.

Bloch (Bloch, 1930) introduced the first microscopic
model for spin waves in a ferromagnet. Holstein and
Primakoff (Holstein and Primakoff, 1940) included the
effects of an external magnetic field and dipolar interac-
tions. They introduced the nonlinear transformation of
a spin Hamiltonian to bosonic magnons that carries their
name. In terms of the raising and lowering spin operators
Ŝ±i = Ŝxi ±iŜyi relative to a quantization axis along z, the
isotropic Heisenberg Hamiltonian with Zeeman term and
nearest neighbour exchange Jij = J for nearest neighbors
(nn) and zero otherwise reads

Ĥ = −J
2

∑

ij=nn

[
Ŝ+
i Ŝ
−
j + Ŝzi Ŝ

z
j

]
+ gZµBB0

∑

i

Ŝzi . (49)

The Holstein-Primakoff (HP) transformation for a local
spin then reads

Ŝ+
i =

√
2S

√

1− m̂†i m̂i

2S
m̂i, Ŝzi =

(
S − m̂†i m̂i

)
,

Ŝ−i =
√

2Sm̂†i

√

1− m̂†i m̂i

2S
, (50)

where m̂i and m̂†i are bosonic creation and annihilation
operators that act on the ground state |0i〉 with spin
aligned along z as

m̂i|0i〉 = 0, m̂†i |ni〉 =
√
ni + 1|ni + 1〉, (51)

n̂i|ni〉 = m̂†i m̂i|ni〉 = ni|ni〉, m̂i|ni〉 =
√
ni|ni − 1〉,

where ni = S − Szi and |ni〉 is the Fock state with spin

projection Szi , i.e. Ŝzi |ni〉 = Szi |ni〉. Hence, ni counts the
quanta of the spin projection relative to its maximum
value S. The creation operator m̂†i decreases the spin
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projection, while the annihilation operator m̂i increases
it. The square root can be expanded into a power se-

ries
√

1− m̂†i m̂i/2S = 1− m̂†i m̂i/4S + ... in the number

operator n̂i. A weakly excited state contains only few

magnons, i.e. ni � 1 so that
√

1− m̂†i m̂i/2S ≈ 1 and

Ŝzi ≈ S. In this limit, the Heisenberg Hamiltonian re-
duces to that of a harmonic oscillator.

To leading order in the HP expansion, the Hamiltonian
for a ferromagnetic crystal with N spins can be diagonal-
ized by the plane-wave ansatz

m̂k =
1√
N

∑

Ri

e−ik·Rim̂i , m̂†k =
1√
N

∑

Ri

eik·Rim̂†i ,

(52)

where Ri denotes the position of lattice site i. The spin
wave Hamiltonian then reduces to

Ĥsw = E0(B0) +
∑

k

~ω(k)m̂†km̂k, (53)

where E0 (B0) = −(S2/2)J
∑
ij=nn −gZµBB0NS is the

energy of the fully polarized ground state. The operator
m̂†k (m̂k) creates (annihilates) a magnon with momentum
k and energy

~ω(k) = gZµBB0 − S [J(k)− J(k = 0)] , (54)

where J(k) = J
∑
j e
ik·(Ri−Rj) , and the sum runs over

j such that ij = nn. Note that this expression does not
depend on i. For a cubic lattice with constant a, J(k) =
2J (cos(kxa) + cos(kya) + cos(kza)). When ka � 1, one
obtains parabolic dispersion,

~ω(k) ≈ gZµBB0 + JSa2k2. (55)

A magnon is a collective excitation that spreads the flip of
a single electron with angular momentum change ~ over
the entire lattice. The non-interacting spin wave approx-
imation holds when the magnon numbers 〈n̂k〉 � N for

all k, where n̂k = m̂†km̂k. Higher order terms in the
expansion of the HP transformation in the magnon den-
sity operators, or non-linearities, generate interactions
between the magnons (see below).

The HP transformation for a single local moment de-
scribed by Eq. (35) can be employed in principle to han-
dle arbitrary magnetic configurations. Disregarding sub-
tleties associated with the exact quantum ground state,
the nearest-neighbor Heisenberg model with J < 0 de-
scribes an antiferromagnet (AFM) with staggered ground
state magnetization, i.e. a sublattice A with spin “up”
and another one (B) with spins pointing “down”. The

sublattice creation, m̂†Ak and m̂†Bk, and annihilation,

m̂Ak and m̂Bk, operators

Ŝ+
i∈A =

√
2S

N

∑

k

e−ik·Rim̂Ak,

Ŝ+
j∈B =

√
2S

N

∑

k

e−ik·Rim̂†Bk,

Szi∈A = S − 1

N

∑

kk′

ei(k−k
′)·Rim̂†Akm̂Bk′ ,

Szj∈B = −S +
1

N

∑

kk′

e−i(k−k
′)·Rim̂†Bkm̂Bk′ , (56)

where the total number of spin is 2N . When substituted
into Eq. (49) terms such as m̂Akm̂Bk and m̂†Akm̂

†
Bk re-

main, that can be eliminated by a Bogoliubov transfor-
mation α̂k = ukm̂Ak − vkm̂†Bk, β̂k = ukm̂Bk − vkm̂†Ak

with real uk and vk and u2
k − v2

k = 1. The transformed
Hamiltonian is diagonal,

ĤAF = EAF
0 (57)

+ ~
∑

k

[
ω+
k

(
α†kαk +

1

2

)
+ ω−k

(
β†kβk +

1

2

)]
,

with ~ω±k =
√

(JZS)2 (1− γ2
k) ± gZµBB0, Z is the lat-

tice coordination number, and γk = Z−1
∑
j e
ik·(Ri−Rj),

where again ij = nn. Here, EAF
0 = NJZS(S + 1) +

~/2
∑
k

(
ω+
k + ω−k

)
is the zero-point energy. In the limit

ka� 1, the dispersion is linear with

~ω±k = ±gZµBB0 + 2J
√

3Sak , (58)

where the factor
√

3 is a geometrical factor for the simple
cubic lattice.

The magnons in ferrimagnets with sublattice magneti-
zations that do not cancel can be treated analogously.

E. Finite size effects

The broken translational symmetry normal to mag-
netic films and in small magnetic particles leads to
standing spin wave modes with a discrete spectrum.
As described in Sec. III.C, the dipolar interaction in
ferro/ferrimagnets then generates effective demagnetiz-
ing fields that depend on the shape and magnetization
direction. The demagnetization field of homogeneously
magnetized ellipsoids (including needles and pancakes)
(Osborn, 1945) reads

Hd,0 = − (NxM
x
s , NyM

y
s , NzM

z
s ) , (59)

where Nx,y,z are the so-called demagnetization factors
along the principal axes, and Nx +Ny +Nz = 1. Limit-
ing cases are a film (in xz-plane: Nx = Nz = 0 , Ny = 1),
a cylindrical wire (along z: Nx = Ny = 1/2 , Nz = 0),
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FIG. 3 (Color online) Schematic magnon spectra ω(k) for a
magnetic prolate ellipsoid with NT ≡ Nx = Ny as a function
of momentum k and propagation direction in terms of the
angle θk, see Eqs. (60) and (63).. The shaded area indicates
the presence of spin waves. Between the dotted lines at small
k the wave length is of the order of the size of the magnet and
the spectrum is discrete (Walker, 1958).

and a sphere (Nx = Nz = Ny = 1/3). The effec-
tive field in the LL equation Heff = H0 + Hd,0, where
H0 = H0ẑ + Hx(t)x̂, leads to Heff

x = Hx − NxMx,
Heff
y = −NyMy, and Heff

z = H0 − NzMz. This is the
typical setup in a ferromagnetic resonance (FMR) exper-
iment. The LL equation Eq. (34) with this effective field
modifies the frequency ω0 to leading order in Mx/y to the
Kittel formula (Kittel, 1948)

ω0 = γµ0

√
[Hz + (Ny −Nz)Mz] [Hz + (Nx −Nz)Mz].

(60)
Magnetic anisotropies lead therefore to a spin-wave gap,
i.e. a finite resonance frequency for zero applied field.

The magneto-dipolar interaction affects not only the
Kittel mode, but the entire magnon dispersion ωk at
small wave vectors. The micromagnetic Landau-Lifshitz
equation can be derived from a microscopic Heisenberg
Hamiltonian with a dipolar interaction Djk (Clogston
et al., 1956),

ĤLL = ĤH + ĤZ (61)

+
1

2

∑

jk

Djk

[
Sj · Sk −

3

R2
jk

(Rjk · Sj) (Rjk · Sk)

]
,

where Rjk = Rk −Rj is the vector between spins, and
in the absence of spin-orbit interactions one has

Djk =
µ0γ

2

4π|Rjk|3
. (62)

Let us consider the limit of sufficiently large ellipsoidal
magnet in which the eigenstates may be labeled by a

continuous wave vector. When axially symmetric with
NT ≡ Nx = Ny and Ms and H ‖ ẑ, the dispersion re-
lation as a function of θk is the angle between the wave
vector k and the quantization axis z reads

ω(k 6= 0) = γµ0

√
ωd(k)

(
ωd(k) +Ms sin2 θk

)
, (63)

where ωd(k) = Hz − NzMs + (2/3)JzSa2k2. We can
recast the Kittel mode frequency Eq. (60) as ω0 =
γµ0|Hz + (NT−Nz)Ms|. In the absence of dipolar forces
(Nz = NT = 0), ω0 lies at the bottom of the band. How-
ever, in general the Kittel mode ω0 can be degenerate
with spin waves at finite k, as sketched in Fig. 3.

The degeneracy of the Kittel mode with a manifold of
spin waves at finite wavelength creates extra dissipation
channels through the magnon interactions in higher order
terms of the Holstein-Primakoff expansion. These non-
linearities are captured by the LLG equation of motion,
but lost in its linearized version. When allowed, the de-
cay of a small k spin waves into two large k ones with half
its frequency is very efficient even in a nominally linear
regime (Kurebayashi et al., 2011). Other non-linearities
become increasingly important with the number of ex-
cited magnons. At a critical value of the pumping power
or cone angle of the Kittel-mode precession so-called Suhl
instabilities occur (Suhl, 1957). These dissipation chan-
nels also relevant in the quantum regime, see Sec. VII.

The dispersion given by Eq. (63) holds for 2π/L �
k � 2π/a, where L is a characteristic diameter of the el-
lipsoid. When this condition is not fulfilled, the magnons
become standing waves with a discrete spectrum. The ex-
change interaction may be disregarded for particles with
L � lex and/or wave numbers k � 1/lex. The solu-
tions in that regime are the Walker modes (Walker, 1957,
1958), i.e. the solutions of the LLG equation with mag-
netic field Heff = (H0 −NzMs) êz where H0 = B0/µ0

is a static applied field. Applying a MW field with fre-
quency ω and amplitude δH, we write

H = Heff + δHe−iωt, (64)

M = Ms + δMe−iωt,

where δM ×M = 0. To leading order in the small δM
we obtain

− iωδM = γµ0

[
êz ×

(
MsδH−HeffδM

)]
. (65)

This is basically a Maxwell equation that can be solved
using the magnetostatic potential ψ, δH = −∇ψ, and
invoking Poisson’s equation ∇2ψ = ∇ · δM. Inside the
magnet,
(

1 +
ΩH

Ω2
H − Ω2

)(
∂2

∂x2
+

∂2

∂y2

)
ψ +

∂2

∂z2
ψ = 0, (66)

with ΩH = Hin/Ms and Ω = ω/γMs, while ∇2ψ = 0
otherwise. Imposing the boundary conditions of (i) con-
tinuity of ψ and the normal component of δH + δM at



13

the surface and (ii) ψ → 0 at infinity, leads to character-
istic equations for the magnetostatic resonance frequen-
cies and modes. Walker, 1957, 1958 showed that these
discrete-, long-wavelength modes also become degenerate
with the the Kittel mode.

Magnetic thin films are limiting case of the ellipsoid
with a continuous but also strongly anisotropic magnon
dispersion for small in-plane wave vectors (Kalinikos and
Slavin, 1986). Spin waves with k ‖M in in-plane magne-
tized films are called Backward Moving Volume Waves,
because their negative group velocity for small k and
an suppressed surface amplitude. The exchange inter-
action bends these modes upward at some finite wave
number forming two degenerate low frequency “valleys”.
In the presence of magnon-conserving energy relaxation
that is much faster than their decay, magnons may accu-
mulate in these valleys and eventually form a condensate
(Demokritov et al., 2006).

For k ⊥M the dispersion increases monotonically with
k. When M is normal to the plane the spin waves have
an isotropic dispersion that starts from a Kittel mode
that is pushed to lower frequency by the static demagne-
tizing field. These are the Forward moving volume waves
because of their positive group velocity and amplitude in
the bulk of the film.

Spin waves with k ⊥ M in the film plane are expo-
nentially localized to the surface. These Damon-Eshbach
modes propagate with wave vector k/k = Ms/Ms × n,
where n is the outer normal to the magnetic surface (Da-
mon and Eshbach, 1961; Gurevich and Melkov, 1996).
These waves are therefore “unidirectional”, i.e. propa-
gate only in one direction that is opposite on the up-
per and lower surfaces (Stancil and Prabhakar, 2009).
When the skin depth of the Damon-Eshbach mode is
much larger than the film thickness the Damon-Eshbach
modes merge into two degenerate counter-propagating
modes with equal amplitude.

F. Normalization of the magnon modes

In the absence of dissipation, the magnon eigenmodes
wη(r) with frequencies ωη solve the LL equation in the
limit of small δM in the expansion M(r, t) = Ms(r) +
δM(r, t), around the equilibrium texture Ms(r) that is
governed by Eqs. (46). The magnetization is written as

δM̂(r, t)→ Ms

2

∑

η

[
wη(r)m̂η + w∗η(r)m̂†η

]
, (67)

where m̂η (m̂†η) is the annihilation (creation) operator
of the magnon mode η and wη(r) is the corresponding
(dimensionless) mode amplitude. It is convenient to nor-
malize the modes to the energy of a single magnon ob-
tained by substituting the amplitude into Eq. (38) to
compute the excess energy relative to E(Ms) in the limit

|δM| � |Ms| (Graf et al., 2018), and equating the results
to ~ωη. This leads to a free magnon Hamiltonian,

Ĥm = ~
∑

η

ωηm̂
†
ηm̂η. (68)

This normalization can be expressed as (Graf et al.,
2021; Sharma et al., 2019)

∫
dr
[
wx(r)w∗y(r)− w∗x(r)wy(r)

]
=

4γ~
Ms

. (69)

In the alternative normalization,

∫
dr |wη(r)|2 =

4γ~
Ms

, (70)

each mode carries one Bohr magneton (Graf et al., 2018).
It is equivalent to the energy normalization only for cir-
cularly polarized magnon modes, because anisotropies re-
duce the angular momentum of a magnon (Kamra and
Belzig, 2016a). It is physically appealing to adopt an
effective mode volume as in optics,

V ηm =

∫
|wη(r)|2d3r

max |wη(r)|2 , (71)

which is a measure of the spatial extent of the magnon
mode in the whole sample, see Section VI.

G. Magnon dissipation

We now discuss dissipation mechanisms that cause
magnons to decay at a rate κm.

The material of choice to study the interaction of
magnons with cavity photons is YIG, a ferrimagnetic in-
sulator with high critical temperature and record mag-
netic and acoustic quality (Wu and Hoffmann, 2013).
YIG has N = 40 magnetic moments (with S = 5/2)
in a unit cell with volume V = (1.24 nm)3, with density
N/V = 2 × 1022 cm−3 (Gilleo and Geller, 1958). This
is smaller than that of most metallic ferromagnets, but
much larger than that of paramagnetic spin ensembles,
with N/V ∼ 1015 ∼ 1018 cm−3 (Abe et al., 2011; Kubo
et al., 2010; Schuster et al., 2010). The reported val-
ues of Gilbert damping in YIG are in the range between
3 × 10−5–10−4 with lower values for single crystals and
thick films (Klingler et al., 2017; Schmidt et al., 2020).

We focus here on the dissipation of the Kittel mode in a
millimeter-sized spherical YIG crystal. For more details
we refer to (Gurevich and Melkov, 1996; Sparks, 1964).

The first of three mechanisms identified in the
1960s (Sparks, 1964) is the elastic scattering of a Kit-
tel magnon into degenerate modes with finite wave num-
bers through the demagnetization field caused by surface
roughness (pits). This two-magnon scattering does not
depend on temperature and limits the FMR line width at
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low temperatures. In the so-called slow-relaxation mech-
anism, the stray field associated with the precessing mag-
netization modulates the energies of magnetic impurities,
which leads to a non-monotonous temperature depen-
dence that peaks between 15 K and 100 K. It is most effi-
cient when ω0Thop ∼ 1, where 1/Thop ∝ exp(−Eb/(kBT ))
is the temperature-dependent hopping rate between en-
ergy minima separated by a energy barrier Eb. The third
so-called Kasuya-LeCraw mechanism is intrinsic, viz. a
Kittel mode magnon inelastically scatters at thermally-
excited phonons or magnons even in otherwise perfect
samples. These three-boson processes increase linearly
with temperature, i.e. with the number of phonons or
magnons that contribute to the scattering.

Tabuchi et al., 2014 observed that the line width of
the Kittel mode in YIG spheres below 1 K decreases
with decreasing temperature down to ∼1 K, but increases
again at even lower temperatures. The non-monotonous
dependence can be a signature of the transverse relax-
ation by rare earth impurities that can be modeled as
two-level systems (TLSs) (Van Vleck, 1964): The Kit-
tel magnon decays by exciting an ensemble of near-
resonant TLSs with a temperature dependent magneti-
zation that follows the Brillouin function. The decay
rate of the Kittel mode can then be estimated to be
κTLS(T ) = κTLS(0) tanh (~ω0/2kBT ), where κTLS(0) is
a constant. At low temperatures κm = κmm + κTLS(T ),
where κmm is the surface roughness contribution, with
saturated κTLS/2π ≈ 0.63 MHz and κmm/2π ≈ 0.39
MHz, respectively (Tabuchi et al., 2014). The TLS con-
tribution dominates the Gilbert damping of thin YIG
films at temperatures below 1 K as well (Kosen et al.,
2019),

A Gilbert damping of 5 × 10−5 reported for exam-
ple by Kajiwara et al., 2010 in YIG films corresponds
to a lifetime of 300 ns for a 10 GHz mode. A ∼100-ns
lifetime is short compared to other systems considered
for quantum technological applications. It is three or-
ders of magnitude shorter than the lifetimes of state-of-
the-art superconducting qubit (Gambetta et al., 2017),
and even six orders of magnitude shorter than coherence
times of state-of-the-art paramagnetic impurities (Wol-
fowicz et al., 2012). While dramatic improvements in the
magnetic quality are not very likely in the new future, the
advantages of magnets such as strong coupling to MWs
and easy accessibility of non-linear dynamics more than
outweigh this drawback.

H. Squeezing and non-linearities

Magneto-crystalline or dipolar anisotropies cause spin
non-conserving terms such as m̂km̂−k in the Hamiltonian
for ferromagnets – similar to those discussed for AFM
around Eq. (56) and compromise the rotating wave ap-
proximation. This effect of a shape anisotropy on the

Kittel mode macrospin approximation is obvious in the
expression for the demagnetizing field Hd,0 (59): Using
Eq. (38), the anisotropy contribution to the magnetic
energy reads

Hsa =
µ0

2

∫
dr
(
NxM

2
x +NyM

2
y +NzM

2
z

)
, (72)

that after a HP transformation generates terms that are
quadratic in the magnon operators. Diagonalizing the
Hamiltonian with a Bogoliubov transformation gener-
ates a spectrum with a magnon energy gap and eigen-
states that carry non-integer spin (Kamra et al., 2017;
Kamra and Belzig, 2016a,b; Kamra et al., 2020). In
the quantum limit, the magnons are “squeezed”, with
anisotropic quantum mechanical uncertainties in their
amplitudes, i.e. reduced quantum mechanical fluctua-
tions in one magnetization direction at the expense of
the other (Walls and Milburn, 2008). In the classical
limit of many magnons, the precession is elliptic, which
is a linear combination of counter-precessing states.

We can illustrate these notions for a prolate magnetic
ellipsoid (cigar) subject to a perpendicular magnetic field
H0. The Hamiltonian comes down to of a harmonic os-
cillator plus squeezing terms (Sharma et al., 2021)

Ĥsq = ~ω0m̂
†m̂+

~ωm

2

(
m̂2 + m̂†2

)
, (73)

where ωm = (3NT − 1) γµ0Ms/2 and ω0 = γµ0H0 − ωm.
The ground state of the system is the vacuum that can
be squeezed by the external field H0. The coupling to
MW cavity photons can generate macroscopic (involving
a large number of spins > 1018) “cat states”, i.e. quan-
tum mechanical superpositions of two semiclassical mag-
netizations that point in different directions. At cryo-
genic temperatures a difference of up 5~ should be ob-
servable.

Retaining higher order terms in the Holstein-Primakoff
expansion generates magnon interactions and thereby a
many-body problem. The expansion of the crystal or
dipolar anisotropy energy parameterized with constantK
causes a nonlinearity of the Kerr type, which is quadratic
in the magnon numbers. The complex dynamics of the
Kittel mode with Kerr nonlinearity

ĤKerr =
1

2
K
(
m̂†m̂

)2
. (74)

can be mapped on that of a Duffing oscillator as was
done by Elyasi et al., 2020 in the classical and quantum
regimes. The anisotropy field Han (see Sec. III.C) de-
pends on the direction of the external magnetic field H0

with respect to the crystallographic axes of the material
(Macdonald, 1951). According to Zhang et al., 2019a, a
change in the sign of K can be achieved by rotating the
applied field.

Atomistic models of coupled LLG equations for indi-
vidual local moments do not rely on the HP expansion
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and therefore include the non-linearities and magnon-
magnon interaction to all orders. The calculated broad-
ening of the lines in power spectra with temperature can
be interpreted in terms of magnon-scattering induced de-
crease of the magnon lifetimes (Barker and Bauer, 2017).

In AFMs, the exchange interaction alone squeezes
magnons through the terms m̂Akm̂Bk and m̂†Akm̂

†
Bk,

where A and B refer to different sublattices. The vacuum
state of Eq. (57) can be obtained from the Néel state by
a squeezing transformation (Kamra et al., 2019).

The fabrication of high-quality cavities for THz radi-
ation is still a formidable technological challenge. The
cavity magnonics of antiferromagnets is therefore still in
its infancy and not a central theme of this review. Some
issues of AFM dynamics can be observed also in the
GHz regime. Johansen and Brataas, 2018 predict that
AFM magnon can couple non-locally to those in a FM
via MW cavity photons. A strong coupling of antiferro-
magnetic fluctuations to cavity states in MW resonator
has been recently demonstrated by Mergenthaler et al.,
2017. Parvini et al., 2020 studied the coupling of AFM
magnons to photons in an optical interferometer.

After having discussed cavity photons, Sec. II, and
magnons, Sec. III, separately, we turn in the following
Section to their coupling.

IV. LIGHT-MATTER INTERACTION

Quantum electrodynamics (QED) is the field that cov-
ers the quantum aspects of light-matter interactions. We
addressed quantization of the cavity field and of the mag-
netic excitations in Sections II and III. The usually weak
coupling between light and matter can be treated by per-
turbation theory or Fermi’s golden rule. In EM cavi-
ties, such a treatment fails at resonance frequencies with
strongly enhanced photon density of states. In this Sec-
tion we discuss the physics of both perturbative and non-
perturbative magnon-photon interactions.

A. Models for cavity-matter coupling

We first introduce basic models for the light-matter in-
teraction with emphasis on magnon-photon interactions
in hybrid cavity-magnet systems.

1. Coupled harmonic oscillators

According to Sections II and III, both cavity and mag-
net can be approximated as damped harmonic oscilla-
tors. The coherent light-matter interaction introduces a
coupling between them that can be pictured by a spring
that connects two mechanical pendula as in Fig. 4a. A
dissipative coupling can modelled by a “dashpot”, i.e. a
damper that resists motion by viscous friction. When we

FIG. 4 (Color online) (a) Two harmonic oscillators connected
by a spring with force constant c and a dashpot with friction
constant d. (b,c) show the amplitude of oscillator 1 of the cou-
pled system as a function of the resonance frequency difference
ω2−ω1 (abscissa) and the drive frequency ωD−ω1 (ordinate)
for (b) dominantly dissipative and (c) coherent couplings. In
units of the resonant frequency ω1 ≈ ω2 the parameters are
for (b) d = 0.02 ω1, c = 1.6×10−3 ω1 and for (c) c = 0.02 ω1,
d = 1.6 × 10−3 ω1. with damping rates κ1 = 1.6 × 10−3 ω1,
κ2 = 2.0× 10−4 ω1. Results by J.W. Rao (unpublished).

drive only the first oscillator, the linearized equations of
motion for the deflection angles θ1,2 read

θ̈1 + ω2
1θ1 + κ1θ̇1 − 2cω1θ2 − 2dθ̇2 = fe−iωDt,

θ̈2 + ω2
2θ2 + κ2θ̇2 − 2cω2θ1 − 2dθ̇1 = 0, (75)

where κ1 and κ2 are the respective damping rates. Here,
c/d are the coupling force/friction constants, respec-
tively, and fe−iωDt is a time-periodic force. The conser-
vative elastic force is proportional to the phase difference
θ1 − θ2 between the pendula, while the dashpot acts on
the velocity difference θ̇1 − θ̇2. The dynamics depends
sensitively on the ratio c/d. In frequency space and near
the resonance with ω1,2 ≈ ωD, Eqs. (75) becomes

[
ωD − ω1 + iκ1

2 c− id
c− id ωD − ω2 + iκ2

2

] [
θ1

θ2

]
= − 1

2ωD

[
f
0

]
.

(76)
Fig. 4 shows the response of the coupled system,

R1(ωD) ∝ θ1/f , as a function of ωD and ω2. The an-
ticrossing observed for d < c can be interpreted as a
“level repulsion”, while dominantly dissipative coupling,
d > c causes a “level” attraction.

Before addressing the microscopic interaction between
photons and magnons, we survey a few frequently used
models.

2. Resonant coupling

According to Sec. II, a cavity efficiently modulates
the EM density of states at wave lengths of the order of
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its spatial dimension by maximizing the spacing between
the cavity modes. When the characteristic frequency of
the load is close to resonance with a certain cavity mode,
and the mode splittings exceed all other relevant energy
scales, the system dynamics reduces to that of three lev-
els.

The Rabi Hamiltonian for a two level system interact-
ing with a single photon mode reads (Rabi, 1937; Scully
and Suhail Zubairy, 1997)

ĤRabi =~ωaâ
†â+

1

2
~ωsysσ̂z + ~g

(
âσ̂+ + â†σ̂−

)

+ ~g
(
âσ̂− + â†σ̂+

)
, (77)

where ωa and ωsys denote the cavity mode frequency and
the level splitting, respectively, â (â†) is the annihilation
(creation) operator of the cavity mode, and g the cou-
pling strength. The two-level system can be a real spin
1/2 in which case σ̂− = σ̂x− iσ̂y (σ̂+ = σ̂†−) is the lower-
ing (raising) operator and σ̂ = (σ̂x, σ̂y, σ̂z) is the vector
of Pauli matrices. Pseudo spin 1/2 are other two-level
systems that obey the spin-1/2 algebra. The last term
on the right-hand side of Eq. (77) is “counter-rotating”.
It changes the number of excitations n̂exc = â†â+ σ̂+σ̂−
by two, but conserves parity P̂ = exp(iπn̂exc). Since
the Hamiltonian is Hermitian, energy is conserved, but
it does not commute with n̂exc. Braak, 2011 reported an
analytic solution of the Rabi model.

When g � ωa,sys, the counter-rotating terms oscil-
late rapidly compared to other length scales and aver-
age out efficiently. Disregarding them is the rotating
wave approximation (RWA, see Sec. II), which reduces
the Rabi model to the Jaynes-Cummings model (Jaynes
and Cummings, 1963) with much simpler solutions and
a conserved n̂exc (Shore and Knight, 1993). The Jaynes-
Cummings model captures the Rabi oscillations between
the two-level system and the cavity mode, but it breaks
down when the coupling becomes ultra-strong, see below.

The Dicke model extends the quantum Rabi model to
multiple two-level systems coupled to and by a cavity
field (Dicke, 1954). Braak, 2013 and Peng et al., 2013
solved the N = 3 and N = 2 Dicke model exactly, respec-
tively. The Dicke model with RWA or Tavis-Cummings
model (Tavis and Cummings, 1968) describes the cavity
QED of multiple two-level systems (Retzker et al., 2007)
including quantum dots (Fink et al., 2009) that resonate
with a cavity mode.

The Hopfield model (Hopfield, 1958) addresses the in-
teraction between two bosonic modes and can be under-
stood as variation of the Rabi model. In our case

ĤHopf =~ωaâ†â+ ~ωsysb̂
†b̂+ ~g

(
âb̂† + â†b̂

)

+ ~g
(
â†b̂† + âb̂

)
+Hdia, (78)

where b̂ (b̂†) is a boson annihilation (creation) operator of
an oscillator with frequency ωsys. Hdia ∝ A2 ∝ (â† + â)2

is a photon scattering term that is important only in the
ultra- and deep strong coupling regimes (Liberato, 2014).

The Hamiltonians above are Hermitian and thereby
conserve energy, as appropriate for (nearly) closed sys-
tems. The environment is taken into account by the
theory of open quantum systems, in which the Heisen-
berg equations of motion are replaced by master kinetic
equations, such as the Lindblad equation (Breuer and
Petruccione, 2007). Their solution can be computation-
ally demanding when the Hilbert space of the combined
system is large. The bosonic input-output theory de-
scribed in Sec. II integrates the internal dynamics out
to obtain the scattering matrix between the coherent
modes in the leads to source and detector. The calcu-
lation of the time-dependent operator â(t) in the input-
output relation âout(t) = âin(t) − √κexâ(t), Eq. (31),
becomes very cumbersome for all but quadratic Hamil-
tonians (Crispin Gardiner, 2004), however. In a third ap-
proach the interaction with the environment is included
by dissipative terms into the Hamiltonian, that thereby
becomes non-Hermitian.

3. Off-resonant coupling

When interacting with infrared photons, the frequency
of the cavity mode is very different from the magnetic
ones, |∆| ≡ |ωsys − ωa| � g, which is the dispersive
regime. The Hopfield Hamiltonian (78) originally holds
only when the frequencies of the two bosonic modes are
nearly equal, but can be adopted to include large de-
tuning, see Sec. VII. The large detuning limit has been
extensively studied in optomechanics (Aspelmeyer et al.,
2014), in which the frequency ωa of both MW and opti-
cal cavity modes is much higher than the vibration fre-
quency ωsys of a macroscopic mechanical membrane or
cantilever. The coupled system is then well represented
by the Hamiltonian

ĤOM =~ωaâ
†â+ ~ωsysb̂

†b̂+ ~gâ†â
(
b̂† + b̂

)
, (79)

where b̂† creates a phonon and b̂† + b̂ is proportional to
the displacement operator. The coupling term is the ra-
diation pressure proportional to the number of photons
â†â. The constant g is the single-photon coupling rate.

We are not aware of analytic solutions of the nonlinear
Eq. (79). The problem is simplified when the number of
photons N in the cavity mode is large and the EM field
can be treated classically. In this strongly driven limit
〈â〉 ≈ 〈â†〉 ≈

√
N (see Sec. II). Introducing the fluctua-

tion operator â =
√
N + δâ, disregarding higher powers

of δâ in Eq. (79), and applying the RWA, the problem
reduces to that of two coupled harmonic oscillators

ĤOM →~ωaâ
†â+ ~ωsysb̂

†b̂+ ~gN
(
δâ†b̂+ δâb̂†

)
, (80)
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where gN = g
√
N � g is the enhanced multi-photon

coupling rate.

B. Interaction parameters and regimes

The physics of light-matter systems is governed by the
transition and dissipation rates. Different regimes dictate
the approximations and techniques of theoretical treat-
ments. Cavities can tailor the coupling strength via the
density of states of the EM environment (Purcell et al.,
1946), which forms the basis of cavity QED (Mabuchi,
2002). The light-matter coupling strength is also pro-
portional to the number of electric and magnetic dipole
moments that interact with the cavity photons, which in
collective modes scales with the sample size. The dis-
sipation depends on the nature and quality of the cav-
ity and the lifetime of the quasiparticles that depend,
e.g., on temperature and disorder in the sample. The
mapping of this entire parameter space is an important
task (Haroche, 2013), also for cavity magnonics.

In the weak coupling limit the ratio between the cou-
pling strength and the total decoherence rate is small
and hybridization cannot take off. The light-matter in-
teraction may treated by perturbation theory or Fermi’s
Golden Rule. Conventional FMR with Lorenztian MW
absorption spectra falls into this class.

An ensemble of Rydberg atoms in a resonant MW
cavity is an early system that can be tuned into the
strong coupling regime (Kaluzny et al., 1983) in which
the coupling is larger than the level broadening. Light
and matter modes hybridize at the resonance to form
polaritons. An injected photon is not an eigenstate and
its amplitude oscillates between matter and wave modes
within its lifetime. This process is referred to as vac-
uum Rabi oscillation with a frequency governed by the
coupling constant, even though is often a classical wave
phenomenon. The minimum mode splitting at the an-
ticrossing is twice the vacuum Rabi frequency. When
the coupling is non-resonant, full hybridization cannot be
achieved, and strong coupling corresponds to a “lamp”
shift that is larger than the decay rates.

Strong coupling has been observed subsequently in sin-
gle atoms interacting with MW (Meschede et al., 1985)
and optical (Thompson et al., 1992) cavities, atomic
Bose-Einstein condensates in optical cavities (Colombe
et al., 2007), and excitons in quantum dots (QDs) cou-
pled to photonic resonators (Hennessy et al., 2007). The
quantum manipulation of single atoms in photonic res-
onators may lead to applications (Georgescu and Nori,
2012) such as quantum information processing (Blais
et al., 2020; Wendin, 2017) and sensing (Degen et al.,
2017). Circuit QED seeks to couple artificial atoms, such
as superconducting qubits (Blais et al., 2020) and semi-
conductor QDs (Burkard et al., 2020; Lodahl et al., 2015)
to MW resonators, that in contrast to natural atoms can

be tuned into different coupling regimes (Clarke and Wil-
helm, 2008; Devoret and Schoelkopf, 2013).

The ultra-strong coupling (USC) regime corresponds
to a coupling parameter that approaches the mode fre-
quencies g/ωc . 1, irrespective of the loss rates, so it
does not require the strong coupling condition defined
above (Liberato, 2017). The break-down of the RWA
in the USC leads, e.g., to light-matter hybridization in
the ground state. In the deep-strong coupling regime
g/ωc & 1 (Bayer et al., 2017; Casanova et al., 2010; Yoshi-
hara et al., 2016) the addition of just one photon may
affect the system properties.

Ciuti et al., 2005 suggested to study the USC regime by
cyclotron resonance of intersubband transitions in semi-
conductor quantum wells in a cavity. Anappara et al.,
2009 reported corresponding experiments with g/ωc &
0.1. The USC for microwaves was also observed in quan-
tum well inter-Landau level resonances (Muravev et al.,
2011; Scalari et al., 2012), in two-level systems formed in
superconducting circuits (Forn-Dı́az et al., 2010; Niem-
czyk et al., 2010), and in optomechanical systems (Benz
et al., 2016; Pirkkalainen et al., 2015). Optical photons
can ultra-strongly couple to molecular excitons at room
temperature (Kéna-Cohen et al., 2013; Schwartz et al.,
2011).

C. Cavity-magnet coupling

Here we consider specifically magnetizations that in-
teract resonantly with MW and non-resonantly with in-
frared photons.

1. Resonant coupling with microwave cavity modes

We consider magnons in a closed MW cavity, i.e.
an anti-clockwise precession of the magnetization vector
around its equilibrium direction defined by a static mag-
netic field. The ac MW magnetic field in the cavity is
governed by the Maxwell equations of Eqs. (18). The in-
stantaneous energy of the cavity-magnet system is Ĥ =∫
drĤ(r, t) with energy density Ĥ = (ε0E

2 + µ0H
2)/2,

where H = B/µ0 −M, or

Ĥ(r, t) =
ε0

2
E2 +

1

2µ0
B2 −M ·B + Ĥm. (81)

The first two terms account for the empty cavity-field
Hamiltonian Ĥc, the third term is the Zeeman interaction
and Ĥ is the magnetic energy density. Using Eqs. (24)
and (25)

Ĥc =
∑

p

~ωp
(
â†pâp +

1

2

)
, (82)

where ωp and âp are the frequency and annihilation op-
erator of a photon in mode p, respectively.
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FIG. 5 (Color online) The parameters in the interaction Eq. (85)
between a single cavity and magnon mode (Lachance-Quirion et al.,
2019).

Substituting the lowest order HP expansion of the
magnetization field, Eq. (67), the Zeeman interaction
−M ·B in the RWA reads

Ĥcm = ~
∑

pη

(
Γpηâpm̂

†
η + Γ∗pηâ

†
pm̂η

)
, (83)

where p and η label cavity and magnon modes, respec-
tively, and the coupling rate Γpη is (Bourhill et al., 2019;
Flower et al., 2019; Soykal and Flatté, 2010a,b)

~Γpη = −Ms

2

√
~

2V ε0εωp

∫
dr [∇× up(r)] ·w∗η(r). (84)

Here, up(r) is a cavity mode amplitude that obeys the
wave equation (23) subject to the boundary conditions
of the cavity with volume V , while wη(r) is the magnon
mode amplitude (67). In the total Hamiltonian,

Ĥ =
∑

p

~ωpâ†pâp +
∑

α

~ωηm̂†ηm̂η

+~
∑

pη

(
Γpηâpm̂

†
η + Γ∗pηâ

†
pm̂η

)
, (85)

we disregard the zero-point energies of field and magnet.
Figure 5 illustrates the different terms for single cavity
and magnon modes. In the following we focus on the
situation in which the Kittel mode couples to one or two
cavity modes, using g for the magnon-photon coupling
constants, ωc and κc for the frequency and damping rate
of the cavity mode and ωm and κm for the magnon mode,
see Fig. 5. Inhomogeneous magnetic fields introduce cou-
pling to more than one magnon mode (Weichselbaumer
et al., 2019) in terms of form factors (Bourhill et al., 2019;
Flower et al., 2019).

The coupling of photons to magnetic dipoles is smaller
than that to electric dipoles by the fine structure con-
stant 1/137. However, coherent spin ensembles enjoy a
collective enhancement of the coupling that scales with
the square root of the total number of spins

√
N (Dicke,

1954). If everything else is kept constant, the strong
coupling regime can be reached simply by increasing the
effective coupling gN = g

√
N by the sample size. Non-

interacting spins form paramagnetic ensembles, such as
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FIG. 6 (Color online) MW transmission probability |S21|2
as a function of external magnetic field Bext

z and probe fre-
quency for a YIG film coupled to a superconducting MW
coplanar resonator. A denotes the magnon polariton, i.e., the
anticrossing between Kittel and cavity mode frequencies. B
and C are uncoupled resonators, and D is a parasitic mode.
The red curve in (b) is a fit the coupled harmonic oscillator
model. Adapted from Huebl et al., 2013.

nitrogen-vacancy (NV) centers in diamond (Kubo et al.,
2011; Zhu et al., 2011), cold atomic clouds (Verdú et al.,
2009), molecules (Eddins et al., 2014), and dilute mag-
netic ion-doped oxides (Longdell et al., 2005; Probst
et al., 2013; Schuster et al., 2010; Tkalčec et al., 2014). In
MW cavities these systems can reach the strong coupling
regime.

The emphasis of this review article is on magnetic
materials below the critical temperature at which the
magnetic moments are spontaneously ordered at much
higher spin densities than those of paramagnetic ensem-
bles. Large spin-photon couplings can be achieved in
magnets at weaker applied magnetic fields, higher tem-
peratures, and smaller samples, but at the cost of larger
intrinsic damping. Ferromagnetic resonance (FMR), see
Section III, is a traditional technique to characterize mag-
netic materials, but without cavity enhancement the cou-
pling is weak. MW photons couple predominantly to the
collective Kittel mode, but standing spin waves may also
resonate (Hillebrands and Ounadjela, 2001) when mag-
netic fields are not homogeneous and/or magnetization
is pinned at the sample boundaries.

Another strategy to reach the strong coupling regime
is the improvement of the cavities and using magnetic
materials with low damping rates. YIG has been the ma-
terial of choice, but with the right cavity design metallic
ferromagnets, with higher spin densities but also higher
Gilbert damping, can also be pushed into the strong cou-
pling regime (Hou and Liu, 2019; Li et al., 2019).

Soykal and Flatté, 2010a,b computed the coupled
quantum dynamics of MW photons in a cavity mode
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FIG. 7 (Color online) (a) Real part of the transmission coef-
ficient S21 of cavity machined from high-purity Cu as a func-
tion of microwave frequency and a current I through a coil
close to a magnetic YIG sphere that modulates the magnetic
field at the sample. The anticrossing between the cavity and
Kittel modes signals the strong coupling regime. (b) Cross-
sections of panel (a) at different coil currents. The splitting
at I = 0 corresponds to twice the magnon-photon coupling
rate. Adapted from Tabuchi et al., 2014.

and the Kittel mode of magnetic spheres over the full
Bloch sphere. Huebl et al., 2013 reported the anticross-
ing signature of strong coupling for YIG films in copla-
nar waveguides, see Fig. 6, followed by its observation in
split-ring resonators (Bhoi et al., 2014; Stenning et al.,
2013). Goryachev et al., 2014; Tabuchi et al., 2014; and
Zhang et al., 2014 found strong coupling for YIG spheres
in 3D MW cavities, see Fig. 7. These experiments fo-
cused on the microwave transmission coefficient S21 as
a function of frequency and applied magnetic field that
does not vanish when the hybrid polariton has a signifi-
cant photon contribution.

Cao et al., 2015; Maksymov et al., 2015; and Zare
Rameshti et al., 2015 modelled the magnon-cavity pho-
ton system semiclassically taking multiple magnon and
cavity modes into account in different geometries. Zhang
et al., 2014 investigated different parameter regimes and
reported a Purcell effect when κc < g < κm, and mag-
netically induced transparency for κm < g < κc.

By increasing the ratio between magnet and cavity
sizes the ultra-strong coupling regime can be entered
(Zhang et al., 2014), but we are not aware of experimental
reports that address the exotic consequences predicted by
theory.

2. Off-resonant coupling of magnons to light

Magnetooptics studies the interaction of magnets with
infrared and visible light (Le Gall and Jamet, 1971;
Michael G. Cottam, 1986; Pershan, 1967; Shen and
Bloembergen, 1966) at frequencies ωc/2π ∼ 100 − 800
THz by means of several established phenomena. The
Faraday (Kerr) effect is the rotation of the polariza-
tion plane of linearly polarized light upon transmission
through (reflection by) a material with magnetization
component parallel to the beam. The torque on the light

field exerted by a magnet implies that there is a reaction,
viz. the inverse Faraday effect or light-induced torque on
the magnetization (Kirilyuk et al., 2010). The Cotton-
Mouton effect is the birefringence caused by a magnetiza-
tion normal to the wave vector of the incoming light. The
inelastic scattering of light with emission or absorption
of magnons is known as Brillouin light scattering (BLS).

The Zeeman interaction between the ac magnetic field
component and magnetization governs the resonant in-
teraction in the GHz regime. A large mismatch between
the frequencies suppresses the Zeeman coupling and the
second order interaction of magnetization with the ac
electric field takes over. Without spin orbit coupling the
electron spin is not affected by electric fields, so we may
expect larger magnetooptical couplings for heavier ele-
ments. The magnetic permeability approaches that of
vacuum µ0. We note that the optomechanical coupling
in Eq. (79) is even stronger detuned but does not invoke
the spin-orbit interaction.

The interaction between the magnetization and electric
field is a relativistic effect (Elliott and Loudon, 1963), but
for most purposes the coupling can be parameterized in
terms of a small number of symmetry-related empirical
constants (Borovik-Romanov and Kreines, 1982). The
starting point of most theories is the macroscopic dielec-
tric tensor as a function of the magnetization M in the
displacement field (Fleury and Loudon, 1968),

D =←→ε (M) ·E. (86)

The magneto-optical effects are captured by the leading-
order expansion of ←→ε in M in the low-frequency limit
(Le Gall et al., 1971; Wettling et al., 1975). For a cubic
crystal such as YIG ←→ε (M) =←→ε0 +←→ε1 (M), where ←→ε0 =

εs
←→
1 , εs is the scalar static dielectric constant and

←→
1 the

unit matrix. The leading perturbation ←→ε1 (M) describes
the response to the optical electric field as a function of
the magnetization direction as measured by, for instance,
the Faraday effect. For cubic crystal and an equilibrium
Ms ‖ z, one has

←→ε1 =




0 −ifMs ifMy

ifMs 0 −ifMx

−ifMy ifMx 0


 , (87)

where Mx,y are the small dynamical components. In the
presence of a slowly varying magnetic texture, these com-
ponents refer to a local coordinate system with z′-axis
along the magnetization. The parameter f can be fitted
to experiments. The second order term in the expansion
reads ←→ε2 (M) = ε0vijklMkMl, where vijkl parameterizes
the Cotton-Mouton effect (Wettling, 1976). The second
order term competes with Eq. (87) when one of the Mi’s
in←→ε2 is Ms, which introduce two more parameters on top
of f . Liu et al., 2016 calculated the contribution of the
Cotton-Mouton effect to the optomagnonic coupling for a
YIG waveguide with constant equilibrium magnetization,
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while Graf et al., 2021 addressed arbitrary magnetic tex-
tures. In the following, we disregard the Cotton-Mouton
effect since it is not essential for the configurations dis-
cussed later.

We obtain the Hamiltonian for magneto-optical effects
replacing ε0E

2/2 by E·D/2 in the vacuum energy density
Eq. (81). The magnetization-dependent contribution is
HOM = 1

8

∫
drE∗·←→ε1 (M)·E+ 1

8

∫
drE·←→ε1

∗(M)·E∗, where
E and E∗ are the real and imaginary parts of the complex
electric field amplitude. Inserting the permittivity tensor
Eq. (87) and using the second quantized form of the
electric field of Eq. (24) (note that e.g. E∗/2→ E+) and
the magnetization of Eq. (67) gives the optomagnonic
interaction Hamiltonian. It contains two terms.

ĤFaraday = ~
∑

pq

Ωpqâ
†
pâq + h.c., (88)

describing the static Faraday effect by an
equilibrium magnetization M = Msẑ, where
Ωpq = GMs

∫
dr
[
u∗p(r)× uq(r)

]
z

and G =

−if√ωpωq/(4
√
VpVqε0ε), Vp(q) being the optical

mode volume as defined in Section II [see discussion
after Eq. (25)]. In the RWA and discarding photon
non-conserving terms such â†pâ

†
qm̂η that contribute only

to higher order, the second term becomes

ĤBLS = ~
∑

pqη

â†pâq
(
G+
pqηm̂η +G−pqηm̂

†
η

)
+ h.c. (89)

The matrix elements G±pqη are the anti-Stokes (Stokes)
scattering amplitude of a photon from mode q to p by
the annihilation (creation) of a magnon in mode η,

G+
pqη =

GMs

2

∫
wη(r) ·

[
u∗p(r)× uq(r)

]
dr, (90)

G−pqη =
GMs

2

∫
w∗η(r) ·

[
u∗p(r)× uq(r)

]
dr. (91)

These expressions may be used for arbitrary magnetic
textures M(r) = Msẑ(r) by re-defining the static Fara-
day contribution Ωpq.

The static Faraday effect does not interfere with Bril-
louin light scattering. The latter is governed by the
Hamiltonian Ĥ = Ĥm + Ĥopt + ĤBLS, where Ĥopt =∑
p ~ωpâ†pâp is the photon energy in a magnetic medium

with static magnetization, while Ĥm =
∑
η ~ωηm̂†ηm̂η, as

in Eq. (68).
For a homogeneous ground state magnetization, the

normal modes wη(r) and up,q(r) can be expanded into
e± = (ex ± iey)/

√
2 , i.e. left- and right-hand circu-

lar polarized waves with spin ±~. The degeneracy of
the ±-polarization is broken by the boundaries of waveg-
uides and cavities in favor of linearly polarized TE and
TM modes, as discussed in Section II. A single inelas-
tic scattering process conserves the sum of energy and
angular momenta of the quasiparticles in the initial and
final states, which implies that the dielectric tensor ←→ε1

does not contain diagonal elements and that an incident
TM (TE) mode must be scattered into a TE (TM) mode.
These simple rules do not hold for magnetic textures such
as vortices, however (Graf et al., 2018, 2021). Since the
coupling constants G are small, the BLS experiments re-
viewed in Section VI are well described to leading second
order.

The optomagnonical, Eq. (89), and optomechanical,
Eq. (79), Hamiltonians are very similar, so these sys-
tems share a number of effects. An example is the elec-
tromagnetically induced transparency (Liu et al., 2016) in
a cavity driven at the red sideband with ωD = ωc − ωm

when the magnetic dissipation rate κm is the smallest en-
ergy scale: A probe beam at the cavity resonance burns
a spectral hole in the form of a deep and sharp dip with a
linewidth of the order of κm by a destructive interference
of probe and pump photons.

At a very strong drive of the blue sideband, a large
number of magnons can be injected that cannot be as-
sumed non-interacting anymore. In the macrospin ap-
proximation, Kusminskiy et al., 2016 predicted a rich dy-
namics in that regime, including optically-induced mag-
netization switching and self-oscillations.

3. Dissipative coupling

In open cavities that support both standing and trav-
eling waves, the radiation loss into the environment may
lead to dissipative coupling between cavity photon and
magnon modes as observed in a MW Fabry-Pérot cav-
ity (Harder et al., 2018) and split-ring resonator (Bhoi
et al., 2019). The dissipative coupling can be controlled
by the matrix elements between the magnon and the trav-
eling waves (Yao et al., 2019). In contrast to the avoided
crossing between coherently coupled modes, dissipative
coupling causes a level attraction, i.e., the coalescence
of cavity-magnet normal modes. In general, both coher-
ent and dissipative coupling may both contribute to the
mode spectrum.

In the presence of both coherent and dissipative cou-
pling, Eq. (85) becomes

Ĥ =
∑

p

~ωpâ†pâp +
∑

η

~ωηm̂†ηm̂η

+~
∑

pη

(
Γpηe

iΦâpm̂
†
η + Γ∗pηâ

†
pm̂η

)
, (92)

where Φ is a tunable phase factor that describes the
competition between resonant and dissipative couplings.
Φ = 0 corresponds to a purely coherent coupling and the
formation of magnon polaritons. When Φ = π the cou-
pling is imaginary and thereby purely dissipative. Yao
et al., 2019 control the phase Φ by the direction of the
external magnetic field. A drive (anti-damping) can be
included on the same footing (Boventer et al., 2019). The
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cavity-magnet Hamiltonian with both coherent and dissi-
pative couplings is not Hermitian with complex eigenval-
ues. The corresponding Heisenberg equation of motion
should lead to the same result as the input-output model
in which dissipation and drive are added a posteriori.

4. Input-output relations

Here we generalize the input-output relations for an
empty cavity as introduced in Section II.D to a cavity
loaded with a magnet.

Hybrid systems of spin ensembles coherently coupled
to a MW cavity mode are usually described by Eq. (85),
with a collective coupling that is proportional to the
square root of the number of identical spins

√
N . By

using this model Hamiltonian, the quantum Langevin
equations of motion, in the frame rotating with the drive
frequency ωD, read

dâp
dt

= i∆pâp − i
∑

η

Γ∗pηm̂η −
κc

2
âp −

√
κ0d̂0 +

√
κexâin,

(93)

dm̂η

dt
= i∆mm̂η − i

∑

p

Γpηâp −
κm

2
m̂η −

√
κmd̂m, (94)

where κc = κ0 +κex is the total linewidth of the cavity in
terms of the intrinsic (extrinsic) loss rate, ∆p = ωD−ωp,
∆m = ωD − ωη, and κm is the magnetic relaxation

rate. Furthermore, d̂m is a stochastic magnetic field
satisfying 〈d̂m〉 = 0, 〈d̂†m(t)d̂m(t′)〉 = nmδ(t − t′), and

〈d̂m(t)d̂†m(t′)〉 = (nm + 1)δ(t− t′). The steady state solu-
tions are

〈âp〉 = i
∑

η

Γ∗pη
i∆p − κc/2

〈m̂η〉 −
√
κex

i∆p − κc/2
〈âin〉 , (95)

〈m̂η〉 = i
∑

p

Γpη
i∆m − κm/2

〈âp〉 . (96)

The input-output theory yields a MW transmission am-
plitude S21 = 〈âout〉/〈âin〉 between ports 1 and 2,

S21 =
2κex

κc

1
2i∆p

κc
− 1 + i

∑
pη

Cpη
1−2∆m/κm

, (97)

The cooperativity Cpη = 4|Γpη|2/(κcκm) is a ratio be-
tween coupling strength and dissipation. The magnon-
photon coupling appears in the form of a self-energy. Its
real part shifts the photon frequency and the imaginary
part represents magnetic damping. The anticrossing be-
tween the bare magnon and photon modes in the trans-
mission amplitude of the loaded cavity in Figs. 6 and 7
is resolved when Γpη � κc, κm.

5. Classical wave theory

The quantum language used above is convenient and
essential in quest of quantum mechanics. However, many
phenomena are purely classical, or, when magnons and
photons are simple harmonic oscillators, cannot be dis-
tinguished between classical and quantum, analogous to
the classical vs. quantum description for LC circuits
introduced in Sec. II. Here we look at interaction of
magnons and cavity MW radiation from the viewpoint
of a classical field theory, i.e. using the coupled LLG
and Maxwell equations. We then do not have to invoke
the RWA or magnetostatic approximation, in principle
without restrictions for the photon and magnon ampli-
tudes. Linearized solutions account for multiple cavity
and magnon modes and their interactions (Cao et al.,
2015; Zare Rameshti et al., 2015). The same results can
be obtained in a dynamical phase correlation approach
in terms of finite-element circuit (Harder et al., 2016) in
which the the LLG equation generates a MW dynamics
by the Faraday law.

A small ac field h(r, t) drives a small magnetization
amplitude δM(r, t),

M(r, t) = Ms + δM(r, t), (98a)

H(r, t) = H0 + h(r, t). (98b)

To leading order the LLG equation reads

δṀ = −γµ0

(
Ms ×H

(1)
eff + δM×H

(0)
eff

)

+
α

Ms
Ms × δṀ, (99)

where H
(0)
eff = Hext and H

(1)
eff = Hex + h. In fre-

quency and momentum space, Eq. (99) can be recast into

δM = ←→χ · h, where ←→µ = µ0(
←→
I +←→χ ) is the magnetic

permeability tensor. Substituting ←→µ into Eq. (20) and
boundary conditions of the EM field across interfaces,
Eq. (21) leads to the mode amplitudes in the cavity and
ultimately the scattering matrix. The cavity modes are
also affected by magnetic loads (Macêdo et al., 2021).
The modulation of the electric field by the large dielec-
tric constant can cause significant distortions of the mode
spectrum when the YIG sample size approaches that of
the photon wave length (Cao et al., 2015; Zare Rameshti
et al., 2015).

Cao et al., 2015 considered a YIG film in a planar
MW cavity by a classical version of scattering theory,
reporting strong coupling for the Kittel mode and even
for spin waves, see Fig. 8, which has been experimen-
tally confirmed (Bai et al., 2015; Maier-Flaig et al., 2016).
Parameters can easily be tuned, thereby capturing mag-
netically induced transparency, Purcell effect. Since the
RWA approximation is not implied, the USC can be han-
dled on equal footing. The MW-driven magnetization
can be also detected by spin pumping from the ferromag-
net into an adjacent metallic contact with large spin Hall
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FIG. 8 (Color online) Theoretical results for (a,b) MW trans-
mission spectra as function of magnetic field and frequency for
a YIG film placed in a 1D cavity; (c,d) mode-dependent cou-
pling rates. The YIG parameters used for the calculation are
as follows: Gilbert damping α = 10−5 (Kajiwara et al., 2010),
ferromagnetic exchange constant J = 3 × 10−16 m2 (Serga
et al., 2010), relative dielectric constant ε/ε0 = 15 (Sadhana
et al., 2009), gyromagnetic ratio γ/2π = 28 GHz/T, and satu-
ration magnetization µ0Ms = 175 mT (Manuilov et al., 2009).

Here, B
(p)
res denotes the resonance field for mode p. Adapted

from Cao et al., 2015.

angle, which serves as an interface between electronics
and cavity magnonics (Maier-Flaig et al., 2016).

Practically all experiments use either spheres or films.
High quality samples of the former are commercially
available at radii down to half a micron and positioned
freely inside 3D MW cavities, which allows realization
of the strong coupling with relative ease. The spheri-
cal symmetry allows an expansion into spherical harmon-
ics. MW input-output relations can be mapped on Mie
scattering theory, which leads to semi-analytic results for
the properties of dielectric/magnetic spheres in MW cav-
ities (Zare Rameshti et al., 2015) beyond the weak cou-
pling regime (Arias et al., 2005) and the magnetostatic
approximation, and can be extended to treat the collec-
tive dynamics of multiple spheres (Zare Rameshti and
Bauer, 2018). By acting as an antenna for EM fields,
large YIG spheres trap the MWs by their large dielectric
constant, even without external cavities (Neuman et al.,
2020; Zare Rameshti et al., 2015) . This prediction illus-
trated by Fig. 9 was confirmed experimentally (Bourhill
et al., 2016).

V. MAGNONS IN MICROWAVE CAVITIES

In Section IV we explained the basics of interactions
of magnons with EM radiation and illustrated them il-
lustrated by few seminal experiments. Here, we turn to
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FIG. 9 (Color online) Calculated scattering efficiency of a
YIG sphere for the same parameters as Fig. 8, as a function of
magnetic field B0 and frequency, (a) with and (b) without the
cavity. The MW modes are labeled by the spherical harmonic
indices (n,m). Adapted from Zare Rameshti et al., 2015.

the design of MW cavities and their magnetic loading,
focusing on the strong coupling regime. We introduce
different MW cavities and mode families and turn then to
experimental results on coherent and dissipative magnon-
photon couplings, nonlinearities, and cavities filled with
more than a single magnet.

A. Microwave cavities

MW cavities are usually passive, i.e. the observable
is the scattering matrix between incoming and outgoing
MWs. Active cavities, on the other hand, contain a feed-
back loop that controls the MW response. For the basic
properties of cavity resonances and anti-resonances and
their phase characteristics we refer to Sec. II.D.

Since the first experiments (Huebl et al., 2013), the
magnon-photon interaction has been studied by several
cavity designs, such as metallic 3D MW cavities, 2D pla-
nar cavities, and 1D Fabry-Pérot type of cavity (Table I),
while magnetic samples have been either spheres or films.
In passive cavities, the photon dissipation rate κc deter-
mines the cavity quality factor Q = ωc/κc at the mode
resonance frequency ωc, see Sec. II, while the magnon-
photon coupling gN = g

√
N is enhanced by the number

of spins N , see Sec. IV. The Gilbert damping constant
α is in YIG of the order of 10−4, which corresponds to a
line broadening κm/2π = αωm/2π ≈ 1 MHz at ωm/2π of
10 GHz, as we discussed in Sec. III. The coupling (84)
of the Kittel mode of a magnet on an anti-node of a cav-
ity mode becomes g ∼ ηγ

√
µ0~ωc/Vc, where γ/2π ≈ 28

GHz/T is the electron gyromagnetic ratio and η < 1 is a
“magnon filling” factor that takes the spatial overlap and
polarization matching into account (Zhang et al., 2014).
The cavity mode volume is Vc =

∫
|H|2dV/|H|2max, cf.

Eq. (26), where |H|2max is the maximum value the MW
intensity (Zhang et al., 2014). The largest reported cou-
pling is gN/2π = 3.06 GHz for a 15.5-GHz MW cavity
mode, corresponding to a cooperativity of C = 1.5 ×
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107. It was achieved by nearly filling a 3D cavity with
a 5-mm-diameter YIG sphere (Bourhill et al., 2016) and
approaches the ultra-strong coupling regime, see Sec. IV.

Closed 3D cavities can be chosen to have different
shapes and input-output ports. High quality 3D cavities
are usually machined from high-purity copper that re-
flects MWs with very small loss. The one shown in Table
I has inner dimensions of 43.0 × 21.0 × 9.6 mm3 (Zhang
et al., 2014). Its lowest TE101 mode is at ωc/2π =
7.875 GHz with a linewidth of a few MHz, which cor-
responds to a quality factor of about 1000 at room tem-
perature. Commonly, a small YIG sphere is placed at
a local maximum of the intensity of chosen mode of a
much larger cavity such that the field distribution over
the sphere is nearly constant. Re-entrant cavities with
multiple posts (Creedon et al., 2015) focus the cavity
magnetic field on to the YIG crystal, thereby enhanc-
ing the effective filling factor far beyond the geometri-
cal one (Goryachev et al., 2014). Standing waves in 3D
cavities are simply defined by the reflecting boundaries.
2D planar cavities are defined by superconducting res-
onators (Huebl et al., 2013; Morris et al., 2017) or mi-
crostrips of normal metals (Bhoi et al., 2014; Kaur et al.,
2016) with simplified fabrication, design, sample place-
ment, and tunability that offset the weaker confinement
and often reduced quality factor.

Superconducting resonators play an important role in
circuit QED by facilitating strong coupling, for exam-
ple, to a superconducting qubit (Wallraff et al., 2004).
Huebl et al., 2013 investigated a slab of YIG by placing
it on top of a superconducting Nb resonator. The sen-
sitivity of a resonator can be improved in the form of a
lumped element consisting of a small inductor shunted by
a large capacitance that reduces the impedance, thereby
detecting the much smaller number of spins in micro-
and nanoscale cavities (McKenzie-Sell et al., 2019). Sim-
ilar superconducting resonators with low mode volumes
in all-on-chip devices strongly couple MW photons and
magnons in nanometer thick permalloy structures (Hou
and Liu, 2019; Li et al., 2019). These studies demonstrate
that scaling down the cavity dimensions allows MW con-
trol of metallic magnets and, in the future, spintronic de-
vices with higher damping. For instance, a noncollinear
magnetic insulator, Cu2OSeO3, was investigated in the
MW cavity (Abdurakhimov et al., 2019).

Planar cavities fabricated with normal metal mi-
crostrips in the shape of a split-ring (Bhoi et al., 2014;
Kaur et al., 2016), a T (notch filter) (Castel et al., 2017),
or a cross (Yang et al., 2019) operate at room tempera-
ture. They can be interpreted as magnetically tunable
metamaterials (Bhoi et al., 2014) and enable magnon
controlled logic devices (Rao, 2019) and non-reciprocal
MW isolators (Wang et al., 2019a).

3D cavities with large aspect ratios and standing waves
with relatively small frequency splittings in one direction
come down to the (quasi) 1D Fabry-Pérot type intro-

duced in Sec. II.C. In a waveguide the end-points are
open and do not reflect the waves, which leads to a con-
tinuous spectrum and very different physics that can be
captured by an external coupling rate κex much larger
than the intrinsic dissipation rate κ0. The quasi-1D cav-
ity in Table I illustrates a partially closed design with
both standing and traveling waves, consisting of a waveg-
uide with a circular cross-section connected to the MW
source and detector by two non-circular transition regions
that are rotated by an angle θ. This device resembles mu-
sical instruments such as a flute — consisting of a res-
onating body with tunable cavity modes that are coupled
to propagating, audible sound waves (Yao et al., 2015).
Open cavities support cavity anti-resonances (Rao, 2019)
and have modified magnon-photon couplings (Bhoi et al.,
2019; Harder et al., 2018; Wang et al., 2019a; Yang et al.,
2019, 2020; Yao et al., 2019). The classical wave physics
of open cavities can be described by the formalism of
open quantum systems as discussed in the next subsec-
tion.

The feedback between MW output and input in active
cavities can reveal the cooperative dynamics of a polari-
ton ensemble (Yao et al., 2017). The example in Table I
consists of a planar passive (straight) cavity in proximity
with a magnet and an active (curved) cavity that contains
a MW amplifier with voltage-controlled gain. Both cavi-
ties are high-quality half-wavelength strip line resonators
that form a 2π phase loop. The active cavity acts as a
feedback loop that compensates the loss of the passive
cavity, with a gain of up to 360,000; the effective cavity
quality factor can reach Q = 81, 500 at room tempera-
ture, which is about 3 orders of magnitude higher than
that of conventional planar cavities. The feedback pho-
tons thereby enhance the magnon-photon coupling anal-
ogous to the superradiance of the Dicke model (Dicke,
1954).
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TABLE I Typical MW cavities used to study magnon-photon couplings. The parameters are for room temperature, with the
exception of the 2D planar cavity where parameters are for cryogenic temperatures.

Cavity Structure Key Features Reference

3D cavity

• standing cavity modes

• intrinsic damping: κin/2π ∼1–10
MHz

• magnon filling factor: �1%

(Zhang et al., 2014)

3D lumped-element cavity

• standing cavity modes

• intrinsic damping: κin/2π ∼10 MHz

• magnon filling factor: ∼1%

• localized magnetic field enhance-
ment

(Goryachev et al., 2014)

2D planar cavity

• standing cavity modes

• intrinsic damping: κin/2π ∼1 MHz

• magnon filling factor: ∼1%

(Huebl et al., 2013)

Quasi-1D cavity

• standing cavity and travelling
waveguide modes

• intrinsic damping: κin/2π ∼10 MHz

• extrinsic damping: κex/2π ∼100
MHz

(Harder et al., 2018)

Active cavity

• standing cavity modes

• intrinsic damping: κin/2π ∼0.01
MHz

• feedback gain

(Yao et al., 2017)
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B. Coherent and dissipative coupling

1. Coherent coupling and level repulsion

Coherent magnon-photon coupling in MW cavities
has been observed by MW transmission (or reflection)
spectroscopy (Bhoi et al., 2014; Bourhill et al., 2016;
Goryachev et al., 2014; Haigh et al., 2015a; Hou and
Liu, 2019; Huebl et al., 2013; Li et al., 2019; Tabuchi
et al., 2014; Yao et al., 2015) time-domain measure-
ment (van Loo et al., 2018; Match et al., 2019; Zhang
et al., 2014), electrical detection (Bai et al., 2015, 2017;
Maier-Flaig et al., 2016), and Brillouin light scattering
experiments (Hisatomi et al., 2016; Klingler et al., 2016).

Figures 5, 7, and 10 illustrate the concept, the
typical signatures of strong magnon-photon coupling,
and the setup to measure them in MW transmis-
sion (or reflection) spectra. A schematic experimental
setup (Lachance-Quirion et al., 2019) is shown in Fig.
10. The MW magnetic field δB of a cavity mode in-
teracts with one or more ferromagnets or other loads.
The external magnetic field H0 = B0/µ0 can be applied
either uniformly or locally to each sample. When the
MW magnetic field or the ground state magnetization
are not uniform, magnons other than the Kittel mode
can interact with the photons. The MW cavity can be
probed either by the reflection amplitudes at the input or
transmission to the output ports that are characterized
by coupling rates κin

c and κout
c . Figure 7 shows the real

part of a typical transmission coefficient S21 as a func-
tion of the probe frequency ωD and the current I in a
coil that controls the amplitude H0 = |H0| of the static
magnetic field. The anticrossing gap is much larger than
the linewidths, proof of the strong and coherent coupling
between the Kittel mode of a YIG sphere and a standing
MW cavity mode. As discussed in Sec. IV, the coupling
mechanism is the Zeeman interaction between the macro-
scopic magnetic dipole and the MW magnetic field. The
minimum splitting of the two modes (right panel) gives
a coupling strength g/2π = 22.9 MHz. Horizontal and
diagonal dashed lines indicate the frequencies of the un-
coupled cavity and Kittel modes. The coupling between
MW photons and magnon modes other than the Kittel
mode depends on the overlap between the magnon and
cavity modes and can be strong in spheres (Zhang et al.,
2014) as well as films (Maier-Flaig et al., 2016).

The transient response of the cavity after pulsed ex-
citation also gives direct information on CMP (Zhang
et al., 2014). Figure 11 shows experimental results for
a YIG sphere (0.36 mm in diameter) on the magnetic
field antinode of the TE101 cavity mode. The MW re-
flection spectra in Fig. 11b as a function of magnetic
field demonstrate an anticrossing corresponding to the
level repulsion. Figures 11c and 11d monitor the time
evolution of the reflection amplitude after populating the
cavity mode by a short MW pulse. The observed time

Microwave
cavity

Magnetostatic modes

Reflection or transmission

Ferromagnetic crystals

FIG. 10 (Color online) Schematic diagram of a general hybrid
system for creating cavity-magnon polaritons. The vacuum fluctu-
ations δB of the MW magnetic field of a cavity mode overlaps with
one or more ferromagnetic crystals. An external magnetic field
H0 = B0/µ0 is applied either uniformly or locally to each magnet.
Depending on the uniformity of the MW magnetic field of the cav-
ity mode, different magnetostatic modes can be coupled. The MW
cavity can be probed either by transmission or reflection through
coupling rates κinc and κoutc to input and output ports. The inter-
nal loss of the MW cavity mode is given by κintc . Adapted from
(Lachance-Quirion et al., 2019).

traces show the Rabi-like oscillations between magnon-
like and photon-like excitations. At resonance (yellow
dashed line) the signal contrast is highest, indicating a
nearly complete periodic energy exchange between the
two systems. The maximum oscillation period in Fig. 11c
corresponds to the smallest gap in the avoided crossing
of the reflection spectrum in Fig. 11d. The oscillations
at resonance as Fig. 11d, plotted on a logarithmic scale,
show a slow exponential decay that is governed by dis-
sipation. The contrast between maxima and minima is
> 20 dB, while the period of 46 ns agrees well with the
coupling strength π/g = 46.3 ns. The signal according
to the two-level model (solid line) agrees very well with
the measured time trace (circles).

The hybrid magnon-photon modes can be also electri-
cally detected by heavy metal contacts, such as Pt, that
convert pumped spin currents into a voltage by the in-
verse spin Hall effect (Bai et al., 2015; Cao et al., 2015;
Maier-Flaig et al., 2016). Figs. 12b and 12c show the am-
plitude of the reflection coefficient S11 recorded on such
a device while sweeping the magnetic field and the probe
frequency. Strong coupling of the collective spin excita-
tions is indicated by a clear anticrossing, and spin wave
modes to the low field side of the main resonance are vis-
ible. Figs. 12e and 12f show the simultaneously recorded
dc voltage of CMPs, detected by the spin pumping sig-
nal using the Pt detector fabricated on top of the YIG
sample. The capability of electrical detection of CMPs
has led to the development of cavity spintronics (Hu,
2016), where distant control of the spin current has been
demonstrated (Bai et al., 2017), and the spin current
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FIG. 11 (Color online) Strong magnon-photon interaction and
Rabi oscillations observed in the reflection amplitude of a YIG
sphere in a 3D MW cavity (explanations in the text). Adapted
from (Zhang et al., 2014).

1	

FIG. 12 (Color online) (a), (d) Line cuts at H0 = ±267.5 mT
show the symmetry under field reversal for S11 (a) and Vdc (d).
(b),(c) Reflection coefficient S11 recorded while sweeping the mag-
netic field and the MW frequency. Strong coupling of the collec-
tive spin excitations is indicated by a clear anticrossing, and spin
wave modes to the low field side of the main resonance are visible.
(e),(f) Simultaneously recorded dc voltage. The strongest signal is
from the Kittel mode. Higher magnons modes are visible as well,
however, they couple less strongly to the cavity. Adapted from
(Maier-Flaig et al., 2016).

enhancement via an auxiliary spin-wave mode has been
achieved (Xu et al., 2020).

Micro-focused Brillouin light scattering (BLS) spec-
troscopy of spin wave excitations is another tool to access
CMPs. These experiments have been carried out on a
YIG film coupled to a split-ring MW resonator (Klingler

et al., 2016). Strong coupling with a clear mode anti-
crossing is observed in the light scattering, which is the
first step towards wavelength up-conversion from GHz
to THz (Hisatomi et al., 2016). Measurements sensitive
to light polarization give insight into the CMP hybridiza-
tion and the inelastic photon scattering process (Klingler
et al., 2016).

Using these experimental techniques, a number of
CMP-related interesting phenomena and functionalities
have been unearthed, such as magnon dark modes and
gradient memory (Zhang et al., 2015), magnon Kerr ef-
fect (Wang et al., 2016), ultrastrong coupling (Kostylev
et al., 2016), cavity-mediated coherent coupling of mag-
netic moments (Lambert et al., 2016), cavity-mediated
qubit-magnon coupling (Tabuchi et al., 2015), cavity-
mediated remote manipulation of spin current (Bai
et al., 2017), a cavity magnon quintuplet state (Yao
et al., 2017), topological properties and exceptional
points (Harder et al., 2017; Zhang et al., 2017, 2019a),
bistability (Wang et al., 2018), thermal control (Castel
et al., 2017), and a nonlinear foldover effect (Hyde et al.,
2018). The research in this direction continues, and more
effects will be discovered.

All these effects root on the coherent coupling in hybrid
systems, which has potential for both classical (Harder
and Hu, 2018; Maksymov, 2018) and quantum informa-
tion processing (Lachance-Quirion et al., 2019). A versa-
tile magnon-based quantum information processing plat-
form has taken shape, see Section VII.

2. Dissipative coupling and level attraction

As reviewed in the previous section, coherent coupling
is an active branch of research in the field of cavity
magnonics. Historically, level repulsion induced by coher-
ent magnon-photon coupling was first detected by Art-
man and Tannenwald, 1953. They moreover developed
a cavity perturbation theory to analyze the coupled sys-
tem (Artman and Tannenwald, 1955). However, unaware
of the relevance of such a coupling for studying CMPs in
hybrid devices, the magnetism community turned its at-
tention to minimize the cavity perturbation in follow-up
experiments, which were often directed towards probing
magnons or measuring the magnetic susceptibility of ma-
terials. It took more than half a century until the sleep-
ing beauty of coherent coupling was awaken by Soykal
and Flatté, 2010a, — this time with a new perspective of
spin-photon entanglement and quantum strong coupling.

In contrast, the branch of studying dissipative cou-
plings in cavity magnonics has just started recently.
Level attraction caused by dissipative magnon-photon
coupling was discovered by Harder et al., 2018 by setting
a YIG sphere in the 1D Fabry-Pérot-like cavity (see Table
I). That cavity, as mentioned in Section V.A, consists of
standing wave cavity modes that couple to the outside via
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FIG. 13 (Color online) Observation of magnon-photon level re-
pulsion and level attraction by setting a YIG sphere in the 1D
waveguide depicted in Table I. (a) and (b) are the measured dis-
persions, while (c)-(f) are the measured amplitude and the phase
of the transmission coefficient. Adapted from (Harder et al., 2018)

travelling waves. Such a cavity exhibits anti-resonances
that are characterized by a large external damping rate
κex (see Sec. II.D). When the YIG sphere is placed on
an anti-node of the cavity field for an anti-resonance fre-
quency, i.e. position A in Fig. 13a, the levels repel each
other. In Fig. 13a, the measured MW transmission am-
plitude |S21| is plotted as a function of frequency and field
detuning ∆ω = ωD − ωc and ∆H = ωm(H) − ωc, with
ωm(H) being the field-dependent magnon frequency. It
shows a coupling strength of 39 MHz. However, when
the YIG sample is placed into a node (position B), the
level attraction is observed as shown in Fig. 13b, and it
can be modelled with a coupling strength of 17 MHz.

The level repulsion between the magnon mode and the
cavity anti-resonance is emphasized in Fig. 13c. At ∆H

= 0, two sharp dips of equal amplitude are observed.
Their splitting and a difference in intensity increases with
|∆H | as expected for a conventional CMP. In contrast,
Fig. 13d shows a sharp dip and a relatively broad res-
onance, that for ∆H = 0 appear at the same frequency
ωD = ωm = ωc, i.e. the level attraction is complete.

This interpretation is further supported by the phase
φ21 = argS21 for ∆H = 0 in Fig. 13e and Fig. 13f.
The level repulsion is accompanied by two π-phase shifts,
while the single 2π-phase jump in Fig. 13f shows that the
levels collapsed into one.

Subsequently, Bhoi et al., 2019 and Yang et al., 2019
reported level attraction by setting a YIG sphere in 2D
cavities and Rao et al., 2019 in a 3D cavity. The com-
mon feature of these cavities, as summarized in Table
II, is that they are all similar to waveguides galvanically
connected with resonant structures, which support both
the standing wave (cavity mode) and the traveling wave
propagation. The interference between the standing and
traveling waves leads to the cavity anti-resonance, which
appears as a dip with a broad background in the trans-
mission spectra of the open cavity. Initially, the coupling
between the cavity anti-resonance and the magnon mode
was modelled by an effective non-Hermitian term (Harder
et al., 2018), which describes the backaction from the in-
duced RF current impeding the magnetization dynamics,
instead of driving it. The model treats the dissipative
coupling as a frictional force that couples two harmonic
oscillators as depicted in Fig. 4.

Searching for the microscopic mechanism of the dissi-
pative coupling, several experiments (Rao et al., 2020;
Wang et al., 2019a; Yao et al., 2019) were performed to
investigate the role of travelling waves in different cav-
ities. Theories based on three different approaches are
established, all of them consistently attribute the ori-
gin of dissipative magnon-photon coupling to traveling
wave-induced cooperative external damping: In cavities
that support travelling waves, the cavity mode and the
magnon mode cooperatively damp to the same traveling
waves, leading to an indirect dissipative coupling that
causes the level attraction. Historically, level attraction
induced by such an indirect coupling was first observed by
Christiaan Huygens in 1673, who found that two pendu-
lum clocks, mounted on the same wall, would eventually
swing at the same frequency despite no direct interaction
between the clocks. Huygens called the effect “odd sym-
pathy”: The vibration of the wall acts as the common
reservoir that correlates the pendulum oscillations, lead-
ing to an indirect coupling that “attracts” the oscillation
frequency of the two clocks.

While the traveling wave is the key ingredient of the
open cavity magnonic systems in which level attraction
has been observed, it is not the only mechanism for in-
ducing dissipative couplings. Theoretically, instead of
travelling waves, a damped auxiliary mode has been pro-
posed as an alternative way for mediating the dissipa-
tive coupling between two oscillators (Yu et al., 2019c).
The general physical principle of that simple model may
be applied to a wide range of coupled physical systems.
Furthermore, observing level attraction does not always
indicate dissipative coupling. For example, a two-tone
driven scheme was proposed by Grigoryan et al., 2018 to
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enable level attraction, and it has been realized by Boven-
ter et al., 2020, 2019. As depicted in Table II, the key
feature of the scheme is that the drive field is split into
two paths, one is applied to the cavity input port and
the other one is applied through a loop antenna directly
to the YIG sample set in the closed 3D cavity. Another
mechanism was proposed by Proskurin et al., 2019, who
showed that magneto-optical coupling, or more specifi-
cally, the inverse Faraday effect, may induce the attrac-
tive interaction between the magnon and cavity photon
modes. This implementation is analogous to the optome-
chanical approach, where level attraction was realized
experimentally in a multimode superconducting MW op-
tomechanical circuit (Bernier et al., 2018).

Among all these mechanisms, two distinct capabili-
ties stand out for the dissipative coupling mediated by
travelling waves: (i) It can be engineered to enable a
direction-dependent relative phase between coherent and
dissipative magnon-photon couplings, which breaks the
time-reversal symmetry for MW propagation. Utilizing
the directional interference between coherent and dis-
sipative couplings, nonreciprocal MW transmission has
been demonstrated (Wang et al., 2019a). (ii) It sustains
the purely dissipative coupling, which enables the real-
ization of anti-parity-time symmetric cavity magnonics.
Two types of singularities have been found in such a sys-

tem: the exceptional points that are square-root singular-
ities appearing in non-Hermitian systems, and an uncon-
ventional bound state in the continuum that simultane-
ously exhibits maximal coherent superposition and slow
light capability (Yang et al., 2020). Moreover, a whole
surface of exceptional points has been demonstrated by
extending the magnon-polariton system dimensionality
into synthetic dimensions given by multiple tuning pa-
rameters (Zhang et al., 2019b). A theory has further
predicted that in systems exhibiting energy level attrac-
tion of magnons and cavity photons, parity-time symme-
try can also be spontaneously broken, and the magnon
and photon can form a high-fidelity Bell state with max-
imum entanglement in the parity-time symmetry-broken
phase (Yuan et al., 2020). A phase transition to an anti-
parity-time-symmetric phase has in turn been demon-
strated by using two YIG spheres in a cavity (Zhao et al.,
2020). In general, by utilizing the dissipative coupling,
dissipation is no longer a nuisance. On the contrary, it
enriches the physics and becomes a resourceful ingredient
of open systems. New perspectives for harnessing dissi-
pative couplings, such as dissipation engineering in quan-
tum systems, utilizing the dissipative spin wave bath in
cavity spintronics, and developing non-Hermitian meta-
materials, have been outlined (Wang and Hu, 2020).
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TABLE II A summary of a few devices and setups used for measuring the level attraction in cavity magnonics. In the
experiments listed in the first four rows, the level attraction was due to dissipative magnon-photon coupling mediated by
travelling waves, while in the experiment of Boventer et al., 2019, the level attraction was caused by the interference effect
between two driven tones. In all experiments, the intrinsic damping of the standing cavity modes is κin/2π ∼1–80 MHz. The
figures and some of the contents in the table are adapted from (Wang and Hu, 2020).

Cavity Structure Key Features Reference

1D Fabry-Pérot-like cavity

Rotatable plane

Circular-rectangular 
       transition Circular waveguide

• standing cavity mode and travelling
waveguide modes

• extrinsic damping:
κex/2π = 112 MHz

• level attraction

(Harder et al., 2018)

Inverted pattern of the split-ring resonator

ISRR

YIG film

Microstrip line

B0

• standing cavity and travelling
waveguide modes

• level attraction

(Bhoi et al., 2019)

Cross-line MW circuit

B0

YIG sphere

• standing cavity and travelling
waveguide modes

• extrinsic damping:
κex/2π = 880 MHz

• level attraction

(Yang et al., 2019)

Anti-resonance within a 3D cavity

• standing cavity and travelling
waveguide modes

• extrinsic damping:
κex/2π = 14.99 GHz

• level attraction

(Rao et al., 2019)

3D cavity with two driven tones

YIG sphere
‘magnon’ port

‘cavity’ portVNA
D Φ

1
2

3
• standing cavity modes

• ‘cavity’ port and ‘magnon’ port

• phase shifter

• level attraction

(Boventer et al., 2019)

C. Nonlinear effects

The physics of coupled driven harmonic oscillators can
be explained by classical electrodynamics and linear re-

sponse to applied MW radiation. However, the dynamics



30

of high-quality magnets can be driven into the nonlinear
regime, causing effects such as Suhl instabilities, see Sec-
tion III. With relative ease, cavity magnonics can access
regimes of nonlinear and quantum dynamics that may
be useful for advanced information technology, also dis-
cussed in Sec. VII.

1. Instabilities

It is known for a long time that sufficiently strong
MWs drive the magnetization dynamics into the non-
linear regime (Anderson and Suhl, 1955; Gerrits et al.,
2007; Gui et al., 2009; Weiss, 1959). In the present con-
text, Wang et al., 2018 report a magnon-polariton bista-
bility in a cavity loaded by a YIG sphere in terms of sharp
frequency jumps of the resonances that indicate abrupt
changes of the amplitudes. A YIG sphere in a Fabry-
Pérot-like MW waveguide displays a nonlinear fold-over
effect, i.e. a skewed resonance shape as a function of
frequency that leads to bistability, a typical signature
of non-linear systems (Hyde et al., 2018). The telltale
features are clockwise, counterclockwise, and butterfly-
shaped hysteresis loops of the resonance features that
depend on the ratio of the magnon and photon compo-
nents of the magnon polariton excitation.

Since the photon subsystem is linear, fold-over effects
must be caused by the nonlinearity of the magnetic sub-
system, such as a Kerr nonlinearity (Wang et al., 2018)
with positive (negative) coefficient when the static mag-
netic field is parallel to the [100] ([110]) crystallographic
axes of the YIG sphere, respectively (Zhang et al., 2019a)
(see Sec. III.H). These nonlinearity can by captured by
modelling the magnon mode by a anharmonic (Duffing)
oscillator (Korsch et al., 2008) that is coupled to a har-
monic oscillator representing the cavity photon mode.

Makiuchi et al., 2021 realized a parametric oscillator
in the form of a YIG disk with frequency ω by driving
it via a coplanar microwave guide a 2ω. The system is a
bistable “parametron”, characterized by the phases 0 and
π of the magnetic oscillations relative to that of the mi-
crowaves. The latter can be read out electrically by the
inverse spin Hall effect in Pt contacts. By changing the
system parameters, the dynamics can be tuned to form
a stable Ising spin system or a randomly fluctuating one
with Poissonian statistics. In the latter regime the sys-
tems qualifies as a “probability bit (p-bit)” in stochastic
computing applications (Hayakawa et al., 2021).

2. Quantum effects with strong drive

A number of theoretical proposals explore the quantum
nature of magnons in a cavity-magnet architecture. We
return in Sec. VII to quantum effects in the situation
when a cavity contains a qubit and a magnet.

Zhang et al., 2019c consider the quantum entanglement
by the Kerr nonlinearity between the Kittel modes of two
YIG spheres in a cavity that is strongly driven by a blue-
detuned MW field. This is a strongly driven system, and
a large number of magnons is needed, which makes the
task of visualizing the quantum effects non-trivial.

Martinez-Perez and Zueco, 2019 predicted strong cou-
pling of a MW cavity mode with the gyrotropic motion
of a magnetic vortex in sub-µm magnetic disks — a topo-
logically non-trivial configuration of magnetic structure
with potential quantum effects that differ from those as-
sociated with the Kittel mode dynamics.

Elyasi et al., 2020 theoretically explored nonlinearities
of ferromagnets in MW cavities beyond the macrospin
and Duffing approximations. The nonlinearities of a
magnet can be interpreted in terms of the Holstein-
Primakoff expansion beyond the lowest order term, which
introduces interactions between the magnons as dis-
cussed in Sec. III. The magnon-magnon interactions cou-
ple the CMP to energetically degenerate states of back-
ward moving bulk magnons that are pushed in energy by
the exchange interaction for sufficiently large wave num-
bers. The tripartite system under a MW drive and an
injection-locking probe can form fixed points that display
squeezable quantum fluctuations. They predicted large
and distillable quantum entanglement. These quantum
resources potentially can be harvested with YIG samples
at bath temperatures of around 1 K.

3. Nonlinearity induced by microwave feedback

In all of the experiments reviewed in Section V.B, the
measured magnon-photon coupling rate gN = g

√
N in-

creases with the spin number N , but it is independent
of the MW power. This is because in the linear dynamic
regime, the excitations in the magnetic subsystem (with
N spins) are far from being saturated, so that the num-
ber of CMPs m � N . In such cases, adding photons
may increase m but does not change the coupling rate.
We note that such a feature is distinctly different from
the strong coupling of cavity photons with a single spin,
where the single two-level system can be saturated by
one photon excitation, so that adding photons enhances
the coupling rate.

As reviewed in the two previous subsections, by driving
the magnetization dynamics into the nonlinear regime,
the coupling features, such as the bistability and the
foldover effect, become dependent on the MW driving
power. An alternative way to introduce the nonlinear-
ity is to keep the magnetization dynamics in the linear
regime (m� N), but introduce the MW nonlinearity to
the coupled system. Such a technique is developed by
using the active cavity circuit shown in Table I.

The characteristics of the active cavity circuit have
been introduced in Section V.A. It consists of a passive
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(P) and an active (A) cavity. The A-cavity contains a
MW amplifier and acts as a feedback loop that compen-
sates the MW loss of the P-cavity. If one loads a YIG
sphere into the cavity circuit, the coherent coupling be-
tween the magnons and the MW photons in the P-cavity
generates CMPs. But unlike the simple cases reviewed in
Section V.B, the m-polariton ensemble interacts coopera-
tively with the n photons fedback from the A-cavity (Yao
et al., 2017). As shown in Fig. 14, instead of the conven-
tional anticrossing between two modes, such a coopera-
tive polariton dynamics leads to five hybridized modes
(quintuplet) appearing at ωc, ωc ± Ω+, and ωc ± Ω−,
where

Ω± =
√

(Ω±∆/2)2 + 2f2g2
N (Ω±∆/2)/Ω. (100)

Here, Ω =
√
g2
N + (∆/2)2 is related to the frequency de-

tuning ∆ = ωm − ωc, and f =
√
n/m is the feedback

factor that is controlled by the gain of the MW ampli-
fier. At ∆ = 0, Eq. (100) reduces to Ω± = gN

√
1 + 2f2,

so that the quintuplet reduces to a triplet as shown in
Fig. 14. Such a cavity magnon triplet resembles the Mol-
low triplet (Mollow, 1969), a canonical signature of the
light-matter interaction observed in single quantum sys-
tems (Xu et al., 2007). It demonstrates that by intro-
ducing the MW nonlinearity to the cavity magnonics sys-
tem, the magnon-photon coupling rate Ω± is controlled
by both the spin number and the number of the feedback
photons.

D. Two or more magnets in a cavity

The quantized EM field of cavity photons may co-
herently interact with spatially separated quantum ob-
jects. This allows photon-induced information transfer
between distant systems, which is desirable for quantum
communication. An indirect interaction between artifi-
cial atoms, e.g., superconducting qubits, via a MW res-
onator (Majer et al., 2007) or a waveguide (van Loo et al.,
2013), and in an atomic ensemble through an optical
resonator has been reported (Davis et al., 2019). The
coherent coupling of remote paramagnetic spin ensem-
bles, NV centers in diamond via a cavity bus has also
been demonstrated (Astner et al., 2017). If magnon life-
time can be sufficiently improved, combining them with a
high-speed intermediary with long coherence length, such
as photons, may provide a novel platform for quantum
information transfer over macroscopic distances (Andrich
et al., 2017; Fukami et al., 2021).

Strong coupling of MW cavity photons with multiple
magnets has been realized by Zhang et al., 2015. Two
magnets at the anti-nodes of a cavity mode, Fig. (10),
form a “bright” collective mode that precesses in phase
with the magnetic field, and a “dark” mode that does not
interact with the cavity mode because the magnetizations

FIG. 14 (Color online) Cavity magnon quintuplet. Transmis-
sion through an active feedback cavity, if driven close to the
cavity resonance, shows three peaks as the function of the
drive frequency ωD if the cavity mode is exactly at the reso-
nance with the magnon mode (ωc = ωm). If the cavity mode
is detuned from the magnon mode, the peak splits into five.
(a) Dependence of the transmission on the driving frequency
for different relations between ωc and ωm; III corresponds
to the resonance between the cavity and the magnon. (b)
The same dependence plotted as the function of the drive fre-
quency and of the external magnetic field B0 which detunes
the cavity and the magnons. Adapted from Yao et al., 2017.

of the magnets precess out of phase. The bright mode ex-
periences a Stark frequency shift, while the dark mode is
decoupled from the cavity and does not suffer from radia-
tive decay. The coherent long-range coupling of spatially
separated magnets via a MW cavity has also been re-
alized in the off-resonant regime (Lambert et al., 2016),
in which magnets are strongly detuned from the cavity
modes. The bright magnon mode is blue shifted when
above the main cavity mode, and red shifted otherwise.
Note that light-matter interaction has to be nonlinear in
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order to produce this coupling. The nonlocal coupling
between distant magnets in a cavity allows long-range
manipulation of spin currents (Bai et al., 2017). Zare
Rameshti and Bauer, 2018 interpreted the non-dispersive
cavity-photon induced coupling of magnets in terms of a
simple molecular model or “magnon chemistry”. The
dominant mechanism for the coupling is not the coupling
of the magnetic field of the cavity to the magnetization,
but that of the electric field to the charge polarization in
dielectric spheres. The electric component of the cavity
mode can dominate the coupling which reaches the ultra-
strong coupling regime when the cavity is significantly
filled (Zare Rameshti and Bauer, 2018). A long-range
coupling between ferro- and antiferromagnets through a
MW cavity has been predicted (Johansen and Brataas,
2018), which might pave the way toward integrated cir-
cuits with new components.

The nature of the interaction mediated by cavity pho-
tons among magnets depends on the cavity type and lo-
cation of the magnets in the cavity. In particular, the
cavity can be closed and conserve energy, or dissipative,
such as an open waveguide. When the direct coupling
of both magnets to the cavity is of the same type, i.e.
either coherent to a confined cavity mode, or dissipative
to the continuum of modes in an open cavity, the indi-
rect long-range coupling is coherent and levels anti-cross
or repel each other. When it is predominantly dissipa-
tive, a level-attraction can be expected. A long-range
dissipative coupling in a dispersive regime has been pro-
posed (Grigoryan and Xia, 2019) and observed (Xu et al.,
2019). The chiral coupling of a chain of magnets with
travelling photons in a waveguide that loses energy at the
open ends, leads to extended collective magnon modes
that are sub-radiant as well as super-radiant edge states
with large amplitudes (Yu et al., 2020a,b).

One can think of more complicated “chemistry” by
putting various coherently coupled objects, not just mag-
nets, to a cavity. In particular, Sec. VII shows what
happens if a magnet and a qubit are coherently coupled
inside cavity. Janssønn et al., 2020 considered a mag-
net and a superconducting sphere and showed that the
coherent coupling affects the properties of the supercon-
ductor.

VI. MAGNONS IN OPTICAL RESONATORS

A strong coupling of magnons at GHz frequencies and
light at frequencies above 100 THz is difficult to achieve.
The large frequency mismatch prohibits an anticrossing
and the formation of magnon polaritons at light frequen-
cies. Strong coupling can still be reached in principle
when the “lamp” shift exceeds the line widths. How-
ever, the Zeeman coupling of the spin magnetic moment
with the photon magnetic field is suppressed inversely
proportional to the detuning. The electric field compo-

nent, on the the other hand, couples to the spin only
via the relatively weak spin-orbit interaction (Borovik-
Romanov and Kreines, 1982), see Sec. IV. The leading
interaction is a second order process, the electric field-
induced two-photon-one-magnon inelastic scattering (see
Sec. IV.C.2). Optimal frequencies are close but below the
band gaps in order to resonantly enhance the scattering
cross section without significant absorption that would
prohibit high photon intensities, which for YIG is in the
near infrared. Samples with high dielectric constants act
as antenna and confine the photons, which then have
ample time to interact with the magnons. YIG spheres
and slabs thereby form optical resonators with enhanced
magnon-photon interaction. Analogous to optomechan-
ics (Aspelmeyer et al., 2014), the radiation pressure-type
interaction while intrinsically weak (∼10 kHz) is para-
metrically enhanced by the photon number or optical
drive power (see Sec. IV). Gröblacher et al., 2009 report
strong phonon-photon coupling at high photon intensi-
ties.

The ability to strongly couple magnons to an optical
mode would open up opportunities in quantum technol-
ogy, such as the optical communication between distant
quantum computers with clock frequencies in the MW
regime and form an interface between mK and room tem-
peratures (Lambert et al., 2020; Lauk et al., 2020). The
potential of such transducers are a strong motivation for
research on optomechanical systems that reach already
efficiencies close to unity (Fan et al., 2018; Higginbotham
et al., 2018). Mirhosseini et al., 2020 report optical pho-
ton emission by superconducting transmon qubits. Re-
peating such a feat with magnetic systems would offer
new functionalities that exploit the intrinsic time-reversal
symmetry breaking of the magnetic order, enabling, for
example, unidirectional conversion without the need for
complex drive schemes (Metelmann and Clerk, 2015; Yu
and Fan, 2009). Note that magnetic materials are rou-
tinely applied in communication technology as isolators
that are transparent only in one direction, at MW (Pozar,
2004) and optical frequencies (Jalas et al., 2013).

Optical measurements at the single magnon level that
complement those in the MW domain (Lachance-Quirion
et al., 2017) is another challenge. The higher bandwidth
of lasers can circumvent measurement problems asso-
ciated with the magnon dissipation (Lachance-Quirion
et al., 2019). Indeed, optomechanics has benefited from
the complementary progress on the MW and optical side,
culminating in the demonstration of qubit-optical trans-
duction (Higginbotham et al., 2018; Mirhosseini et al.,
2020). The advantage of magnetic systems is the mag-
netic field knob that can freeze out background thermal
magnons to a large extent even at not so low tempera-
tures.

Optical techniques such as Kerr-Faraday rotation
spectroscopy, inelastic light scattering (Demokritov and
Demidov, 2008; Sebastian et al., 2015) and ultrafast
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pump-and-probe techniques (Walowski and Münzenberg,
2016) are well-established probes of magnetism. Light is
much less used to control the magnetic order (Kirilyuk
et al., 2010). The ability to manipulate magnetism in the
strong optical interaction limit would enable a number
of interesting fundamental experiments, such as optical
cooling (Sharma et al., 2018) or driving selected magnon
modes (Šimić et al., 2020).

This Section reviews the progress in enhancing the
magnon-optical photon interaction in resonators, start-
ing with the interaction mechanisms, lists the relevant
parameters, and introduces proposed optical cavity ge-
ometries. Subsequently, we review recent experiments
that observe enhanced magnon-photon coupling in YIG
optical whispering gallery mode (WGM) resonators.

A. Interaction between magnons and optical photons

YIG is a wide band-gap electrical insulator with a
transparency window in the infrared without measur-
able absorption, but also with vanishing magnetooptical
constants that become significant only by resonant en-
hancement. Closer to the band gap, both electric dipole
and magnetic dipole two-photon transitions become sig-
nificant (Krinchik and Chetkin, 1962). For example, for
light at a wavelength of 1.15µm, the ratio between the
optical transitions induced by the magnetic and electric
field components is 0.06 (Le Gall et al., 1971). Electric
dipole transitions can be treated in terms of a dielec-
tric tensor ←→ε (M) that depends parametrically on the
magnetization M (Landau and Lifshitz, 1984; Pershan
et al., 1966), see Eq. (87) and Sec. IV. This approach
captures most magneto-optical phenomena such as the
elastic Faraday-Kerr and Cotton-Mouton rotation of the
light polarization and the inelastic magnon Brillouin light
scattering (BLS) (Wettling et al., 1975). We focus here
on the latter process in which a scattered photon suffers
a red or blue shift by creating or annihilating a magnon.
By the conservation of angular momentum the photon
polarization must change during the scattering process
as well (Le Gall and Jamet, 1971), as discussed in Section
IV. Only when rotational symmetry is significantly bro-
ken, a net angular momentum of photons and magnons
can be transferred to the crystal (Hisatomi et al., 2019).

Historically, magnon BLS is a standard probe of the
magnetization dynamics of magnons with small wave vec-
tors (Demokritov and Demidov, 2008), e.g. in identi-
fying a magnon Bose-Einstein condensate (Demokritov
et al., 2006), characterizing artificial magnonic crystals
(Baba et al., 2019; Chumak et al., 2009; Sebastian et al.,
2015), or probing magnetic textures (Novosad et al.,
2002; Schultheiss et al., 2019). By its weak interaction
light is relatively non-invasive, i.e. it only weakly per-
turbs the system under study. Cavity optomagnonics
strives to reach a new regime of enhanced magnon-photon

coupling that allows manipulating the magnetic system.

The light-magnon interaction in a cubic crystal is gov-
erned by Eq. (87) that leads to the Hamiltonian (89).
In the following we disregard the second order (Cotton-
Mouton) term in δεij(M) and concentrate on the Fara-
day part, since the former only renormalizes the inter-
action parameters in the standard measurement configu-
ration in which incoming and scattered light are normal
to the magnetization (Sharma et al., 2017). The single
adjustable constant f is directly related to the Faraday
rotation angle θf = ωfMs/(2cn) by a magnet with thick-
ness equal to the wavelength. In the leading order process
an input photon in mode p scatters into an output mode q
via a magnon in mode η, governed by the optomagnonic
matrix element Gpqη in the interaction Hamiltonian of
Eq. (89),

Gpqη = −i 1

2~
fMs

√
4gµB
MsVm

√
~ωp

2ε0εVp

√
~ωq

2ε0εVq
Vint.

(101)
The interaction volume Vint is the overlap integral of the
three mode functions in the form of a triple vector prod-
uct given by

Vint =

∫
dr vη(r) · [u∗q(r)× up(r)], (102)

where uq(r)∗ and up(r) are amplitudes of the optical cav-
ity modes with mode volumes Vp and Vq (see Sec.II),
while vη(r) is related to the frequency-normalized Eq.

(70) in Sec. III, wη =
√

4gµB/(MsVm)vη. The effective
magnon mode volume here is Vm =

∫
|vη(r)|2dV , see

Eq. (71), which is strictly valid only for circularly polar-
ized magnon modes (Sharma et al., 2019). According to
Eq. (102), the TM-TE of TE-TM scattering configuration
maximizes the coupling.

In the experiments that follow, the optical mode fre-
quencies and volumes differ only slightly. With Vp ≈
Vq ≡ Vopt and ωp ≈ ωq ≡ ωopt, we obtain

Gpqη = −iθf
c

n

√
4gµB
Ms

√
1

Vm

Vint

Vopt
. (103)

The coupling increases with (i) the material dependent
Faraday angle θf , (ii) a geometry with large triple-mode
overlap, and (iii) a small magnetic volume.

1. Magnon Brillouin light scattering

Here we address the magnon annihilation rate by anti-
Stokes inelastic light scattering at a thermally or MW
excited magnet close to resonance as in Fig. 15a. In the
interaction Eq. (89) we focus on three levels, viz. magnon
mode with frequency ωm and optical input and output
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FIG. 15 (Color online) Limited Hilbert space for resonant
magnon light scattering with coupling and dissipation rates
(a) for general magnon Brillouin light scattering that is sim-
plified (b) for a strongly driven optical mode i that can be
eliminated in favor of an enhanced coupling rate GN .

modes ωi and ωo with ωi > ωo,

Ĥopt−m = ~ωiâ
†
i âi + ~ωoâ

†
oâo + ~ωmm̂

†m̂

+ ~G
(
â†oâim̂ + â†i âom̂

†
)
, (104)

where G+
iom ≡ G and G−iom = 0. A proximity laser with

frequency ωD, slightly detuned from the input by ∆i =
ωi − ωD, drives the system. The input amplitude âi =
〈ai〉 + δâi is mainly coherent but has small fluctuations,
where 〈ai〉 =

√
κi,ex〈ai,in〉/(κi/2 − i∆i), κi = κi,0 + κi,ex

is the total damping rate, and 〈ai,in〉 is the amplitude
from the proximity coupling to the external laser. The
output mode is not driven, so 〈ao〉 ∼ 0 (see Sec. II.D).
The magnons are populated thermally or driven by MWs
to an amplitude m̂in.

The linearized Hamiltonian in the rotating frame of
the drive frequency is (Fig. 15b)

Ĥ ′opt−m = ~∆iδâ
†
i δâi+~∆oδâ

†
oδâo + ~ωmm̂

†m̂

+ ~GN
(
δâ†om̂ + δâom̂

†) , (105)

with coupling constant GN =
√
NiG, where Ni = |〈ai〉|2

is the number of photons in the input mode, and the
output mode is detuned by ∆o = ωo−ωD. The Langevin
equations that describe the dynamics of this Hamiltonian
have been introduced in Sec. II (see also Sec. IV.C.4),

∂m̂

∂t
=− iωmm̂−

κm

2
m̂+

√
κm,exm̂in − iGNδâo, (106)

∂δâ

∂t
=− i∆oδâo −

κi

2
δâo +

√
κo,exδâo,in − iGNm̂.

(107)

Their solutions read

m̂ =

√
κm,exm̂in − iGNδâo

κm/2− i(ω − ωm)
, (108)

δâo =

√
κo,exδâo,in − iGNm̂

κo/2− i (ω − (ωo − ωD))
. (109)

where κm,ex is the coupling rate of the magnon to the
microwave source.

Using the input-output relation Eq. (31) and tuned
input frequency ωD = ωi, we get

|δâo,out|2 =
4
(

4G2
N

κoκm

)
κm,ex

κm

κo,ex

κo(
1 +

4G2
N

κoκm

)2

+
(
ωm−(ωo−ωi)

κo/2

)2 |m̂in|2.

(110)
The scattering is maximized at the triple resonance con-
dition ωm = ωo − ωi,

max |δâo,out|2 =
4COPm

(1 + COPm)
2

κm,ex

κm

κo,ex

κo
|m̂in|2. (111)

The magnon annihilation by anti-Stokes scattering is
governed primarily by the factor 4COPm/ (1 + COPm)

2
,

which is largest when the drive-enhanced optomagnonic
cooperativity COPm = 4G2

N/(κoκm) is unity (see Sec.
IV.C.4). The other two factors reflect the impedance
matching of magnon and output optical modes and ap-
proach unity when the coupling rates to the outside world
are much larger than the internal decay rates κm,ex �
κm,0 and κo,ex � κo,0. The driven optomagnonic cou-
pling GN is proportional to the optical power stored
in the input mode and depends on the power and the
proximity impedance matching of the input laser. The
single-photon cooperativity C0

OPm = (4G2)/(κoκm) =
COPm/Ni does not depend on the input power. The
scattering probability Eq. (110) is proportional to the
magnon number that at thermal equilibrium is governed
by the Planck distribution function. At low temperatures
there are no magnons to annihilate, so anti-Stokes BLS is
suppressed. On the other hand, external stimuli such as
resonant MWs, can strongly enhance the magnon num-
ber and BLS cross section. The correlation between MW
absorption and BLS spectra helps in to assign magnon
modes as discussed in Sec. VI.C.3.

B. Optical cavity designs

1. Materials

The materials parameters that determine the opto-
magnonic coupling are the refractive index, the Faraday
angle, and the saturation magnetization. For the coop-
erativities we also need the damping rates of the optical
and magnon modes. YIG is currently the best available
material since it has been optimized for commercial ap-
plications at both MW and optical frequencies for MW
generation or filtering and optical isolators or circulators.
The Faraday rotation angle of undoped YIG at wave-
length 1.5µm is ∼4 rad/cm−1 per unit of thickness and
the Gilbert damping α ≈ 10−4 − 10−5, see Sec. III.G.
The figure of merit for optical isolators is the Faraday
rotation divided by the optical loss (Stadler and Mizu-
moto, 2014). Doping can increase this number at the cost
of increased damping (Wood and Remeika, 1967). This
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is not an issue in static optical isolators, but the trade-off
from doping often leads to a reduced cooperativity.

Van der Waals ferromagnetic and antiferromagnetic
materials (Gong et al., 2017; Huang et al., 2017) show
sizable magneto-optic activity for only a few monolay-
ers. Huang et al., 2017 report a Kerr rotation angle
of 0.005 rad for a monolayer of CrI3 (but not the opti-
cal absorption). With ∼1 nm thickness this corresponds
to ≈50,000 rad/cm−1. The low magnetic damping in
vanadium tetracyanoethylene (Zhu et al., 2016) make
such organic-based ferromagnets also attractive for op-
tomagnonics (Liu et al., 2018).

2. Optical resonators

The cavities that confine light with wave length in
µm are quite different from those of microwaves with
cm wave length. They range from simple Fabry-Pérot
resonators, to complex photonic crystal devices. Light
can be trapped simply by a material with high dielec-
tric constant with the experimental challenge to couple
such a resonator in a controlled manner to the external
laser input and output. The key geometric parameters
are the overlap of the magnon and photon modes as well
as the volume of the magnon mode. In order to meet the
resonance condition the TM-TE photon mode splitting
should be comparable to the magnon mode frequency
that can be fine-tuned by a magnetic field. The opti-
cal losses by absorption and disorder scattering by the
magnet and at the proximity coupling node should be
minimized as well.

Whispering gallery mode (WGM) resonators are
frequently used to enhance optical interactions with
phonons, and they turned out to be very useful in op-
tomagnonics as discussed below. Since WGMs are con-
fined to the sample boundary, the surface roughness must
be suppressed. Mechanically polished YIG spheres with
sub-mm diameters are commercially available for mi-
crowave applications. The high refractive index nYIG ≈
2.2 and transparency in the infrared enable these spheres
to support well-defined optical WGMs as well.

Optical resonators with embedded magnetic elements
enhance the static Faraday effect, for application in com-
pact optical isolators (Stadler and Mizumoto, 2014).
Photonic crystal devices may increase the Faraday ro-
tation by a factor of 4 (Inoue et al., 2006). A single
magnetic layer sandwiched between two non-magnetic
Bragg reflectors (Takayama et al., 2000) or magnetic mul-
tilayers (Fedyanin et al., 2004) generate localized opti-
cal Tamm states with enhanced amplitudes (Goto et al.,
2008) that also show enhanced magnetic second har-
monic generation (Fedyanin et al., 2002). Wang and Fan,
2005 proposed optical isolators based on defects in two-
dimensional photonic crystals. High-quality silicon pho-
tonic resonators with embedded YIG elements (Bi et al.,

a) b)

c)

d) e)i)

ii)

FIG. 16 (Color online) Optical cavities with embedded mag-
netic elements. (a) A solid sphere of YIG with optical whis-
pering gallery modes (Osada et al., 2016). (b) The reduced
mode volume in cylindrical YIG samples can achieve higher
magneto-optical coupling and support different magnetic tex-
tures (Graf et al., 2018). (c) Photonic crystals can confine the
optical field (Pantazopoulos et al., 2019), also in narrow-band
optical isolators (Inoue et al., 2006) (d). (e) Compact optical
isolator with magnetic elements based on a silicon photonic
“racetrack” resonator (Bi et al., 2011) .

2011) raise the hope for monolithic integration of opti-
cal isolators into photonic integrated circuits (Dai et al.,
2012).

Optical isolators are a useful reference point for the
design of future integrated magneto-optical cavities, but
while they enhance the static Faraday rotation this is not
necessarily the case for the interaction of light with the
dynamical magnetization. Even with annealing-induced-
recrystallization, the quality of sputter-deposited YIG
has a Gilbert damping ten times larger than that of liquid
phase epitaxial-grown YIG (Hauser et al., 2016), which
is not tolerable for cavity optomagnonic purposes.

Theoretical studies can guide cavity design for the op-
timization of the magneto-optical coupling (Almpanis,
2021). For example, compared to a sphere, in a disk
with thickness ∼ λ the total mode volume of a WGM
is reduced (Graf et al., 2018). Defects in photonic crys-
tal structures made from or containing magnetic mate-
rial can act as a small mode volume resonators. This has
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been considered for 1D planar structures consisting of di-
electric mirrors with an embedded magnetic layer (Pan-
tazopoulos et al., 2019), or multilayers of magnetic and
non-magnetic dielectrics that confine both the magnon
mode and the optical mode to the same volume (Panta-
zopoulos et al., 2018). 1D photonic crystals formed by
equidistant holes in a dielectric beam (Graf et al., 2021)
may also localize the optical and magnetic modes to the
same volume.

The magneto-optical interaction can also be enhanced
for a given sample by selecting magnon modes that max-
imize the triple-mode overlap. In magnetic spheres, also
magnons form WGMs at the equator (Sharma et al.,
2018). The Damon-Eshbach surface modes are chiral,
which increases the asymmetry between Stokes and anti-
Stokes scattering. However, they are so localized that
the overlap with the optical WGMs is still small. Al-
most perfect overlap can be achieved by choosing modes
with slightly smaller orbital angular momentum, how-
ever (Sharma et al., 2019). The wave vector of the
(close to) surface magnons is large, such that angular mo-
mentum can be conserved the photons are back- rather
than forward scattered. These surface modes can be effi-
ciently actuated only by microwaves with matched wave
length, which are not easily generated. Alternatively,
two-beam stimulated Raman scattering process can se-
lectively populate magnetic surfaces modes with large
momenta (Šimić et al., 2020). Graf et al., 2018 suggest to
couple to a gyrotropic mode (Thiele, 1973) of a magnetic
vortex (Shinjo, 2000) in a thin magnetic disk to enhance
the magneto-optical coupling. The gyroptropic mode fre-
quencies are typically much smaller that those of magne-
tostatic modes, which may enhance, e.g., magnetoelastic
phenomena. Indeed, magnons and photons may couple
via an intermediate mechanical mode (Losby et al., 2015),
exploiting the high sensitivity and large Q-factors of op-
tomechanical systems. This kind of coupling has already
been exploited in measurements of single spins in nitro-
gen vacancy centers of diamond (Arcizet et al., 2011),
and as a possible route to highly efficient MW optical
transduction (Rudd et al., 2019).

C. Whispering gallery modes

The magneto-optical coupling in WGM resonators has
been the subject of several studies. The selection rules
for Brillouin light scattering are understood in terms of
a number of conservation rules and the overlap integral
in Eq. (102), and the coupling rates to different modes
can be calculated (Sharma et al., 2017). Here we discuss
the observations of BLS by WGMs in YIG spheres that
are in general well understood.
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FIG. 17 (Color online) (a) The polar, azimuthal, and radial
indices {l,m, q} of the whispering gallery modes in (YIG)
spheres count the nodes in the mode amplitudes. (b) Outline
of the measurement in the WGM plane. The optical modes
are populated by an input laser, while detecting the polar-
ization and frequency of transmitted or reflected light. The
(quasi-) TE and TM modes have linear E-field polarization
perpendicular (h) and parallel (v) to the WGM plane, re-
spectively. (c) Schematic mode structure in the transmission
spectrum. The free spectral range λFSR and TE-TM split-
ting λTE-TM are indicated. (d) The dips in the measured
transmitted intensity with the same polarization (TE) and
frequency as the input identify the resonant WGMs. Panel
(c) is adapted from (Haigh et al., 2016), (d) is adapted from
(Haigh et al., 2015b), (a) and (b) (J. A. Haigh) were not pre-
viously published.

1. Optical WGMs

A dielectric sphere with high refractive index sup-
ports WGMs, i.e. light modes that cannot escape due
to total internal reflection at the dielectric/air boundary
(Ilchenko and Matsko, 2006). These modes can have Q-
factors as high as 108 (Armani et al., 2003) and strongly
enhance interaction effects in non-linear optics (Bragin-
sky et al., 1989), optomechanics (Schliesser et al., 2008),
and biosensing (Vollmer and Arnold, 2008).

The modes of a dielectric resonator are solutions of the
Helmholtz equation [Eq. (23)], see Sec. II. For a rotation-
ally symmetric spheroid, the indices {l,m, q} count the
nodes in the mode amplitude in the polar, azimuthal, and
radial directions, respectively, as illustrated by Fig. 17a.
Modes with linear polarization parallel and perpendic-
ular to the WGM plane (see Fig. 17b) have the same
nodal structure, but their frequencies differ by birefrin-
gence, i.e. the different boundary conditions for the elec-
tric field. Since the interface is curved we label them
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“quasi”-TM (h) and TE (v) in Fig. 17b,c.

Experimentally, the WGMs can be probed by evanes-
cent coupling to an external optical mode with matched
energy and wave vector (Gorodetsky and Ilchenko, 1999).
A tapered glass fiber can be used (Osada et al., 2016),
but the wave-vector matching is poor. Impedance mis-
match can be minimized by a proximity material with
refractive index close to that of YIG (nYIG ≈ 2.2) such
as high refractive index silicon nitride waveguides (Zhang
et al., 2016). Precise wave-matching can be achieved only
with prism couplers (Haigh et al., 2015a) that are avail-
able with high-refractive index materials such as silicon
and rutile and show excellent selectivity of the optical
WGMs of attached YIG spheres.

In the configuration of Fig. 17b the injection of pho-
tons into the sample reduces the transmission of the input
light as a function of wavelength as sketched in Fig. 17c.
The observations in Fig. 17d show a periodic feature of
two dips that can be assigned to the modes with q = 1
and q = 2 (Haigh et al., 2016). The difference in wave-
length between neighboring main resonances is the so-
called free spectral range, and depends on the sphere ra-
dius. The Q-factors corresponding of the line widths of
these optical modes can reach 107 when the surface is
polished and cleaned (Zhang et al., 2016). At frequen-
cies optimized for BLS, the remaining losses are consis-
tent with the corresponding YIG absorption coefficient
of ∼0.1 cm−1 (Wood and Remeika, 1967).

The TE-TM splitting by geometrical birefringence is
λTE-TM = λFSR

√
1− 1/n2

YIG ∼ 0.9λFSR, where λFSR

is the free spectral range. This implies that the closest
spacing λTE-TM − λFSR between the dominant TE and
TM modes belong to the same radial, but different az-
imuthal mode indices, as shown schematically in Fig. 17c.
In a 1 mm sphere they are split by 7 GHz, which is conve-
niently close to typical magnon frequencies. The selection
rules, based on the symmetry of the Faraday effect, dic-
tate that only modes of opposite polarization can cause
Brillouin light scattering. The magnon mode frequencies
can be tuned by external magnetic fields to match a triple
resonance condition that maximizes the BLS scattering
probability.

2. Uniform magnon mode

We first consider the Brillouin light scattering of
WGMs by the Kittel (uniform) mode. The WGMs are
not simply plane waves (see Fig. 17a). The Kittel mode
has zero orbital momentum and spin angular momentum
S = 1. This momentum must be transferred between the
optical modes with a splitting that matches the FMR fre-
quency. As discussed above, this can be achieved easily
in 1 mm-scale YIG spheres, tuning the Kittel mode by a
magnetic field to match the closest-spaced TM and TE
WGMs, whose difference in azimuthal mode index ac-

counts for the change in spin angular momentum. This
creates an asymmetry in the Stokes/anti-Stokes scatter-
ing, since the ordering of the input and output mode fixes
the change in azimuthal index that can match the spin
angular momentum transfer for either magnon creation
or annihilation, but not both. These selection rules are
implicit in the matrix elements Eqs. (90) and (91). The
prefactors in Stokes and anti-Stokes matrix elements are
also not the same since in general the specific WGMs and
also the Cotton-Mouton effect as mentioned in Sec. IV
should be taken into account.

The asymmetry can also be interpreted in terms of a
circular component of the evanescent optical polarization
in the curved geometry of the TM WGMs (Osada et al.,
2016; Zhang et al., 2016). The associated effective opti-
cal spin-orbit coupling (Bliokh et al., 2015; Onoda et al.,
2004) changes sign with the photon field rotation. The
difference in the angular moments between the TM and
TE modes breaks their degeneracy. The integral over the
mode volume leads to relative shifts between the mode
families that comes down to the geometric birefringence
inferred above.

Resonant magnon Brillouin light scattering in mag-
netic spheres was first observed by Zhang et al., 2016
and Osada et al., 2016, followed by the demonstration of
the triple resonance condition by Haigh et al., 2016. In
these experiments, a WGM of certain polarization was
pumped by an input laser, while recording the output
power spectrum by a optical heterodyne measurement
with a fast photodiode and a MW spectrum analyzer or
a Fabry-Pérot etalon filtering spectrometer. The BLS
intensity scales with the number of magnons created by
MW drives.

Figure 18a demonstrates that the polarization governs
the scattering. For TM input polarization, scattered light
is only observed in the output channel with TE polariza-
tion. Next, the input laser must be tuned to the WGM
frequencies (see Fig. 18b). Thirdly, the direction of the
energy flow, from absorption (anti-Stokes) to emission
(Stokes) of magnons, is controlled by the input polar-
ization (for constant magnetization direction), as seen in
Fig. 18c, which shows for TE input (upper panel) only a
red-shifted Stokes line, while for TM input (lower panel)
a blue-shifted anti-Stokes line.

As discussed above, the asymmetry of the WGM
modes with respect to the light polarization explains the
strong sideband selectivity. The azimuthal mode index
m of the WGM must change by one in the scattering
process. When the magnon is tuned to a ∆m = −1 tran-
sition, the ∆m = 1 transition is off-resonant due to the
geometrical birefringence and vice versa.

Figure 18d shows Brillouin light scattering spectra for
input pump from two ports that couple to WGMs with
opposite circulation. The large non-reciprocity implies
suppression of competing side bands in the transduction
of MW to optical photons.
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FIG. 18 (Color online) Magnon BLS in WGMs for TM/TE
input laser polarizations (indicated in inset by the red/blue
arrow into the WGM), and forward scattered light polariza-
tion (indicated in the inset by red/blue arrows leaving the po-
larizing beam splitter). (a) Polarization and scattering selec-
tivity, reproduced from Zhang et al., 2016. The magnon scat-
tering process only occurs for cross-polarized input/output
fields. For TM input polarization, only the Stokes process
is observed. (b) Magnons scatter light only when resonant
with the WGMs (from Haigh et al., 2016). The upper panel
shows a WGM resonance in the elastic transmission spectrum
while the lower panel is the scattered light intensity, close
to the anti-Stokes frequency ωin − ωm. (c) The Stokes/anti-
Stokes process is highly selective and controlled by the input
polarization (from Osada et al., 2016). (d) The scattering
is non-reciprocal: The anti-Stokes peak indicating magnon
annihilation for fixed magnetization direction (up) and TM
input mode is only observed for one direction of the WGM
circulation (from Osada et al., 2016).

The key observations from these experiments are that
the scattering is (i) single sideband, (ii) non-reciprocal,
(iii) depends on the input polarization, and (iv) can be
controlled by MWs. All these observations agree with
the theoretical description.

The tunability of the magnon mode with applied
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FIG. 19 (Color online) Triple resonance condition for magnon
scattering. (a) (Elastic) transmission spectra of TE and TM
polarized light relative to the TM mode frequency identify
the neighboring WGMs. (b,c). Color map of the amplitude
of the magnon BLS signal, normalized to the peak value for
each magnon frequency, for TM (b) and TE (c) input polariza-
tion. (d) Peak scattering amplitude as a function of magnon
frequency. The maximum agrees with the triple resonance at
which the magnon frequency matches the TE-TM splitting.
Reproduced from Haigh et al., 2016.

magnetic field allows a precise mapping of the triple-
resonance condition, as shown in Fig. 19. When detuned,
the BLS broadens into two peaks as a function of input
laser wavelength, as seen in the color plots Fig. 19b,c for
ωm/2π ≈ 4 GHz. These correspond to the input and
output optical frequencies close to resonance with the
TM and TE modes. These correspond to the peak in
GN associated with resonantly driving the input mode,
and the minimum in the denominator of Eq. (110), re-
spectively. With increasing magnon frequency, the con-
dition for resonance with the output mode shifts by the
same amount until the two peaks coalesce at the triple
resonance point. While this is not so clear from the
color plots because each horizontal spectrum is separately
normalized to a maximum amplitude of unity to em-
phasize the off-resonant behavior, but it is emphasized
in Fig. 19d, which shows the expected maximum at the
triple resonance. The red curve is a plot of Eq. (110)
with an optical damping rate ∼ 1 GHz.

The non-reciprocal nature, tunability, and cavity en-
hancement of the magnon-photon coupling at optical fre-
quencies can be used to distill the single photon coupling
rate in Eq. (104). The measured value G/2π ≈ 5.4 Hz
(Osada et al., 2016) agrees with that calculated from the
model parameters. The coupling GN for manageable MR
drive powers is still many orders of magnitude smaller
than the combined damping rates, so the present exper-
iments are still far from the strong coupling regime.
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3. Higher-order magnon modes

Following the experimental discovery of BLS by the
uniform Kittel mode, Sharma et al., 2017 theoretically
considered the general problem of BLS of WGMs in a
magnetic sphere by “Walker” magnon modes close to the
Kittel mode and Damon-Eshbach surface modes. Sharma
et al., 2019 found an almost perfect overlap with the op-
tical WGMs not for the magnetostatic Damon-Eshbach
but for dipolar-exchange surface magnon modes close to
the equator, with a single-photon coupling rate enhanced
by two orders of magnitudes in a backscattering config-
uration (Sharma et al., 2019).

The selection rules for magnon modes other than the
Kittel mode, including the Cotton-Mouton effect, are
found by working out Eqs. (90), (91) in a cylindrical ba-
sis (Sharma et al., 2017). The resulting Clebsch–Gordan
coefficients do not vanish when (i) the polar and radial
mode indices {l, q} of a WGM do not change in the scat-
tering process, (ii) the magnon amplitude does not have a
node at the equator and (iii) the dynamic magnetization
rotates by 2π with respect to the photon propagation di-
rection around the sphere. This leads to optical coupling
of a {l,m, q} magnon only when l is odd and m = ±1,
depending on the WGM circulation and magnetic field
direction, see also (Osada et al., 2018b).

Osada et al., 2018a and Haigh et al., 2018 observes
many low-frequency magneto-static Walker modes in the
BLS spectra. The results confirm the selection rules and
demonstrate that the coupling rate increase for higher
order modes by an order of magnitude which raises the
hope for significantly larger coupling of the surface modes
(Sharma et al., 2019). The magnon modes in BLS can be
indexed with high confidence by comparison with MW
absorption spectra and mode-selective MW excitation
(Haigh et al., 2018). Gloppe et al., 2019 carried out a
detailed tomography of the low-frequency modes in mag-
netic spheres.

D. Experiments in other cavities

Zhu et al., 2020 recently demonstrated a YIG
waveguide-based Fabry-Pérot cavity with a ∼ 50-fold en-
hancement in the optomagnonic coupling rate over the
WGM devices. A rib waveguide with polished end-facets
with reflective coatings increases the quality factor of the
optical modes to Q ≈ 2× 105.

Haigh et al., 2020 report a sub-picoliter optical mode
volume for a YIG film in a laterally confined Fabry-Perot
cavity formed by two dielectric mirrors. Cavities of this
type can have mode volumes as small as 1 fL (Dolan
et al., 2010), which would yield coupling rates in the MHz
range. Low-impedance MW resonators (McKenzie-Sell
et al., 2019) will be required to couple MWs efficiently
into such small volumes.

E. Applications

An important milestone for cavity magnonics would
be an efficient conversion between MW and optical pho-
tons. However, interesting and potentially applicable ef-
fects can be expected even for smaller coupling rates. For
example, Bittencourt et al., 2019 show that protocols for
heralding magnon Fock states can work for cooperativi-
ties as small as ∼ 10−2. In the following we address other
examples.

1. Photon transducer

As discussed in Sec. VI.A, the interaction between op-
tical photons and magnons benefits from small magnetic
volumes, see Eq. (103). Kusminskiy et al., 2016 estimate
that for a YIG optical cavity with a mode volume of the
order the optical wavelength cube λ3 ≈ 1µm3, the single
photon coupling rate would be 0.1 MHz. For an optical
dissipation rate κi/2π = 1 GHz and an input power of
100 mW this leads to GN/2π ≈ 2 GHz which is larger
than the damping and would allow efficient transduction
between MW and optical photon via magnons. On the
other hand, the resonant coupling between a MW cavity
photon and a magnon, Eq. (84), is proportional to

√
Vm.

The efficiency of optomagnonic transducers between MW
and IR photons is therefore largest at an intermediate
magnetic volume Vm.

The transduction efficiency in terms of the coopera-
tivity for an optomagnonic transducer at the triple reso-
nance point is given by (Zhu et al., 2020)

ξ =
4COPmCMWm

(1 + COPm + CMWm)
2

κMW,ex

κMW

κo,ex

κo
, (112)

where COPm (CMWm) is the cooperativity for the magnon
mode coupling to optical (MW) photons and κo,ex/κo

(κMW,ex/κMW) the optical (MW) ratio of external cou-
pling rates to total losses (see for comparison Eq. (111),
where max |δâo,out|2/|m̂in|2 gives the magnon to optical
photon conversion efficiency). Note that an efficiency ap-
proaching one can be achieved when both cooperativities
are equal and large, and the losses are dominated by the
external coupling rates.

In the YIG waveguide-based cavity realized by Zhu
et al., 2020, a stripline underneath the YIG film acts as a
MW source. The YIG thickness modulation confines the
magnon modes to the rib, increasing the overlap between
magnons, MW and optical photon modes. The result is
a conversion efficiency ξ between MW and light that is
strongly enhanced compared to that in YIG spheres. Zhu
et al., 2020 report ξ = 5 × 10−7 at the triple resonance
condition with room for further improvements.
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2. Inverse Faraday effect vs. stimulated Raman scattering

The Faraday effect is rotation of the linear polarization
plane of light passing through a material with magneti-
zation parallel to the wave vector. Since action implies
reaction, the magnetization is affected by this process
as well. A light beam generates an effective magnetic
field that interacts with the magnetization in the inverse
Faraday effect that was predicted by Pitayevsky, 1960
and discussed in textbooks, Landau and Lifshitz, 1984.
Ultrafast, high intensity laser pulses can induce mag-
netization dynamics by this effect (Kimel et al., 2005)
and even switch the magnetization (Hadri et al., 2017).
Longer pulses at these intensities may destroy the sam-
ples, however. The use of optical cavities to enhance the
optomagnonic interaction might allow controlled driving
of the magnetization dynamics (Šimić et al., 2020) under
continuous wave conditions at much lower input pow-
ers (Zhu et al., 2021).

Zhu et al., 2021 experimentally observed a stimulated
Raman scattering process as proposed by Šimić et al.,
2020 in a rib like cavity (Zhu et al., 2020). Two slightly
detuned input lasers with TM and TE polarization ex-
cite magnons resonating with the frequency difference
that are detected by their microwave stray fields. In
contrast to the surface magnons with large wave num-
bers addressed by Šimić et al., 2020, the lasers are co-
propagating and the magnon wave numbers are small.
The effect can be understood in terms of the Hamiltonian
introduced in Sec. VI.A.1, in which both optical modes
(ai and ao) are coherently driven at frequencies wD,i and
wD,o, respectively, âi ≈ 〈ai〉eiwD,it and âo ≈ 〈ao〉eiwD,ot.
The coupling term in Eq. (104) becomes

~〈ai〉〈ao〉G
(
ei(wD,i−wD,o)tm̂ + e−i(wD,i−wD,o)tm̂†

)
. (113)

This coherent wave field drives a magnon mode, see
Eq. (27), with amplitude proportional to

√
ninoG, at

frequency ωD,i − ωD,o, which becomes resonant when
ωD,i = ωi, ωD,o = ωo, and ωi − ωo = ωm.

Strictly speaking, the stimulated Raman scattering is
not the same as the inverse Faraday effect. Zhu et al.,
2021 observe the Stokes scattering process of optical
magnon creation, but the process could be used as well to
annihilated them (see next section). A similar effect has
been used to show the bidirectional nature of magnon-
photon scattering for MW-optical conversion (Hisatomi
et al., 2019) in experiments, be it without an optical cav-
ity.

3. Magnon cooling

The non-reciprocal magnon-photon coupling allows
manipulation of magnon modes with light (Sharma et al.,
2018). Anti-Stokes (Stokes) scattering removes (adds) a
magnon from a selected magnon mode, which can be

interpreted as selective cooling (heating), respectively.
Analogous phonon-photon scattering processes have been
used with much success in optomechanics (Aspelmeyer
et al., 2014).

The optically-induced magnon annihilation rate un-
der the triple resonance condition can be estimated from
Eq. (110) as an effective optically-induced damping,

Γopt =
4G2

N

κo
. (114)

Unlike the intrinsic magnetic damping that forces equi-
librium with a thermal phonon bath, the optomagnonic
damping strives to bring the magnon mode into equilib-
rium with the optical mode, which is at high frequen-
cies (∼ 2000 K) and therefore not thermally excited.
We can estimate a steady-state temperature under reso-
nant illumination by comparing the rates of absorption
κmnm(nth + 1) and injection κm(nm + 1)nth of magnons
by the thermal bath, where nm is the population of the
magnon mode, and nth = 1/(exp (~ωm/(kBT ))−1) is the
number of magnons at thermal equilibrium. Considering
the additional absorption in the presence of the optical
fields Γoptnm, and equating the rates of absorption and
emission, we obtain the equilibrium number of magnons,

nm = nth
κm

κm + Γopt
=

nth

1 + COPm
. (115)

Therefore, significant cooling nm � nth requires a large
optomagnonic cooperativity COPm. The above estimate
holds for coupling rates smaller than the optical damping
rate GN < κo, which implies that scattered photons are
efficiently dissipated. If this is not the case, the number of
magnons may become very small, which requires a quan-
tum mechanical treatment (Bittencourt et al., 2019), e.g.
by the Langevin equations (Sec. VI.A.1) that describe the
thermal fluctuations in terms of the inputsmin and δao,in.
The result,

nm = nth
1

1 + COPm

(
1 +

κo

κm(1 + COPm)

)
, (116)

reduces to Eq. (115) when GN < κo. Similar expressions
have been used in optomechanics (Galland et al., 2014).

Preparing a mode with only a few number of magnons
is a prerequisite for quantum manipulation (Bittencourt
et al., 2019), see also Sec. VII. The dynamical cooling dis-
cussed here should be combined with conventional refrig-
eration of the lattice and by “freezing” the magnons out
by applying a large magnetic field. The thermal energy at
100 mK corresponds to∼2 GHz. It is now routinely possi-
ble to make optical measurements at these temperatures
(Higginbotham et al., 2018; Mirhosseini et al., 2020).

4. Nonlinear effects

We often treat the magnetization dynamics by assum-
ing small-amplitude oscillations or a small number of
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magnons. This is equivalent to the lowest order terms in
the Holstein-Primakoff expansion discussed in Sec. III.
The magnon system is then equivalent to an ensemble
of classical harmonic oscillators. However, the spin sys-
tem is inherently nonlinear. When the modulus of a spin
variable is constant, the dynamics is restricted to stay on
the Bloch sphere. The nonlinear regime is easily reached
by MW drives, see V.C, but in principle also in magneto-
optical devices under a strong optical drive (Kusminskiy
et al., 2016). The dynamics of a macrospin S is governed
by an optically-induced effective magnetic field. The op-
tically modified damping can become negative, leading to
period doubling and ultimately chaotic dynamics, which
is much more difficult to envision in optomechanical sys-
tems.

VII. QUANTUM MAGNONICS

The dynamics of the magnetic order behaves like a col-
lection of non-interacting harmonic oscillators provided
that the magnon occupation numbers are much smaller
than the total number of spins (Sec. III). At low tem-
peratures and weak excitation the system response is lin-
ear. However, non-linearities are essential for phenom-
ena such as the creation and observation of non-classical
states (Haroche and Raimond, 2006). In cavity magnon-
ics non-linearities arise when a magnetostatic mode cou-
ples to the electromagnetic field, giving rise to radia-
tion pressure (Kusminskiy et al., 2016), or to a phonon
mode (Zhang et al., 2016), but they are weak. To date,
only magnons coupled to an intrinsically non-linear quan-
tum system such as a SQUID enable genuine quantum
magnonics (Tabuchi et al., 2015, 2016). In this section,
we address first the theory of a specific realization of
quantum magnonics based on superconducting qubits as
the nonlinear element and subsequently discuss experi-
mental results.

A. Theory

1. Origin of the coupling

The coherent interaction between magnetostatic
modes in a magnetically-ordered system and supercon-
ducting circuits requires two key ingredients. The first in-
gredient is the coherent coupling between magnetostatic
modes and MW cavity modes through the magnetic-
dipole interaction discussed in Sec. IV. The second in-
gredient is the electric-dipole coupling of superconduct-
ing qubits to the cavity modes through the electric-dipole
interaction employed in conventional circuit QED. These
interactions enable control of an effective cavity-mediated
interaction between these two very different macroscopic
modes (Tabuchi et al., 2015, 2016).

2. Superconducting qubits

The to date arguably most advances qubits are based
on superconducting circuits using the Josephson ef-
fect (Devoret and Schoelkopf, 2013), whose dissipation-
less nonlinearity provides long-lived and tunable effective
two-level systems (Makhlin et al., 2001). The “trans-
mon” regime (Koch et al., 2007) of the Cooper-pair
box (Nakamura et al., 1999; Shnirman et al., 1997) is
particularly relevant due to its simplicity and insensitiv-
ity to charge noise. The transmon qubit is well described
by the Duffing oscillator Hamiltonian

Ĥq = ~
(
ωq −

Kq

2

)
q̂†q̂ + ~

Kq

2

(
q̂†q̂
)2
, (117)

where ωq (ωq +Kq) is the angular frequency of the tran-
sition between the ground state |g〉 (first excited state
|e〉) and the first excited state |e〉 (second excited state
|f〉). In Eq. (117), the ladder operator q̂ (q̂†) annihi-
lates (creates) an excitation in the circuit. The anhar-
monicity Kq is negative in the transmon regime and pa-
rameterizes the difference between the angular frequen-
cies of the first and second transitions. In the trans-
mon regime of the Cooper-pair box the anharmonicity
|Kq/(2π)| ≈ 0.1− 1 GHz is much larger than the intrin-
sic line width κ/(2π) ≈1 MHz. When the bandwidth of
the control pulses is smaller than the anharmonicity, the
transmon becomes a pseudo-spin system with Hamilto-
nian (Koch et al., 2007; Schreier et al., 2008)

Ĥq =
1

2
~ωqσ̂z, (118)

where σ̂z = |e〉〈e| − |g〉〈g|.
Superconducting qubits can have a large electric dipole

moment resulting in coupling strengths to ac electric
fields with the frequency of a few hundreds of MHz in
coplanar waveguide resonators (Wallraff et al., 2004) and
3D MW cavities (Paik et al., 2011). As long as the cou-
pling between qubit and cavity mode is not ultrastrong,
the Jaynes-Cummings coupling is valid, see Eq. (78),

Ĥq-c = ~gq-c

(
âq̂† + â†q̂

)
, (119)

where gq-c is the electric-dipole coupling strength (Blais
et al., 2004).

3. Resonant interaction

The magnon-photon coupling [Eq. (83)] and that be-
tween the qubit and the same cavity mode [Eq. (119)]
lead to a cavity-mediated magnon-qubit interaction. De-
tuning the cavity mode from both subsystems leads to
the “beam-splitter” interaction,

Ĥres.
q-m = ~gq-m

(
q̂m̂† + q̂†m̂

)
, (120)
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where gq-m is the qubit-magnon coupling strength, i.e.
the effective interaction between the magnetostatic mode
and the qubit (Tabuchi et al., 2015, 2016). This descrip-
tion is valid when |ωi − ωc| � |gi-c| with i = q,m and
|ωq − ωm| � |gi-c| (Tabuchi et al., 2016). Physically, the
modes exchange energy at a rate 2gq-m through virtual
photons in the cavity mode. In this regime, to second
order in perturbation theory one obtains

gq-m ≈
gq-cgm-c

ωq,m − ωc
, (121)

where ωq = ωm ≡ ωq,m is the angular frequency of
the qubit and the magnetostatic mode (Tabuchi et al.,
2015, 2016). In the presence of multiple cavity modes,
Eq. (121) should be summed over all relevant modes.
Since the electric- and magnetic-dipole interactions are
coherent, the contributions from the different cavity
modes can interfere constructively or destructively. Care-
ful MW engineering can therefore maximize gq-m in a
multimode MW cavity.

Strong coupling requires |gq-m| � κq, κm, where κq,m

are the qubit and magnon relaxation rates or line widths.
κq is related to the qubit coherence time T ∗2 as κq =
2/T ∗2 . The strong coupling regime enables the exchange
of quanta between both modes at an angular frequency
2gq-m, which may generate nonclassical, e.g. Fock, states
with negative values of Wigner function, in harmonic os-
cillator systems (Haroche and Raimond, 2006; Hofheinz
et al., 2009, 2008). The qubit-magnon coupling strength
can be maximized by balancing the system such that
gq-c ≈ gm-c.

4. Dispersive qubit-magnon interaction

The resonant interaction between the magnetostatic
mode and the qubit is suppressed when |∆q-m| ≡ |ωq −
ωm| � |gq-m|. The interaction Hamiltonian then becomes

Ĥdisp.
q-m = 2~χq-mq̂

†q̂m̂†m̂, (122)

where χq-m is the dispersive coupling strength (Tabuchi
et al., 2015). The Hamiltonian given by Eq. (122) de-
scribes a shift of the angular frequency of one subsystem
by 2χq-m for every excitation in the other system. For a
transmon,

χq-m ≈
Kqg

2
q-m

∆q-m (∆q-m +Kq)
, (123)

provided that |∆q-m| , |∆q-m +Kq| � gq-m (Koch et al.,
2007). Equation (123) is valid both outside and inside
the straddling regime, i.e. ωm ∈ [ωq, ωq + Kq]. The dis-
persive shift is positive and larger inside than outside the
straddling regime for the same detuning. Neglecting the
second excited state of the transmon by letting Kq →∞
in Eq. (123) leads to χq-m ≈ g2

q-m/∆q-m.

When |2χq-m| � κq, κm, we enter the strongly disper-
sive regime that allows resolving single quanta of exci-
tation (Arrangoiz-Arriola et al., 2019; Gambetta et al.,
2006; Lachance-Quirion et al., 2017; Schuster et al., 2007;
Sletten et al., 2019) and preparing quantum states (Legh-
tas et al., 2013; Vlastakis et al., 2013) in the linear sys-
tem.

5. Other qubit-mediated interactions

The coupling between magnetostatic modes and a su-
perconducting qubit can lead to an even richer set of
interactions. For example, driving the system at the an-
gular frequency ωD = (ωq + ωm) /2 leads to parametric
coupling described by the Hamiltonian

Ĥparam.
q-m = ~g̃q-m

(
q̂m̂+ q̂†m̂†

)
, (124)

where g̃q-m is the effective parametric qubit-magnon cou-
pling strength that depends on the drive power (Tabuchi
et al., 2015). Hereby one achieves a dynamically-tunable
coupling strength, which is a useful resource for quantum
state transfer (Satzinger et al., 2018).

Another non-linearity is the “cross-Kerr” dispersive in-
teraction between magnon and cavity modes mediated by
the qubit with Hamiltonian

ĤKerr
m−c = 2~χm−câ

†âm̂†m̂, (125)

where χm−c is the cross-Kerr coupling strength (Nigg
et al., 2012). Equation (125) leads, for example, to a fre-
quency shift of the cavity mode depending on the magnon
number (Haigh et al., 2015a). In quantum magnonics,
this interaction can be useful, for example, for the detec-
tion of magnons (Helmer et al., 2009) and the preparation
of quantum states (Holland et al., 2015).

Finally, the nonlinearity of the qubit leads to a “self-
Kerr” interaction between magnetostatic modes that
modifies the magnon Hamiltonian as

Ĥm = ~
(
ωm −

Km

2

)
m̂†m̂+ ~

Km

2

(
m̂†m̂

)2
, (126)

where Km is the qubit-induced anharmonicity of the self-
Kerr coefficient, see Eq. (74). The induced nonlinearity
with an amplitude |Km| /2π ∼ 105 Hz is much larger than
the intrinsic nonlinearity of magnons in millimeter-sized
YIG samples (Haigh et al., 2015a; Zhang et al., 2019a).

B. Experiments

1. Resonant interaction

Tabuchi et al., 2015 discovered the resonant interaction
between a magnon mode and a superconducting qubit in
the strong coupling regime via the microwave modes of a
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3D MW copper cavity as shown in Fig. 20. A spherical
YIG crystal and a transmon-type superconducting qubit
are placed inside the cavity near to antinodes of the, re-
spectively, magnetic and electric fields of the TE102 mode
at ωc/2π = 8.488 GHz (Fig. 20a). The TE103 cavity
mode at 10.461 GHz is used to read out the qubit state.
At temperatures of about 10 mK in a dilution refrigera-
tor all relevant modes are close to their (vacuum) ground
state.

The YIG sphere with a diameter of 0.5 mm is mag-
netized to saturation by a pair of permanent magnets
placed outside the cavity that generate a magnetic field
of ∼ 0.29 T at the YIG sphere. The Kittel and TE102

cavity modes are coupled through a magnetic-dipole in-
teraction of coupling strength gm−c/2π = 21.0 MHz. The
transmon-type superconducting qubit has a resonant fre-
quency of ωq/2π = 8.136 GHz with an anharmonicity
Kq/2π = −0.158 GHz. The 0.7 mm-long dipole an-
tenna of the qubit leads to an electric-dipole interac-
tion with the TE102 cavity mode with coupling strength
gq−c/2π = 121 MHz, a typical value for circuit QED in
3D cavities (Paik et al., 2011).

The absorption spectrum of the qubit measured
through two-tone spectroscopy probes the coupling be-
tween the Kittel magnon mode and the qubit. The re-
flection coefficient r of the probe tone, close to resonance
with the TE103 cavity mode, is measured as a func-
tion of the frequency close to resonance with the qubit.
The dispersive interaction between the qubit and the
TE103 cavity mode causes changes in the reflection co-
efficient r when the spectroscopy tone is absorbed by the
qubit (Schuster et al., 2005). The qubit spectrum mea-
sured as a function of coil current, and thereby magnon
frequency, shows an avoided crossing, the hallmark of
a strong coherent interaction (Fig. 20b). Indeed, the
qubit-magnon coupling strength gq-m/2π = 10.0 MHz is
larger than the line widths of the qubit and the Kittel
mode, κq/2π = 1.2 MHz and κm/2π = 1.3 MHz, respec-
tively. Furthermore, this value agrees well with the value
of 11.8 MHz calculated with Eq. (121) when considering
only the TE102 cavity mode.

A few follow-up experiments corroborated this first
demonstration of strong qubit-magnon coupling. First,
realigning the YIG sphere reduces the coupling to higher-
index magnetostatic modes (Tabuchi et al., 2016). Sec-
ondly, Lachance-Quirion et al., 2017, 2020 employed a
device identical to that of Tabuchi et al., 2015, but with
a qubit of resonance frequency ωq/2π = 7.991 GHz, i.e.
a larger detuning with respect to the TE102 cavity mode.
A three-dimensional MW cavity made out of both cop-
per and aluminum also indicates strong coupling (Wang
et al., 2019b), but it is currently unclear how much that
design reduces internal losses.

2. Dispersive interaction

The dispersive regime of quantum magnonics was first
accessed by Lachance-Quirion et al., 2017. The disper-
sive interaction between the qubit and the Kittel mode
was monitored by the qubit absorption spectrum in the
presence of a pump tone close to resonance with the Kit-
tel mode that injects an average number of magnons nm

into the Kittel mode (Rezende and Zagury, 1969).

According to Eq. (122), the qubit-magnon dispersive
interaction shifts the qubit frequency by 2χq-m for each
injected magnon (Gambetta et al., 2006). The observed
shift per magnon of 2χq-m/2π = 3.0 MHz is larger
than the line widths of the qubit and the Kittel mode
of respectively 0.78 MHz and 1.3 MHz, i.e. the experi-
ment reached the strong dispersive regime of quantum
magnonics (Lachance-Quirion et al., 2017). Figure 21a
shows individually resolved magnon Fock states |nm〉 in
the qubit spectrum.

Both the average number of magnons nm (Fig. 21b)
and the probability pnm

of having nm magnons (Fig. 21c)
were obtained by fitting an analytical model to the
data (Gambetta et al., 2006). The magnon population
nm in the absence of a pump confirms that the Kit-
tel mode is well thermalized with a population below
0.01 magnons at T ∼ 10 mK. The magnon probabili-
ties are Poissonian distributed, as expected for a linear
system such as the Kittel mode (Rezende and Zagury,
1969).

The first experimental demonstration of a strong dis-
persive interaction in quantum magnonics was achieved
in the straddling regime with ωm ∈ [ωq, ωq + Kq] (Koch
et al., 2007; Lachance-Quirion et al., 2017). A large dis-
persive shift can also be obtained by tuning the angu-
lar frequency of the Kittel mode ωm close to ωq + Kq

of the second qubit transition (Lachance-Quirion et al.,
2019, 2020; Wolski et al., 2020), which also greatly limits
the self-Kerr nonlinearity of the Kittel mode (Juliusson
et al., 2016; Lachance-Quirion et al., 2017). In these pa-
pers, Ramsey interferometry characterizes the strong dis-
persive interaction better than standard two-tone spec-
troscopy by avoiding the broadening of the qubit absorp-
tion spectrum from both the probe and spectroscopy MW
tones.

3. Other qubit-mediated interactions

Tabuchi et al., 2015 demonstrated the parametric cou-
pling described by Eq. (124). Here, the Kittel mode
was detuned from the qubit by ∆q-m/2π = −274 MHz,
with modulus much larger than the coupling strength
gq-m/2π = 10 MHz. A large detuning suppresses the
static coupling of Eq. (120). However, driving the hybrid
system at an angular frequency ωD close to the aver-
age angular frequency (ωq + ωm) /2 leads to an avoided
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FIG. 20 (Color online) (a) Schematic of a hybrid device with strong coupling between a magnet and a qubit. A transmon-
type superconducting qubit and a ferrimagnetic YIG sphere of a diameter of 0.5 mm are placed inside a 3D MW cavity near
the antinode of the electric and magnetic fields of the TE102 cavity mode, respectively. A static magnetic field saturates the
magnetization. (b) Qubit spectrum Re(∆r) measured as a function of the current in a superconducting coil that tunes the
static magnetic field at the magnetic sphere. The avoided crossing is the signature of a strong coherent interaction between
the qubit and the Kittel mode with a coupling strength gq-m/2π = 10.0 MHz. Adapted from Tabuchi et al., 2015.
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FIG. 21 (Color online) (a) Qubit spectrum measured without (bottom) and with (top) MW excitation close to the ferromagnetic
resonance of the YIG sphere. The solid black lines are fits to the data. A shift per excited magnon of 2χq-m/2π = 3.0 MHz is
observed, demonstrating the strong dispersive “cross-Kerr” interaction Eq. (125). The components of the spectrum contributed
by the different magnon Fock states |nm〉 are indicated by the color-coded shaded areas generated by the fit (black lines). The
integer vertical dashed lines indicate the frequencies of the qubit coupled to the Kittel mode in the magnon Fock states |nm〉.
(b) Magnon population nm as a function the excitation power. The black dashed line indicates a linear fit to the data. The solid
gold line is a numerical fit with a “self-Kerr” interaction Km/2π = 0.2 MHz for the Kittel mode. The inset shows the difference
∆nm between the data and the nonlinear fit from the linear fit. (c) Probability distributions pnm of the first four magnon Fock
states as a function of the excitation power. The solid lines show the Poisson distributions based on the magnon populations
shown in (b). The inset shows the probability distribution for the highest excitation power. Adapted from Lachance-Quirion
et al., 2017.

crossing in the spectrum of the Kittel mode, i.e., strong
coherent coupling. The parametric coupling strength in-
creases linearly with the drive power up to g̃q-m/2π =
3.4 MHz (Tabuchi et al., 2015) and generates a time-

controlled interaction between the fixed-frequency trans-
mon qubit and the Kittel mode, whose frequency in
the current implementations can only be changed on a
timescale much longer than the lifetimes.
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Lachance-Quirion et al., 2017 observed the qubit-
mediated self-Kerr interaction of the Kittel mode as de-
scribed by Eq. (126) in terms of a nonlinear scaling of
the magnon population nm as a function of the pump
power close to resonance with the Kittel mode (Fig. 21b).
The observed self-Kerr coefficient Km/2π = 0.2 MHz
was smaller than the line width κm/2π = 1.3 MHz of
the mode, therefore keeping the Kittel mode in the lin-
ear regime at the level of a single magnon. Because the
self-Kerr interaction depends strongly on the frequency
of the Kittel mode relative to the frequencies of the first
two qubit transitions (Juliusson et al., 2016; Lachance-
Quirion et al., 2017), it can readily be controlled with a
static magnetic field.

C. Applications and challenges

1. Quantum sensors

Quantum magnonics can be applied to quantum sens-
ing. The engineering of a strong coherent interaction be-
tween magnets and superconducting qubits allows apply-
ing the tools developed in quantum technologies (Degen
et al., 2017) to, for example, sensing of magnons. The
strong dispersive regime of quantum magnonics was used
to entangle the Kittel mode of a millimeter-sized YIG
sphere with a superconducting qubit (Lachance-Quirion
et al., 2020). The high-fidelity single-shot readout of the
qubit state allows detection of a single magnon with a
quantum efficiency reaching ∼ 70%. The protocol can
be made quantum non-demolition (QND) by replacing
the non-QND high-power qubit readout technique (Reed
et al., 2010) by a dispersive readout technique (Walter
et al., 2017). The demonstration of the single-magnon
detector, the equivalent of the single-photon detector to
magnonics, paves the way, for example, to the heralded
generation of single magnons.

Alternatively, a steady-state magnon population
can be detected with a sensitivity of approximately
10−3 magnons/

√
Hz through Ramsey interferometry of

a qubit that is dispersively coupled to a magnon
mode (Wolski et al., 2020). In the strong dispersive
regime, the qubit is sensitive to the magnon population
through dissipation by the magnons, in stark contrast
to the entanglement-based method of Lachance-Quirion
et al., 2020. Such a sensing method could be useful to
characterize weak magnon-creation processes.

All protocols of quantum sensing rely on the coher-
ence of the qubit (Degen et al., 2017). The performance
of single-magnon detectors can be improved via the qubit
coherence time of presently T ∗2 ∼ 1 µs (Lachance-Quirion
et al., 2020), limited by relaxation through the cavity
modes and dephasing from a finite thermal population
of the same modes (Lachance-Quirion et al., 2017, 2020;
Tabuchi et al., 2015, 2016). Both contributions can be

suppressed by smaller internal losses of the cavity that
are of the order of 1 MHz in 3D MW cavities made out
of copper (Lachance-Quirion et al., 2017, 2020; Tabuchi
et al., 2015, 2016). Superconducting MW cavities with
lower internal losses that still allow saturation of the
magnetic order, would greatly improve quantum sens-
ing of magnons. Finally, the

√
N -enhancement of the

magnetic-dipole interaction between magnetostatic and
cavity modes can be harnessed in quantum magnonics to
improve the detection of static or MW magnetic fields
close to the FMR frequency (Crescini et al., 2020a,b).

2. Quantum transducers

Quantum magnonics may lead to a bidirectional MW-
to-optical quantum transducer for MW-only supercon-
ducting circuits (Haigh et al., 2016; Hisatomi et al., 2016;
Lachance-Quirion et al., 2019). We discussed the per-
spectives to achieve strong coupling between magnons
and an optical cavity in Section VI. Here we address
the MW part, which is, at the time of this review, sig-
nificantly more advanced. Quantum information trans-
fer from a superconducting qubit and optical light via
a magnonic transducer requires faithful encoding of an
arbitrary quantum state of the qubit into a nonclassical
state of magnons. This can be achieved by employing
both the resonant and dispersive regimes of the strong
coherent coupling of the fundamental excitations of a
magnet and a superconducting qubit.

In the resonant regime, the beam-splitter interaction
Eq (119) can be used to transfer an excitation in the
qubit to a single magnon in the Kittel mode (Chu et al.,
2018; Hofheinz et al., 2009, 2008; Meekhof et al., 1996;
Satzinger et al., 2018) by dynamical control of either
the detuning or the coupling strength (Hofheinz et al.,
2009). In quantum magnonics this can be achieved by
two methods. First, the parametric coupling described
by the Hamiltonian of Eq. (124) can be used to obtain
a tunable coupling strength between the magnetostatic
mode and the qubit. Secondly, the detuning between
both systems can be tuned dynamically either by chang-
ing the frequency of a flux-tunable qubit (Chu et al.,
2018; Hofheinz et al., 2009, 2008; Satzinger et al., 2018)
or a fixed-frequency qubit through a time-controlled ac-
Stark shift (Chu et al., 2017).

In the dispersive regime, the interaction described
by the Hamiltonian of Eq. (122) can be used to en-
code arbitrary qubit states into a nonclassical state of
magnons (Leghtas et al., 2013; Vlastakis et al., 2013).
Such schemes have the advantage of working with qubits
and magnon modes of fixed frequency that are coupled
through a static dispersive strong interaction. How-
ever, the encoding schemes based on such a dispersive
interaction are inherently slower than those based on
a resonant interaction. Both approaches require larger
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coupling strengths than demonstrated to date, as well
as longer qubit coherence times and magnon lifetimes.
The qubit-magnon coupling strength can be increased
by careful quantum engineering, for example, by increas-
ing the magnetic-dipole coupling strengths between the
Kittel and cavity modes without increasing losses. This
can be achieved by increasing the spatial overlap, char-
acterized by a filling factor η between the Kittel and the
cavity modes since gm−c ∝ √η. Increasing the lifetime
of magnons, beyond the current ∼ 100 ns, requires un-
derstanding and control of the magnon decay through a
bath of two-level systems of unknown microscopic ori-
gin (Kosen et al., 2019; Pfirrmann et al., 2019; Tabuchi
et al., 2014).

VIII. CHALLENGES

The past ten years witnessed systematic studies of
the coherent magnon-photon interaction in cavities and
resonators over a wide frequency spectrum in small
structures and devices, with contributions from optics,
magnetism, acoustics, MW technology, and spintron-
ics (Awschalom et al., 2021; Li et al., 2020). Our re-
view only provides a somewhat subjective snapshot of the
state of the art of this rapidly progressing field. In the
following, we sketch some challenges for the next decade.

• Materials. YIG is the material of choice because
of its high Curie temperature and superior op-
tical, magnetic, and mechanical quality even for
thin films (Schmidt et al., 2020) that facilitates
strong coupling of macroscopic samples at room
temperature. Nevertheless, the search for alterna-
tive materials continues. Rare-earth iron garnets
with open 4f shells show large magneto-optical con-
stants (Dionne, 2009) and thin film perpendicular
magnetization (Avci, 2021), be it at the cost of in-
creased Gilbert damping. Antiferromagnetic insu-
lators grow with high crystal perfection, but their
resonance frequencies are usually in the THz regime
for which high-quality cavities still have to be devel-
oped (Bia lek et al., 2020). Mono- or multilayers of
two-dimensional van der Waals magnets are a new
and promising class of materials with dimension-
ally enhanced magnon-photon interactions (Man-
dal et al., 2020).

• Nanostructures. We expect increased activity in
the cavity magnonics of nanostructures, because
smaller sized magnets facilitate the coherent con-
trol of the order parameter. YIG is a difficult ma-
terial to pattern at the nanoscale without sacri-
ficing its magnetic quality, but progress is being
made (Schmidt et al., 2020). We have seen that
the coupling with light is strongly enhanced with
decreasing volume of the magnet since the overlap

integral of the magnon-photon matrix elements is
proportional to V −1/2. Nanoscale periodic struc-
tures in the form of optomagnonic crystals can
be a promising approach to this end (Graf et al.,
2021). The long-term goal is to develop a supe-
rior transducer between MW and light for clas-
sical and quantum information exchange applica-
tions. The decrease in the coupling to MWs with
the number of spins can on the other hand be com-
pensated by cavity design, which leads to strong
magnon-photon coupling in conventional metallic
magnets (Hou and Liu, 2019; Li et al., 2019).

• Nonlinearities. The ease by which magnets can
be driven into the nonlinear regime by MWs is an
important advantage over other systems (Bertotti
et al., 2009). Non-linearities cause chaotic dynam-
ics, instabilities of the Kittel mode, allow para-
metric excitation, and may lead to magnon con-
densation with associated spin superfluidity (Sonin,
2020). Theory predicts that the increased coupling
should lead to complex non-linear behavior beyond
the Duffing model (Elyasi et al., 2020; Kusminskiy
et al., 2016). We expect more experimental em-
phasis on such nonlinearities in high-quality MW
cavities.

• Multiple loads. The coherent coupling of various
systems in MW cavities has been a main effort
of cavity QED research and the coupling of mag-
nets with superconducting qubits has been a mile-
stone of cavity magnonics. The coherent coupling
between magnetic systems is of great interest as
well, since the emergence and control of dark and
bright (super- and subluminescent) states can be
applied to memories (Yu et al., 2020a; Zhang et al.,
2016). The MW photons couple magnets to form
exotic “magnon molecules”(Yu et al., 2020a; Zare
Rameshti and Bauer, 2018).

• Hybrid systems. We reviewed only the physics of
spin in photon cavities and resonators. However,
the confinement of any wave leads to strong modu-
lation of its density of states and the interaction
with spins inside. The strong coupling between
a Kittel mode and the spin waves in a proximity
film leads to remote coherent dynamic coupling be-
tween different magnets (Chen et al., 2019). The
elastic and magnetic collective modes in a magnet
are coupled, holding the promise of combining the
best features of optomechanics and optomagnon-
ics (Colombano et al., 2019; Zhang et al., 2016),
with applications to thermometry (Potts et al.,
2020). The strong coupling between magnons and
phonons would allow for pumping of a phonon spin
current into a phononic cavity. A material with
high acoustic quality allows for coherent coupling
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of spins over macroscopic distances at room tem-
perature (An et al., 2020).

• Chirality. A unique feature of magnetic order
is its broken time reversal symmetry. The well-
known chirality of (Damon-Eshbach) surface spin
waves follows from the topology of magnetic half
space (Yamamoto et al., 2019). The non-chiral
magnons in thin films can be excited unidirection-
ally by chiral magnetodipolar stray fields (Chen
et al., 2019; Yu et al., 2019a,b) or at chirality lines
of MW modes in cavities and wave guides (Yu et al.,
2020a). Analogous effects exist for spin waves cou-
pled to surface phonons (Yamamoto et al., 2020)
and plasmons (Oue and Matsuo, 2020).

• Techniques. A challenge that accompanies the
trends above is the design of MW cavities to smaller
sizes and higher frequencies without reduced qual-
ity. The efficiency of the proximity coupling of laser
light to magnets by tapered fibers or prisms could
be improved. Advanced magnetometry with NV
centers in diamond provides spatiotemporal images
of the stray fields of and thermal (Du et al., 2017)
and coherent magnons (Bertelli et al., 2020, 2021;
Zhou et al., 2020) with valuable information of the
coupling process.

• Quantum magnonics. The observation of macro-
scopic quantum effects in magnonics remains a or
the major challenge. Quantum effects can be un-
equivocally observed only in the non-linear regime
and the relatively large damping of even YIG
has to be overcome. As reported in Sec. VII,
quantum effects are observed by coherent coupling
to the genuine quantum state in superconducting
qubits that gives access to its nonlinear dynam-
ics. Quantum effects in purely magnetic systems
require cooling to low temperatures in order to sup-
press dephasing by phonons. In the strong cou-
pling regime, quantum effects are observable by
either sufficiently fast measurements or studies of
the magnetic noise properties. The prize would be
the predicted magnon squeezing of the massive and
distillable entanglement of the magnon-photon sys-
tem (Elyasi et al., 2020). Another route for creat-
ing nonclassical magnetic states, such as magnon
Fock states (Bittencourt et al., 2019) and spin cat
states (Sharma et al., 2021) are protocols involving
heralding, where the nonlinearity is provided by the
projective measurement.
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N. Kukharchyk, A. D. Wieck, M. Siegel, A. V. Ustinov,
and P. Bushev (2014), Physical Review B 90 (7), 075112.

Van Vleck, J. H. (1964), J. Appl. Phys 35, 882.
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