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The field of cavity optomechanics is reviewed. This field explores the interaction between

electromagnetic radiation and nanomechanical or micromechanical motion. This review covers

the basics of optical cavities and mechanical resonators, their mutual optomechanical interaction

mediated by the radiation-pressure force, the large variety of experimental systems which exhibit this

interaction, optical measurements of mechanical motion, dynamical backaction amplification and

cooling, nonlinear dynamics, multimode optomechanics, and proposals for future cavity-quantum-

optomechanics experiments. In addition, the perspectives for fundamental quantum physics and for

possible applications of optomechanical devices are described.

DOI: 10.1103/RevModPhys.86.1391 PACS numbers: 42.50.−p

CONTENTS

I. Introduction 1392

II. Optical Cavities and Mechanical Resonators 1394

A. Optical resonators 1395

1. Basic properties 1395

2. Input-output formalism for an optical cavity 1395

B. Mechanical resonators 1397

1. Mechanical normal modes 1397

2. Mechanical dissipation 1398

3. Susceptibility, noise spectra, and

fluctuation-dissipation theorem 1398

III. Principles of Optomechanical Coupling 1399

A. The radiation-pressure force and optomechanical

coupling 1399

B. Hamiltonian formulation 1400

C. Optomechanical equations of motion 1402

IV. Experimental Realizations and Optomechanical

Parameters 1404

A. Optomechanical parameters 1405

B. Suspended mirrors 1405

C. Optical microresonators 1406

D. Waveguides and photonic crystal cavities 1407

E. Suspended and levitated nano-objects 1408

F. Microwave resonators 1408

G. Ultracold atoms 1409

V. Basic Consequences of the Optomechanical Interaction 1409

A. Static phenomena: Optical potential and bistability 1409

B. Dynamical backaction 1410

1. Optical spring effect 1411

2. Optomechanical damping rate 1411

a. Mechanical picture 1411

b. Scattering picture 1412

c. Feedback picture 1413

d. Resolved-sideband regime 1413

e. Doppler regime 1413

VI. Quantum Optical Measurements of Mechanical

Motion 1413

A. Parametric displacement sensing and the

standard quantum limit 1414

1. Introduction and qualitative discussion 1414

2. The standard quantum limit 1414

B. Optical QND measurements 1417

1. Single-quadrature measurements 1417

2. Mechanical Fock-state detection 1418

3. Optical feedback cooling (cold damping) 1419

VII. Optomechanical Cooling 1419

A. Quantum theory of radiation-pressure cooling 1420

1. Finite thermal cavity occupancy 1421

2. Equations-of-motion approach 1421

3. Optical output spectrum 1422

B. Experiments and practical limitations 1423

1. Experimental developments 1423

2. Laser phase noise 1424

3. Cavity frequency noise 1424

C. Strong-coupling regime 1424

1. Optomechanical normal-mode splitting 1424

2. Optomechanically induced transparency 1426

*
markus.aspelmeyer@univie.ac.at

†
tobias.kippenberg@epfl.ch

‡
Florian.Marquardt@physik.uni‑erlangen.de

REVIEWS OF MODERN PHYSICS, VOLUME 86, OCTOBER–DECEMBER 2014

0034-6861=2014=86(4)=1391(62) 1391 © 2014 American Physical Society

http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391


3. Optomechanically induced amplification and

electromagnetically induced absorption 1428

VIII. Classical Nonlinear Dynamics 1428

A. Parametric instability and attractor diagram 1429

B. Chaotic dynamics 1431

IX. Multimode Optomechanics 1431

X. Quantum Optomechanics 1433

A. Light-assisted coherent manipulation of mechanics 1433

B. Mechanics-assisted readout and manipulation

of light 1433

C. Optomechanical entanglement 1434

D. Quantum hybrid systems 1436

E. Quantum protocols 1437

F. Nonlinear quantum optomechanics 1439

XI. Future Perspectives 1442

A. Foundational aspects 1442

B. Applications 1443

Acknowledgments 1444

Appendix: Experimental Challenges 1444

1. Influence of classical excess laser phase noise

on laser cooling 1444

2. Influence of cavity frequency noise on laser cooling 1444

a. Finite thermal cavity occupancy 1445

3. Influence of classical excess laser noise

on sideband thermometry 1445

References 1445

I. INTRODUCTION

Light carries momentum which gives rise to radiation-

pressure forces. These forces were already postulated in the

17th century by Kepler, who noted that the dust tails of comets

point away from the Sun during a comet transit (Kepler,

1619). The first unambiguous experimental demonstrations

of the radiation-pressure force predicted by Maxwell were

performed using a light mill configuration (Lebedew, 1901;

Nichols and Hull, 1901). A careful analysis of these experi-

ments was required to distinguish the phenomenon from

thermal effects that had dominated earlier observations. As

early as 1909, Einstein derived the statistics of the radiation-

pressure force fluctuations acting on a movable mirror

(Einstein, 1909), including the frictional effects of the radi-

ation force, and this analysis allowed him to reveal the dual

wave-particle nature of blackbody radiation. In pioneering

experiments, both the linear and angular momentum transfers

of photons to atoms and macroscopic objects were demon-

strated by Frisch (1933) and Beth (1936), respectively.

In the 1970s Ashkin demonstrated the fact that focused

laser beams can be used to trap and control dielectric particles,

which also included feedback cooling (Ashkin, 1978, 2006).

The nonconservative nature of the radiation-pressure force and

the resulting possibility to use it for cooling atomic motion

were first pointed out by Hänsch and Schawlow (1975) and

Wineland and Dehmelt (1975). Laser cooling was sub-

sequently realized experimentally in the 1980s and has since

become an extraordinarily important technique (Stenholm,

1986). It has, for example, allowed cooling of ions to their

motional ground state and it is the underlying resource for

ultracold atom experiments. Many applications have been

enabled by laser cooling (Metcalf and van der Straten, 1999),

including optical atomic clocks, precision measurements of

the gravitational field, and systematic studies of quantum

many-body physics in trapped clouds of atoms (Bloch and

Zwerger, 2008).

The role of radiation pressure and its ability to provide

cooling for larger objects were already investigated earlier by

Braginsky in the context of interferometers. Braginsky con-

sidered the dynamical influence of radiation pressure on a

harmonically suspended end mirror of a cavity (see Fig. 1).

His analysis revealed that the retarded nature of the force, due

to the finite cavity lifetime, provides either damping or

antidamping of mechanical motion, two effects that he was

able to demonstrate in pioneering experiments using a micro-

wave cavity (Braginsky and Manukin, 1967; Braginsky,

Manukin, and Tikhonov, 1970). In later experiments, these

phenomena were also observed in microwave-coupled

kg-scale mechanical resonators (Cuthbertson et al., 1996).

Independently, similar physics was explored theoretically for

solid-state vibrations (Dykman, 1978). In the optical domain,

the first cavity-optomechanical experiment (Dorsel et al.,

1983) demonstrated bistability of the radiation-pressure force

acting on a macroscopic end mirror.

Braginsky also addressed the fundamental consequences of

the quantum fluctuations of radiation pressure and demon-

strated that they impose a limit on how accurately the position

of a free test mass (e.g., a mirror) can be measured (Braginsky

and Manukin, 1977; Braginsky and Khalili, 1995). Detailed

analyses by Caves (1980), Jaekel and Renaud (1991), and

Pace, Collett, and Walls (1993) clarified the role of this

ponderomotive quantum noise in interferometers. These

works established the standard quantum limit for continuous

optical
cavity

mechanical
mode

laser

microwave drive

LC circuit

vibrating
capacitor

FIG. 1 (color online). Schematic of a generic optomechanical

system, both in the optical domain (top), with a laser-driven optical

cavity and a vibrating end mirror, and in the microwave domain

(bottom), with a vibrating capacitor. Here we depicted a micro-

wave drive entering along a transmission line that is inductively

coupled to the LC circuit representing the microwave resonator.
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position detection, which is essential for gravitational wave

detectors such as LIGO or VIRGO.

During the 1990s, several aspects of quantum cavity-

optomechanical systems started to be explored theoretically.

These include squeezing of light (Fabre et al., 1994; Mancini

and Tombesi, 1994) and quantum nondemolition (QND)

detection of the light intensity (Jacobs et al., 1994; Pinard,

Fabre, and Heidmann, 1995), which exploit the effective Kerr

nonlinearity generated by the optomechanical interaction. It

was also pointed out that for extremely strong optomechanical

coupling the resulting quantum nonlinearities could give

rise to nonclassical and entangled states of the light field

and the mechanics (Bose, Jacobs, and Knight, 1997; Mancini,

Man’ko, and Tombesi, 1997). Furthermore, feedback cooling

by radiation pressure was suggested (Mancini, Vitali, and

Tombesi, 1998). Around the same time, in a parallel develop-

ment, cavity-assisted laser cooling was proposed as a method

to cool the motion of atoms and molecules that lack closed

internal transitions (Hechenblaikner et al., 1998; Vuletic and

Chu, 2000).

On the experimental side, optical feedback cooling based

on the radiation-pressure force was first demonstrated by

Cohadon, Heidmann, and Pinard (1999) for the vibrational

modes of a macroscopic end mirror. This approach was

later taken to much lower temperatures (Kleckner and

Bouwmeester, 2006; Poggio et al., 2007). At the same time,

there was a trend to miniaturize the mechanical element. For

example, the thermal motion of a mm-scale mirror was

monitored in a cryogenic optical cavity (Tittonen et al.,

1999). Producing high-quality optical Fabry-Pérot cavities

below that scale, however, turned out to be very challenging.

In spite of this, it was still possible to observe optomechanical

effects of retarded radiation forces in microscale setups

where the forces were of photothermal origin, effectively

replacing the cavity lifetime with a thermal time constant.

Examples include demonstration of the optical spring effect

(Vogel et al., 2003), feedback damping (Mertz, Marti, and

Mlynek, 1993), self-induced oscillations (Zalalutdinov et al.,

2001; Höhberger and Karrai, 2004), and cavity cooling due to

the dynamical backaction of retarded photothermal light

forces (Höhberger-Metzger and Karrai, 2004).

Yet for future applications in quantum coherent optome-

chanics it is highly desirable to be able to exploit the

nondissipative radiation-pressure force. The advent of both

optical microcavities and advanced nanofabrication tech-

niques eventually allowed this regime to be entered. In

2005 it was discovered that optical microtoroid resonators

with their high optical finesse at the same time contain

mechanical modes and thus are able to display optomechan-

ical effects, in particular, radiation-pressure-induced self-

oscillations (Carmon et al., 2005; Kippenberg et al., 2005;

Rokhsari et al., 2005) (i.e., the effect Braginsky termed

“parametric instability”
1
). In 2006 three different teams

demonstrated radiation-pressure cavity cooling, for suspended

micromirrors (Arcizet et al., 2006a; Gigan et al., 2006) and for

microtoroids (Schliesser et al., 2006). Since then, cavity

optomechanics has advanced rapidly and optomechanical

coupling has been reported in numerous novel systems.

These include membranes (Thompson et al., 2008) and

nanorods (Favero et al., 2009) inside Fabry-Pérot resonators,

whisperinggallerymicrodisks (Jiang et al., 2009;Wiederhecker

et al., 2009) andmicrospheres (Ma et al., 2007; Park andWang,

2009; Tomes and Carmon, 2009), photonic crystals

(Eichenfield, Camacho et al., 2009; Eichenfield, Chan,

Camacho et al., 2009), and evanescently coupled nanobeams

(Anetsberger et al., 2009). In addition, cavity optomechanics

has been demonstrated for the mechanical excitations of cold

atom clouds (Brennecke et al., 2008; Murch et al., 2008).

Optomechanical interactions are also present in optical wave-

guides, as first studied and observed in the context of squeezing,

where the confined mechanical modes of fibers lead to guided

acoustic-wave scattering (Shelby, Levenson, and Bayer, 1985).

Nowadays there are a number of systems where such opto-

mechanical interactions are explored in the absence of a cavity,

such as waveguides in photonic circuits or photonic crystal

fibers; see, e.g., Li et al. (2008) and Kang et al. (2009). These

setups lie somewhat outside the scope of the concepts presented

in this review, butwe emphasize that they arevery promising for

applications due to their large bandwidth.

Optomechanical coupling has also been realized using

microfabricated superconducting resonators, by embedding

a nanomechanical beam inside a superconducting transmis-

sion line microwave cavity (Regal, Teufel, and Lehnert, 2008)

or by incorporating a flexible aluminum membrane into a

lumped element superconducting resonator (Teufel, Li et al.,

2011). In these systems the mechanical motion capacitively

couples to the microwave cavity. This approach ties cavity

optomechanics to an independent development that has been

garnering momentum since the late 1990s, which is concerned

with measuring and controlling the motion of nanomechanical

and micromechanical oscillators using electrical and other

nonoptical coupling techniques. Examples include coupling of

mechanical oscillators to single-electron transistors (Cleland

et al., 2002; LaHaye et al., 2004; Naik et al., 2006) or a

quantum point contact (Cleland et al., 2002; Flowers-Jacobs,

Schmidt, and Lehnert, 2007). Besides a wealth of possible

applications for such devices in sensitive detection (Cleland

and Roukes, 1998; LaHaye et al., 2004; Rugar et al., 2004),

these methods provide the possibility of realizing mechanical

quantum devices (Blencowe, 2005; Ekinci and Roukes, 2005;

Schwab and Roukes, 2005) by direct interaction with two-level

quantum systems (Cleland andGeller, 2004;Rugar et al., 2004;

Wilson-Rae, Zoller, and Imamoglu, 2004; LaHaye et al., 2009;

O’Connell et al., 2010; Arcizet et al., 2011; Kolkowitz et al.,

2012). For recent comprehensive general reviews of nano-

mechanical systems (in particular, electromechanical devices),

we refer the interested reader to Blencowe (2005), Greenberg,

Pashkin, and Ilichev (2012), and Poot and van der Zant (2012).

It should be noted that in atomic systems quantum coherent

control of mechanical motion is state of the art since early

pioneering experiments with trapped ions [for reviews, see

Leibfried et al. (2003), Blatt and Wineland (2008), and

Wineland (2013)]. In fact, quantum information processing

1
Braginsky called the process of dynamical backaction amplifi-

cation and the concomitant self-induced coherent oscillations

“parametric oscillatory instability,” as this effect is undesirable in

gravitational wave interferometers which were the basis of his

analysis.
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in these systems relies on using the quantum states of

motion to mediate interactions between distant atomic spins

(Cirac and Zoller, 1995). In contrast, the fabricated nano-

mechanical and micromechanical structures that form the

subject of this review extend this level of control to a different

realm, one of objects with large masses and devices with a

great flexibility in design and the possibility to integrate them

in on-chip architectures.

There are several different motivations that drive the rapidly

growing interest into cavity optomechanics. On the one hand,

there is the highly sensitive optical detection of small forces,

displacements, masses, and accelerations. On the other hand,

cavity quantum optomechanics promises to manipulate and

detect mechanical motion in the quantum regime using light,

creating nonclassical states of light and mechanical motion.

These tools form the basis for applications in quantum

information processing, where optomechanical devices could

serve as coherent light-matter interfaces, for example, to

interconvert information stored in solid-state qubits into flying

photonic qubits. Another example is the ability to build hybrid

quantum devices that combine otherwise incompatible degrees

of freedoms of different physical systems. At the same time, it

offers a route toward fundamental tests of quantum mechanics

in a hitherto unaccessible parameter regime of size and mass.

A number of reviews (Kippenberg and Vahala, 2007, 2008;

Favero and Karrai, 2009; Genes et al., 2009; Marquardt and

Girvin, 2009; Aspelmeyer et al., 2010; Schliesser and

Kippenberg, 2010; Aspelmeyer, Meystre, and Schwab,

2012; Cole and Aspelmeyer, 2012; Meystre, 2013) and brief

commentary papers (Karrai, 2006; Cleland, 2009; Cole and

Aspelmeyer, 2011; Marquardt, 2011) on cavity optome-

chanics have been published during the past few years, and

the topic has also been discussed as part of larger reviews on

nanomechanical systems (Greenberg, Pashkin, and Ilichev,

2012; Poot and van der Zant, 2012). Here we aim for a

comprehensive treatment that incorporates the most recent

advances and points the way toward future challenges.

This review is organized follows: We first discuss optical

cavities, mechanical resonators, the basic optomechanical

interaction between them, and the large range of experimental

setups and parameters that are now available. We then go on to

derive the basic consequences of the interaction (such as

optomechanical damping and the optical spring effect),

describe various measurement schemes, and present the quan-

tum theory of optomechanical cooling. After studying non-

linear effects in the classical regime, we address multimode

setups and the wide field of proposed applications in the

quantum domain, before concluding with an outlook. A list of

symbols and abbreviations is given in Table I.

II. OPTICAL CAVITIES AND MECHANICAL

RESONATORS

In this section we recall the basic aspects of optical cavities

and mechanical resonators as needed to describe cavity-

optomechanical systems. Much more about these topics can

TABLE I. The most important symbols and some formulas used in this review.

Symbol Meaning

Ωm Mechanical frequency
Γm Mechanical damping rate
Qm Mechanical quality factor Qm ¼ Ωm=Γm

ωcav Cavity resonance frequency
ωL Laser frequency
Δ Laser detuning from the cavity resonance Δ ¼ ωL − ωcav

κ ¼ κex þ κ0 Overall cavity intensity decay rate, from input (κex) coupling and intrinsic (κ0) losses
g0 Optomechanical single-photon coupling strength, in Ĥint ¼ −ℏg0â

†âðb̂þ b̂†Þ
g Light-enhanced optomechanical coupling for the linearized regime g ¼ g0

ffiffiffiffiffiffiffiffi

n̄cav
p

G Optical frequency shift per displacement G ¼ ∂ωcav=∂x
C0 C0 ¼ 4g2

0
=Γmκ single-photon cooperativity

C C ¼ 4g2=Γmκ ¼ C0n̄cav (multiphoton) cooperativity
Cqu Cqu ¼ C=n̄th quantum cooperativity
xZPF Mechanical zero-point fluctuation amplitude xZPF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=2meffΩm

p

â Photon annihilation operator, with â†â the circulating photon number
b̂ Phonon annihilation operator, with b̂†b̂ the phonon number
n̄ Average number of phonons stored in the mechanical resonator n̄ ¼ hb̂†b̂i
n̄th Average phonon number in thermal equilibrium n̄th ¼ ðeℏΩm=kBT − 1Þ−1
n̄cav Photon number circulating inside the cavity n̄cav ¼ hâ†âi
P Incoming laser power

χoptðωÞ Optical susceptibility of the cavity χoptðωÞ ¼ ½κ=2 − iðωþ ΔÞ�−1
χmðωÞ Mechanical susceptibility χmðωÞ ¼ ½meffðΩ2

m − ω2Þ − imeffΓmω�−1
SxxðωÞ Quantum noise spectrum SxxðωÞ≡

Rþ∞
−∞

dteiωthx̂ðtÞx̂ð0Þi (Sec. II.B.3)
S̄xxðωÞ Symmetrized spectral density S̄xxðωÞ≡ ðSxxðωÞ þ Sxxð−ωÞÞ=2
S̄ZPFxx ðωÞ (Symmetrized) mechanical zero-point fluctuations S̄ZPFxx ðωÞ ¼ ℏjImχmðωÞj

S̄addxx ðωÞ ≥ S̄ZPFxx ðωÞ Standard quantum limit result for added noise in displacement measurement (Sec. VI.A)
Γopt Optomechanical damping rate (Sec. V.B.2): max. 4n̄cavg

2

0
=κ for κ ≪ Ωm

δΩm Optical spring (mechanical frequency shift, Sec. V.B.1): 2n̄cavg0
2=Δ for κ ≪ Ωm; jΔj

n̄min Minimum reachable phonon number in laser cooling n̄min ¼ ðκ=4ΩmÞ2 for κ ≪ Ωm

γ Thermal decoherence rate γ ≈ Γmn̄th
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be found in standard textbooks: for quantum optics, see, e.g.,

Walls and Milburn (1994), and for nanomechanical systems,

see, e.g., Cleland (2003).

A. Optical resonators

Optical resonators can be realized experimentally in a

multitude of forms of which several types will be discussed

later in this review. Here we give a unifying description of

the optical properties and provide the mathematical descrip-

tion of a cavity that is pumped with a single monochromatic

laser source.

1. Basic properties

We first consider the classical response of a simple Fabry-

Pérot resonator, which will allow one to introduce the relevant

parameters to characterize an optical cavity. A Fabry-Pérot

resonator or etalon consisting of two highly reflective mirrors,

separated by a distance L, contains a series of resonances

which are given by the angular frequency ωcav;m ≈

m · πðc=LÞ. Here m is the integer mode number. The sepa-

ration of two longitudinal resonances is denoted as the free

spectral range (FSR) of the cavity:

ΔωFSR ¼ π
c

L
. ð1Þ

In the following, we almost always focus on a single optical

mode, whose frequency we denote ωcav.

Both the finite mirror transparencies and the internal

absorption or scattering out of the cavity lead to a finite

photon (intensity) cavity decay rate
2
κ.

A further useful quantity is the optical finesse F , which

gives the average number of round-trips before a photon

leaves the cavity:

F ≡
ΔωFSR

κ
. ð2Þ

The optical finesse is a useful parameter as it gives the

enhancement of the circulating power over the power that is

coupled into the resonator. Alternatively, we can introduce the

quality factor of the optical resonator,

Qopt ¼ ωcavτ; ð3Þ

where τ ¼ κ−1 is the photon lifetime. Note that the quality

factor is also used to characterize the damping rate of

mechanical resonators (see Sec. II.B.1). Generally speaking,

the cavity decay rate κ can have two contributions, one from

losses that are associated with the (useful) input (and output)

coupling and a second contribution from the internal losses. It

is useful to differentiate these two contributions. For the case

of a high-Q cavity, the total cavity loss rate can be written as

the sum of the individual contributions:

κ ¼ κex þ κ0:

Here κex refers to the loss rate associated with the input

coupling, and κ0 refers to the remaining loss rate. For example,

in the case of a waveguide coupled to a microtoroidal or

microsphere resonator, κex is the loss rate associated with

the waveguide-resonator interface and κ0 describes the light

absorption inside the resonator. For the case of a Fabry-Pérot

cavity, κex is the loss rate at the input cavity mirror and κ0
summarizes the loss rate inside the cavity, including trans-

mission losses at the second cavity mirror as well as all

scattering and absorption losses behind the first mirror. Note

that by splitting the total decay rate into these two contribu-

tions, we are assuming that the photons going into the κ0
decay channel will not be recorded. More generally, one could

distinguish between more decay channels (e.g., input mirror,

output mirror, absorption).

2. Input-output formalism for an optical cavity

Aquantummechanical description of a cavity that is coupled

to the outside electromagnetic environment can be given via

either master equations (if only the internal dynamics is of

interest) or a framework known as input-output theory, if one

alsowants to access the light field being emitted by (or reflected

from) the cavity. Input-output theory allows us to directly

model the quantum fluctuations injected from any coupling

port (such as the input mirror) into the cavity. In addition, it

takes into account any coherent laser drive that may be present.

Formore details beyond the brief discussion provided here, see,

e.g., Gardiner and Zoller (2004) and Clerk et al. (2010).

Input-output theory is formulated on the level of

Heisenberg equations of motion, describing the time evolution

of the field amplitude â inside the cavity. One finds that the

amplitude â experiences decay at a rate κ=2. At the same time,

its fluctuations are constantly replenished via the quantum

noise entering through the various ports of the cavity. In the

present case, we distinguish between the channels associated

with the input coupling (decay rate κex) and the other loss

processes (overall decay rate κ0, including loss through the

second mirror). The equation of motion reads

_̂a ¼ −
κ

2
âþ iΔâþ ffiffiffiffiffiffi

κex
p

âin þ
ffiffiffiffiffi

κ0
p

f̂in. ð4Þ

In the classical case, â would be replaced by a properly

normalized complex amplitude of the electric field of the

cavity mode under consideration. Indeed, the classical version

of this equation (and the following ones) can be obtained

by simply taking the average, such that â ↦ hâi. We have

chosen a frame rotating with the laser frequency ωL, i.e.,

âorig ¼ e−iωLtâhere, and have introduced the laser detuning

Δ ¼ ωL − ωcav with respect to the cavity mode (see also

Sec. III.B). Note that a similar equation can also be given for

the mechanical oscillator in order to describe its dissipation

and the associated noise force, comprising quantum and

thermal contributions (see Sec. II.C).

The input field âinðtÞ should be thought of as a stochastic

quantum field. In the simplest case, it represents the fluctuat-

ing vacuum electric field coupling to the cavity at time t, plus a
coherent laser drive. However, the same formalism can also be

used to describe squeezed states or any other more complex

field state. The field is normalized in such a way that

2
In this review we use κ for the photon (energy) decay rate, such

that the amplitude decay rate is given by κ=2. In some papers the latter

is denoted as κ.

Aspelmeyer, Kippenberg, and Marquardt: Cavity optomechanics 1395

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014



P ¼ ℏωLhâ†inâini

is the input power launched into the cavity, i.e., hâ†inâini is

the rate of photons arriving at the cavity (and ωcav ≈ ωL).

The same kind of description holds for the “unwanted”

channel associated with f̂in.
According to the input-output theory of open quantum

systems, the field that is reflected from the Fabry-Pérot resonator

(or coupled back into the coupling waveguide) is given by

âout ¼ âin −
ffiffiffiffiffiffi

κex
p

â. ð5Þ

Note that this input-output relation correctly describes the field

reflected from the input mirror of a Fabry-Pérot resonator.

Equation (5) also describes the transmitted pump field of

an evanescently coupled unidirectional waveguide-resonator

system, such as a whispering-gallery-mode resonator coupled

to awaveguide (Cai, Painter, and Vahala, 2000). In this case the

above expression yields the transmitted pump field.

We still have to consider the case of a two-sided cavity, e.g.,

a two-sided Fabry-Pérot cavity. Other examples in this review

include a waveguide coupled to superconducting stripline

cavities or fiber-taper coupled photonic crystal defect cavities.

In these cases there are both transmitted and reflected fields. In

all of these cases there are two options for the description. If

the field transmitted through the second mirror is not of

interest to the analysis, one may lump the effects of that mirror

into the decay rate κ0, which now represents both internal

losses and output coupling through the second mirror. If,

however, the field is important, it should be represented by an

additional term of the type

ffiffiffiffiffiffiffi

κ
ð2Þ
ex

q

â
ð2Þ
in in Eq. (4). Then an

equation analogous to Eq. (5) will hold for the output field â
ð2Þ
out

at that second mirror.

In the following, we are not concerned with noise proper-

ties, but focus instead on classical average quantities (for a

single-sided cavity), taking the average of Eqs. (4) and (5). We

can solve Eq. (4) first for the steady-state amplitude in the

presence of a monochromatic laser drive whose amplitude is

given by hâini. Noting that hf̂ini ¼ 0, we obtain

hâi ¼
ffiffiffiffiffiffi

κex
p hâini
κ=2 − iΔ

: ð6Þ

The expression linking the input field to the intracavity field
3

is referred to as the optical susceptibility,

χoptðωÞ≡
1

−iðωþ ΔÞ þ κ=2
.

Here ω denotes the Fourier frequency of the fluctuations of the

input field around its laser frequency ωL. We note that having

such a simple Lorentzian response is, of course, an approxi-

mation, as it neglects all other cavity resonances. This is

adequate as long as the decay rate κ is much smaller than

the frequency distance between resonances (free spectral

range), which, in particular, means we are dealing with a

cavity of high optical Q. The steady-state cavity population

n̄cav ¼ hâ†âi, i.e., the average number of photons circulating

inside the cavity, is given by

n̄cav ¼ jhâij2 ¼ κex

Δ
2 þ ðκ=2Þ2

P

ℏωL

; ð7Þ

where P is the input power launched into the cavity, with

P ¼ ℏωLjhâinij2. The reflection or transmission amplitude

(for the case of a Fabry-Pérot cavity or a waveguide-coupled

resonator, respectively) can be calculated by inserting Eq. (6)

into Eq. (5). Using the symbol R for the reflection amplitude

in the sense of Fig. 2(b), we obtain

R ¼ hâouti
hâini

¼ ðκ0 − κexÞ=2 − iΔ

ðκ0 þ κexÞ=2 − iΔ
: ð8Þ

The square jRj2 of this amplitude gives the probability of

reflection from the cavity (for Fabry-Pérot) or transmission

in the case of a unidirectional waveguide-resonator system.

From this expression, several regimes can be differentiated.

If the external coupling κex dominates the cavity losses

(κex ≈ κ ≫ κ0Þ, the cavity is called “overcoupled.” In that

case jRj2 ≈ 1 and the pump photons emerge from the cavity

without having been absorbed or lost via the second mirror

(a property that is important as discussed below in the context

of quantum limited detection). The case where κ0 ¼ κex
refers to the situation of “critical coupling.” In this case,

(b)

(c)

(d)

(a)

FIG. 2 (color online). Comparison of unidirectionally and

bidirectionally coupled cavities and the notion of reflected and

transmitted field amplitude. (a) A waveguide-coupled unidirec-

tional resonator [e.g., whispering gallery mode (WGM) cavity

coupled to waveguide]. (b) A single-sided cavity coupled in

reflection (or a double-sided cavity where the transmission signal

is disregarded). (c) A waveguide-coupled bidirectional cavity,

which can decay in both forward and backward propagating

waveguide modes (i.e., a tapered fiber coupled photonic crystal

mode, or a waveguide-coupled quarter-wave stripline resonator).

(d) The coupling to a double-sided Fabry-Pérot resonator, in

which both transmitted and reflected fields are measured.

3
In defining the optical susceptibility [Eq. (7)], we refer to

ffiffiffiffiffiffi

κex
p

ain
as the input field.
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RðΔ ¼ 0Þ ¼ 0 on resonance. This implies that the input

power is either fully dissipated within the resonator or fully

transmitted through the second mirror (in the case of a

Fabry-Pérot cavity with κ0 denoting the decay through the

second mirror). The situation κex ≪ κ0 is referred to as

“undercoupling” and is associated with cavity losses domi-

nated by intrinsic losses. For many experiments this coupling

condition is not advantageous as it leads to an effective loss of

information.

The physical meaning of reflection (or transmission)

depends sensitively on the experimental realization under

consideration. One can distinguish four scenarios, which are

outlined in Fig. 2.

B. Mechanical resonators

1. Mechanical normal modes

The vibrational modes of any object can be calculated by

solving the equations of the linear theory of elasticity under

the appropriate boundary conditions that are determined by

the geometry
4
(Cleland, 2003). This eigenvalue problem

yields a set of normal modes and corresponding eigenfre-

quencies ΩðnÞ. The mechanical displacement patterns asso-

ciated with mechanical motion are given by the displacement

field ~unð~rÞ, where n designates the normal mode.

For the purposes of this review, we mostly focus on a single

normal mode of vibration of frequency Ωm (where m stands

for “mechanical”), assuming that the mode spectrum is

sufficiently sparse such that there is no spectral overlap with

other mechanical modes. The loss of mechanical energy is

described by the (energy) damping rate Γm, which is related

to the mechanical quality factor
5
by Qm ¼ Ωm=Γm. If one is

interested in the equation of motion for the global amplitude

xðtÞ of the motion, one can utilize a suitably normalized

(see the discussion of the effective mass, below) dimension-

less mode function ~uð~r; tÞ, such that the displacement field

would be ~uð~r; tÞ ¼ xðtÞ · ~uð~rÞ. Then the temporal evolution of

xðtÞ can be described by the canonical simple equation of

motion of a harmonic oscillator of effective mass meff :

meff

dx2ðtÞ
dt2

þmeffΓm
dxðtÞ
dt

þmeffΩ
2
mxðtÞ ¼ FexðtÞ. ð9Þ

Here FexðtÞ denotes the sum of all forces that are acting on the

mechanical oscillator. In the absence of any external forces, it

is given by the thermal Langevin force (see Sec. II.B.3). In

Eq. (9) the (energy) damping rate Γm has been assumed to be

frequency independent. Deviations from this model are

treated, for example, by Saulson (1990).

A brief remark about the effective mass meff is necessary at

this point (Pinard, Hadjar, and Heidmann, 1999; Cleland,

2003). The normalization that has been chosen for the mode

function ~uð~rÞ affects the normalization of xðtÞ. However, it
will always be true that the potential energy is given by

meffΩ
2
mhx2ðtÞi=2. This value can then be compared to the

expression for the potential energy that arises from a calcu-

lation according to the theory of elasticity. Demanding them to

be equal yields the correct value for the effective mass meff

(which therefore is seen to depend on the normalization that

was chosen for the mode function). Of course, for the simple

case of a center-of-mass oscillation of a solid object, a natural

definition of xðtÞ is the center-of-mass displacement in which

case the effective mass will be the total mass of the object. A

treatment of effective mass in optomechanical experiments is

given by Pinard, Hadjar, and Heidmann (1999).

Equation (9) can be solved easily, which is best done in

frequency space. We introduce the Fourier transform via

xðωÞ ¼
Rþ∞
−∞

dteiωtxðtÞ. Then xðωÞ ¼ χmðωÞFexðωÞ defines

the susceptibility χm, connecting the external force to the

response of the coordinate:

χmðωÞ ¼ ½meffðΩ2
m − ω2Þ − imeffΓmω�−1: ð10Þ

The low-frequency response is given by χmð0Þ ¼
ðmeffΩ

2
mÞ−1 ¼ 1=k, where k is the spring constant.

6

The quantum mechanical treatment of the mechanical

harmonic oscillator leads to the Hamiltonian

Ĥ ¼ ℏΩmb̂
†b̂þ 1

2
ℏΩm.

Here the phonon creation (b̂†) and annihilation (b̂) operators
have been introduced, with

x̂ ¼ xZPFðb̂þ b̂†Þ; p̂ ¼ −imeffΩmxZPFðb̂ − b̂†Þ;

where

xZPF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2meffΩm

s

is the zero-point fluctuation amplitude of the mechanical

oscillator, i.e., the spread of the coordinate in the ground state

h0jx̂2j0i ¼ x2ZPF, and where j0i denotes the mechanical

vacuum state. The position and momentum satisfy the

commutator relation ½x̂; p̂� ¼ iℏ. The quantity b̂†b̂ is the

phonon number operator, whose average is denoted by

n̄ ¼ hb̂†b̂i. In the following, we will typically not explicitly

display the contribution ð1=2ÞℏΩm of the zero-point energy to

the energy of the oscillator.

We briefly discuss the effect of dissipation. If the mechani-

cal oscillator is coupled to a high-temperature bath, the

average phonon number will evolve according to

d

dt
n̄ ¼ −Γmðn̄ − n̄thÞ.

For an oscillator that is initially in the ground state,

n̄ðt ¼ 0Þ ¼ 0, this implies a simple time dependence of the

4
A powerful simulation approach in this context is a finite-element

simulation.
5
In the context of mechanical dissipation often the loss tangent δΦ

is quoted, its relation to the quality factor being Qm ¼ 1=δΦ.

6
To describe the response of a high-Q oscillator near

resonance ω ≈ Ωm, one can approximate χm by a Lorentzian,

i.e., using Ω
2
m−ω

2¼ðΩm−ωÞðΩmþωÞ≈2ðΩm−ωÞΩm yields

χmðωÞ¼fmeffΩm½2ðΩm−ωÞ−iΓm�g−1.
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occupation according to n̄ðtÞ ¼ n̄thð1 − e−ΓmtÞ, where n̄th is

the average phonon number of the environment.

Consequently, the rate at which the mechanical oscillator

heats out of the ground state is given by

d

dt
n̄ðt ¼ 0Þ ¼ n̄thΓm ≈

kBTbath

ℏQm

.

The latter is often referred to as the thermal decoherence rate

and given by the inverse time it takes for one quantum to enter

from the environment. In the above expression the high-

temperature limit has been taken, i.e., n̄th ≈ kBTbath=ℏΩm.

This expression shows that to attain low decoherence a

high mechanical Q factor and a low-temperature bath are

important. The change of population of a certain Fock

state can be described within the framework of the master

equation approach. This approach allows one to calculate the

decoherence rate of other quantum states such as a Fock state

jni. The latter is given by (Gardiner and Zoller, 2004)

ðnþ 1Þn̄thΓm þ nðn̄th þ 1ÞΓm;

revealing that higher Fock states exhibit a progressively higher

rate of decoherence.

2. Mechanical dissipation

The loss of mechanical excitations, i.e., phonons, is

quantified by the energy dissipation rate Γm ¼ Ωm=Qm.

The origins of mechanical dissipation have been intensively

studied over the last decades and comprehensive reviews are

given, for example, by Cleland (2003) and Ekinci and Roukes

(2005). The most relevant loss mechanisms include the

following:

• viscous damping, which is caused by interactionswith the

surrounding gas atoms or by compression of thin fluidic

layers (Vignola et al., 2006; Karabacak, Yakhot, and

Ekinci, 2007; Verbridge, Craighead, and Parpia, 2008);

• clamping losses, which are due to the radiation of elastic

waves into the substrate through the supports of the

oscillator (Wang, Wong, and Nguyen, 2000; Cross and

Lifshitz, 2001; Mattila, 2002; Park and Park, 2004;

Photiadis and Judge, 2004; Bindel and Govindjee,

2005; Clark et al., 2005; Judge et al., 2007; Anetsberger

et al., 2008; Wilson-Rae, 2008; Eichenfield, Chan,

Camacho et al., 2009; Cole et al., 2011; Jöckel

et al., 2011);

• fundamental anharmonic effects such as thermoelastic

damping and phonon-phonon interactions (Zener, 1938;

Lifshitz and Roukes, 2000; Duwel et al., 2006; Kiselev

and Iafrate, 2008);

• materials-induced losses, which are caused by the

relaxation of intrinsic or extrinsic defect states in the

bulk or surface of the resonator (Yasumura et al., 2000;

Mohanty et al., 2002; Southworth et al., 2009; Unter-

reithmeier, Faust, and Kotthaus, 2010; Venkatesan et al.,

2010). Such losses have been successfully described by a

phenomenological model involving two-level defect

states, which are coupled to the strain via the deforma-

tion potential (Anderson, Halperin, and Varma, 1972;

Hunklinger, Arnold, and Stein, 1973; Phillips, 1987;

Tielbürger et al., 1992; Seoánez, Guinea, and Castro

Neto, 2008; Remus, Blencowe, and Tanaka, 2009). In

the context of nanomechanical and micromechanical

oscillators the two-level fluctuator damping has been

revisited (Seoánez, Guinea, and Castro Neto, 2008;

Remus, Blencowe, and Tanaka, 2009).

The various dissipation processes contribute independently to

the overall mechanical losses and hence add up incoherently.

The resulting mechanical quality factor Qtotal is given by

1

Qtotal

¼
X 1

Qi

;

where i labels the different loss mechanisms.

Another helpful quantity is the so-calledQf product, which

plays an important role in the phase noise performance of

oscillators. In the context of optomechanics, it quantifies the

decoupling of the mechanical resonator from a thermal

environment. Specifically,

Ωm

n̄thΓm

¼ Qmfm ×

�

h

kBT

�

denotes the number of coherent oscillations in the presence of

thermal decoherence and evidently scales with Qf.

3. Susceptibility, noise spectra, and fluctuation-dissipation

theorem

If one measures the motion of a single harmonic oscillator

in thermal equilibrium, one will observe a trajectory xðtÞ
oscillating at the eigenfrequency Ωm. However, due to the

influence of both mechanical damping and the fluctuating

thermal Langevin force, these oscillations will have a ran-

domly time-varying amplitude and phase [see Fig. 3; see also

Giovannetti and Vitali (2001) for a treatment of the quantum

regime]. Both amplitude and phase change on the time scale

given by the damping time Γ−1
m . Such real-time measurements

have been performed in optomechanical systems (Hadjar

et al., 1999) (see Fig. 4).

In experiments, the mechanical motion is often not ana-

lyzed in real time but instead as a noise spectrum in frequency

space. This allows one to easily separate the contributions

from different normal modes. We briefly recapitulate

the relevant concepts. Given one particular realization of

the trajectory xðtÞ obtained during a measurement time τ, we

define the gated Fourier transform over a finite time

interval τ:

FIG. 3 (color online). Brownian motion (thermal fluctuations) of

a nanomechanical resonator in the time domain (schematic), with

amplitude and phase fluctuating on a time scale set by the

damping time Γ
−1
m .
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~xðωÞ ¼ 1
ffiffiffi

τ
p

Z

τ

0

xðtÞeiωtdt: ð11Þ

Averaging over independent experimental runs, we obtain the

spectral density hj~xðωÞj2i. The definition adopted in Eq. (11),

with the prefactor 1=
ffiffiffi

τ
p

, ensures that the spectral density has a

well-defined limiting value for τ → ∞, where the Wiener-

Khinchin theorem connects this to the Fourier transform

SxxðωÞ of the autocorrelation function, also called the noise

power spectral density. The latter is defined as

SxxðωÞ≡
Z þ∞

−∞

hxðtÞxð0Þieiωtdt; ð12Þ

and the theorem states

limτ→∞hj~xðωÞj2i ¼ SxxðωÞ: ð13Þ

The important assumptions made here are that the process is

stationary and is of finite intensity (Gillespie, 1996). From

Eqs. (12) and (13), we immediately obtain the important result

that the area under the experimentally measured mechanical

noise spectrum yields the variance of the mechanical dis-

placement hx2i:

Z þ∞

−∞

SxxðωÞ
dω

2π
¼ hx2i: ð14Þ

Furthermore, in thermal equilibrium, the fluctuation-

dissipation theorem (FDT) relates the noise to the dissipative

part of the linear response,

SxxðωÞ ¼ 2
kBT

ω
ImχmðωÞ; ð15Þ

where χmðωÞ denotes the mechanical susceptibility introduced

above and we have treated the high-temperature (classical)

case. For weak damping (Γm ≪ Ωm), this gives rise to

Lorentzian peaks of width Γm in the noise spectrum, located

at ω ¼ �Ωm (see Fig. 5). Integration of SxxðωÞ according to

Eq. (14) yields the variance, which for weak damping is set by

the equipartition theorem hx2i ¼ kBT=meffΩ
2
m.

In the quantum regime, the natural generalization of

Eq. (12) contains the product of Heisenberg time-evolved

operators hx̂ðtÞx̂ð0Þi, which do not commute. As a conse-

quence, the spectrum SxxðωÞ is asymmetric in frequency. The

quantum FDT

SxxðωÞ ¼
2ℏ

1 − e−ℏω=kBT
ImχxxðωÞ ð16Þ

implies that SxxðωÞ ¼ 0 for ω < 0 at T ¼ 0. Our discussion

of dynamical backaction cooling (Sec. VII.A) mentions

that this means the T ¼ 0 bath is not able to supply energy,

as there are no thermal excitations. In this review we

also consider the symmetrized noise spectrum S̄xxðωÞ ¼
fSxxðωÞ þ Sxxð−ωÞg=2. For more on noise spectra, see

Clerk et al. (2010).

III. PRINCIPLES OF OPTOMECHANICAL COUPLING

A. The radiation-pressure force and optomechanical coupling

In our discussion the fundamental mechanism that couples

the properties of the cavity radiation field to the mechanical

motion is the momentum transfer of photons, i.e., radiation

pressure. The simplest form of radiation-pressure coupling is

the momentum transfer due to reflection that occurs in a

Fabry-Pérot cavity. A single photon transfers the momentum

jΔpj ¼ 2h=λ (λ is the photon wavelength). As a consequence

the radiation-pressure force is given by

area

FIG. 5 (color online). Noise spectrum of a damped harmonic

oscillator in thermal equilibrium (symmetric for ω ↦ −ω in the

classical limit kBT ≫ ℏω).

FIG. 4. Brownian motion of a mechanical resonator obtained in

an optomechanical setup. The two “quadratures” xðtÞ ¼
X1ðtÞ cosðΩmtÞ þ X2ðtÞ sinðΩmtÞ are displayed in a frame rotat-

ing at the angular mechanical resonance frequency Ωm, such that

the unperturbed undamped motion would correspond to a sta-

tionary single point existing somewhere in phase space. The

fluctuations are a consequence of the thermal Brownian motion

[figure courtesy of A. Heidmann; see also (Hadjar et al. (1999)].
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hF̂i ¼ 2ℏk
hâ†âi
τc

¼ ℏ
ωcav

L
hâ†âi. ð17Þ

Here τc ¼ 2L=c denotes the cavity round-trip time. Therefore,

ℏωcav=L describes the radiation-pressure force caused by one

intracavity photon. The parameter G ¼ ωcav=L which appears

in this expression also describes the change of cavity

resonance frequency with position, i.e., the frequency pull

parameter. In Sec. III.B, which introduces a Hamiltonian

description of the interaction between a movable mirror and

optical cavity, this relation will be derived in its full generality.

More generally, the optomechanical coupling can arise, for

example, by direct momentum transfer via reflection (Fabry-

Pérot–type cavities with a movable end mirror, microtoroids),

by coupling via a dispersive shift of the cavity frequency

(membrane in the middle, levitated nano-objects trapped

inside the cavity) or by optical near-field effects (e.g., nano-

objects in the evanescent field of a resonator or a waveguide

just above a substrate).

Various radiation-pressure forces have been investigated in

the pioneering work of Ashkin (2006), who first demonstrated

that small dielectric particles can be trapped in laser light. The

relevant forces are generally referred to as gradient (or dipole)

forces, as the force arises from the gradient of the laser field

intensity. The particle is attracted to the center of the Gaussian

trapping laser beam. If ~Eð~rÞ denotes the laser electric field

distribution, the time-averaged dielectric energy of the particle

in the field is given by

U ¼ −1

2
~p · ~E ¼ −1

2
αj~Eð~rÞj2

(with α the polarizability), which correspondingly yields a

force ~F ¼ − ~∇U. In addition to the gradient force, scattering

forces occur for a traveling wave. These forces scale with j~kj,
i.e., the wave number of the electromagnetic radiation, in

contrast to the gradient forces. In addition there is also a

contribution from the strain-optical effect, i.e., the strain-

dependent polarizability. The strain-optical coupling is the

dominant coupling mechanism in guided acoustic-wave scat-

tering (Shelby, Levenson, and Bayer, 1985; Locke et al.,

1998). Independent of the physical interpretation of the force,

however, the optomechanical interaction in an optomechanical

system can always be derived by considering the cavity

resonance frequency shift as a function of displacement

(i.e., the “dispersive” shift). This is the basis for our

Hamiltonian description adopted in Sec. III.B.

Micromechanical systems are also subject to radiation

forces based on thermal effects. Absorption of light can heat

a structure and deform it, which corresponds to the action of a

force (e.g., in an asymmetric, bimorph structure, including

materials of different thermal expansion). These photothermal

forces can in many ways lead to effects similar to retarded

radiation-pressure forces, with the thermal relaxation time of

the structure replacing the cavity photon lifetime. However,

since such forces are based on absorption of light, they cannot

form the basis for future fully coherent quantum optome-

chanical setups, since at least the coherence of the light field is

thereby irretrievably lost.

B. Hamiltonian formulation

The starting point of all our subsequent discussions is the

Hamiltonian describing the coupled system of a radiation

mode interacting with a vibrational mode (Fig. 1). For brevity

we refer to the radiation field as “optical,” even though the

important case of microwave setups is included here as well.

We focus on the simplest possible model system in cavity

optomechanics, which has been used to successfully describe

most of the experiments to date. In this model, we restrict our

attention to one of the many optical modes, i.e., the one closest

to resonance with the driving laser. Moreover, we also describe

only one of the many mechanical normal modes. This is

mostly arbitrary, as the displacement frequency spectrum will

show peaks at any of the mechanical resonances. Still, as long

as the dynamics is linear with independently evolving normal

modes, the model will provide a valid approximation. In some

cases, such as sideband-resolved cooling, it may be possible to

experimentally select a particular mechanical mode by adjust-

ing the laser detuning, whereas in other cases, such as

nonlinear dynamics, an extended description involving several

mechanical modes may become crucial.

The uncoupled optical (ωcav) and mechanical (Ωm) modes

are represented by two harmonic oscillators, which is typically

an excellent approximation at the displacements generated in

the experiments:

Ĥ0 ¼ ℏωcavâ
†âþ ℏΩmb̂

†b̂. ð18Þ

In the case of a cavity with a movable end mirror the coupl-

ing of optical and mechanical modes is parametric, i.e., the

cavity resonance frequency is modulated by the mechanical

amplitude
7
:

ωcavðxÞ ≈ ωcav þ x∂ωcav=∂xþ � � � .

For most experimental realizations discussed in this review, it

suffices to keep the linear term, where we define the optical

frequency shift per displacement as G ¼ −∂ωcav=∂x (but see

Sec. VI.B.2 for a different example). A more detailed

derivation of the optomechanical Hamiltonian can be found

in an early paper (Law, 1995).

We mention that other coupling mechanisms have been

discussed. For example, the transparency of a moving Bragg

mirror, and hence κ, can depend on its velocity (Karrai,

Favero, and Metzger, 2008). More generally, the displacement

may couple to the external cavity decay rate, yielding

κex ¼ κexðxÞ. This case (sometimes termed “dissipative cou-

pling,” although it refers to the external coupling channel),

which is of practical relevance in some setups (Li, Pernice, and

Tang, 2009c), can lead to novel physical effects, e.g., in

cooling (Elste, Girvin, and Clerk, 2009).

For a simple cavity of length L, we have G ¼ ωcav=L.
The sign reflects the fact that we take x > 0 to indicate an

7
Note that such a setup is also considered for discussions of the

dynamical Casimir effect, where cavity photons are created by the

mechanical modulation of the boundaries. In the optomechanical

scenarios considered here, however, the mechanical frequencies are

too small for this effect to play a role.
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increase in cavity length, leading to a decrease in ωcavðxÞ if
G > 0. In general, expanding to leading order in the dis-

placement, we have

ℏωcavðxÞâ†â ≈ ℏðωcav − Gx̂Þâ†â: ð19Þ

Here x̂ ¼ xZPFðb̂þ b̂†Þ as defined before. Thus, the inter-

action part of the Hamiltonian can be written

Ĥint ¼ −ℏg0â
†âðb̂þ b̂†Þ; ð20Þ

where

g0 ¼ GxZPF ð21Þ

is the vacuum optomechanical coupling strength, expressed as

a frequency. It quantifies the interaction between a single

phonon and a single photon. We stress that, generally speak-

ing, g0 is more fundamental than G, since G is affected by the

definition of the displacement that is to some extent arbitrary

for more complicated mechanical normal modes (see the

discussion in Sec. II.B.1). Therefore, in the following we

almost always refer to g0. Later, we also mention g, which is

an often-used measure for the effective optomechanical

coupling in the linearized regime. It is enhanced compared

to g0 by the amplitude of the photon field. The Hamiltonian

reveals that the interaction of a movable mirror with the

radiation field is fundamentally a nonlinear process, involving

three operators (three-wave mixing).

The radiation-pressure force is simply the derivative of Ĥint

with respect to displacement:

F̂ ¼ −
dĤint

dx̂
¼ ℏGâ†â ¼ ℏ

g0
xZPF

â†â. ð22Þ

The full Hamiltonian Ĥ also includes terms that describe

dissipation (photon decay and mechanical friction), fluctua-

tions (influx of thermal phonons), and driving by an external

laser. These effects are formulated most efficiently using the

equations of motion and the input-output formalism (see

Sec. II.A.2, and also Sec. III.C). Here we remark that it is

convenient to change the description of the optical mode by

switching to a frame rotating at the laser frequency ωL.

Applying the unitary transformation Û ¼ expðiωLâ
†âtÞmakes

the driving terms time independent,
8
and generates a new

Hamiltonian Ĥ ¼ ÛĤoldÛ
† − iℏÛ∂Û†=∂t of the form

Ĥ ¼ −ℏΔâ†âþ ℏΩmb̂
†b̂ − ℏg0â

†âðb̂þ b̂†Þ þ � � � ; ð23Þ

where

Δ ¼ ωL − ωcav ð24Þ

is the laser detuning introduced already in Sec. II.A.2,

and where we omitted (the ellipsis) driving, decay, and

fluctuation terms, which are discussed below employing

input-output theory (Sec. III.C). In particular, the driving term

reads Ĥdrive ¼ iℏ
ffiffiffiffiffiffi

κex
p

â†αin þ H:c:, for a laser of amplitudeαin.

Equation (23) is the frequently used starting point in cavity

optomechanics.

We now introduce the so-called “linearized” approximate

description of cavity optomechanics. To this end, we split the

cavity field into an average coherent amplitude hâi ¼ ᾱ and a

fluctuating term

â ¼ ᾱþ δâ. ð25Þ
Then the interaction part of the Hamiltonian

Ĥint ¼ −ℏg0ðᾱþ δâÞ†ðᾱþ δâÞðb̂þ b̂†Þ ð26Þ

may be expanded in powers of ᾱ. The first term −ℏg0jᾱj2ðb̂þ
b̂†Þ indicates the presence of an average radiation-pressure

force F̄ ¼ ℏGjᾱj2. It may be omitted after implementing

an appropriate shift of the displacement’s origin by δx̄ ¼
F̄=meffΩ

2
m and afterward always using a modified detuning

Δnew ≡ Δold þ Gδx̄. The second term, of order jᾱj1, is the one
we keep:

−ℏg0ðᾱ�δâþ ᾱδâ†Þðb̂þ b̂†Þ. ð27Þ

The third term −ℏg0δâ
†δâ is omitted as being smaller by a

factor jᾱj. Without loss of generality, we now assume ᾱ ¼
ffiffiffiffiffiffiffiffi

n̄cav
p

as real valued. Thus, the Hamiltonian in the rotating

frame reads

Ĥ ≈ −ℏΔδâ†δâþ ℏΩmb̂
†b̂þ Ĥ

ðlinÞ
int þ � � � ; ð28Þ

where the quadratic interaction part

Ĥ
ðlinÞ
int ¼ −ℏg0

ffiffiffiffiffiffiffiffi

n̄cav
p ðδâ† þ δâÞðb̂þ b̂†Þ ð29Þ

is referred to as linearized, since the resulting coupled

equations of motion are linear in this approximation. Note

that the remaining terms in Eq. (28) no longer contain the laser

driving, as that has already been taken care of by the shift

implemented in Eq. (25). In the literature up to now, the

combination

g ¼ g0
ffiffiffiffiffiffiffiffi

n̄cav
p ð30Þ

is often referred to as “the optomechanical coupling strength.”

Obviously, it depends on the laser intensity and is thus less

fundamental than the single-photon coupling g0 (obtained

for n̄cav ¼ 1).

The linearized description can be good even if the average

photon number circulating inside the cavity is not large. This

is because the mechanical system may not be able to resolve

the individual photons if the decay rate κ is sufficiently large.

The detailed conditions for the linearized approximation to be

valid may depend on the questions that are asked. We return to

this question in Sec. X.F.

We briefly note that g > κ is one necessary condition for the

so-called “strong-coupling” regime of cavity optomechanics,

where the mechanical oscillator and the driven optical mode

hybridize (Sec. VII.C). A much more challenging condition is

to have g0 > κ, i.e., the single-photon optomechanical cou-

pling rate exceeding the cavity decay rate. In the latter regime,

nonlinear quantum effects become observable (see Sec. X.F).8Ûðâ†e−iωLt þ âeþiωLtÞÛ† ¼ â† þ â.
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Depending on the detuning, three different regimes can be

distinguished with respect to the interaction (29), especially in

the sideband-resolved regime (κ ≪ Ωm, which we assume in

the remainder of this section). For Δ ≈ −Ωm (red-detuned

regime), we have two harmonic oscillators of (nearly) equal

frequency that can interchange quanta: the mechanical oscil-

lator and the driven cavity mode. The terms in the interaction

Hamiltonian describing this process are the following:

−ℏgðδâ†b̂þ δâb̂†Þ: ð31Þ

In contrast, we may omit those terms that create or destroy two

quanta at the same time (δâ†b̂† and δâ b̂), because they are

strongly “nonresonant,” i.e., applying those terms to a state

changes the total energy by an amount much larger than the

coupling. Keeping only the resonant terms of Eq. (31) is

known as the rotating-wave approximation (RWA). The case

Δ ≈ −Ωm is the one relevant for cooling (transferring all

thermal phonons into the cold photon mode, Sec. VII.A) and

for quantum state transfer between light and mechanics

(Sec. X). In the quantum optical domain, Eq. (31) is referred

to as a “beam-splitter” interaction.

ForΔ ≈þΩm (blue-detuned regime), the dominant terms in

the RWA

−ℏgðδâ†b̂† þ δâ b̂Þ ð32Þ

represent a “two-mode squeezing” interaction that lies at the

heart of parametric amplification (Clerk et al., 2010). In the

absence of dissipation, this leads to an exponential growth of

the energies stored in both the vibrational mode and the driven

optical mode, with strong quantum correlations between the

two. Thus, it may be used for efficiently entangling both

modes (Sec. X). Focusing on the mechanical mode alone, the

growth of energy can be interpreted as “antidamping” or

amplification (Sec. V.B.2). If the intrinsic dissipation is low

enough, this behavior may trigger a dynamical instability that

leads to self-induced mechanical oscillations. The resulting

features are discussed in Sec. VIII.

Finally, when Δ ¼ 0, the interaction

−ℏgðδâ† þ δâÞðb̂þ b̂†Þ ð33Þ

means that the mechanical position x̂ ∝ b̂þ b̂† leads to a

phase shift of the light field, which is the situation encountered

in optomechanical displacement detection (Sec. VI). In

addition, this interaction Hamiltonian can be viewed as

implementing QND detection of the optical amplitude quad-

rature δâþ δâ†, since that operator commutes with the full

Hamiltonian in this case.

C. Optomechanical equations of motion

The mechanical motion induces a shift of the optical

resonance frequency, which in turn results in a change of

circulating light intensity and, therefore, of the radiation-

pressure force acting on the motion. This kind of feedback

loop is known as optomechanical “backaction” (see Fig. 15).

The finite cavity decay rate κ introduces some retardation

between the motion and the resulting changes of the force,

hence the term “dynamical” backaction.

A convenient starting point for the analytical treatment of

the radiation-pressure dynamical backaction phenomena

(Secs. V.B and VII) is the input-output formalism. This

formalism (briefly introduced in Sec. II.A.2) provides us with

equations of motion for the cavity field amplitude â and,

analogously, for the mechanical amplitude b̂. These equations
have the form of quantum Langevin equations,

9
since both the

light amplitude and the mechanical motion are driven by noise

terms that comprise the vacuum noise and any thermal noise

entering the system:

_̂a ¼ −
κ

2
âþ iðΔþ Gx̂Þâþ ffiffiffiffiffiffi

κex
p

âin þ
ffiffiffiffiffi

κ0
p

f̂in; ð34Þ

_̂b ¼
�

−iΩm −
Γm

2

�

b̂þ ig0â
†âþ

ffiffiffiffiffiffi

Γm

p

b̂in. ð35Þ

See Sec. II.A.2 for remarks on the input-output treatment and

the optical decay rates κ; κex; κ0. With regard to the damping

term −Γm=2 for the mechanical dissipation, we note that this

treatment is correct as long as Ωm ≫ Γm. Otherwise the

equations would have to be formulated on the level of the

displacement x̂, with a damping force −meffΓm
_̂x.

The noise correlators associated with the input fluctuations

are given by

hâinðtÞâ†inðt0Þi ¼ δðt − t0Þ; ð36Þ

hâ†inðtÞâinðt0Þi ¼ 0; ð37Þ

hb̂inðtÞb̂†inðt0Þi ¼ ðn̄th þ 1Þδðt − t0Þ; ð38Þ

hb̂†inðtÞb̂inðt0Þi ¼ n̄thδðt − t0Þ. ð39Þ

The correlators for f̂in look like those for âin listed above.

Here we assumed that the optical field has zero thermal

occupation (kBT=ℏωcav ≈ 0), which is an approximation that

is valid for optical fields at room temperature, although it

may fail for the case of microwave fields, unless the setup is

cooled to sufficiently low temperatures. In contrast, the

mechanical degree of freedom is typically coupled to a hot

environment, with an average number of quanta given by

n̄th ≈ kBT=ℏΩm ≫ 1. Together with these correlators, the

quantum Langevin equations describe the evolution of the

FIG. 6 (color online). Optomechanical (linearized) interaction

between a driven optical mode and a mechanical resonator.

9
In the standard approximation adopted here, these equations are

Markovian, i.e., without memory and with δ-correlated noise.
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optical cavity field and the mechanical oscillator, including all

fluctuation effects.

It is equally useful to give the classical, averaged version of

these equations that will be valid for sufficiently large photon

and phonon numbers, in the semiclassical limit. Then we can

write down the equations for the complex light amplitude

αðtÞ ¼ hâðtÞi and the oscillator position xðtÞ ¼ hx̂ðtÞi:

_α ¼ −
κ

2
αþ iðΔþ GxÞαþ ffiffiffiffiffiffi

κex
p

αin; ð40Þ

meff ẍ ¼ −meffΩ
2
mx −meffΓm _xþ ℏGjαj2. ð41Þ

Here we neglected all fluctuations, although these could be

added to describe thermal and even, in a semiclassical

approximation, quantum noise forces. The term αin represents

the laser drive. Note that we also chose to write the mechanical

equation of motion in terms of the displacement, where

x ¼ 2xZPFReðhb̂iÞ. This becomes equivalent to the equation

given above only for weak damping Γm ≪ Ωm. These fully

nonlinear coupled differential equations are the basis for our

discussion of nonlinear phenomena, in particular, the opto-

mechanical parametric instability (also called “self-induced

oscillations” or “mechanical lasing,” see Sec. VIII).

FIG. 7 (color online). A gallery illustrating the variety of optomechanical devices, arranged according to mass. Pictures courtesy (from

top left, down): N. Mavalvala, A. Heidmann, M. Aspelmeyer, D. Bouwmeester, J. Harris, P. Treutlein, T. J. Kippenberg, I. Favero,

M. Lipson, T. J. Kippenberg/E. Weig/J. Kotthaus, H. Tang, K. Vahala/T. Carmon, J. Teufel/K. Lehnert, I. Robert, O. Painter, O. Painter,

I. Favero/E. Weig/K. Karrai, and D. Stamper-Kurn.
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The equations of motion (34) and (35) (and likewise their

classical versions) are inherently nonlinear as they contain the

product of the mechanical oscillator amplitude and the cavity

field [Eq. (34)] or the radiation-pressure force ∝ â†â that is

quadratic in photon operators [Eq. (35)]. While they can still be

solved numerically in the classical case, for the quantum regime

they are of purely formal use and in practice cannot be solved

exactly, either analytically or numerically. However, in many

situations that we encounter it is permissible to linearize this set

of equations around some steady-state solution, setting â ¼
ᾱþ δâ. Using ᾱ ¼ ffiffiffiffiffiffiffiffi

n̄cav
p

and keeping only the linear terms, we

find the following set of coupled linear equations of motion:

δ _̂a ¼
�

iΔ −
κ

2

�

δâþ igðb̂þ b̂†Þ þ ffiffiffiffiffiffi

κex
p

δâinðtÞ þ
ffiffiffiffiffi

κ0
p

f̂inðtÞ;

ð42Þ

_̂b ¼
�

−iΩm −
Γm

2

�

b̂þ igðδâþ δâ†Þ þ
ffiffiffiffiffiffi

Γm

p

b̂inðtÞ: ð43Þ

These correspond to what one would have obtained alterna-

tively by employing the “linearized” coupling Hamiltonian of

Eq. (29) and then applying input-output theory. Here we have

(as is common practice) redefined the origin of the mechanical

oscillations to take into account the constant displacement

ℏGjαj2=meffΩ
2
m that is induced by the average radiation-

pressure force. It is evident that now the mutual coupling

terms between the optical and mechanical degrees of freedom

are linear in the field operators, and that the strength is set by the

field-enhanced coupling rate g ¼ g0
ffiffiffiffiffiffiffiffi

n̄cav
p

.

As shown in later sections, these linearized equations are

able to fully describe several phenomena, including optome-

chanical cooling, amplification, and parametric normal-mode

splitting (i.e., strong, coherent coupling). They can be solved

analytically, which is best performed in the frequency domain

(see Sec. V.B).

For completeness, we display the linearized quantum

equations in frequency space:

−iωδâ½ω� ¼
�

iΔ −
κ

2

�

δâ½ω� þ ig½b̂½ω� þ ðb̂†Þ½ω��

þ ffiffiffiffiffiffi

κex
p

δâin½ω� þ
ffiffiffiffiffi

κ0
p

f̂in½ω�; ð44Þ

− iωb̂½ω� ¼
�

−iΩm −
Γm

2

�

b̂½ω� þ ig½δâ½ω� þ ðδâ†Þ½ω��

þ
ffiffiffiffiffiffi

Γm

p

b̂in½ω�: ð45Þ

Here b̂½ω� ¼
Rþ∞
−∞

dteiωtb̂ðtÞ is the Fourier transform of b̂.
Note the important relation ðb̂†Þ½ω� ¼ ðb̂½−ω�Þ†, which has to

be taken care of while solving the equations.

It is equally useful to consider the linearized version of the

classical equations of motion for the light amplitude

[αðtÞ ¼ ᾱþ δα] and the displacement, Eqs. (40) and (41):

δ _α ¼
�

iΔ −
κ

2

�

δαþ iGᾱx; ð46Þ

meff ẍ ¼ −meffΩ
2
mx −meffΓm _xþ ℏGðᾱ�δαþ ᾱδα�Þ. ð47Þ

Finally, we display them in frequency space, in the form that

we employ in Sec. V.B:

−iωδα½ω� ¼
�

iΔ −
κ

2

�

δα½ω� þ iGᾱx½ω�; ð48Þ

−meffω
2x½ω� ¼ −meffΩ

2
mx½ω� þ iωmeffΓmx½ω�

þ ℏGfᾱ�δα½ω� þ ᾱðδα�Þ½ω�g. ð49Þ

Again, note that ðδα�Þ½ω� ¼ δα½−ω��.

IV. EXPERIMENTAL REALIZATIONS AND

OPTOMECHANICAL PARAMETERS

The increasing availability of high-quality optomechanical

devices, i.e., high-Q mechanical resonators that are efficiently

FIG. 8 (color online). Schematic representation of the radiation

modes (mode shape indicated) and vibrational degrees of free-

dom (vibrations indicated by gray lines) involved in several of the

most common types of setups (from left to right, and top to

bottom): a suspended mirror, a microtoroid, a nano-object (or a

membrane) inside an optical cavity, localized modes in a photonic

crystal nanobeam, a trapped and vibrating cold atom cloud (or

other levitated object) inside a cavity, and a vibrating drum

capacitor coupled to a microwave field.

TABLE II. Experimental parameters for a representative sampling of published cavity-optomechanics experiments.

Reference Ωm=2π (Hz) m (kg) Γm=2π (Hz) Qf (Hz) κ=2π (Hz) κ=Ωm g0=2π (Hz)

Murch et al. (2008) 4.2 × 104 1 × 10−22 1 × 103 1.7 × 106 6.6 × 105 15.7 6 × 105

Chan et al. (2011) 3.9 × 109 3.1 × 10−16 3.9 × 104 3.9 × 1014 5 × 108 0.13 9 × 105

Teufel, Donner et al. (2011) 1.1 × 107 4.8 × 10−14 32 3.5 × 1012 2 × 105 0.02 2 × 102

Verhagen et al. (2012) 7.8 × 107 1.9 × 10−12 3.4 × 103 1.8 × 1012 7.1 × 106 0.09 3.4 × 103

Thompson et al. (2008) 1.3 × 105 4 × 10−11 0.12 1.5 × 1011 5 × 105 3.7 5 × 101

Kleckner et al. (2011) 9.7 × 103 1.1 × 10−10 1.3 × 10−2 9 × 109 4.7 × 105 55 2.2 × 101

Gröblacher, Hammerer et al. (2009) 9.5 × 105 1.4 × 10−10 1.4 × 102 6.3 × 109 2 × 105 0.22 3.9
Arcizet et al. (2006a) 8.14 × 105 1.9 × 10−7 81 8.1 × 109 1 × 106 1.3 1.2
Cuthbertson et al. (1996) 103 1.85 2.5 × 10−6 4.1 × 1010 275 0.9 1.2 × 10−3
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coupled to high-Q optical cavities, has been driving a plethora

of experiments during recent years that are successfully

demonstrating the working principles of cavity optomechanics

(see Figs. 7 and 8). We now discuss some of the most

frequently used architectures.

A. Optomechanical parameters

Table I summarizes the relevant optomechanical parameters for

some typical current experimental implementations. These are as

follows: the mechanical resonator frequencyΩm andmassm; the

fundamental mechanical (phonon) and optical (photon) dissipa-

tion rates Γm ¼ Ωm=Qm and κ, respectively; the Qf product,

which is a direct measure for the degree of decoupling from the

thermal environment (specifically,Qmfm¼QmΩm=2π>kBT=ℏ
is the condition for neglecting thermal decoherence over one

mechanical period); the sideband suppression factor κ=Ωm that

determines the ability to realize ground-state cooling (see

Sec. VII); and finally the bare optomechanical coupling rate

g0, which corresponds to the cavity frequency shift induced by a
mechanical zero-point displacement.

Some parameter combinations are of particular relevance

for optomechanical tasks. Figures 9–12 provide an overview

of the state of the art in current experiments. The data are

compiled from published experiments. They are numbered as

follows:

1 (Cuthbertson et al., 1996), 2 (Massel et al., 2011), 3 (Regal,

Teufel, and Lehnert, 2008), 4 (Rocheleau et al., 2010), 5

(Teufel, Donner et al., 2011), 6 (Chan et al., 2011), 7 (Gavartin

et al., 2011), 8 (Thompson et al., 2008), 9 (Wilson et al., 2009),

10 (Jiang et al., 2009), 11 (Lin et al., 2009), 12 (Wiederhecker

et al., 2009), 13 (Eichenfield, Camacho et al., 2009), 14 (Ding

et al., 2011), 15 (Park and Wang, 2009), 16 (Schliesser et al.,

2008), 17 (Verhagen et al., 2012), 18 (Schliesser et al., 2009),

19 (Arcizet et al., 2006b), 20 (Favero et al., 2007), 21 (Gigan

et al., 2006), 22 (Gröblacher, Hertzberg et al., 2009), 23

(Kleckner et al., 2006), 24 (Mow-Lowry et al., 2008),

25 (Kleckner et al., 2011), 26 (Gröblacher, Hammerer et al.,

2009), 27 (Schleier-Smith et al., 2011), 28 (Murch et al., 2008),

29 (Brennecke et al., 2008), 30 (Goryachev et al., 2012), 31

(Verlot et al., 2009), 32 (Gieseler et al., 2012). Different

symbols indicate the different optomechanical implementa-

tions: suspended mirrors (◂), optical microresonators (⧫),

photonic crystal cavities (▴), suspended nano-objects (▾),

microwave resonators (•), and cold atoms (▸).

B. Suspended mirrors

An obvious way to realize optomechanical interactions in a

cavity is to suspend one of the cavity’s mirrors. The mechani-

cal motion directly changes the cavity length and hence the

frequency response of such a “rubber cavity.”
10

The first experimental implementations of this type were a

Fabry-Pérot cavity with moving mirrors, and they date back to

the early attempts of laser interferometeric detection of

gravitational waves (Abramovici et al., 1992). While there

the purpose of suspending the macroscopic cavity mirrors

is to achieve acoustic isolation, optomechanical effects, in

particular, quantum mechanical radiation-pressure fluctua-

tions, eventually pose the fundamental limit for its interfero-

metric sensitivity (Caves, 1980; Unruh, 1983) (see Sec. VI.A

for a detailed discussion). At the same time this configuration

allows one to exploit cavity optomechanics for the center-of-

mass motion of truly macroscopic test masses. Experiments of

that type have to date resulted in the demonstration of the

optical bistability (Dorsel et al., 1983) (Sec. V.A), the optical

spring effect (Sheard et al., 2004; Corbitt, Chen et al., 2007)

(Sec. V.B.1), and optical cooling (Corbitt, Wipf et al., 2007;
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FIG. 9 (color online). The single-photon optomechanical cou-

pling strength g0, vs cavity decay rate κ, for published experi-

ments (see main text for references). A high value of g0=κ is

favorable for nonlinear quantum-optomechanical experiments,

working with single photons and phonons (Sec. X.F).
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FIG. 10 (color online). Mechanical quality factor Qm ¼ Ωm=Γm

vs mechanical frequency Ωm ¼ 2πfm for published experiments

(see main text for references). The dashed lines represent constant

Qmfm values. Note that full coherence over one mechanical

period 1=fm is obtained for Qmfm ¼ kBT=ℏ. For example,

Qmfm ≫ 6 × 1012 is a minimum requirement for room-temper-

ature quantum optomechanics. Note that data point 30 involves

capacitive readout but is not a microwave cavity setup.

10
For the origin of this terminology, see the Acknowledgments

section of Bose, Jacobs, and Knight (1997).
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Mow-Lowry et al., 2008) (Secs. V.B and VII) with suspended

mirrors on the gram scale and even of feedback cooling of

suspended mirrors on the kilogram scale at the LIGO facility

(Abbott et al., 2009). A practical challenge of these experi-

ments is their operation at very low mechanical frequencies

(Ωm=2π < 1 kHz), which requires sophisticated isolation

against acoustic noise. For such experiments this is achieved

by suspending the macroscopic mirrors over several stages. To

minimize mechanical losses it was recently suggested to

levitate the macrosopic mirror in an optical trap (Singh et al.,

2010). Finally, this kind of setup also allows one to monitor

and optomechanically control internal mechanical modes of

macroscopic mirrors (Cohadon, Heidmann, and Pinard, 1999;

Hadjar et al., 1999), which are a dominant source for

unwanted cavity phase noise, e.g., in gravitational wave

detectors (Harry et al., 2002; Harry, Bodiya, and DeSalvo,

2011), cavity QED (Buck, 2003), or frequency stabilization of

atomic optical clocks (Numata, Kemery, and Camp, 2004).

Another possibility is to use highly reflecting microme-

chanical devices such as a Fabry-Pérot end mirror. These

systems include coated cantilevers (Tittonen et al., 1999;

Höhberger-Metzger and Karrai, 2004; Arcizet et al., 2006a,

2008) and micropillars (Verlot et al., 2011), micrometer-sized

mirror pads on top of beams and cantilevers (Kleckner et al.,

2006, 2011; Favero et al., 2007; Gröblacher, Hertzberg et al.,

2009; Serra et al., 2012), or micromechanically suspended

optical coatings (Böhm et al., 2006; Cole et al., 2008, 2010)

and photonic crystal slabs (Antoni et al., 2011; Kemiktarak

et al., 2012). Efficient optomechanical coupling in this

configuration requires the size of the mechanical structure

to be much larger than the wavelength of the light: typical

cavity lengths range from 10−5 to 10−2 m, with an optical

finesse up to 105, which is generally limited by losses due to

the finite cavity mirror sizes. It was pointed out that additional

interference effects may be able to overcome this limit

significantly (Kleckner et al., 2010). Compared to the macro-

scopic mirrors already discussed, these micromechanical

devices allow access to higher mechanical frequencies

(up to some tens of MHz) and, in principle, to higher

mechanical quality factors. In particular, the possibility of

exact geometric control via microfabrication techniques

allows one to minimize mechanical losses due to clamping

(Anetsberger et al., 2008; Wilson-Rae, 2008; Cole et al.,

2011; Serra et al., 2012).

The accessible mass and frequency ranges in combination

with the restrictions on cavity length (L > λ) and achievable

cavity finesse set some practical limitations for this geometry.

In particular, sideband resolution (small κ) and large opto-

mechanical coupling g0 (small L, leading to a large κ), impose

conflicting conditions and need to be traded against each

other. On the other hand, along with the macroscopic micro-

wave transducers (see Sec. IV.F), this realization provides

optomechanical control over by far the largest range of mass

and frequency.

C. Optical microresonators

A situation similar to the Fabry-Pérot case occurs in optical

microresonators, where light is guided in whispering-gallery

modes along the rim of a circular resonator (Vahala, 2003).

There is a large number of different mechanical normal modes

of vibration of these structures. The resulting distortions of the

structure directly modify the optical path length of the

resonator, shifting its optical resonance frequency and hence

generating optomechanical coupling. The small size of micro-

resonators allows one to achieve large coupling rates g0 (Ding
et al., 2011; Verhagen et al., 2012) and to access mechanical

frequencies from several megahertz up to some gigahertz. In
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FIG. 12 (color online). The single-photon cooperativity C0 ¼
4g2

0
=κΓm vs mechanical frequency. This quantity is important for

aspects such as the strength of optomechanically induced trans-

parency (Sec. VII.C.2). Moreover, if the “quantum cooperativity”

Cqu ≡ C0n̄cav=n̄th is larger than unity, the state transfer between

light and mechanics is faster than the mechanical decoherence

rate. Contour lines indicate at which temperatures this would be

true even for single photons (n̄cav ¼ 1).
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=ðΩmκÞ vs sideband resolution Ωm=κ, for published experi-

ments (see main text for references). A single photon induces a

cavity frequency shift Δωc ¼ D · κ, which results in a blockade

effect for a subsequent photon forD > 1, as discussed in Sec. X.F.

The maximum two-photon suppression scales with ðκ=ΩmÞ2 and
therefore sideband resolution (shaded area) is an additional

requirement for successful single-photon blockade.
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essence, three different architectures can be distinguished:

(i) Microdisk resonators, which are the standard resonator

structure in planar photonic circuits and can be fabricated with

high precision. Recent experiments have demonstrated large

optomechanical coupling rates up to g0 ≈ 2π × 8 × 105 Hz

(Ding et al., 2011). A fundamental limit in their performance

is given by radiation losses at the sidewalls. Another limitation

is due to internal materials losses, which could be improved by

using single-crystalline materials. The first demonstration in

this direction, specifically optomechanical coupling to internal

modes of a single-crystalline CaF2 resonator, has been

reported (Hofer, Schliesser, and Kippenberg, 2010). In

another development, the coupling of whispering-gallery

modes to surface acoustic waves in a crystalline resonator

was studied by Matsko et al. (2009) and Savchenko et al.

(2011). (ii) Microsphere resonators, which allow a larger

optical quality (Ma et al., 2007; Park and Wang, 2009; Tomes

and Carmon, 2009); there, the mechanical quality is mainly

limited by internal materials losses, in particular, for the often-

used silica microspheres. (iii) Microtoroidal resonators, which

are obtained from microdisk resonators by a thermal reflow

process that melts the sidewalls into a toroidal topology. The

generated smooth surface together with the microfabrication

control provides a combination of high optical (Armani et al.,

2003) and high mechanical quality (Anetsberger et al., 2008).

This resulted in the first demonstration of radiation-pressure-

driven optomechanical parametric amplification (Carmon

et al., 2005; Kippenberg et al., 2005; Rokhsari et al.,

2005) as well as sideband-resolved operation (Schliesser et al.,

2008). Recently, hybrid toroid devices were developed that

combine optomechanical and electromechanical actuation

(Lee et al., 2010), or optomechanical and magnetostrictive

actuation (Forstner et al., 2012).

The practical benefits of these geometries are the availability

of large optical qualities in combination with the resolved-

sideband regime κ < Ωm, essentially owed to the fact that the

mechanical frequencies range from 10 MHz to several GHz.

Possible limitations arise from the necessity to propagate light

inside a solid-state medium, which increases the sensitivity to

optical absorption and thermorefractive cavity noise.

D. Waveguides and photonic crystal cavities

On-chip waveguides and photonic crystal cavities offer a

different implementation architecture. Photonic crystals are

formed by a periodic modulation of the index of refraction of

some material (typically silicon), which leads to the formation

of optical bands, in analogy with the electronic bands for

electron waves propagating in a crystal lattice. Light cannot

propagate in the band gaps. Thus, when artificial defects are

introduced into the periodic pattern, localized electromagnetic

field modes (Vahala, 2004) can form that do not decay into the

continuum inside the structure. These structures are called

photonic crystal cavities. To obtain an optomechanical device,

in-plane photonic crystal cavities are underetched to form

nanomechanical beams. The mechanical motion results in

modulations of the cavity boundaries and stresses in the

material, both of which contribute to the optomechanical

coupling between the cavity photons and the mechanical

modes of the structure. The simultaneous presence of both

localized optical and vibrational defect modes in a photonic

crystal was predicted theoretically by Maldova and Thomas

(2006). The optomechanical coupling in photonic crystals

was demonstrated experimentally for both 1D (Eichenfield,

Camacho et al., 2009; Eichenfield, Chan, Camacho et al.,

2009) and 2D (Safavi-Naeini et al., 2010; Gavartin et al., 2011)

photonic crystal cavities. The small cavity dimensions in

combination with the small mass of the localized mechanical

mode result in an optomechanical coupling strength that is

much larger than in regular Fabry-Pérot approaches, with

current experiments achieving g0=2π≈MHz. The available

mechanical frequencies can range from several tens of mega-

hertz up to several gigahertz, which significantly reduces the

environmental thermal occupation n̄th ≈ kBT=ℏΩm. The idea

of creating band gaps by inducing periodic boundary con-

ditions can be extended to the modes of the mechanical beam.

Introducing a surrounding periodic structure matched to the

phonon wavelength (“phonon shield”) results in a 1D photonic

crystal cavity with co-localized photonic and phononic modes

with a significantly increased mechanical quality Qm (Chan

et al., 2011); see Eichenfield, Chan, Safavi-Naeini et al. (2009)

and Safavi-Naeini and Painter (2010) for more on the design of

1D and 2D optomechanical crystals. It is also possible to

integrate two-level quantum systems inside the photonic crystal

nanobeam by fabricating photonic crystal cavity nanobeams

out of diamond (Riedrich-Möller et al., 2012) or GaAs

(Rundquist and Majumdar, 2011), which can include artificial

qubits formed by, for example, nitrogen vacancy centers or

quantum dots, respectively. Another possibility is to have

hybrid devices with both optical and electrical actuation

(Winger et al., 2011).

Currently, because of the large available coupling rates

g0=κ, this approach may allow one to enter the regime of

nonlinear photon-phonon interactions (see Sec. X.F).

Moreover, the large mechanical frequencies in the gigahertz

range could allow for low-temperature operation in a regime

where the average phonon number drops below 1 even

without additional laser cooling. This would be highly

beneficial for quantum applications. Finally, the in-plane

architecture is immediately compatible with the architectures

of integrated (silicon) photonics and provides a direct route to

larger-scale optomechanical arrays, which is interesting in the

context of classical and quantum information processing, and

for the study of collective dynamics (Sec. IX).

It should be noted that optomechanical forces can become

strong even in the absence of a cavity for structures with

waveguides running close to a substrate or close to each other.

This approach (while somewhat outside the domain of the

concepts covered in the present review) could be very fruitful

for applications, since it does away with the bandwidth

restrictions generated by a cavity (Li et al., 2008; Pernice,

Li, and Tang, 2008, 2009; Li, Pernice, and Tang, 2009a,

2009b; Bagheri et al., 2011). In another equally promising

development, the gigahertz acoustic vibrations of photonic

crystal fibers are being excited and controlled via optome-

chanical interactions (Dainese et al., 2006; Kang et al., 2008,

2009; Wiederhecker et al., 2008; Kang, Brenn, and Russell,

2010; Kang, Butsch, and Russell, 2011; Butsch, Conti et al.,

2012; Butsch, Kang et al., 2012).
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E. Suspended and levitated nano-objects

This class of cavity-optomechanics implementations uses a

rigid optical cavity that contains a mechanical element either

inside the cavity or in the near field of the cavity. It allows, in

particular, the efficient optomechanical coupling to subwa-

velength-size mechanical objects, which has been demon-

strated for systems such as high-quality mechanical

membranes made of high-stress SiN (Thompson et al.,

2008; Sankey et al., 2010), stochiometric SiN (Wilson et al.,

2009), or AlGaAs (Liu et al., 2011), and for carbon nanowires

(Favero et al., 2009), which have been suspended inside state-

of-the-art Fabry-Pérot cavities. The embedded nano-objects

modify the cavity field via either dispersion (Thompson et al.,

2008) or dissipation, as suggested by Xuereb, Schnabel, and

Hammerer (2011).

An alternative approach to Fabry-Pérot resonators is to

exploit near-field effects close to the surface of optical

microresonators, where the evanescent optical field allows

dispersive coupling to other structures. In essence, the

mechanical motion modulates the distance d between the

interfaces. Because of the near-field character the optome-

chanical coupling strength scales exponentially with d and

hence allows one to generate large values for g0. This has

been used to demonstrate optomechanical coupling between

a toroidal microcavity and a nearby SiN nanomechanical

resonator (Anetsberger et al., 2009). Another related pos-

sibility is to couple two mechanically vibrating microdisk

resonators (Jiang et al., 2009; Lin et al., 2009; Wiederhecker

et al., 2009) or two photonic crystal cavities (Eichenfield,

Camacho et al., 2009; Roh et al., 2010) via their optical

near field.

In order to further suppress mechanical clamping losses, it

was suggested that the mechanical objects should be levitated

either by an additional optical dipole trap or in the standing-

wave trap formed by the cavity field (Barker and Shneider,

2010; Chang et al., 2010; Romero-Isart et al., 2010). This

implementation allows a direct extension to matter-wave

interferometry (Romero-Isart et al., 2011a) and may enable

fundamental tests of quantum theory in a new macroscopic

parameter regime (see also Sec. X.D). The necessary param-

eter regime for such tests is experimentally challenging

(Romero-Isart, 2011) and may even require a space environ-

ment (Kaltenbaek et al., 2012). Levitation of micrometer-size

(Ashkin and Dziedzic, 1977; Li, Kheifets, and Raizen, 2011)

and sub-micrometer-size (Gieseler et al., 2012) silica spheres

has already been demonstrated in optical dipole traps in

high vacuum. An alternative approach could be to combine

optical trapping with a low-frequency mechanical suspension

(Corbitt, Wipf et al., 2007; Ni et al., 2012), which it was

suggested could lead to thermal decoupling of similar quality

as purely optical trapping (Qf ≈ 1018) (Chang et al., 2012).

A prominent feature of such setups, with a nano-object

inside the standing light wave of a cavity mode, is quadratic

coupling to position. The optical frequency shift may no

longer be linear but rather quadratic in the mechanical

displacement, if the object is placed at a node or antinode.

This could lead to interesting applications, such as QND

detection of single phonons, as explained in Sec. VI.B.2.

These setups have also been suggested to strongly couple two

nano-objects, for example, a mechanical membrane to a single

atom (Hammerer, Wallquist et al., 2009; Wallquist et al.,

2010) (see Sec. X.D).

F. Microwave resonators

Analogous to optical cavities, LC circuits form a

resonator for electromagnetic radiation in the microwave

regime, i.e., ωc=2π ∼ GHz, or even for radio frequencies.

The motion of a mechanical element capacitively coupled to

this microwave cavity results in a shift of capacitance, and

thereby of the LC resonance frequency (∂C=∂x ∝ ∂ωc=∂x).
Thus, one obtains the standard cavity-optomechanical

radiation-pressure interaction. The first experiments along

this line were performed by Braginsky and Manukin (1967,

1977) and Braginsky, Manukin, and Tikhonov (1970), and

later in the context of resonant bar gravitational wave

detection (Blair et al., 1995; Cuthbertson et al., 1996).

Already back then these works demonstrated both cold

damping and optomechanical backaction effects such as

cooling and parametric amplification. Later, in the context

of ion-trap physics, cooling of a micromechanical resonator

via an LC circuit was shown (Brown et al., 2007). With the

advent of microfabricated superconducting circuits it is

possible to enter the size and frequency regime of nano-

mechanical devices coupled to microwave cavities (Regal,

Teufel, and Lehnert, 2008). Typical available mechanical

frequencies range from some MHz to some tens of MHz.

In order to resemble a low-entropy reservoir of the radiation

field, which is of particular importance for quantum opto-

mechanics (see Sec. X), the microwave photons need to be

kept at cryogenic temperatures. For GHz photons, environ-

ment temperatures in the mK regime are sufficient, which

necessitates operation inside a dilution refrigerator. Although

the momentum transfer of microwave photons is several

orders of magnitude smaller compared to photons at optical

frequencies, the bare optomechanical coupling rates g0 can be

made comparable to (or larger than) implementations in the

optical domain (Rocheleau et al., 2010; Teufel, Donner et al.,

2011; Pirkkalainen et al., 2013). The essential idea is to have a

very small coupling gap and to optimize the fraction of the

total capacitance that responds to the mechanical motion (see

also Fig. 9).

A current practical challenge for the microwave schemes is

the sparse availability of quantum optics techniques such as

the preparation and detection of Fock states or of squeezed

states of the radiation field. However, several recent proof-of-

concept experiments have demonstrated their availability in

principle (Hofheinz et al., 2009; Eichler et al., 2011; Mallet

et al., 2011).

As a side note, capacitive coupling has also been used to

couple nanomechanical objects directly to two-level quantum

systems, e.g., to a superconducting Cooper-pair box (LaHaye

et al., 2009) or to a superconducting phase qubit (O’Connell

et al., 2010). Note finally that the coupling need not be

capacitive. Recently, it was shown that a microwave resonator

can also be coupled via dielectric gradient forces to the

vibrations of a nanobeam (Faust et al., 2012). This makes

available a larger range of materials, which could be beneficial

for applications.
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G. Ultracold atoms

The ideas of cavity optomechanics have also been imple-

mented by using clouds of up to 106 atoms. Their collective

motional dynamics can resemble a single mechanical mode

that, for the case of ultracold atoms, is already precooled to its

quantum ground state of motion. In one case, the collective

motion of a cloud of ultracold Rb atoms inside a Fabry-Pérot

cavity was used to observe signatures of shot-noise radiation-

pressure fluctuations (Murch et al., 2008). The dispersive

coupling of the collective motion of the cloud to an optical

cavity field results in a position-dependent frequency shift and

therefore to quantum optomechanical interactions.

Suppose the single-photon dispersive energy shift of a

single atom sitting at an antinode of the standing light wave

pattern is δE ¼ −ℏðgat
0
Þ2=Δat, with gat

0
the atom-cavity vac-

uum Rabi frequency, and Δat the detuning between atom and

cavity resonance. Then the coupling Hamiltonian between the

cavity mode and an atom cloud of N atoms trapped near

position x̄ is NδEâ†âsin2½kðx̄þ x̂Þ�. Expanding to lowest

order in x̂, this yields a bare optomechanical coupling rate

(Stamper-Kurn, 2014)

g0 ¼
ðgat

0
Þ2

Δat

ðkxatomZPF Þ sinð2kx̄Þ
ffiffiffiffi

N
p

;

where xatomZPF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=2matomΩm

p

denotes the zero-point fluctua-

tions of a single atom in the trapping potential. We note that

xatomZPF is
ffiffiffiffi

N
p

times larger than xc.m.
ZPF of the center-of-mass

motion of the cloud. Here we assumed that the extent of the

cloud is small with respect to the wavelength. Sometimes the

cloud is actually distributed over several lattice sites. Note that

the trapping potential could be provided by another optical

lattice or magnetically. Incidentally, we note that the same

kind of derivation applies for trapped dielectric particles

(Sec. IV.E). We also mention that if the atoms are trapped

right at a node or antinode, the leading optomechanical

coupling is to x̂2 instead of x̂, which leads to different physics

(e.g., as in Sec. VI.B.2).

In another experiment, cavity optomechanics was used to

cool the motion of a thermal cloud of Cs atoms trapped inside

an optical cavity (Schleier-Smith et al., 2011). Finally, density

fluctuations in a Bose-Einstein condensate of 106 atoms have

been used as the mechanical mode inside a Fabry-Pérot cavity

(Brennecke et al., 2008). In both ultracold cases, due to the

strong dispersive atomic coupling and the small mass (leading

to a large zero-point motional amplitude), operation was close

to the single-photon strong-coupling regime g0=κ ∼ 1.

More recently, a setup was demonstrated that couples the

motion of a vibrating mirror to the motion of atoms trapped in

a standing light wave being reflected from that mirror

(Camerer et al., 2011), without an optical cavity.

V. BASIC CONSEQUENCES OF THE OPTOMECHANICAL

INTERACTION

A. Static phenomena: Optical potential and bistability

We first deal with the simplest case, when the light force

reacts instantaneously to the mechanical motion. This is

relevant for κ ≫ Ωm. Then the radiation-pressure force FðxÞ ¼
ℏGn̄cavðxÞ depends on the displacement x via n̄cavðxÞ, the
photon number circulating inside the optical mode. Such a 1D

conservative force can be derived from a potential (Fig. 13):

FðxÞ ¼ −
∂VradðxÞ

∂x
: ð50Þ

For the case of a single, high-finesse optical resonance we have

n̄cavðxÞ ¼ n̄max
cav =f1þ ½2ðGxþ ΔÞ=κ�2g, where n̄max

cav is the

maximum number of circulating photons obtained at resonance

(proportional to the incoming laser intensity). As a result,

VradðxÞ ¼ −1

2
ℏκn̄max

cav arctan½2ðGxþ ΔÞ=κ�: ð51Þ

Note that for the case of photothermal forces, the discussion still

applies, only with a different prefactor in FðxÞ ∝ n̄cavðxÞ. The
overall potential for the mechanical motion also includes the

intrinsic harmonic restoring potential:

VðxÞ ¼ meffΩ
2
m

2
x2 þ VradðxÞ: ð52Þ

The first effect of the radiation force is to shift the equilibrium

position to x0 ≠ 0, with V 0ðx0Þ ¼ 0. In addition, the effective

spring constant is changed to its new value

keff ¼ V 00ðx0Þ ¼ meffΩ
2
m þ V 00

radðx0Þ; ð53Þ

where the second contribution is called “optical spring.” In

particular, for low-frequency mechanical modes, this term can

be orders of magnitude larger than the intrinsic mechanical

spring (Corbitt, Chen et al., 2007). Such an approach essen-

tially amounts to a variant of optical trapping and can be

exploited to diminish the unwanted mechanical dissipation and

heating connected with the intrinsic mechanical spring being

effective mechanical potential

increasing 
laser power

bistability

circulating intensity

position

laser detuning

FIG. 13 (color online). Optomechanical static bistability occurs

when the laser intensity is sufficiently high to generate two stable

local minima in the effective mechanical potential (top). This

results in bistable behavior and hysteresis when recording the

circulating photon number n̄cav or the transmission as a function

of laser detuning (bottom).
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attached to a substrate. In the limit of low light intensity, the

resulting correction for the mechanical frequency [obtained

from V 00
radð0Þ ¼ meffδðΩ2

mÞ] is

δΩm ¼ 8Δ

�

g0
κ

�

2 n̄max
cav

½1þ ð2Δ=κÞ2�2 : ð54Þ

This corresponds to the limit κ ≫ Ωm of the dynamical case

discussed below (note the relation between n̄cav and n̄max
cav ).

At larger light intensities VðxÞ may develop into a double-

well potential, with two local minima, leading to what we term

static bistability. Both of these minima correspond to stable

equilibrium positions, determined by the nonlinear equation

Fðx1=2Þ ¼ meffΩ
2
mx1=2, which equates the radiation-pressure

force to the restoring force. Physically, they represent situations

with low or high light intensity and low or high restoring force,

respectively. The bistable behavior will occur at negative

detunings Δ < 0, roughly when δΩm ∼ −Ωm, such that the

original equilibrium position becomes unstable. As negative

detunings are necessary for cooling, the bistability limits the

achievable cooling laser intensities for the case κ > Ωm.

More quantitatively, analysis of the equation FðxÞ ¼
meffΩ

2
mx shows that bistability sets in first, at a single value

of Δ, when the maximum (in magnitude) correction to the

spring constant −∂FðxÞ=∂x obtained atGxþ Δ ¼ −κ=ð2
ffiffiffi

3
p

Þ
equals the intrinsic spring constant meffΩ

2
m (Meystre et al.,

1985). This happens at a critical detuning of Δ ¼ −
ffiffiffi

3
p

κ=2
and at a critical laser power determined by

6
ffiffiffi

3
p g2

0

Ωmκ
n̄max
cav ¼ 1; ð55Þ

where we employed the relations G ¼ g0=xZPF and

x2ZPF ¼ ℏ=ð2meffΩmÞ. At higher light intensities, the range

of detunings for which bistability is observed widens. In

experiments, bistability is revealed in hysteresis, e.g., when

recording the transmission or phase shift while sweeping the

detuning up and down. The first experiments on optomechan-

ical bistability, with a macroscopic mirror, were reported and

analyzed already in the 1980s, in both the optical (Dorsel

et al., 1983; Meystre et al., 1985) and microwave domains

(Gozzini et al., 1985).

For low-finesse systems, nearby optical resonances may

also become relevant for the mechanical motion, leading to a

more complicated effective potential, possibly with several

local minima (Fig. 13).

B. Dynamical backaction

We now turn to dynamical effects, due to the retarded nature

of the radiation-pressure force. To derive the dynamics arising

from the optomechanical coupling, one can solve the linear-

ized coupled equations of motion for the light and the

mechanics, as presented in Sec. III.C. This is best done in

frequency space. We employ the classical linearized equa-

tions (48) and (49) as the basis for our following analysis. This

is possible since we are interested only in the linear response

to an external mechanical force, and the averaged linearized

quantum equations are identical to their classical version (and

do not contain the noise sources anymore).

In the linearized regime described here, the optomechanical

system can be viewed in analogy to a linear amplifier (Botter

et al., 2012) that receives optical and mechanical input fields

(see Fig. 15).

In the absence of optomechanical coupling, the mechanical

oscillator has the susceptibility χ−1m ðωÞ ¼ meff ½ðΩ2
m − ω2Þ −

iΓmω� (see Sec. II.B.3). We now assume that a weak test force

F acts on the mechanical oscillator in the presence of the

optomechanical interaction. Solving the coupled set of equa-

tions, we find the mechanical response to that force. This

defines the modified mechanical susceptibility, which can be

expressed in terms of the original susceptibility plus some

modification
11
:

χ−1m;effðωÞ ¼ χ−1m ðωÞ þ ΣðωÞ. ð56Þ

The coupled equations (48) and (49) are solved by expressing

δα½ω� in terms of x½ω� and inserting the result into the equation
for x½ω�. This yields the modification of the linear response to

an external force:

ΣðωÞ ¼ 2meffΩmg
2

�

1

ðΔþ ωÞ þ iκ=2
þ 1

ðΔ − ωÞ − iκ=2

�

;

ð57Þ

where we employed the relation G ¼ g0=xZPF and we obtain

ℏG2jᾱj2 ¼ 2meffΩmg
2. For now, we just define

FIG. 15 (color online). Schematic optomechanical feedback loop.

ra
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e
cooling heating/

red-detuned blue-detuned

FIG. 14 (color online). “Thermodynamic” style schematic dia-

gram depicting the work done by the radiation force during one

cycle of oscillation. The work is given by the finite area swept in

the force-displacement diagram, which is due to the retardation of

the force (finite cavity decay rate). The work is negative or

positive, depending on whether one is on the red-detuned or blue-

detuned side of the resonance. This then gives rise to damping or

amplification, respectively.

11
The notation ΣðωÞ reminds us that this modification has the form

of a “self-energy,” in the same way that it occurs in the analogous

Dyson expression for a Green’s function of a particle modified from

the bare Green’s function due to interactions.
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ΣðωÞ≡meffω½2δΩmðωÞ − iΓoptðωÞ�;

such that the new terms have the structure that is suggested by

the form of the original susceptibility, leading to:

χ−1m;effðωÞ¼mefffΩ2
mþ2ωδΩmðωÞ−ω2− iω½ΓmþΓoptðωÞ�g.

ð58Þ

The real and imaginary parts then yield the frequency-

dependent mechanical frequency shift δΩmðωÞ and optome-

chanical damping rate ΓoptðωÞ, whose meaning will be

discussed further in the next sections (Secs. V.B.1 and

V.B.2). The explicit expressions are [by taking real and

imaginary parts δΩmðωÞ ¼ ReΣðωÞ=2ωmeff and ΓoptðωÞ ¼
−ImΣðωÞ=meffω]:

δΩmðωÞ ¼ g2
Ωm

ω

	

Δþ ω

ðΔþ ωÞ2 þ κ2=4
þ Δ − ω

ðΔ − ωÞ2 þ κ2=4




;

ΓoptðωÞ ¼ g2
Ωm

ω

	

κ

ðΔþ ωÞ2 þ κ2=4
−

κ

ðΔ − ωÞ2 þ κ2=4




.

These expressions provide an exact solution of the linearized

problem that is also valid in the regime of strong coupling,

where g > κ=2 (Sec. VII.C). Also note that the effect is linear

in the laser drive power, i.e., in the circulating photon number:

g2 ¼ g2
0
n̄cav. In Secs. V.B.1 and V.B.2 we discuss the resulting

physical phenomena, i.e., optical spring effect and amplifi-

cation and cooling.

The frequency dependence of ΣðωÞ will in general yield a

non-Lorentzian line shape for the susceptibility that will even

turn into a double-peak structure at strong coupling

(Sec. VII.C.1). However, for sufficiently weak laser drive

(g ≪ κ), it is permissible to evaluate δΩmðωÞ and ΓoptðωÞ at
the original, unperturbed oscillation frequency ω ¼ Ωm. Then

we just have a shifted and broadened mechanical resonance.

This picture also explains why we need the assumption κ ≫

Γeff for this approach to hold, where Γeff ¼ Γm þ ΓoptðΩÞ is
the full linewidth (see below). A high-Q mechanical oscillator

samples the optical density of states at ω ¼ �Ωm, with a small

frequency linewidth Γeff that can be neglected as long as

Γeff ≪ κ. We now discuss both quantities, the frequency shift

and the damping rate, under this assumption.

1. Optical spring effect

We find, with ω ¼ Ωm, for the frequency shift of the

oscillator induced by the light field:

δΩm ¼ g2
�

Δ −Ωm

κ2=4þ ðΔ − ΩmÞ2
þ Δþ Ωm

κ2=4þ ðΔþ ΩmÞ2
�

.

In the limit of a large cavity decay rate (i.e., the Doppler

regime κ ≫ Ωm), this formula yields

δΩmðΔÞjκ≫Ωm
¼ g2

2Δ

κ2=4þ Δ
2
.

This implies that the mechanical oscillator will be spring

softened for a red-detuned laser beam (Δ < 0), and spring

hardened for a blue-detuned laser (Δ > 0).

Note that the frequency shift takes a markedly different

form when we enter the resolved-sideband regime. Here the

optical spring effect vanishes at certain detunings, where the

radiation pressure contributes only to cooling or amplification.

2. Optomechanical damping rate

Using the same approximation as for the optical spring

effect, the optomechanical damping rate is given by

Γopt ¼ n̄cavg
2

0

�

κ

κ2=4þ ðΔþ ΩmÞ2
−

κ

κ2=4þ ðΔ − ΩmÞ2
�

.

ð59Þ

This yields the full effective mechanical damping rate

Γeff ¼ Γm þ Γopt.

Since Γopt can be both positive and negative, it can either

increase or decrease the mechanical damping rate, i.e.,

cause extra damping or antidamping. Extra damping leads

to cooling (Sec. III), while antidamping can lead to amplifi-

cation of thermal fluctuations, and finally to an instability if the

full damping rate becomes negative Γeff < 0 (see Sec. VIII).

This behavior can also be observed experimentally: Figs. 16

and 17 show the damping rate and optically induced frequency

shift for different ratios of Ωm=κ.
The physical origin of the optomechanical damping rate can

be described in several ways.

a. Mechanical picture

Cooling and heating can be understood by the following

mechanical consideration. As the mechanical oscillator is

performing its harmonic motion, it traces a trajectory in the

diagram of radiation-pressure force versus displacement as

FIG. 16 (color online). Optomechanical damping rate and optical

spring effect vs detuning and different sideband parameters,

with theory (black lines) and experimental data (dots). (a)–(d)

Full mechanical damping rate Γeff=2π vs detuning Δ=κ,
with decreasing values of κ=Ωm from top to bottom (κ=Ωm ¼
3.7; 2.2; 1.4; 0.7). The regime where Γeff touches zero is the

regime of dynamical instability (mechanical lasing). (e)–(h)

Optical spring effect, i.e., light-induced mechanical frequency

shift δΩm=2π. Adapted from Schliesser and Kippenberg, 2010.
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shown in Fig. 14. In the limit where κ ≫ Ωm, the intracavity

field (and the associated radiation-pressure force) respond

instantaneously to the oscillator motion. If, however, we still

take into account the remaining cavity retardation, this leads to

the radiation-pressure force getting out of phase with the

mechanical motion. We then can split the force as FðtÞ ¼
F̄ þ δFIðtÞ þ δFQðtÞ into a component δFIðtÞ in phase with

the motion xðtÞ (responsible for the optical spring effect) and

an out-of-phase quadrature term δFQðtÞ (responsible for

cooling or heating). In the diagram this implies that the

oscillator motion no longer traces out a line but an area. The

sense in which this area is encompassed gives the direction of

energy flow, i.e., cooling or amplification.

b. Scattering picture

Writing the optomechanical dynamical backaction in the

above fashion allows one to gain physical insight into the

origin of cooling and amplification. The expression consists of

two terms which are essentially the cavity buildup factor

κ=ðΔ2 þ κ2=4Þ evaluated at the frequencies Δ ¼ ωþ Ωm and

Δ ¼ ω −Ωm. These terms describe the strength of the

motional sidebands of the intracavity field, generated due

to the cavity frequency oscillating because of the motion

xðtÞ ¼ x0 · sinðΩmtÞ of the mechanical oscillator. To see this,

we calculate the behavior of the intracavity field amplitude in

the presence of this finite-amplitude mechanical oscillation.

Perturbation theory analysis of the classical coupled mode

equations reveals that the intracavity field exihibits sidebands

(Kippenberg and Vahala, 2007):

aðtÞ ≈ a0ðtÞ þ a1ðtÞ; ð60Þ

where a0ðtÞ ¼ αin · e
−iωLt

ffiffiffiffiffiffi

κex
p

=ð−iΔþ κ=2Þ is the unper-

turbed field and a1ðtÞ contains the anti-Stokes aasðtÞ and

Stokes asðtÞ sidebands:

a1ðtÞ¼
g0x0
2xZPF

a0ðtÞ
�

e−iΩmt

−iðΔþΩmÞþκ=2
−

eiΩmt

−iðΔ−ΩmÞþκ=2

�

.

ð61Þ

These two sidebands become asymmetric for nonzero laser

detuning due to the cavity density of states. Applying energy

conservation arguments implies that the mode-density-

induced sideband asymmetry must either extract from or

add power to the mechanical oscillator. The total power

deposited into the mechanical motion is obtained by the

difference of the optical powers emitted from the Stokes and

anti-Stokes sidebands,
12

i.e.,

ΔP ¼ Ps − Pas ¼ ðℏΩmκÞðjasj2 − jaasj2Þ.

Writing this mechanical power in terms of an effective

damping rate, i.e., ΔP ¼ −Γopt ·meffΩ
2
mx

2
0
=2, we recover a

cooling rate identical to the expression derived above.

Consequently, cooling and amplification can be viewed as

originating from the imbalance of Stokes and anti-Stokes

scattering (see Fig. 18).

For the case of resolved sidebands (Ωm ≫ κ) the cavity

absorption spectrum 1 − jRðΔÞj2 develops a series of side-

bands due to the mechanical oscillator’s motion, similar to the

absorption spectrum of an oscillating ion (Stenholm, 1986)

(Fig. 19):

jRðΔÞj2 ≈ 1 − ηð1 − ηÞκ2
X

n

JnðβÞ2
ðΔþ nΩmÞ2 þ κ2=4

; ð62Þ

where η ¼ κex=κ and β ¼ ðG=ΩmÞx0 denotes the modulation

index. For the simple case of a weak coherent oscillation

(with amplitude x0) one obtains to lowest order two sidebands
only, i.e., J�1ðβÞ2 ¼ β2. The lower and upper motional

sidebands that appear in the spectrum are, in analogy to

trapped-ion physics, related to motionally increasing

laser
Cavity

mode

(b)

(a)

L

laser
Mechanical Mode 

Cavity

mode

L

FIG. 18 (color online). Scattering picture of cooling and ampli-

cation. (a)Amplification and heating proceeds by suppressing anti-

Stokes scattering and enhancing Stokes scattering, via the cavity

density of states. (b) Cooling proceeds vice versa, by suppressing

the Stokes process and enhancing anti-Stokes scattering.

π
Ω

γ  
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Δ/2π (MHz)
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Δ= −ω    

Δ= +ω    

FIG. 17 (color online). Optomechanical cooling rate and fre-

quency shift in the resolved-sideband regime, shown here for

κ=Ωm ≪ 1. Adapted from Teufel et al., 2008.

12
Note that each Stokes (anti-Stokes) scattering event shifts the

photon frequency by −ðþÞΩm. Correspondingly, the energy of the

mechanical system is changed by þð−ÞℏΩm.
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and motionally decreasing scattering processes (Wineland and

Itano, 1979).
13

c. Feedback picture

Finally, one can also understand the cooling by considering

a feedback picture. In this picture the mechanical oscillator

motion modulates the cavity field, and the latter gives rise to a

radiation-pressure force, which in turn acts back onto the

mechanical oscillator. Cooling arises again from the phase

relationship (retardation) between the mechanical motion and

the radiation-pressure force. Note that the feedback is not

entirely noiseless: Quantum noise adds to the intracavity

radiation-pressure force, giving rise to the quantum limit of

cooling treated in Sec. VII.A.

It is instructive to consider several limiting cases of the

cooling rate expression.

d. Resolved-sideband regime

First, in the limit where the mechanical frequency is much

larger than the cavity decay rate (Ωm ≫ κ), the cooling rate

exhibits pronounced maxima and minima near the lower and

upper sidebands (Δ ¼ �Ωm). The maximum cooling rate is

attained on the lower sideband (Δ ¼ −Ωm):

Γoptjκ≪Ωm
¼ 4n̄cav

g2
0

κ
¼ 4g2

κ
. ð63Þ

Note that the cooling rate in the resolved-sideband regime can

also be expressed via the so-called cooperativity C ¼ C0n̄cav,
where C0 ¼ 4g2

0
=κΓm is the single-photon cooperativity. We

have Γopt ¼ ΓmC in this regime.

The cooling rate in the resolved-sideband regime can also

be expressed in a different way, as detailed by Schliesser et al.

(2008). In the resolved-sideband regime (considering an

overcoupled single-sided cavity for simplicity), the relation

between the intracavity photon number and input power is

given by n̄cav ¼ ðηP=ℏωLÞ · κ=Ω2
m, where η ¼ κex=κ. Thus

Γoptjκ≪Ωm
¼ 4ηP

ℏωL

g2
0

Ω
2
m

; ð64Þ

Evidently, the cooling rate in the resolved-sideband limit does

not depend on the cavity linewidth.

e. Doppler regime

In the unresolved-sideband regime (Doppler case, i.e.,

κ ≫ Ωm), the rate is given by the following expression, and

we show later that the lowest possible effective temperature is

reached for a detuning equal to Δ ¼ −κ=2 [which does not

correspond to the maximum cooling rate, which is achieved at

Δ ¼ −κ=ð2
ffiffiffi

3
p

Þ for fixed g], provided we keep the intracavity

photon number (and therefore g) fixed:

ΓoptðΔÞ ¼ g2Ωm
−4Δκ

ðκ2=4þ Δ
2Þ2 ; ð65Þ

Γopt

�

Δ ¼ −
κ

2

�

¼ 8

�

g

κ

�

2

Ωm. ð66Þ

In this case the mechanical cooling and amplification rates

exhibit a strong dependence on the inverse (cubic) cavity

decay rate. This shows that the cooling rate strongly dimin-

ishes in the Doppler regime. Note that sub-Doppler cooling in

the unresolved-sideband regime can still be achieved by using

pulsed optical pumping schemes (Vanner et al., 2011, 2012;

Wang et al., 2011; Machnes et al., 2012).

VI. QUANTUM OPTICAL MEASUREMENTS OF

MECHANICAL MOTION

One of the principal advantages of cavity-optomechanical

systems is the built-in readout of mechanical motion via the

light field transmitted through (or reflected from) the cavity.

In the following, we discuss several variants of optical

measurement schemes. We first address the measurement of

position, where we find that quantum mechanics places

fundamental restrictions on the overall precision in the regime

typically employed in experiments (i.e., weak measurements).

Then we discuss alternative schemes, where there are no such

limitations. Some supply a measurement of a selected quad-

rature of mechanical motion, i.e., the amplitude of the

cosðΩmtÞ or sinðΩmtÞ contribution to xðtÞ. Other schemes

measure the discrete phonon number. Both approaches are

examples of so-called quantum nondemolition (QND) mea-

surements. We close the section by pointing out some

experimental issues in phase measurements and discussing

feedback cooling based on the possibility of precise readout.

FIG. 19 (color online). Transmission spectrum of an oscillating

cavity in the resolved-sideband regime, as measured by

Schliesser et al. (2008). The mechanical motion leads to the

appearance of a series of sidebands spaced by multiples of the

mechanical frequency nΩm, where n ¼ 0;�; 1;�2;…. In most

optomechanical experiments only the first pair of sidebands is

relevant. Optomechanical cooling proceeds by pumping the

lower sideband (as indicated by the arrow labeled ωL), which

leads to cooling of the mechanical oscillator.

13
In a quantum mechanical picture each photon that is absorbed by

the lower sideband removes one quantum of energy from the

mechanical oscillator (ℏΩm). The rate at which photons enter the

cavity via the lower sideband is given by Pβ2=ℏωL. Consequently,

the rate at which energy is removed from the oscillator is

dE

dt
¼ −

ηP

ℏωL
β2ℏΩm ¼ −ΓoptE;

yielding again

Γopt ¼ ðg2
0
=Ω2

mÞ
ηP

ℏω
¼ 4n̄cavg

2
0
=κ

where η ¼ κex=κ in agreement with the classical calculation.
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A. Parametric displacement sensing and the standard quantum

limit

Measuring the displacement of a mechanical resonator via

the transmission or reflection phase shift typically involves

integrating the data over a long time in order to suppress the

noise. It is therefore an example of a weak, continuous

measurement. It turns out that such a measurement applied

to the coordinate of a harmonic oscillator cannot be more

precise than what is known as the “standard quantum limit”

(SQL). In the following we give a brief qualitative and

quantitative discussion. More about this topic can be found

inCaves (1980, 1981, 1982), Braginsky,Mitrofanov, andPanov

(1985), Braginsky and Khalili (1995), and Clerk et al. (2010).

1. Introduction and qualitative discussion

The optical cavity represents an interferometer and thus

allows a direct measurement of the mechanical position via the

phase shift of transmitted or reflected light. In practice this

requires either a homodyne or a heterodyne detector, in which

the signal is brought into interference with a local oscillator

that serves as a phase reference. The optomechanical-cavity

frequency pull Gx is converted into a phase shift θ ∝ Gx=κ
imparted on the photons during their lifetime 1=κ inside the

cavity (assuming slow motion Ωm ≪ κ). If one tries to

measure this phase shift using N photons passing through

the cavity (and interfering with a reference beam to read out

the phase later), then the fundamental uncertainty relation

between the number and the phase yields a shot-noise-limited

imprecision of δθ ¼ 1=ð2
ffiffiffiffi

N
p

Þ (see Fig. 20). It seems that this

would allow for an arbitrarily precise readout, provided one

uses a sufficiently large number of photons. Indeed, this

would be true for an instantaneous readout with a very intense

flash of light.

However, in many experiments one rather performs a weak

measurement: The noisy signal xðtÞ determined from the phase

measurement is effectively integrated over many oscillation

periods to average away the noise and get a sufficient signal-to-

noise ratio. The fact that this will pose a problem can be seen

from the general quantum mechanical uncertainty principle

which states that it is impossible to follow the trajectory xðtÞ of
a particle with arbitrary precision (or to know both position and

momentum at the same time). It is instructive to see qualita-

tively how that limitation is enforced in our case. The

fluctuating radiation-pressure force (again, due to the photon

shot noise) imprints an unavoidable jitter on the mechanical

motion. Each of the photons imparts a random kick, and their

overall effect on the momentum and position will grow like
ffiffiffiffi

N
p

, as in a random walk. That effect is called backaction noise

and counteracts the increase of phase readout precision at large

N. Thus, there is an optimum at intermediate photon numbers,

where the sum of the two effects is minimal.

The quantitative analysis outlined below will be phrased in

terms of noise spectra, describing the imprecision and back-

action noise contributions to the overall measurement error. In

that context, the appropriate question to ask is how large the

error is given a certain measurement time (which sets the

bandwidth over which the spectra are to be integrated). In

thermal equilibrium, the mechanical oscillator’s phase and

amplitude will fluctuate on the scale of the damping time

1=Γm. Thus, this is the longest reasonable measurement time at

our disposal. The outcome of the analysis will be that one can

determine the trajectory (or rather its two quadratures) up to a

precision given by the oscillator’s zero-point fluctuations

xZPF ¼ ðℏ=2meffΩmÞ−1=2 during a time 1=Γm. This statement

[see Eq. (73)] is known as the standard quantum limit of

displacement detection in a weak measurement. It is indepen-

dent of whether the oscillator is in its ground state or at high

temperatures.

2. The standard quantum limit

We first state more formally why there must be a standard

quantum limit. The oscillator’s trajectory can be decomposed

into quadratures:

x̂ðtÞ ¼ X̂ cosðΩmtÞ þ Ŷ sinðΩmtÞ; ð67Þ

where X̂ and Ŷ remain constant during intervals smaller than

the damping time. Since X̂ ¼ x̂ð0Þ and Ŷ ¼ p̂ð0Þ=meffΩm, the

commutator ½x̂; p̂� ¼ iℏ carries over to X̂ and Ŷ, yielding

½X̂; Ŷ� ¼ iℏ=meffΩm. Heisenberg’s uncertainty relation thus

reads

ΔX · ΔY ≥
ℏ

2meffΩm

¼ x2ZPF; ð68Þ

and any simultaneous measurement that tries to measure both

quadratureswith equal precision is limited toΔX¼ΔY¼xZPF.
14

Here we discuss only the most important results. For a more

extended recent discussion of the quantum limits to weak

measurements see Clerk et al. (2010). We consider a single-

sided optical cavity (overcoupled, κex ≈ κ) driven at laser

FIG. 20 (color online). Optomechanical systems transduce dis-

placements into changes of the optically transmitted (or reflected)

phase. Upper panel: amplitude response. Lower panel: phase

response. The inset in the lower panel shows the mechanical

phase space spanned by the position (x axis) and momentum

(y axis) quadratures. 14
Here ΔX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðX̂ − hX̂iÞ2i
q

.
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detuning Δ ¼ 0 (the optimal case), where the number of

photons circulating inside the cavity is n̄cav ¼ 4P=κℏωcav. All

noise spectral densities are symmetrized (see Sec. II.B.3) in

frequency (indicated by S̄).
The noise in the optical phase readout δθ ∼ 1=

ffiffiffiffi

N
p

induces

an imprecision in the xmeasurement, where δximp ∼ κδθ=G ¼
κ=G

ffiffiffiffi

N
p

, as discussed previously. Inserting the photon number

N ¼ t _N ∼ tκn̄cav, we find ðδximpÞ2 ∼ ðκ=n̄cavG2Þt−1. This can
be understood as the integral of a flat noise spectral density

S̄imp
xx ∼ κ=n̄cavG

2 over the bandwidth t−1 set by the measure-

ment time t. The complete expression (Schliesser et al., 2009)

for the quantum-noise-limited imprecision noise spectral

density reads

S̄imp
xx ðωÞ ¼ κ

16n̄cavG
2

�

1þ 4
ω2

κ2

�

; ð69Þ

where we also kept the growth of the noise at higher values of

ω=κ. This is due to the fact that the cavity is a low-pass filter,

suppressing the contribution of motional frequencies ω > κ to

the phase output. On the other hand, the phase noise itself is

independent of ω, so referring it back to the input leads to

larger imprecision at higher ω.

At the same time, the backaction noise force has the

following spectral density (cf. Sec. VII.A):

S̄FFðωÞ ¼ n̄cav
4ℏ2G2

κ

�

1þ 4
ω2

κ2

�

−1

. ð70Þ

The product of imprecision noise and backaction force noise

densities fulfills a fundamental inequality, a variant of the

Heisenberg uncertainty relation [see Braginsky and Khalili

(1995) for the derivation of the general version
15
; some further

discussion can be found in recent reviews such as Clerk et al.

(2010)]:

S̄imp
xx ðωÞS̄FFðωÞ ≥

ℏ
2

4
: ð71Þ

In our particular case, we see that the equality is realized, i.e.,

the cavity displacement detector is as good as allowed by

quantum mechanics.

The total noise registered at the detector, expressed in terms

of x (“referred back to the input”), reads

S̄totalxx ðωÞ ¼ S̄thxxðωÞ þ S̄imp
xx ðωÞ þ S̄FFðωÞjχmðωÞj2: ð72Þ

Here we added the intrinsic thermal fluctuation spectrum

(including the vacuum fluctuations), the imprecision noise,

and the effect of the backaction noise force on the displace-

ment, calculated via the mechanical susceptibility χm (see

Sec. II.B.3). In doing so we assumed a situation where there

are no cross correlations between the force noise and the

imprecision noise. See Clerk et al. (2010) for a more complete

discussion including the general case and Fig. 21 for a typical

measurement of the total noise power. In the following, we

denote the sum of the imprecision and backaction noises as the

total added noise S̄addxx . Inserting the relation (71), and treating

S̄FF as variable (e.g., by tuning n̄cav), we can minimize S̄addxx .

The minimum (at any given, fixed frequency) is reached at

S̄FF ¼ ℏ=ð2jχmjÞ, and this yields S̄addxx ðωÞ ≥ ℏjχmðωÞj ≥
ℏjImχmðωÞj. By using the quantum FDT at T ¼ 0 [see

Eq. (16)], we can introduce the spectral density of mechanical

zero-point fluctuations S̄ZPFxx ðωÞ ¼ ℏjImχmðωÞj. We arrive at

the fundamental inequality

S̄addxx ðωÞ ≥ S̄ZPFxx ðωÞ: ð73Þ

This is the standard quantum limit (SQL) of weak displace-

ment detection. The measurement adds at least the zero-point

noise, on top of the intrinsic fluctuations. Backaction and

imprecision noise both contribute equally to the added noise at

the SQL. The combined effect on the noise looks as if the

oscillator’s energy were increased by ℏΩm=2, i.e., one-half a
phonon. However, only the backaction contribution really

corresponds to a physical increase of the oscillator’s effective

temperature by ℏΩm=4.
If we measure at the mechanical resonance ω ¼ Ωm, then

the added noise of the cavity displacement detector is

S̄addxx ðΩmÞ ¼ S̄ZPFxx ðΩmÞ ¼ ℏ=meffΩmΓm. This corresponds to

resolving the zero-point fluctuations in a measurement time

t ∼ Γ
−1
m , just as stated in the introduction of this section.

Obviously, if one is limited by laser power, it is better to have a

high-quality oscillator (small Γm), which boosts S̄
ZPF
xx ðΩmÞ and

makes it easier to reach that imprecision level. The power to

reach the standard quantum limit therefore is a natural

expression to characterize a transducer. For an overcoupled

cavity (κ ≫ κex), it is given by

PSQL ¼ ΓmℏωL
κ2

64g2
0

�

1þ 4
ω2

κ2

�

. ð74Þ

FIG. 21 (color online). Mechanical frequency spectrum for an

example of an optomechanical system. The actual imprecision

noise floor (dark data points at bottom) is indicated along with the

full noise at the standard quantum limit. Similar data demon-

strating imprecision below that at the SQL exists for nano-

mechanical oscillators using a microwave-cavity interferometer

(Teufel et al., 2009) or nanomechanical oscillators coupled to the

near field of an optical microresonator. Adapted from Schliesser

and Kippenberg, 2010.

15
Section 10.3 of that book applies this already to the electro-

mechanical transducer.
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Both the imprecision noise and the backaction noise are

shown as functions of laser power (or optomechanical

coupling) in Fig. 22. When referring to “precision beyond

that at the standard quantum limit” in this context, one wants

to emphasize that one can make the imprecision noise alone

lower than the SQL (which implies that the backaction noise is

already appreciable). This situation has been achieved in

optomechanical systems for mechanical oscillators of nano-

scale (Anetsberger et al., 2009; Teufel et al., 2009) and

microscale dimensions (Schliesser et al., 2008; Westphal

et al., 2012). Using phase-squeezed input states of light a

reduction of the imprecision noise has been demonstrated in

microcavities (Hoff et al., 2013) and gravitational wave

detectors (Aasi et al., 2013).

The observed thermal noise at any large temperature can also

be used to obtain the value of the standard quantum limit via

S̄thxxðωÞ=S̄ZPFxx ðωÞ ¼ 2n̄thðωÞ ≈ 2kBT=ℏω.

This is a useful expression, since it is independent of the

calibration of the x measurement.

In the context of measurements at the SQL, an important

step for optomechanical experiments is to observe the effects

of radiation-pressure shot noise on the mechanical oscillator.

This has been achieved already in cold atom setups (Murch

et al., 2008; Brooks et al., 2012), which are conducted

routinely at low temperatures, and where the particularly

low effective mass of the atomic cloud leads to a very strong

single-photon coupling rate g0. This is an advantage, since the
ratio of quantum backaction to thermal force noise (at Δ ¼ 0)

is given by (assuming κ ≫ κex)

SFFðΩmÞ
SthFFðΩmÞ

¼ C0
n̄cav
n̄

¼ 16ηPg2
0
Ωm

κ2ΓmωcavkBT

1

1þ 4Ω2
m=κ

2
; ð75Þ

where C0 ¼ 4g2
0
=κΓm is the single-photon optomechanical

cooperativity. These atomic cloud experiments have allowed

access to the radiation-pressure shot-noise spectrum, e.g., via

tracking the heating of the cloud (see Fig. 23) and sub-

sequently demonstrated the ability to detect forces at the

standard quantum limit (Schreppler et al., 2014).

Current solid-state-based devices still exhibit both signifi-

cantly smaller ratios g0=κ and deleterious effects of thermal

noise, which make the observation of radiation-pressure shot-

noise effects a challenging task. One possible strategy is to

measure the cross correlations between a strong beam exerting

radiation-pressure force fluctuations and another beam meas-

uring the resulting displacement fluctuations [Heidmann,

Hadjar, and Pinard (1997); see also Borkje et al. (2010) for a

more recent analysis]. This idea was demonstrated for a model

situation with deliberately introduced classical noise instead of

the quantum shot noise of a laser beam (Verlot et al., 2009). In

another experiment, it was demonstrated how the radiation-

pressure backaction can be employed for amplifying an

interferometric signal, which can lead to a sensitivity lower

than the SQL (Verlot et al., 2010). Recently, a direct observation

of radiation-pressure shot noise was reported (Purdy, Peterson,

and Regal, 2013), where an increasingly strong measurement

led to the expected increasing backaction force that was

FIG. 23 (color online). Observation of quantum radiation-pres-

sure force fluctuations through the energy transferred to a near-

ground-state mechanical oscillator. Experiments were performed

with an ultracold atomic gas serving as the mechanical element

within a Fabry-Pérot optical cavity. (a) The energy transferred to

the gas was quantified via the rate at which atoms were ejected

from a finite-depth optical trap. The force-fluctuation spectral

density at the mechanical oscillation frequency SFFðΩmÞ is

thereby obtained at different detunings Δ between the cavity

probe and resonance frequencies. From Murch et al., 2008.

(b) From the power difference between the red and blue motional

sidebands observed in the emission of a resonantly driven optical

cavity, one obtains the heat flux into the mechanical system via

the cavity probe. The observed heating, given in units of

mechanical energy quanta per second, matches well to that

predicted for intracavity shot noise from a coherent optical

field (gray line). From Brahms et al., 2012. Courtesy of D.

Stamper-Kurn.

FIG. 22 (color online). The full measured noise spectrum

contains contributions from the intrinsic fluctuations of the

mechanical oscillator, but also extra noise due to imprecision

in the measurement (typically flat in frequency) and noise due to

the backaction heating of the oscillator. Bottom: The added noise

evaluated at the mechanical resonance, plotted as a function of the

power of the measurement beam. At lower powers, imprecision

noise dominates (a small number of photons yields bad phase

resolution), while at higher powers the backaction noise repre-

sents the most important contribution. The standard quantum

limit minimal noise is reached at intermediate powers.
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comparable in magnitude to the thermal forces in the system.

Moreover, in this experiment, the cross correlations between the

fluctuations in the radiation-pressure force and the position of

the mechanical resonator could be demonstrated.

B. Optical QND measurements

The weak-displacement measurements discussed in

Sec.VI.Aeffectively try tomeasure noncommutingobservables

simultaneously, namely, the two quadrature components of

motion. They are therefore limited fundamentally by the

Heisenberg uncertainty principle. However, it is also possible

to perform measurements of a single observable. This observ-

able can be measured with arbitrary precision, thereby

approaching an idealized projection measurement. Repeating

the measurement before the state has a chance to decay

reproduces the same outcome. This is because the system’s

Hamiltonian commutes with the observable (neglecting

decay). Therefore such measurements are said to be quantum

nondemolition (Braginsky, Vorontsov, and Thorne, 1980;

Braginsky and Khalili, 1995, 1996). These were successfully

realized in the quantum optical domain (Leibfried et al., 1996;

Haroche and Raimond, 2006; Lvovsky and Raymer, 2009).

1. Single-quadrature measurements

It is possible to optically measure only one quadrature

component of the mechanical motion to arbitrary precision.

The idea of such backaction-evading measurements of a single

quadrature was proposed and analyzed in detail by Caves et al.

(1980) [see also Braginsky and Khalili (1995)]. Pioneering

proof-of-principle experiments in the classical limit were

performed by Bocko and Johnson (1984)) and later applied

to realize classical thermal squeezing (Rugar andGrütter, 1991).

The application of this technique to quantum optome-

chanics was worked out by Clerk, Marquardt, and Jacobs

(2008), and first experiments have now been performed in this

direction. An ideally noise-free measurement of a single

quadrature is important, since it can be used for a full

reconstruction of the mechanical quantum state, extracting

its Wigner density using quantum-state tomography (see

Fig. 24). In addition, it can serve to measure the correlation

of mechanical quadratures with either the light field quad-

ratures or those of another mechanical object. The resulting

correlators can then be used to test for entanglement. The

fundamentally limited precision of a standard displacement

measurement would not be sufficient for such tests.

One way of achieving this makes use of a simple property

of harmonic motion: Any force applied at time t does not

affect the position until a full period later, at tþ 2π=Ωm. Thus,

the unavoidable perturbation of the momentum connected

with a position measurement does not destroy the precision of

“stroboscopic” periodic observations at times tþ n2π=Ωm.

An equivalent but more practical approach is to do a

displacement measurement with a laser beam (at detuning

Δ ¼ 0) whose intensity is modulated at frequency Ωm (see

Fig. 24). This reads out only one quadrature (say, X̂φ) in the

decomposition

x̂ðtÞ ¼ X̂φ cosðΩmtþ φÞ þ Ŷφ sinðΩmtþ φÞ; ð76Þ

whose phase φ is determined by the phase of the laser

amplitude modulation. The backaction noise exclusively

affects the other quadrature (Clerk, Marquardt, and Jacobs,

2008). All this can be derived in the Hamiltonian formulation

(Sec. III.B). Suppose the modulated drive yields an intracavity

amplitude α ¼ 2α0 cosðΩmtþ φÞ in a frame rotating at the

cavity resonance. Then the standard linearization gives

Hint ¼ −2ℏGα0 cosðΩmtþ φÞðδâþ δâ†Þx̂
≈ −ℏGα0ðδâþ δâ†ÞX̂φ; ð77Þ

where we omitted rapidly oscillating terms and adopted the

rotating frame for the mechanical resonator in the second step.

This is a QND Hamiltonian for measuring X̂φ. Deviations

from this idealized picture are small in the resolved-sideband

limit, i.e., for κ=Ωm ≪ 1. As a side effect, the state conditioned

on the measurement result becomes squeezed, since the

variance of X̂φ after the measurement approaches zero. The

first experimental steps along these lines were taken by

Hertzberg et al. (2009) and Suh et al. (2014).

There is an alternative approach for QND detection of

single quadratures: measuring much faster than the oscillation

period of the mechanical resonator. Such an approach requires

very short, intense laser pulses that essentially implement an

instantaneous projection measurement of displacement.

Picking another quadrature to measure then simply involves

performing the measurement at another time, when the phase

of the harmonic oscillations has advanced. This approach was

proposed and analyzed by Braginsky, Vorontsov, and Khalili

(1978), Braginsky and Khalili (1995), and Vanner et al.

(2011). Because of the short pulses, this scheme operates

in the nonresolved-sideband regime κ ≫ Ωm. First experi-

ments in this direction were recently reported by Vanner et al.

(2012). It was also pointed out that properly controlled pulse

sequences can alter the effective optomomechanical interac-

tion, enabling, for example, sub-Doppler cooling rates in the

amplitude-modulated
laser beam

signal

optical spectrum

(a)

(b) (c)

Wigner density
reconstruction

FIG. 24 (color online). (a) Schematic setup for an optomechan-

ical single-quadrature measurement, with a laser-beam amplitude

modulated at the mechanical frequency. (b) In optical frequency

space, the beam carries two sidebands, which are then modulated

by the motion (vertical arrows indicate injected laser beams;

scattering into sidebands is indicated as well). (c) Tomographical

reconstruction of the full mechanical Wigner phase-space density

is possible based on measurements of the quadratures at different

phases φ.
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nonresolved-sideband regime (Wang et al., 2011; Machnes

et al., 2012).

In both of these approaches, quantum-state tomography

(Lvovsky and Raymer, 2009) then works by repeatedly

preparing the same mechanical state, measuring the proba-

bility densities of the quadratures at a large number of phases

φ, and applying the inverse radon transform to obtain the

Wigner density. Reconstruction of the Wigner density of

quantum states of vibrational motion has, for example,

successfully been achieved for ions (Leibfried et al., 1996).

2. Mechanical Fock-state detection

Another crucial observable in the mechanical oscillator is

the phonon number n̂ ¼ b̂†b̂. It is especially important, since

measuring the discrete Fock states n ¼ 0; 1; 2;… is a direct

proof of the quantum nature of an oscillator. We note that the

first measurements of the phonon number in a fabricated,

mesoscopic mechanical oscillator were recently performed in

a nanoelectromechanical system, exploiting the strong inter-

action between a piezomechanical vibration and a super-

conducting qubit (O’Connell et al., 2010). Here we discuss a

potential route toward observing quantum jumps between

mechanical Fock states in an optomechanical system (Jayich

et al., 2008; Thompson et al., 2008).

The idea is that any measurement of x̂2 instead of x̂ will be

closely connected to the oscillator’s energy, and thus the

phonon number. This then permits QND detection of the

phonon number in a mechanical resonator [for an early

detailed analysis of this concept in an anharmonic two-mode

nanomechanical system, see Santamore, Doherty, and Cross

(2004)]. In practice, for an optomechanical system this

requires changing the standard setup to another variant where

the light field couples to the square of the displacement. That

can be achieved, for example, by placing a thin membrane (or

any other dielectric object) inside an optical cavity and

positioning it near a node (or antinode) of the standing light

wave that forms one optical mode (see Fig. 25). In that case,

the light intensity at the object’s position, and thereby the

object’s effect on the optical resonance frequency, depends

quadratically on the displacement x̂. The optomechanical

coupling then reads

Ĥint ¼ ℏg
ð2Þ
0
ðb̂þ b̂†Þ2â†â; ð78Þ

where

g
ð2Þ
0

¼ 1=2
∂2ωcav

∂x2
x2ZPF.

If the membrane is highly reflecting, an alternative way of

deriving Eq. (78) is to focus on two optical modes (to the left

and right of the membrane). Their coupling, provided by

photon tunneling through the membrane, then leads to an

avoided level crossing in the optical spectrum as a function of

x. At the degeneracy point, both the upper and lower optical

branch frequencies are extremal (Thompson et al., 2008;

Sankey et al., 2010), leading to Eq. (78) for each of them.

Quadratic couplings have recently also been observed in a

cold atom setup (Purdy et al., 2010).

The phase shift observed in reflection from the cavity

measures ðb̂þ b̂†Þ2 ∝ x̂2, but averaged over the photon

lifetime 1=κ. If κ ≪ Ωm, the time average of this term

reduces to 2b̂†b̂þ 1. One may arrive at the same result by

keeping only this contribution in Eq. (78), invoking the

rotating-wave approximation. Thus, this setup in principle

allows a QND measurement of the phonon number. Cooling

the oscillator to near its ground state and then measuring the

phase shift versus time, one should be able to observe

quantum jumps between mechanical Fock states, similar

to the jumps that have been observed between Fock states of

an electron cyclotron oscillator (Peil and Gabrielse, 1999) or

between photon number states (Guerlin et al., 2007). To this

end, the phase shift ∼g
ð2Þ
0
=κ induced by a single phonon must

be resolved during the lifetime ðΓmn̄thÞ−1 of the ground state,
by reflecting a sufficient number of photons from the cavity.

More precisely, the measurement time and the photon life-

time must be much shorter than the Fock-state lifetime

(Jayich et al., 2008; Gangat, Stace, and Milburn, 2011). Note

that one must suppress any deviations from the ideal case,

such as imperfect placement away from the degeneracy point

(Jayich et al., 2008; Thompson et al., 2008) or deviations

from a perfectly one-sided cavity. Such deviations lead to

extra noise acting on the membrane that hampers the phonon

QND measurement. A careful analysis (Miao et al., 2009)

showed that this requires g0 ≫ κ0, where κ0 includes any

absorption in the membrane or cavity, but not the “good”

decay channel through the entrance mirror. Here we assumed

for simplicity the commonly chosen condition of critical

coupling κex ¼ κ0, where this is identical to the challenging

single-photon strong-coupling regime, to be discussed fur-

ther in Sec. X.F.
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FIG. 25 (color online). (a) The “membrane-in-the-middle” setup

used to generate an optomechanical coupling to x̂2. It can be

viewed as two optical modes, one to the left and one to the right of

the membrane, with photon transmission through the membrane

coupling those modes. (b) Resulting optical spectrum, with an

avoided crossing between the left and right optical modes as a

function of displacement x. Coupling to x̂2 is obtained at the

degeneracy point. (c) Future dispersive setups along these lines

(with greatly improved parameters) may enable detection of

quantum jumps between mechanical Fock states in the phase shift

of light reflected from the cavity. An idealized quantum jump

trajectory (without measurement noise) is depicted here, starting

from the mechanical ground state (0 phonons).
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Detailed quantum jump trajectory simulations of the pho-

non detection process were first presented by Gangat, Stace,

and Milburn (2011) for the idealized case of a single optical

mode. More recently, studies of the complete two-mode setup

(Ludwig et al., 2012) were able to confirm the physics

discussed above (Miao et al., 2009).

The detection of quantum jumps between mechanical Fock

states is obviously extremely challenging. However, one

might detect quantum signatures of the mechanical oscillator

in another way: When driving it strongly into a coherent

mechanical state of mean phonon number n̄, there will be

Poissonian phonon shot noise of size
ffiffiffi

n̄
p

. A setup like the one

described above may then detect this noise, which reveals the

granularity of mechanical quanta (Clerk, Marquardt, and

Harris, 2010), much in the same way that measurements of

electrical current noise can reveal the charge of the charge

carriers (Blanter and Büttiker, 2000). Furthermore, higher

moments of the phonon shot noise may be observed in this

way as well. These display distinctly nonclassical features; for

an in-depth analysis see Clerk (2011).

3. Optical feedback cooling (cold damping)

The high sensitivity provided by the cavity readout of

mechanical motion can also be used for directly cooling the

mechanical motion via active feedback. The main idea is to

obtain the oscillator position by a phase-sensitive detection of

the cavity output and to use it to generate a negative feedback

on the oscillator, i.e., a force F ¼ −meffδΓ_x proportional to

the time derivative of the output signal. This increases the

damping rate of the system by δΓ without increasing the

thermal noise (cold damping). The scheme was suggested by

Mancini, Vitali, and Tombesi (1998) and was experimentally

realized in several optomechanical devices (Cohadon,

Heidmann, and Pinard, 1999; Arcizet et al., 2006b;

Kleckner and Bouwmeester, 2006; Poggio et al., 2007) with

radiation pressure as the feedback force. Because the scheme

relies on the precise readout of the instantaneous oscillator

position, the ideal configuration comprises both weak cou-

pling and a fast cavity decay, i.e., κ ≫ Ωm ≫ g (adiabatic

regime). The quantum limits of this cooling method were

discussed by Courty, Heidmann, and Pinard (2001), Vitali

et al. (2002), and Genes et al. (2008) and it has been shown

that ground-state cooling by cold damping is possible. A

detailed discussion has been given by Genes et al. (2008). The

maximum amount of cooling is limited by the imprecision of

the readout. An important aspect here is the phenomenon of

“noise squashing,” where the noise on the detector and the

noise-driven motion of the mechanical oscillator become

correlated (see Fig. 26).

In the context of cold atoms, feedback cooling of a single

neutral atom was implemented in a cavity QED setup (Koch

et al., 2010).

VII. OPTOMECHANICAL COOLING

Optomechanical quantum control requires the mechanical

oscillator to be in or near its quantum ground state. Unless the

mechanical frequency Ωm is in the GHz range [which is true

only for some recent nanomechanical setups (Eichenfield,

Chan, Camacho et al., 2009; Chan et al., 2011)], even dilution

refrigerator temperatures of 20 mK are not sufficient to

ensure kBT ≪ ℏΩm. Thus, additional cooling of the selected

mechanical mode is needed.

In Sec. V.B, we discussed dynamical backaction effects and

the resulting optomechanical damping rate. It is obvious that

this can be used for cooling the mechanical motion. The

purpose of this section is to develop the quantum theory of

cooling, which, in particular, describes the limits for cooling

that cannot be obtained from a discussion of the damping rate

alone. We focus in this section on intrinsic cavity cooling. For

a comparison of this approach to feedback cooling (discussed

previously), see Genes et al. (2008).

A simple classical theory of an oscillator at initial

temperature T init subject to extra damping Γopt (proportional

to the laser power) predicts that its temperature is reduced

down to

Tfinal ¼ T init

Γm

Γm þ Γopt

: ð79Þ

However, this classical expression ceases to be valid at

sufficiently low Tfinal, when the fluctuations of the radiation-

pressure force due to photon shot noise set a lower bound to

the achievable temperature. In the following, we discuss the

full quantum theory that permits one to calculate the

quantum limits to cooling and predicts that, in many cases,

ground-state cooling is possible only in the resolved-side-

band regime κ ≪ Ωm.

Note that the absence of sideband resolution does not

intrinsically prohibit optomechanical ground-state cooling.

For example, the displacement may not couple only to the

cavity frequency ωcav ¼ ωcavðxÞ, but also to the decay rate,

yielding κ ¼ κðxÞ. This mechanism is quite plausible both for

nano-objects that scatter light out of the cavity (depending on

where they are in the standing light wave pattern) and for

vibrating objects that are evanescently coupled to some

tapered fiber, as well as for other geometries. This kind of

behavior was observed experimentally (Li, Pernice, and Tang,

2009c). The consequences depend sensitively on whether it is

FIG. 26 (color online). Optomechanical feedback cooling of a

cantilever. Note the “noise squashing” at strong feedback

(reduction of the spectrum below the noise floor due to inter-

ference between the classical noise in the readout and the signal

caused by the mechanical motion). From Poggio et al., 2007.
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the coupling to the drive channel (input mirror) that is

modulated or just the internal absorption and scattering. It

was predicted (Elste, Girvin, and Clerk, 2009) that this

dissipative optomechanical coupling mechanism can yield

novel behavior for cooling, with the possibility of reaching the

quantum ground state even when κ > Ωm; see also Weiss,

Bruder, and Nunnenkamp (2013). Similar results hold for

pulsed cooling schemes (Vanner et al., 2011; Wang et al.,

2011; Machnes et al., 2012) and photothermal cooling

(Restrepo et al., 2011).

Another interesting option is to consider a nonlinear

medium inside a cavity, which may enhance the efficiency

of cooling (Huang and Agarwal, 2009a), or to improve the

cooling efficiency by modulating the cavity dissipation in time

(Liu et al., 2013).

Finally, one could do awaywith the cavity by exploiting other

sharp changes of radiation forces as a function of wavelength.

This was proposed, e.g., for a Braggmirror (Karrai, Favero, and

Metzger, 2008) or for microspheres with their narrow internal

whispering-gallery resonances (Barker, 2010).

We focus on radiation-pressure cooling in cavity setups,

which is conceptually the simplest case. Recently it was

argued that photothermal forces, which were exploited for

optomechanical cooling early on (Höhberger-Metzger and

Karrai, 2004; Metzger et al., 2008a), could in principle also

lead to the quantum ground state (Pinard and Dantan, 2008;

Restrepo et al., 2011).

A. Quantum theory of radiation-pressure cooling

In the following, we work in the weak-coupling regime

g ≪ κ, where a perturbative picture applies. The quantum

theory of optomechanical cooling (Marquardt et al., 2007;

Wilson-Rae et al., 2007; Genes et al., 2008) is related to

earlier approaches for trapped ions (Neuhauser et al., 1978;

Itano et al., 1992) and for cavity-assisted laser cooling of

atomic and molecular motion (Hechenblaikner et al., 1998;

Vuletic and Chu, 2000). The idea is best explained in a

Raman-scattering picture (see Fig. 27). Photons impinging at a

frequency red detuned from the cavity resonance will, via the

optomechanical interaction, preferentially scatter upward in

energy in order to enter the cavity resonance, absorbing a

phonon from the oscillator in the process. As a consequence,

they will be reflected blueshifted by Ωm, carrying away a

quantum of mechanical energy. These “anti-Stokes” processes

happen at a rate A− (to be calculated later). More precisely, the

transition rate from phonon state n to n − 1 includes a bosonic

factor n,

Γn→n−1 ¼ nA−: ð80Þ

The “Stokes” process, where photons are return redshifted and

leave behind an extra phonon, happens at a smaller rate Aþ

[with Γn→nþ1 ¼ ðnþ 1ÞAþ] due to the suppression in the final
density of available photon states (Clerk et al., 2010), if the

laser is red detuned. Note that we choose to follow the

notation A� for these rates, as is used in the context of atomic

laser cooling.

Given these rates (Aþ for upward transitions in the

mechanical oscillator, A− for downward transitions), the full

optomechanical damping rate is the net downward rate,

Γopt ¼ A− − Aþ: ð81Þ

The average phonon number n̄ ¼ P

∞
n¼0

nPn (with the Fock-

state populations Pn) changes according to the rates Γn→n�1,

leading to

_̄n ¼ ðn̄þ 1ÞðAþ þ Aþ
thÞ − n̄ðA− þ A−

thÞ: ð82Þ

Here we introduced the extra transition rates due to the

oscillator’s thermal environment, which has a mean phonon

number n̄th: Aþ
th ¼ n̄thΓm and A−

th ¼ ðn̄th þ 1ÞΓm. In the

absence of optomechanical effects, these establish equilibrium

at n̄ ¼ n̄th. Now, however, the steady-state final phonon

number [requiring _̄n ¼ 0 in Eq. (82)] is

n̄f ¼
Aþ þ n̄thΓm

Γopt þ Γm

: ð83Þ

Even in the optimal case, i.e., in the absence of any coupling to

a mechanical thermal environment (Γm ¼ 0), this leads to a

minimal phonon number of

n̄min ¼
Aþ

Γopt

¼ Aþ

A− − Aþ : ð84Þ

The rates A� can be calculated using Fermi’s golden rule,

applied to the interaction of the oscillator with the fluctuating

radiation-pressure force Ĥint ¼ −x̂ F̂, where F̂ ¼ ℏGâ†â
according to Eq. (20) (see also Fig. 28). In the weak-coupling

limit, all the transition rates can be calculated once the

quantum noise spectrum SFFðωÞ ¼
Rþ∞
−∞

dteiωthF̂ðtÞF̂ð0Þi
of the force is known [see, e.g., Clerk et al. (2010) for more

on quantum noise spectra]. Reexpressing the result in terms of

noise spectra yields

FIG. 27 (color online). Principle of cavity-optomechanical cool-

ing and corresponding transition diagram. Three processes can be

distinguished. First, a photon can be absorbed by the cavity

leaving the motional states unchanged (carrier transitions).

Second, the photon can create a phonon (corresponding to

absorption on the upper motional sideband). Third, the photon

leads to the annihilation of a phonon (corresponding to a photon

being absorbed by the lower motional sideband). Appropriate red

detuning of the laser can lead to effective suppression

of the first two processes and efficient cooling. Adapted from

Schliesser et al., 2008.
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A� ¼ x2ZPF
ℏ
2
SFFðω ¼ ∓ΩmÞ ¼ g2

0
SNNðω ¼ ∓ΩmÞ; ð85Þ

where we introduced the photon number noise spectrum

SNNðωÞ ¼
Z þ∞

−∞

dteiωthðâ†âÞðtÞðâ†âÞð0Þi.

By exploiting shifted photon operators, one can show

(Marquardt et al., 2007) that the photon number spectrum

of a laser-driven cavity is

SNNðωÞ ¼ n̄cav
κ

κ2=4þ ðΔþ ωÞ2 : ð86Þ

Inserting this into Eq. (85), one obtains A� and from there the

optomechanical damping rate Γopt ¼ A− − Aþ, which coin-

cides with the expression obtained using the linearized

equations of motion [Sec. V.B.2, Eq. (59)]. We obtain the

final minimum phonon number (84) as

n̄min ¼
�

A−

Aþ − 1

�

−1

¼
�ðκ=2Þ2 þ ðΔ − ΩmÞ2
ðκ=2Þ2 þ ðΔþ ΩmÞ2

− 1

�

−1

:

ð87Þ

Experimentally, one can still vary the laser detuning Δ to

minimize this expression. In the resolved-sideband regime

κ ≪ Ωm, this leads to

n̄min ¼
�

κ

4Ωm

�

2

< 1; ð88Þ

which permits ground-state cooling, while in the opposite

limit (κ ≫ Ωm) we find

n̄min ¼
κ

4Ωm

≫ 1: ð89Þ

These two results are almost identical to the case of atomic

laser cooling (in the atomic laser cooling expressions, the

scalar prefactor is different due to the directional dependence

of the spontaneous emission).
16

In the presence of a thermal environment, the final phonon

number (83) can be written as the result of coupling to two

baths at average occupations n̄min and n̄th with coupling rates

Γopt and Γm, respectively,

n̄f ¼ Γoptn̄min þ Γmn̄th
Γopt þ Γm

: ð90Þ

This result of the quantum theory of optomechanical back-

action cooling was derived by Marquardt et al. (2007) and

Wilson-Rae et al. (2007). Note that in the resolved-sideband

regime, for the limit Γopt ≫ Γm, the suppression of the thermal

occupation can be expressed via the so-called quantum

cooperativity Cqu ¼ C=n̄th. We have Γmn̄th=Γopt ¼ 1=Cqu.

1. Finite thermal cavity occupancy

Equation (90) is modified when the cooling field has

thermal occupation. This is, in particular, the case for micro-

wave fields due to their low frequency. If the cavity occupa-

tion is given by n̄thcav, then the final occupation is modified to

(in the resolved-sideband limit)

n̄f ¼ n̄th
Γm

Γeff

þ n̄thcav þ
κ2

16Ω2
m

; ð91Þ

where Γeff ¼ Γopt þ Γm. This implies that the final phonon

number can never be below the effective thermal occupation

of the drive field (Dobrindt, Wilson-Rae, and Kippenberg,

2008). It should be noted that when the radiation field and the

mechanical oscillator initially have the same bath temperature

(as is the case in equilibrium, without extra absorption), the

equilibration of these two oscillators of frequencyωcav andΩm

will lead to an effective cooling of the lower-frequency

mechanical oscillator, as

n̄th ≈
kBTbath

ℏΩm

≫ n̄cav ≈
kBTbath

ℏωcav

.

2. Equations-of-motion approach

An alternative way to calculate the final phonon number is

to write down the linearized equations of motion for the

oscillator and light field, eliminate the light field dynamics,

and exploit the known spectra of the quantum Langevin forces

FIG. 28 (color online). Quantum noise spectrum SFFðωÞ for the
radiation-pressure force fluctuations acting on the end mirror of a

laser-driven optical cavity. The spectrum is asymmetric in

frequency, due to the quantum nature of the fluctuations. For

red detuning, the bulk of the spectrum is at positive frequencies.

This implies (see text) that the fluctuations induce more down-

ward (cooling) transitions than upward transitions.

16
The similarity to atomic Doppler cooling is due to the fact

that the Doppler cooling limit is a result of the Heisenberg uncertainty

principle. Each photon that leaves the cavity has an energy

uncertainty given by its photon decay time, i.e., ΔE ¼ ℏ=Δt,
where in the cavity cooling case Δt is the inverse cavity decay rate

κ−1. Theminimumphonon number can therefore never be smaller than

this value, i.e.,ΔE ¼ ℏκ, or expressed as an occupancy n̄min ∝ κ=Ωm.
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driving both the mechanics and the cavity (see Sec. III.C).
17

We do this by considering the influence of the quantum

backaction force noise driving the mechanical oscillator.

Adopting the classical equations of motion for the mechanical

oscillator (but keeping the quantum part of the symmetrized

noise spectrum), we find an average energy of

hEmi ¼
Z þ∞

−∞

dωjχm;effðωÞj2S̄FFðωÞmeffω
2;

where S̄FF is the symmetrized version of the spectrum

introduced above and we assumed the laser to be dominant,

Γeff ≫ Γm, and also Ωm ≫ Γeff . This leads to the correct

quantum result (Stenholm, 1986):

hEmi ¼
ℏΩm

2

�

1þ Aþ

A− − Aþ

�

.

This expression reveals that the energy, consisting of the

zero-point motion and an additional residual term, is caused

by the quantum fluctuations of the laser field. The fact that

the quantum fluctuations of the laser field also give rise to the

zero-point energy can be understood by noting that the

dominant bath that the mechanical oscillator is coupled to

is the laser field itself when Γeff ≫ Γm. In this sense then, the

correct quantum limit for cooling can be formulated on a

semiclassical basis, where it is sufficient to consider only the

quantum fluctuations of the drive field.

3. Optical output spectrum

The output spectrum of the light that emerges from the

optomechanical cavity can be calculated using the input-

output formalism (Sec. III.C). In close analogy with the

fluorescence spectrum of a laser-cooled trapped ion, the

spectrum is given by

SðωÞ ≈ I0δðω − ωLÞ þ A−n̄fIsideðω − ΩmÞ
þ Aþðn̄f þ 1ÞIsideðωþ ΩmÞ. ð92Þ

This spectrum refers to the frequency-resolved photon flux.

Here

IsideðωÞ ¼
1

2π

Γeff

ðω − ωLÞ2 þ Γ
2

eff=4

is the Lorentzian shape of the sidebands, where the width of

the sidebands is given by the overall effective mechanical

damping rate Γeff . The weight of the main peak
18
at the laser

frequency is (for a single-sided Fabry-Pérot resonator)

I0 ¼
κex

κ

P

ℏωL

	

κ

κex
−
κ2 − κexκ

Δ
2 þ 1

4
κ2




:

As expected, the spectrum consists (in addition to the

carrier) of blueshifted (anti-Stokes) photons at ω ¼ ωL þ Ωm

[last term in Eq. (92)] and redshifted (Stokes) photons at ω ¼
ωL − Ωm (second-to-last term). The sideband asymmetry

changes as a function of the cooling laser power. Detailed

balance causes the initially asymmetric sidebands (as

A− ≫ Aþ) to become progressively more symmetric, with

Aþðn̄f þ 1Þ ¼ A−n̄f in the limit where n̄f is entirely deter-

mined by the cooling process (Γoptn̄min ≫ Γmn̄th). This

provides a means to determine the temperature of the

mechanical oscillator via the spectral weight of the two

sidebands, a technique that has been widely used in the

trapped-ion community and is termed sideband thermometry

(Diedrich et al., 1989). There the spectral weight can be

directly measured via optical shelving (Leibfried et al., 2003).

A variant of this method was recently demonstrated in an

optomechanical cooling experiment (Safavi-Naeini, Chan

et al., 2013; Weinstein et al., 2014) (see Fig. 29). In this

method the excitation laser is placed on the upper (Δ ¼ þΩm )

and subsequently on the lower (Δ ¼ −Ωm) sideband and the

rate of scattering into the cavity _Ncav is measured. This yields

_NcavðΔ ¼ ΩmÞ ¼
κex

κ
Aþðn̄f þ 1Þ

FIG. 29 (color online). (a) Sideband thermometry revealing the

growing asymmetry between photons scattered into the cavity

resonance when increasing the cooling laser power. Courtesy of

O. Painter. From Safavi-Naeini, 2012. (b) Schematics of the

readout scheme. Left: A readout laser (ωL) that is red detuned by

the mechanical frequency Ωm primarily scatters photons into the

Stokes motional sideband. Right: Blue detuning of the readout

laser by Ωm primarily generates photons at the anti-Stokes

motional sideband.

17
Note that there can also be experimental situations where the

mechanical oscillator mediates scattering of photons out of the cavity,

as in the case of levitated particles in an optical cavity. Denoting the

photon scattering rate caused by the mechanical oscllator as γscat, this

additional heating causes a modification of the quantum limit of

cooling. In the sideband limit this yields (Chang et al., 2010)

n̄f ¼ Γoptn̄min þ Γmn̄th
Γopt þ Γm

þ γscat

κ
.

The analytical form of the scattering rate depends on the geometry of

the mechanical oscillator under consideration. For the case of a small

sphere, trapped within a Fabry-Pérot cavity, an analytic solution of

γscat can be derived (Chang et al., 2010; Romero-Isart et al., 2010).

18
It is interesting to consider the total (integrated) power in the

generated sidebands. The weight of the sideband for the case where

the final occupancy is given by n̄f ¼ 1 is given by Psideband=Pcarrier ≈

4g2
0
=Ω2

m and is thus independent of the initial occupancy (or

temperature).
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and

_NcavðΔ ¼ −ΩmÞ ¼
κex

κ
A−ðn̄fÞ.

B. Experiments and practical limitations

1. Experimental developments

The first experimental attempts to damp the motion of a

mechanical oscillator with radiation-pressure dynamical back-

action were carried out by Braginsky, Manukin, and Tikhonov

(1970). In these experiments a microwave cavity was

employed, and a modification of the damping rate of the

end-mirror pendulum could be observed. Microwave cooling

deeply in the resolved-sideband regime was moreover imple-

mented in the field of gravitational wave detectors, in the form

of a high-Q cryogenic sapphire transducer, where it served the

role of reducing the effective noise temperature (Cuthbertson

et al., 1996).

Optical feedback cooling of a micromechanical mirror

using the radiation-pressure force was demonstrated by

Cohadon, Heidmann, and Pinard (1999). Dynamical back-

action cooling in the optical domain was achieved using

photothermal forces by Höhberger-Metzger and Karrai

(2004), and radiation-pressure forces by Arcizet et al.

(2006a), Gigan et al. (2006), and Schliesser et al. (2006).

These early experiments operated in the Doppler regime

(κ > Ωm). As outlined in Sec. VII.A, an important requirement

for many applications is the resolved-sideband regime. This

was demonstrated in the microwave regime for the first time

(Cuthbertson et al., 1996) and later in the optical domain

(Schliesser et al., 2008). Since then, a plethora of novel systems

[see, e.g., (Thompson et al. (2008), Teufel et al. (2008), and Lin

et al. (2009) and many more] have been realized in the

resolved-sideband regime (see Fig. 30). All these experiments

were, however, essentially room-temperature experiments.

To initialize a mechanical oscillator in the ground state at

thermal equilibrium, the condition kBT=ℏΩm ≪ 1 has to be

realized. In general, the probability of finding the system in

the ground state is related to the average occupation number n̄
by P0 ¼ 1=ð1þ n̄Þ. Note that in the field of trapped-ion

experiments, the motional ground state can nowadays rou-

tinely be prepared with more than 97% probability (Diedrich

et al., 1989; Leibfried et al., 2003). Reaching the ground state

(often referred to as n̄ < 1) is challenging for low-frequency

oscillators, as the thermal freezeout for a 1 MHz oscillator

equates to 50 μK. These temperatures are far below those

attained with a dilution refrigerator. Ground-state cooling with

conventional cryogenics can therefore be reached only for

GHz oscillators. Indeed, the first demonstration of quantum

control at the single-phonon level was demonstrated with a

6 GHz piezoelectric mechanical oscillator cooled to below

50 mK (O’Connell et al., 2010).

It is challenging to reach the quantum ground state of

micromechanical oscillators at lower frequencies. A widely

pursued strategy has been to combine cryogenic precooling

with dynamical backaction laser cooling. The precooling

thereby allows one to reduce the starting mode temperature.

This technique has over the past years allowed a substantial

reduction of the phonon occupancy.

While initial cryogenic experiments demonstrated cooling

to a level of a few dozen quanta in the optical domain

(Gröblacher, Hertzberg et al., 2009; Park and Wang, 2009;

Schliesser et al., 2009), further experimental progress allowed

the reduction of the motional energy to a level close to the

zero-point motion in several experiments in both the micro-

wave domain (Rocheleau et al., 2010; Teufel, Donner et al.,

2011) and the optical domain (Chan et al., 2011; Riviere et al.,

2011), with ground-state probabilities ranging from 0.2 to 0.7.

Specifically, in the microwave domain, increasing the

coupling strength by improved cavity designs resulted in

cooling to around 4 quanta (Rocheleau et al., 2010)

(P0 ¼ 0.2) and to n̄f ¼ 0.38 (P0 ¼ 0.72) using a super-

conducting resonator coupled to a micromechanical drum

mode (Teufel, Donner et al., 2011). In both experiments the

limitation for the occupancy was set by the fact that the cavity

had a low, yet finite, residual thermal occupation. This also led

to the observation of squashing in the mechanical noise

spectrum data of this experiment for some drive powers.

All these experiments have been performed in dilution

refrigerators with base temperatures as low as about 25 mK.

Also in the optical domain, new geometries allowed one to

improve the cooling performance to n̄f ¼ 1.7 quanta

(P0 ¼ 0.37) for improved microtoroidal resonators (Verhagen

et al., 2012) and to 0.8 quanta (P0 ¼ 0.54) for a nanomechanical

mode of a photonic crystal beam (Chan et al., 2011). In the

experiments using spoke-supported microtoroids (Verhagen

et al., 2012), the occupancy was limited by the cavity decay

rate κ due to the onset of strong coupling (see Sec. VII.C.1), and

by reheating of the sample due to the laser (Riviere et al., 2011).

The experiment by Chan et al. (2011) involved a 3.67 GHz

mechanical mode and an external-cavity diode laser drive. The

cooling was limited by reheating of the sample to its initial

temperature of ca. 20 K inside a He4 flowthrough cryostat and
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FIG. 30 (color online). Experimental results for optomechanical

laser cooling. We display the initial and final phonon numbers

(logarithmic scale) vs the sideband-resolution parameter Ωm=κ.
The quantum limit for the minimum achievable phonon number

is plotted as well. MIT: (Corbitt, Chen et al., 2007); LKB:

(Arcizet et al., 2006a); Yale: (Thompson et al., 2008); Vienna:

(Gröblacher, Hertzberg et al., 2009); MPQ: (Schliesser et al.,

2009); JILA: (Teufel et al., 2008); Cornell 2010: (Rocheleau

et al., 2010); Caltech 2011: (Chan et al., 2011); EPFL 2011:

(Riviere et al., 2011); Boulder 2011: (Teufel, Donner et al.,

2011); MIT 2011: (Schleier-Smith et al., 2011).
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the fact that the mechanical Q factor exhibited a strong temper-

ature dependence, as well as unwanted effects at higher drive

powers. In all cases, higher-fidelity ground-state preparation

(as achieved in ion trapping) will require further reduction

of the effects of laser heating of the sample, further increases

of the mechanical quality factor, or higher optomechanical

coupling rates.

A selection of cooling experiments is displayed in Fig. 30.

There we plot the initial and final phonon numbers versus the

sideband-resolution parameter Ωm=κ that determines the

minimum achievable phonon number.

The technique of radiation-pressure dynamical backaction

cooling has many similarities to atomic laser cooling

(Diedrich et al., 1989; Leibfried et al., 2003). Nevertheless

there are substantial differences. For instance, optomechanical

cooling does not proceed by the use of a two-level system, but

by a cavity that is excited with a coherent laser field. From an

experimental point of view, optomechanical cooling of a

mechanical oscillator to the ground state is impeded by

several challenges. First, in contrast to atomic laser cooling

where the atoms are well isolated, mechanical systems are

usually coupled to a high-temperature bath with correspond-

ingly large motional heating rates. In addition, optomechan-

ical laser cooling is extraordinarily sensitive to laser phase

(i.e., frequency) noise. In the following discussion, we review

the fundamental limits of cooling due to both laser phase noise

and thermorefractive cavity noise.

2. Laser phase noise

In Sec. VII.A, the laser input noises were considered to be

essentially quantum noises, i.e., the laser beam is considered a

perfect coherent state. However, real laser systems exhibit

excess noise, e.g., due to relaxation oscillations that can be

derived from the dynamical equations of laser theory. In these

cases, the laser frequency noise cannot simply be inferred by

the laser linewidth, and simplified models fail to provide an

accurate description of the laser’s phase and amplitude noise.

Lasers exhibit generally significant excess noise for frequen-

cies below the relaxation oscillation frequency, which can

differ strongly, from the kHz–MHz range in Nd:YAG or fiber

lasers to several GHz in the case of diode lasers (Vahala,

Harder, and Yariv, 1983; Wieman and Hollberg, 1991; Jayich

et al., 2012; Kippenberg, Schliesser, and Gorodetksy, 2013;

Safavi-Naeini, Gröblacher et al., 2013). This noise will lead to

radiation-pressure fluctuations that heat the mechanical oscil-

lator and impact optomechanical experiments, as discussed by

Diosi (2008), Schliesser et al. (2008), Rabl et al. (2009),

Jayich et al. (2012), and Safavi-Naeini, Chan et al. (2013). For

ground-state cooling, laser phase noise at Ωm needs to be

below (Rabl et al., 2009) (see the Appendix for more details)

S̄ωωðΩmÞ <
g2
0

kBT=ℏQm

. ð93Þ

Moreover, phase noise impacts state transfer and entangle-

ment generation (Abdi et al., 2011; Ghobadi, Bahrampour,

and Simon, 2011) and can impact sideband asymmetry

measurements, as discussed by Jayich et al. (2012), Safavi-

Naeini, Chan et al. (2013), and Harlow (2013). For a more

detailed discussion see Appendix A.3.

3. Cavity frequency noise

In addition to laser phase noise, which in principle can be

mitigated by properly filtered laser systems, a more funda-

mental limit to dynamical backaction laser cooling arises from

the fact that at finite temperature the cavity frequency exhibits

thermodynamical fluctuations (Gorodetsky and Grudinin,

2004). These are due to local temperature fluctuations that

affect the dielectric properties of the cavity itself (for microt-

oroids, microspheres, or photonic crystals) or of the mirror.

For more details, see Appendix A.2.

C. Strong-coupling regime

We now discuss what happens when the laser power P is

increased further. At first, this will just improve cooling, since

Γopt ∝ P. However, as we see in the Sec. VII.C.1, qualitatively
new features start to appear when Γopt ∼ κ, or equivalently

when g ∼ κ. This regime is referred to as the strong-coupling

regime, where the driven optical mode and the mechanical

mode hybridize to form two new modes, with a splitting set by

2g. Furthermore, even for lower laser drive powers interesting

features in the transmission spectrum of the cavity appear if it

is probed weakly in the presence of a strong drive. This is the

phenomenon of optomechanically induced transparency, dis-

cussed in Sec. VII.C.2.

1. Optomechanical normal-mode splitting

The strong-coupling regime is discussed most easily if we

assume the nondissipative part of the Hamiltonian to dominate

all decay channels, i.e., g ≫ κ, Γm. In that case, we can just

consider the following part of the linearized Hamiltonian:

Ĥ ¼ −ℏΔδâ†δâþ ℏΩmb̂
†b̂ − ℏgðδâ† þ δâÞðb̂þ b̂†Þ: ð94Þ

In the most interesting red-detuned regime, where Δ ≈ −Ωm,

we can even start our discussion by employing the rotating-

wave approximation for the coupling −ℏgðδâ†b̂þ δâb̂†Þ,
which is the beam-splitter Hamiltonian of Eq. (31). The

Hamiltonian of these two coupled oscillators is then easily

diagonalized by going over to the two eigenmodes. These

modes now represent excitations that are hybrids between the

mechanical oscillations (b̂) and the fluctuations of the driven

cavity mode (δâ) around the strong coherent amplitude. Their

eigenfrequencies are

ω� ¼ Ωm − Δ

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ
�

Ωm þ Δ

2

�

2

s

: ð95Þ

In particular, right at resonance Δ ¼ −Ωm, one observes an

avoided crossing, with a splitting of ωþ − ω− ¼ 2g between

the two excitation branches. At this point, the eigenmodes are

symmetric and antisymmetric superpositions of light and

mechanics, with new annihilation operators ðδâ� b̂Þ=
ffiffiffi

2
p

.

Far from resonance, one recovers the two bare frequencies −Δ

and Ωm, and the excitations become again of purely optical

and mechanical nature, respectively.

This is the picture appropriate for g ≫ κ, where we assume

that κ ≫ Γm is the dominant decay channel. In the opposite
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case g ≪ κ (assumed in Secs. VII.A and VII.B), the two peaks

at ω� merge and the avoided crossing cannot be observed.

In principle, the complete scenario, including the decay

channels and the transition into the strong-coupling regime,

is described fully by the solution of the linearized equations

of motion (42) and (43). As discussed in Sec. V.B, one can

solve these coupled equations analytically. In this way,

for example, one arrives at an exact expression for the

mechanical susceptibility, Eq. (56). When plotting this

versus frequency for increasing values of g, one observes

peaks at ω� that can be clearly resolved for g ≫ κ. The

evolution of the mechanical spectrum in the strong-coupling

regime g > κ=4 as a function of laser detuning Δ is displayed

in Fig. 31. The same kind of analysis also applies to the

transmission spectrum of the cavity which can be expressed

via the same solution.

However, instead of referring to these rather lengthy exact

expressions, we simplify things by considering the regime

Δ ≈ −Ωm, which allows us to perform the rotating-wave

approximation already employed above. We then write the

following linearized equations of motion for the mean

values:

� hδ _̂ai
h _̂bi

�

¼ −i

�

−Δ − i κ
2

−g

−g Ωm − i Γm

2

��

hδâi
hb̂i

�

: ð96Þ

Solving for the complex eigenvalues of this non-Hermitian

matrix, we recover the expression for the two branches ω�
given in Eq. (95), except with the replacements Δ ↦ Δþ
iκ=2 and Ωm ↦ Ωm − iΓm=2. With δ≡ −Δ −Ωm, we have

ω� ¼ Ωm þ δ

2
− i

κ þ Γm

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ
�

δþ iðΓm − κÞ=2
2

�

2

s

.

In particular, at resonance Δ ¼ −Ωm (δ ¼ 0) we find

ω� ¼ Ωm − i
κ

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 −

�

κ

4

�

2

s

;

where we assumed κ ≫ Γm to slightly simplify this formula.

Thus, the eigenfrequencies change character at the threshold

g ¼ κ=4, where the root changes from purely imaginary

(g < κ=4) to real valued (g > κ=4). This corresponds to the

transition into the strong-coupling regime, with two well-

resolved peaks. Each of those peaks is of width [full width at

half maximum (FWHM)] κ=2. This is because both of these

excitations are half optical, and so each of them shares one-half

of the optical decay rate. Away from the degeneracy point

Δ ¼ −Ωm, the relative contributions of the two decay channels

Γm and κ get reweighted according to the unequal distribution

of optical and mechanical excitation in the two branches.

It turns out that cooling becomes less efficient when one

approaches the strong-coupling regime. In fact, the exact

solution of the linearized equations of motion can be

employed to derive the appropriate modification to the

formulas for the final occupancy in the case of strong

optomechanical coupling (Marquardt et al. (2007)):

n̄f ¼ n̄
ð0Þ
f þ n̄th

Γm

κ
þ 2n̄min

Γopt

κ
: ð97Þ

Here n̄
ð0Þ
f is the standard result from Eq. (90) derived above for

the weak-coupling regime g ≪ κ, and to simplify the expres-

sionwe assumed the resolved-sideband regime κ ≪ Ωm, where

n̄min ¼ ðκ=4ΩmÞ2 and Γopt ¼ 4g2=κ, as well as strong cooling

Γopt ≫ Γm, neglecting terms of still higher orders in κ=Ωm.

The peak splitting in the strong-coupling regime

(g ≫ κ;Γm) and the resulting modification to cooling (notably

the limitation arising from the finite cavity decay rate) was

predicted by Marquardt et al. (2007). It was analyzed

extensively by Dobrindt, Wilson-Rae, and Kippenberg

(2008) and Wilson-Rae et al. (2008); see also Marquardt,

Clerk, and Girvin (2008) and Gröblacher, Hammerer et al.

(2009). More generally, the full expression (Dobrindt, Wilson-

Rae, and Kippenberg, 2008; Wilson-Rae et al., 2008) for n̄f
can be given, including any possible thermal occupation of the

cavity field (which has been observed in microwave setups):

n̄f ¼ n̄th
Γm

κ

4g2 þ κ2

4g2 þ Γmκ
þ 4g2

4g2 þ Γmκ
n̄thcav

þn̄th
Γm

κ

g2

Ω
2
m

þ
�

n̄thcav þ
1

2

�

κ2 þ 8g2

8Ω2
m

: ð98Þ

The first experimental observation of strong optomechan-

ical coupling (g > κ; Γm) was reported by Gröblacher,

Hammerer et al. (2009) (see Fig. 32). Subsequently, experi-

ments on other setups have been able to achieve significantly

larger ratios g=κ; see Teufel, Li et al. (2011). In addition, the

regime of g > κ;Γmn̄th (see below) was reached as well

(Teufel, Donner et al., 2011; Teufel, Li et al., 2011;

Verhagen et al., 2012), where coherent quantum-state transfer

between light and mechanics could take place (see Sec. X.E).
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FIG. 31 (color online). Mechanical frequency spectrum (fre-

quency on vertical axis) as a function of laser detuning, for a

strongly coupled optomechanical system. An avoided crossing,

with a splitting of size 2g, appears when the negative detuning

equals the mechanical resonance frequency. This is due to the

hybridization of the mechanical mode (frequency Ωm) and the

driven cavity mode (effective frequency −Δ).
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The photon statistics of an optomechanical system in the

strong-coupling regime have been found to display interesting

antibunching behavior and photon correlations (Huang and

Agarwal, 2010), and the same analysis discussed four-wave

mixing in a setup driven by a strong pump field and another

(Stokes) field. One can also consider having a nonlinear

medium inside the optical cavity. Huang and Agarwal (2009c)

studied the effects of an optical parametric amplifier cavity on

the phenomenon of optomechanical normal-mode splitting.

The spectroscopic signatures of strong coupling indicate

whether the coupling exceeds the cavity decay rate. If the

coupling rate also exceeds the thermal decoherence rate

(γ ¼ Γmn̄th), the interaction between the mechanical oscillator

and the light field becomes quantum coherent, i.e., the time

scale of the mutual coupling is faster than the time scale for

one quantum of noise to enter from the environment:

g > fΓmn̄th; κg.

This parameter regime of coherent coupling is a precondition

for many quantum protocols such as quantum-state transfer

between the cavity field and a mechanical mode (see

Sec. X.E). Experimentally, this regime has been reached

using a superconducting membrane coupled to an LC circuit

(Teufel, Donner et al., 2011), and in the optical domain using

a toroidal spoke-supported microresonator (Verhagen et al.,

2012) (see Fig. 33).

2. Optomechanically induced transparency

Electromagnetically induced transparency (Fleischhauer,

Imamoglu, and Marangos, 2005) is a phenomenon which

occurs in multilevel atoms and manifests itself as a cancella-

tion of absorption in the presence of an auxiliary laser field.

It arises from electronic interference or, in an equivalent

FIG. 33 (color online). Experimental observation of the coherent coupling regime, i.e., g > fκ; n̄mΓmg, between a mechanical oscillator

and a microwave cavity mode as well as an optical cavity mode. The data show the splitting in the mechanical displacement spectrum as

a function of increasing drive power [left panel, for the case of a superconducting drum resonator (Teufel, Li et al., 2011), courtesy

of J. Teufel] and as a function of the laser detuning around the lower sideband [right panel, for the case of a spoke-supported microtoroid

resonator (Verhagen et al., 2012), courtesy of T. J. Kippenberg].

FIG. 32 (color online). Experimental observation of strong

coupling of a mechanical oscillator to a light field (“parametric

normal-mode splitting”). From top to bottom: the light

intensity and thereby g ¼ g0
ffiffiffiffiffiffiffiffi

n̄cav
p

is increased. From Gröblacher,

Hammerer et al., 2009.
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picture, is due to a dark-state resonance of the excited state

(see Fig. 34). This phenomenon has been demonstrated for

cold atomic ensembles, giving rise to a host of phenomena,

ranging from optical pulse storage to slowing or advancing of

light pulses. An analogous phenomenon also occurs in

optomechanical systems, as predicted theoretically by

Schliesser (2009) and Agarwal and Huang (2010) and

analyzed further for optical pulse storage (Chang et al.,

2011). Optomechanically induced transparency has been

observed in experiments (Weis et al., 2010; Safavi-Naeini

et al., 2011) (see Fig. 35). On injecting a strong control laser

beam into the lower (red-detuned) sideband of an optome-

chanical system, the optomechanical interaction causes the

cavity resonance, as seen by a second, weak probe laser field,

to be rendered transparent. The simultaneous presence of a

strong control laser (s̄e−iωct) and a weak probe laser (δs e−iωpt)

leads to a transmission jRpj2 of the weak probe laser given by

jRpj2 ¼
�

�

�

�

1 − ηκ
χoptðΩÞ

1þ g2
0
ā2χmechðΩÞχoptðΩÞ

�

�

�

�

2

. ð99Þ

HereΔ ¼ ωc − ωcav denotes the detuning of the strong control

field from the cavity resonance ωcav, and Ω denotes the

detuning between the control laser and probe laser, i.e.,

Ω ¼ ωp − ωc. Moreover, the coupling efficiency η ¼ κex=κ
has been introduced, and the mechanical susceptibility

19

χ−1mechðΩÞ ¼ −iðΩ − ΩmÞ þ Γm=2 as well as the optical sus-

ceptibility χ−1optðΩÞ ¼ −iðΩþ Δ̄Þ þ κ=2. Note that, with

regard to the transmission, we used the terminology appro-

priate for a waveguide-coupled unidirectional cavity (e.g.,

whispering-gallery-mode resonator), and we followed the

discussion of Weis et al. (2010). Plotting the expression

jRpj2 reveals that when the resonance condition Ω ≈ Ωm is

met, a transparency window arises. When the coupling laser is

placed on the lower sideband (Δ ¼ −Ωm), the expression for

the transmission of the probe in the vicinity ofΩ ¼ Ωm (which

corresponds to ωp ≈ ωcav) reduces to

jRpj2 ¼
�

�

�

�

4n̄cavg
2

0

4n̄cavg
2
0
þ Γmκ − 2iðΩ − ΩmÞκ

�

�

�

�

2

;

where for simplicity we assumed critical coupling, i.e.,

η ¼ 1=2. Evaluating the above expression for Ω ¼ Ωm yields

jRpj2 ¼
�

C

C þ 1

�

2

.

Here C is the optomechanical cooperativity C ¼ 4g2
0
n̄cav=κΓm.

Thus a cooperativity of unity is required to change the

transmission to 50%. Note that the assumption underlying

these theoretical considerations, of two coherent drive fields,

requires from an experimental point of view two laser fields

that are coherent for times longer than the effective mechani-

cal damping time.

The physical origin of the transparency window can be

understood by realizing that the beat of the probe field and the

coupling laser induces a time-varying radiation-pressure

force. If the beat frequency matches the mechanical oscillation

frequency, then the mechanical oscillator is driven resonantly.

The driven oscillator in turn creates sidebands on the intra-

cavity field. Considering the strong-coupling laser only, in the

resolved-sideband limit, the lower motional sideband is far off

cavity resonance and can be neglected. In contrast, the upper

sideband of the coupling laser, created by the mechanical

motion, has precisely the same frequency as the probe field

and is moreover phase coherent with the probe field. This

leads to an interference that yields a cancellation of the

intracavity field on resonance, giving rise to the transparency

window. The phenomenon thereby results from the destructive

interference between reflection amplitudes for photons scat-

tered from the coupling laser and photons of the probe field.

The effect of higher-order sidebands was discussed by Xiong

et al. (2012).

FIG. 35 (color online). Optomechanically induced transparency

observed in the experiment. Data from a photonic crystal setup

(Safavi-Naeini et al., 2011) (left panel) and for a microtoroid

setup (Weis et al., 2010) (right panel). Note that in the case of a

photonic crystal the OMIT signature is visible in both the

reflected and the transmitted signals.
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FIG. 34 (color online). (a) Level scheme for optomechanically

induced transparency. A strong control laser on the red sideband

drives the optomechanical system, while a weak probe laser scans

across the cavity resonance and takes the (b) spectrum of the

driven system, which displays a sharp transparency feature (for a

side-coupled toroid setup). The linewidth of that feature is given

by the mechanical linewidth (at weak driving), much narrower

than the cavity linewidth. Adapted from Schliesser, 2009, and

Schliesser and Kippenberg, 2010.

19
Here it is convenient to adopt a definition different from that of

χm of Sec. II.B.3.
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The width of the (Lorentzian) transparency feature in the

weak-coupling regime (where Γeff ≪ κ) is given by the total

effective mechanical damping rate:

ΓOMIT ¼ Γm þ 4g2
0
n̄cav=κ ¼ Γeff :

We note that at stronger drive this feature smoothly

evolves into the normal-mode splitting discussed above

(Sec. VII.C.1). The narrow transparency window is concomi-

tant with a rapid variation of the transmission phase of the

probe beam. This implies that a pulse with a bandwidth

smaller than ΓOMIT will experience a group delay (without

distortion of the pulse). The change of the phase of the

transmitted light is given by (for Δ ¼ −Ωm)

ϕ ¼ arctan

�

2ðΩ − ΩmÞκ
4n̄cavg

2
0
þ Γmκ

�

.

Evaluating this expression for zero detuning (Ω ¼ Ωm) leads

to a group delay of

τg ¼
dϕ

dΩ
¼ 1

Γm

2

Cþ 1
¼ 2

ΓOMIT

.

However, the bandwidth of the pulse needs to be smaller than

the transparency window for undistorted pulse propagation,

which limits the delay-bandwidth product to τgΓOMIT ≈ 2.

Using an array of optomechanical systems, the delay-band-

width product can be increased and may therefore serve as a

way to store an optical wave form in long-lived phonons. Such

cascaded optomechanical systems can be realized using, e.g.,

photonic crystals (Chang et al., 2011).

3. Optomechanically induced amplification and

electromagnetically induced absorption

If instead we consider the control laser being injected on the

upper sideband (Δ ¼ Ωm), an additional optical signal in the

probe beam is amplified (Massel et al., 2011; Safavi-Naeini

et al., 2011; Hocke et al., 2012). The analogous effect in

atomic physics is referred to as electromagnetically induced

absorption (EIA) (Lezama, Barreiro, and Akulshin, 1999).

The amplification process can parametrically amplify a small

signal (provided the resonance condition is met), by virtue of

the constructive interference of the light scattered from the

pump (control) to the signal (probe) frequency, in direct

analogy to the above phenomenon of optomechanically

induced transparency (see Fig. 36). Theoretically the phe-

nomenon can be described by the same equations as the effect

of transparency, except for the fact that now the mechanical

damping is reduced with increasing power on the upper

sideband. The maximum gain is set by the maximum power

which can be injected onto the upper sideband (Δ ¼ þΩm),

which is limited by the onset of the parametric oscillatory

instability, in which the coherent amplification of mechanical

motion from the noise occurs. The maximum average gain in

this case is given by GavðΔ ¼ ΩmÞ ≈ 4ð4Ωm=κÞ2 (Massel

et al., 2011). As for any nondegenerate parametric amplifier,

the amplification process has to add one-half a quantum of

noise for fundamental reasons (Clerk et al., 2010), and the

total added noise is given by n̄add ¼ n̄m þ 1=2 ≈ kBT=ℏΩm in

the presence of thermal fluctuations. In the ideal case the

relative phase between pump and signal is not important

for the EIA process. However, any relative phase fluctuations

between pump and signal need to take place on a time

scale long compared to the inverse effective mechanical

damping rate.

However, this optical amplification process does not lead to

a stimulated optical amplification process, as in the case of

optical Brillouin scattering. The reason is that unlike in the

optical Brillouin scattering case, the optical dissipation is

larger than the mechanical dissipation (κ ≫ Γm). This implies

that the mechanical mode can experience exponential buildup,

while in a Brillouin laser the opposite is the case.
20

VIII. CLASSICAL NONLINEAR DYNAMICS

Up to now we mostly discussed effects that can be fully

understood within the linearized equations of motion, i.e.,

within the quadratic approximation (29) to the optomechan-

ical Hamiltonian. However, the approximation itself can be

used to predict its breakdown: In the blue-detuned regime

(Δ > 0), Γopt becomes negative, decreasing the overall damp-

ing rate. At first, this leads to heating (instead of cooling),

enhancing the oscillator’s effective temperature. Once the

overall damping rate Γm þ Γopt becomes negative, an insta-

bility ensues. In that case, any small initial (e.g., thermal)

fluctuation will at first grow exponentially in time. Later,

nonlinear effects will saturate the growth of the mechanical

oscillation amplitude (Fig. 37). A steady-state regime is

reached, with oscillations proceeding at a fixed amplitude

A. These are called self-induced (backaction-induced) opto-

mechanical oscillations. In fact, they are analogous to the

lasing action, but now in a mechanical system and with the

incoming laser radiation providing the pump. Therefore, this

optomechanical effect can also be understood as one variant of

“mechanical lasing” or “phonon lasing.” Just as for lasers or

FIG. 36 (color online). Transmission of the probe beam in the

presence of a strong control field on the lower sideband (left

panel, optomechanically induced transparency, OMIT) and on the

upper sideband (right panel, electromagnetically induced absorp-

tion, EIA).

20
In the EIA scenario a stimulated optical amplification is

expected (and subsequent optomechanical Brillouin lasing) when

the mechanical oscillator is more strongly damped than the optical

one, i.e., when the hierarchy Γm ≫ κ of dissipation is satisfied. This

ensures exponential amplification of the optical field above the lasing

threshold and prevents the mechanical mode from building up

significantly.
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masers, the optomechanical system displays a threshold and

linewidth narrowing above the threshold, described by a

Schawlow-Townes–type limit.

A. Parametric instability and attractor diagram

In this section, we present the classical theory of the

optomechanical instability produced by radiation-pressure

backaction, following Marquardt, Harris, and Girvin (2006)

and Ludwig, Kubala, and Marquardt (2008). Our main goal is

to discuss the amplitude A of the steady-state mechanical

oscillations, as a function of system parameters such as laser

power, detuning, and mechanical damping rate. We find that

for a fixed set of parameters, A can in general take on multiple

stable values, corresponding to several stable attractors of this

dynamical system. This effect is known as dynamical multi-

stability, and in experiments it may lead to hysteretic behavior.

Our discussion is directly applicable for the radiation-

pressure-induced parametric instability. However, note that

very similar physics and analogous formulas apply for the

case when this instability is induced by photothermal forces.

In fact, if the thermal decay time τth is long (τ−1th ≪ Ωm), one

can reuse most parts of the discussion below, effectively

replacing only κ by τ−1th [see Marquardt, Harris, and Girvin

(2006) for a discussion of the differences].

The threshold of the instability can be obtained in a linear

analysis by demanding that

Γm þ Γopt ¼ 0: ð100Þ

This defines the limits of an interval where Γm þ Γopt < 0, i.e.,

where the system is unstable. This interval widens as the laser

power is increased.

A simple argument can now be used to obtain the amplitude

A. We start from the ansatz

xðtÞ ¼ x̄þ A cosðΩmtÞ ð101Þ

for the self-induced oscillations. This is good for typical

experimental parameters, where Γm,Γopt ≪ Ωm, such that both

damping and optomechanical effects show up only after many

oscillation periods. We discuss the breakdown of this ansatz in

Sec. VIII.B on chaotic dynamics.

From Eq. (101), one can obtain the time dependence of the

radiation-pressure force FðtÞ (which will depend on A and x̄).
In steady state, the time-averaged power input due to this

force, hF _xi, must equal the power lost due to friction,

meffΓmh_x2i. This can be recast into a condition resembling

Eq. (100), by defining an amplitude-dependent effective

optomechanical damping rate:

ΓoptðAÞ≡
−hF _xi
meffh_x2i

: ð102Þ

In the low-amplitude limit A → 0, this reduces to the standard

definition of Γopt used up to now. Then the power balance

condition is simply

Γm þ ΓoptðAÞ ¼ 0; ð103Þ

which is an implicit equation for A. This strategy can be used

for arbitrary optomechanical systems also containing more

optical modes or other types of radiation forces.

We need yet another condition to fix the oscillation offset x̄,
which is not identical with the unperturbed oscillator equi-

librium position. The time-averaged radiation-pressure force

deflects the harmonic oscillator:

hFi ¼ meffΩ
2
mx̄: ð104Þ

In general, Eqs. (103) and (104) need to be solved

simultaneously for the unknowns A and x̄. However, if

Γm ≪ Ωm, one can already see the instability in a regime

where the shift x̄ is small and can be neglected, such that only

Eq. (103) is relevant.

We still have to obtain FðtÞ. This can be deduced by solving
the classical equation for the light field amplitude (Sec. III.C),

_α ¼ −
κ

2
ðα − αmaxÞ þ i½Δþ GxðtÞ�α; ð105Þ

where we defined αmax to be the amplitude reached inside the

cavity right at resonance (in terms of Sec. III.C, we have

αmax ¼ 2αin
ffiffiffiffiffiffi

κex
p

=κ). After inserting the ansatz (101), the

solution (Marquardt, Harris, and Girvin, 2006) can be written

in a Fourier series αðtÞ ¼ eiφðtÞ
P

nαne
inΩmt, with coefficients

αn ¼
αmax

2

Jnð−GA=ΩmÞ
inΩm=κ þ 1=2 − iðGx̄þ ΔÞ=κ ; ð106Þ

where Jn is the Bessel function of the first kind and the global

phase φðtÞ ¼ ðGA=ΩmÞ sinðΩmtÞ. Now the force FðtÞ ¼
ℏGjαðtÞj2 and the time averages hF _xi and hFi can be

calculated. One has hjαðtÞj2i ¼ P

njαnj2 and hjαðtÞj2 _xi ¼
AΩmIm

P

nα
�
nαnþ1. This series can be efficiently summed

numerically to obtain the explicit dependence of Eqs. (103)

and (104) on A; x̄, and the system parameters.

The result is best discussed graphically. In Fig. 38 we show

the attractor diagram, i.e., the possible amplitudes A as a

function of any system parameter (in this case, the detuning

Δ). This diagram can be generated by plotting the value of

ΓoptðA;ΔÞ and then showing the contour lines Γopt ¼ −Γm that

indicate possible attractors. Note that stable attractors are only

those where jΓoptj grows with A (the upper half of each line).

In the case shown here (κ=Ωm ¼ 0.2), the structure of side-

bands at Δ ¼ nΩm, for both red and blue detunings shows

clearly. Remarkably, one can have stable self-induced oscil-

lations even on the red-detuned side (Δ < 0), but only for

FIG. 37 (color online). Optomechanical parametric instability

toward “self-induced oscillations” (mechanical lasing): displace-

ment x vs time t. In a system with a sufficiently strong blue-

detuned laser drive, the mechanical oscillations can display

antidamping (Γeff < 0). This leads first to exponential growth

of any initial fluctuations, which then finally saturates due to

nonlinear effects, resulting in self-sustained mechanical oscilla-

tions at a stable amplitude A.

Aspelmeyer, Kippenberg, and Marquardt: Cavity optomechanics 1429

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014



finite amplitude A > 0. This is consistent with the fact that the

linearized theory there predicts cooling at A → 0.

Mathematically, the onset of small-amplitude oscillations,

starting from A ¼ 0, is an example of a Hopf bifurcation. In

this regime, A ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffi

I − Ith
p

, where I is any system parameter

(such as the detuning or the laser power), and Ith is its

threshold value.

An important feature is the dynamical multistability, i.e.,

the existence of several stable solutions for a fixed set of

external parameters. This is observed for sufficiently good

mechanical quality factors, when higher-amplitude attractors

become stable. It leads to hysteresis in experiments, and might

also be used for high-sensitivity “latching”measurements. For

more on this and the effects of noise and slow dynamics of the

amplitude, see Marquardt, Harris, and Girvin (2006).

In experiments, an optomechanical instability due to

retarded light forces was first studied in a low-finesse setup

with photothermal forces (Höhberger and Karrai, 2004),

where the retardation is due to finite thermal conductivity

and the theory described here applies with appropriate

modifications; see Marquardt, Harris, and Girvin (2006)

and Metzger, Ludwig et al. (2008). Subsequent studies of

the photothermal setup observed parts of the attractor diagram,

confirmed dynamical bistability, and uncovered a new regime

where more than one mechanical mode gets involved in the

nonlinear dynamics (Metzger et al., 2008b) (see Fig. 39).

The parametric instability driven by radiation-pressure

backaction, as discussed here, was first demonstrated in a

microtoroid setup (Carmon et al., 2005; Kippenberg et al.,

2005; Rokhsari et al., 2005). The full attractor diagram still

has to be observed in an experiment.

A recent experiment demonstrated mechanical lasing (i.e.,

coherent oscillations) in a setup where two optical modes are

involved and photon transitions between those modes provide

the power to feed the mechanical oscillations (Grudinin et al.,

2010). The attractor diagram for the parametric instability in

systems involving more than one optical mode (including

a “membrane in the middle”) displays qualitatively new

features due to the effects of optical Landau-Zener

dynamics (Wu, Heinrich, and Marquardt, 2013).

Just as in a laser, the phase of the self-induced oscillations is

arbitrary. Thus, external noise, including thermal Langevin

forces acting on the mechanical oscillator and radiation-

pressure shot noise, imparts a slow phase diffusion. The

effect of a force δF on the phase scales inversely with the

amplitude, δφ ∝ δF=A, as seen in a phase-space diagram.

Thus, the diffusion constant for the phase scales with 1=A2,

diverging just above threshold (Vahala, 2008). This is the

optomechanical analog of the Schawlow-Townes result for the

linewidth of a laser (Schawlow and Townes, 1958). More

precisely, the scenario is closer to the case of a maser, since the

thermal noise is not negligible in the mechanical oscillator:

Γ
osc
m ¼ Γm

n̄
ð2n̄th þ 1Þ: ð107Þ

A full discussion of the linewidth narrowing and phase

diffusion in optomechanical oscillations can be found in

Rodriguez and Armour (2010), where the effects of photon

shot noise are taken into account as well.

Up to now, we discussed exclusively the classical dynam-

ics. In the quantum regime (Ludwig, Kubala, and Marquardt,

2008), the parametric instability threshold is broadened due to

quantum fluctuations, with strong amplification of fluctua-

tions below threshold. The existence of attractors with finite

amplitude shows up, e.g., in phase-space plots of the Wigner

density, and it changes the phonon (as well as photon)

statistics (Qian et al., 2012).

Interesting new collective physics results if many such

optomechanical oscillators are coupled together. In particular,
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FIG. 39 (color online). (a) Experimental observation of dynami-

cal multistability for optomechanical oscillations. The mechani-

cal oscillation amplitude vs static displacement (or, equivalently,

detuning) displays hysteresis upon sweeping in different direc-

tions. λ is the optical wavelength for this setup. From Metzger,

Ludwig et al., 2008, where the radiation force was of photo-

thermal origin. (b) Experimental results for the linewidth narrow-

ing above the threshold, as a function of the oscillation amplitude,

obtained for a microtoroidal setup by Rokhsari et al. (2006).
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in an optomechanical system. The damping rate Γopt as a function
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this can lead to synchronization, which we discuss in more

detail in Sec. IX on multimode optomechanics.

B. Chaotic dynamics

If the laser input power is increased sufficiently, the coupled

motion of the light field and the mechanical oscillator

becomes chaotic. In that regime, amplitude and phase fluc-

tuate in a seemingly random fashion that depends sensitively

on initial conditions, even in the absence of noise sources.

Technically, the ansatz (101) of sinusoidal oscillations breaks

down, and the full dissipative driven dynamics of 4 degrees of

freedom (x; p, and the complex light amplitude α) has to be

taken into account. The chaotic regime is characterized by

positive Lyapunov exponents, where any small deviation from

the initial trajectory grows exponentially with time.

Chaotic motion in optomechanical systems has been

explored relatively little so far, although it had been observed

early on (Carmon et al., 2005) and has been studied more

systematically in a subsequent experiment (Carmon, Cross,

and Vahala, 2007) (see Fig. 40).

IX. MULTIMODE OPTOMECHANICS

Up to now we almost exclusively considered one optical

mode coupled to one mechanical mode. This is the “minimal

model” of cavity optomechanics, captured by the

Hamiltonian (23). Of course, it is clear in principle that every

mechanical resonator has a multitude of normal modes, and

every optical resonator likewise has many different modes as

well. It is relatively straightforward to write down the

appropriate extension of Eq. (23) to the more general case:

Ĥ ¼
X

k

ℏωcav;kâ
†

kâk þ
X

j

ℏΩjb̂
†
j b̂j

− ℏ

X

j;k;l

½g0�jklâ†kâlðb̂j þ b̂†jÞ þ � � � . ð108Þ

Here the various optical (âk) and mechanical (b̂j) modes

interact according to the optomechanical coupling constant

tensor ½g0�jkl ¼ ½g0�j�lk , whose entries depend on the details of

the optical and vibrational modes and their mutual inter-

actions. We left out the laser drive and the coupling to the

radiation and mechanical environments.

Before discussing the general case, note that restricting

one’s attention to the minimal model is often justified for

many purposes. The incoming monochromatic laser drive will

select one optical resonance. With regard to the mechanical

motion, all mechanical resonances will show up in the rf

spectrum obtained from a displacement measurement, but we

may choose to focus on one of those resonances, as long as

they are well separated. Likewise, cooling or heating in the

resolved-sideband regime singles out a particular mechanical

mode via the choice of laser detuning. In the bad cavity limit,

multiple modes can be cooled (or amplified) simultaneously

(Metzger, Ludwig et al., 2008; Bagheri et al., 2011).

In the following, we discuss some scenarios and features

where it becomes crucial to go beyond the minimal model. It

is clear that going to structures with two or more mechanical

or optical modes leads to a wealth of different possible

schemes (Fig. 41), only a few of which have been explored

so far. Further examples can be found in Sec. X on quantum

optomechanics.

Braginsky pointed out that scattering of photons between

two optical modes can lead to a parametric instability

(Braginsky, Strigin, and Vyatchanin, 2001). This analysis

was intended primarily for interferometric gravitational wave

observatories, where the free spectral range may match

relevant mechanical frequencies.

We already mentioned a setup with a membrane in the

middle of a cavity (Sec. VI.B.2), in the context of QND

phonon detection (Jayich et al., 2008; Thompson et al., 2008;

Miao et al., 2009). This setup can be viewed as consisting of

two optical modes, where photons can tunnel between those

modes via transmission through the membrane. Having two

optical modes is essential for the quadratic dependence of

optical frequency on displacement that arises from the avoided

crossing in the optical mode spectrum.

Besides the QND scheme, setups with two relevant optical

modes can be realized in a large variety of implementations

and have many additional interesting features. Mechanical

oscillations can take the system through the avoided crossing,

potentially resulting in Landau-Zener-Stueckelberg physics

and optical Rabi oscillations for the optical two-state system,

coherently shuffling photons between the two branches

optical
mode

mechanical
mode

optical waveguide

acoustic waveguide

(a) (b)

(c)

(d)(e)

FIG. 41 (color online). The possible variety of multimode

structures for optomechanical circuits. (a) Two mechanical modes

coupled to a common optical mode (for entanglement, etc.).

(b) Two optical modes coupled to a mechanical mode (QND

phonon detection, etc.). (c) 1D array, with mechanical couplings

between the cells. (d) 2D array, with coupling via common

optical modes. (e) Optical and acoustic waveguides feeding into

localized optical and mechanical modes (e.g., photon-phonon

translator).
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FIG. 40 (color online). The transition toward chaotic motion

in an optomechanical system has been observed by Carmon,

Cross, and Vahala (2007) (courtesy of Tal Carmon).
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(Heinrich, Harris, and Marquardt, 2010). Cooling and squeez-

ing in the presence of quadratic optomechanical coupling has

been analyzed (Nunnenkamp et al., 2010). Moreover, dis-

placement sensing in a two-mode setup can be much more

efficient than the standard scheme (Dobrindt and Kippenberg,

2010). The optomechanical system of two coupled optical

modes can also be viewed as a photonic version of the

Josephson effect and its classical dynamics can give rise to

chaos (Larson and Horsdal, 2011).

If the mechanical resonance frequency matches the tran-

sition between the optical branches, one can implement a

version of optomechanical phonon lasing (Grudinin et al.,

2010) that is directly based on a population inversion between

the two optical levels, just like in a real laser. The Landau-

Zener physics mentioned above will significantly modify the

dynamics of these self-oscillations for large amplitudes

(Wu, Heinrich, and Marquardt, 2013). An interesting variant

of this situation can be implemented for whispering-gallery

optical and acoustical modes in toroids or spheres in a

stimulated Brillouin scattering scheme (Tomes and Carmon,

2009; Bahl et al., 2011). In the same kind of Brillouin setup,

the reverse process has been demonstrated as well, i.e.,

cooling via a photon transition between the lower and upper

optical modes (Tomes et al., 2011; Bahl et al., 2012). Similar

physics has been demonstrated for whispering-gallery optical

modes coupling to surface acoustic waves (Matsko et al.,

2009; Savchenko et al., 2011).

Recently it was pointed out theoretically that schemes with

two optical modes can be exploited to enhance the quantum

nonlinearities in optomechanical systems (Ludwig et al.,

2012; Stannigel et al., 2012); see Sec. X.F. The photon-

phonon translator discussed in Sec. X.E is another example of

a possible device that employs two optical modes.

Likewise, there are many schemes where more than only a

single mechanical mode is relevant. These could be the

various normal modes of a given mechanical structure, or

several vibrating objects placed inside a cavity or coupling to

one optical mode (see Sec. X.F). We mention only a few

illustrative examples. An array of multiple membranes inside a

cavity was studied theoretically by Bhattacharya and Meystre

(2008), Hartmann and Plenio (2008), and Xuereb, Genes, and

Dantan (2012) with regard to mechanical normal modes,

entanglement, and collective interactions. A recent experiment

demonstrated tripartite optomechanical mixing between one

microwave mode and two mechanical modes (Massel et al.,

2012). Effects of multiple mechanical modes can also be

studied for levitated setups. It was proposed that an array of

levitated dumbbell-shaped dielectric objects can undergo an

ordering transition.

The nonlinear dynamics of the self-oscillations (mechanical

lasing, Sec. VIII) become particularly interesting when more

mechanical modes are involved. It was shown experimentally

(Metzger et al., 2008b) that collective self-oscillationsmay arise

when several mechanical modes are excited simultaneously,

using a strong blue-detuned drive for a “bad cavity” whose

linewidth encompasses several mechanical normal modes

of the structure (a cantilever in that case). More recently, it

was pointed out that optomechanical systems are very

promising for observing synchronization phenomena

(Heinrich et al., 2011). Assume an array of optomechanical

oscillators, each of which consists of a mechanical mode

coupled to an optical mode that is driven by a blue-detuned

laser beam such as to go into the mechanical lasing regime

(Sec. VIII). If these “clocks” are coupled mechanically or

optically, their mechanical frequencies can lock to each other,

even if they have been distinct initially. Under appropriate

conditions, a variant of the Kuramoto model can be derived for

optomechanical systems (Heinrich et al., 2011), which is a

paradigmatic model of synchronization physics. For two

mechanically coupled cells, the equation turns out to be of

the form

δ _φ ¼ δΩ − K sinð2δφÞ;

where δΩ is the intrinsic frequency difference, δφ is the

difference of mechanical oscillation phases, and K is an

effective coupling constant that can be related to microscopic

parameters. If K is large enough, synchronization ensues

(δ _φ ¼ 0). If, on the other hand, several oscillators couple to

the same optical mode, the behavior can become of a form

that is not described by any Kuramoto-type model. This

was analyzed recently in detail (Holmes, Meaney, and

Milburn, 2012).

Synchronization may be important for metrological appli-

cations, where several synchronized optomechanical clocks of

this type are expected to be more stable against noise (Tallur

et al., 2010). Experimentally, some signs of synchronization

in an optomechanical device have been observed recently

(Zhang et al., 2012) for two optically coupled optomechanical

oscillators, each of them implemented as a double-disk

SiN structure. Mechanical spectra showed the onset first of

self-oscillations and then of synchronization as a function

of laser detuning.

Two coupled mechanical modes of widely different damp-

ing rates can give rise to Fano line shapes in their excitation

spectrum when they hybridize. This was demonstrated in an

optomechanical system (Lin et al., 2010) and suggested for

information storage and retrieval in long-lived mechanical

“dark” states.

Optomechanical photonic crystal structures present an

opportunity to design more complex optomechanical circuits.

These might be 1D or 2D array structures, where many optical

and mechanical modes are arranged in a periodic layout and

coupled to each other. Alternatively, one can think of more

intricate circuits, more similar to computer chips, where

different elements fulfill various functionalities (sensing,

amplification, general signal processing).

Optomechanical arrays of this type have been studied

theoretically in only a few works so far, with respect to their

collective classical nonlinear dynamics (Heinrich et al., 2011),

their quantum many-body dynamics (Ludwig and Marquardt,

2013), and for engineering quantum dissipation (Tomadin

et al., 2012), as well as with respect to quantum applications:

A suitably engineered array of optical and mechanical modes

coupled to a waveguide can slow down and store light (Chang

et al., 2011). Photon-phonon entanglement in an optome-

chanical array of three cells was studied by Akram and

Milburn (2012). Many nanomechanical modes in an array

geometry can be entangled via the light field, using a suitable
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parametric drive to select mode pairs (Schmidt, Ludwig, and

Marquardt, 2012). These studies pave the way toward future

architectures for (continuous-variable) quantum information

processing with optomechanical circuits.

X. QUANTUM OPTOMECHANICS

Quantum mechanics has already figured in several places in

our discussion so far, notably in setting the limits for

displacement sensing or cooling. We now turn to discussing

potential future optomechanical experiments where quantum

behavior takes center stage. We discuss ways to create

interesting quantum states in both the optical and mechanical

systems, and to create entanglement between the various

subsystems. We then turn to nonlinear quantum effects whose

understanding requires us to go beyond the linearized opto-

mechanical interaction, i.e., beyond the quadratic Hamiltonian

of Eq. (29). Finally, we see how it is envisaged that these

effects form the ingredients of future optomechanically aided

protocols for quantum information processing.

A. Light-assisted coherent manipulation of mechanics

The light field can be employed in principle to generate

arbitrary quantum states of the mechanical oscillator. In this

section, we restrict ourselves to the action of the linearized

interaction Hamiltonian of Eq. (29),

Ĥ
ðlinÞ
int ¼ −ℏg0

ffiffiffiffiffiffiffiffi

n̄cav
p ðδâ† þ δâÞðb̂þ b̂†Þ: ð109Þ

When injecting Gaussian optical states, as is the case for the

usual laser drive, this can produce arbitrary mechanical

Gaussian states, i.e., coherent and squeezed states out of

the ground state (which has to be reached first, via either

optomechanical or bulk cooling techniques). As long as the

linearized Hamiltonian is valid, non-Gaussian mechanical

states can be produced only from non-Gaussian optical states.

The parameters that can be varied easily are the laser detuning

Δ and the laser input power. Any pulse of light will generate a

radiation-pressure force pulse that shifts the oscillator’s wave

function and thereby permits one to create a coherent state.

It is only slightly more difficult to create a squeezed state.

As seen in Sec. V.B.1, a far-detuned light beam creates an

optical spring effect, i.e., a change in the mechanical fre-

quency by δΩm ¼ 2n̄cavg
2
0
=Δ. As is well known, a time-

dependent modulation of Ωm, i.e., a parametric driving of the

mechanical oscillator creates a squeezed state; see Mari and

Eisert (2009) and Liao and Law (2011) for an analysis in the

case of optomechanical systems, where one can employ a

modulation of the laser power, and Farace and Giovannetti

(2012) for a generalization of the scheme. For δΩmðtÞ ¼
δΩ cosð2ΩmtÞ, the resulting effective mechanical Hamiltonian

turns out to be (in a frame rotating at Ωm, and in rotating-wave

approximation) the standard squeezing Hamiltonian

Ĥmech ¼
ℏδΩ

2
½b̂2 þ ðb̂†Þ2�; ð110Þ

such that b̂ðtÞ ¼ coshðδΩtÞb̂ð0Þ − i sinhðδΩtÞb̂†ð0Þ in the

absence of dissipation. Thus, in this time-dependent scheme,

squeezing grows exponentially with time. However, a realistic

analysis needs to take into account the initial thermal

population, as well as dissipation and decoherence, and

distinguish between the steady-state situation and the transient

case. Adding feedback to the parametric driving scheme has

been shown to relax the requirements to achieve squeezing

(Szorkovszky et al., 2011). When several mechanical modes

are coupled to the same optical mode, a modulated laser drive

will generate two-mode squeezing or beam-splitter inter-

actions between pairs of modes that are selected according

to their frequency. This can form the basis for continuous-

variable quantum state processing in optomechanical arrays

(Schmidt, Ludwig, and Marquardt, 2012).

Measurements can also be used to generate interesting

mechanical states in a probabilistic manner, i.e., conditioned

on the measurement result. This includes squeezed states via

single quadrature detection (Sec. VI.B.1) or mechanical Fock

states via phonon number readout (Sec. VI.B.2). Further, we

comment on other ways to generate more nonclassical states

(including non-Gaussian states), by nonlinear effects

(Sec. X.F) or various state transfer protocols (Sec. X.E).

B. Mechanics-assisted readout and manipulation of light

The optomechanical interaction can be exploited to detect

and manipulate the quantum state of the light field. An

example that was suggested early on is the possibility of a

QND detection (Braginsky, Vorontsov, and Thorne, 1980) for

the light intensity circulating inside the cavity (Braginsky,

Vorontsov, and Khalili, 1977; Jacobs et al., 1994; Pinard,

Fabre, and Heidmann, 1995). The displacement of the end

mirror, induced by the radiation-pressure force, can serve as a

noiseless meter for the light intensity. In addition, as the

radiation-pressure force is proportional to the photon number,

it increases in discrete steps. If the photons are sufficiently

long lived and the interaction strong enough, this may even

enable QND photon detection, by registering the resulting

mechanical displacement. In practice, however, that regime is

extremely challenging to reach, as it requires g2
0
=κΩm ≫ 1

(see Sec. X.F).

Regarding the manipulation of the light’s quantum state,

one of the most straightforward applications of optomechanics

consists in squeezing the noise of the light beam (Vyatchanin

and Matsko, 1993; Fabre et al., 1994; Mancini and Tombesi,

1994). In this context, the change of the cavity length due to

the intensity-dependent radiation force can be compared to the

effect of a Kerr medium inside a rigid cavity. The resulting

physical picture depends sensitively on the detuning and the

frequency at which the noise of the light beam is analyzed. In

the simplest case, one can imagine that a temporary fluc-

tuation in the incoming intensity of the light beam induces a

change in the cavity length via the radiation-pressure force.

This, in turn, shifts the optical resonance and thereby affects

the circulating and outgoing intensities, potentially sup-

pressing the noise. Note that for a single-sided optical cavity

(without internal losses) there can be no change of the

amplitude noise at zero frequency, since the incoming and

outgoing intensities have to be equal. However, there can be

amplitude squeezing at finite frequencies (and phase squeez-

ing down to zero frequency). The squeezing effect diminishes
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toward frequencies above the mechanical resonance. Finite

temperatures degrade squeezing, as the thermal motion of the

mirror imprints extra noise on the light beam. At low

frequencies, and for detunings on the order of κ, the light

beam’s noise is increased (Fabre et al., 1994) by a factor of

n̄th=Qm, where n̄th is the equilibrium phonon number.

A recent review of the current efforts toward demonstrating

radiation-pressure shot-noise effects and squeezing in opto-

mechanical experiments can be found in Verlot et al. (2011).

First experiments in this direction have simulated the quantum

fluctuations by classical intensity noise (Marino et al., 2010).

More recently, the very strong coupling and low temperatures

attainable in realizations of cavity optomechanics with both

atomic clouds and photonic crystal cavities have allowed the

first signatures of genuine optical squeezing (Brooks et al.,

2012; Safavi-Naeini, Gröblacher et al., 2013) at the quantum

level to be obtained.

C. Optomechanical entanglement

The optomechanical interaction can be used to engineer

entanglement between the light beam and the mechanical

motion, or between several light beams or several mechanical

modes. However, a prerequisite for all of these approaches is

to cool the mechanical oscillator to near its ground state and to

achieve sufficiently strong coupling. Entanglement between

motional states of trapped and laser-cooled ions has been

demonstrated by Jost et al. (2009).

In the following, we first describe entanglement in the single-

photon strong-coupling regime (for more on this regime, see

Sec. X.F) and then turn to continuous-variable entanglement. A

particularly simple physical picture applies in an idealized

situation where we imagine starting with a superposition of

photon states inside the cavity. Then, the radiation-pressure

force assumes different, discrete values for each photon

number, displacing the mechanical harmonic oscillator poten-

tial by 2xZPFg0=Ωm per photon. If initially the mechanics was in

its ground state, it will evolve into a coherent state jαnðtÞivib,
oscillating around the new, displaced origin that depends on the

photon number. Thus, we immediately arrive at a nonfactor-

izable, i.e., entangled, state of the form:

jΨðtÞi ¼
X

∞

n¼0

cne
iφnðtÞjnicav ⊗ jαnðtÞivib. ð111Þ

Here n is the photon number, cn are the arbitrary initial

amplitudes for the photon field (e.g., corresponding to a

coherent state), and φnðtÞ is a phase shift that can be obtained

by solving the time-dependent Schrödinger equation for this

problem. The state (111) can be interpreted as a “Schrödinger

cat”-type state, where a “microscopic” degree of freedom (the

optical cavity mode) is entangled with a “macroscopic” (or

mesoscopic) degree of freedom, the vibrating mirror. This

picture was first analyzed by Bose, Jacobs, and Knight (1997)

and Mancini, Man’ko, and Tombesi (1997).

Several signatures of entanglement exist. In this example,

where the overall state is pure, we can simply trace out the

mechanical vibrations, arriving at the reduced density matrix

of the optical field, which is found in a mixed state whenever

there is entanglement. However, at multiples of the mechani-

cal period, light and mechanics completely disentangle, since

the coherent state jαnðtÞivib will have returned back to the

origin, independent of photon number. At these times, the

photon state becomes pure again, even independent of

the mirror’s effective temperature. The optical field’s coher-

ence thus demonstrates decay and revivals. This can in

principle be tested in an interferometric optomechanical

“which-way” experiment, where a photon can take either

of two paths, one of which contains an optomechanical

cavity (see Fig. 42). The revivals can be observed in the

interference visibility, as a function of the time the photon

has spent inside the cavity. However, any mechanical

decoherence occurring in the meantime will spoil these

perfect revivals of the photon field’s coherence. This can in

principle be employed for highly sensitive optical tests of

sources of mechanical dissipation and decoherence and

fundamental quantum physics in general (Bouwmeester

et al., 1998; Bose, Jacobs, and Knight, 1999; Folman et al.,

2001; Marshall et al., 2003). Experiments of this kind could

quantify the decoherence of superpositions of heavy objects

(i.e., the mirror), and thus potentially shed new light on the

quantum-to-classical transition (see Sec. XI.A). In particular,

models of gravitationally induced decoherence might be

tested (Bose, Jacobs, and Knight, 1999; Marshall et al.,

2003), where the (admittedly small) hypothetical extra

decoherence rate becomes potentially observable only for

relatively massive objects. Such experiments require the

challenging regime of g0=Ωm > 1 (when the displacement

induced by a single photon may be on the order of the

mechanical zero-point motion). It was recently suggested

that nested interferometry allows one to significantly reduce

this requirement (Pepper, Ghobadi et al., 2012).

On the other hand, entanglement can also exist on the level

of continuous variables (Braunstein and van Loock, 2005), of

the type first proposed in the famous Einstein, Podolsky, and

Rosen (1935) (EPR) article. The analysis of entanglement in

FIG. 42 (color online). An optomechanical which-path experi-

ment can be employed to test for the decoherence of mechanical

superposition states. A photon would leave behind a vibration in

the mirror of an optomechanical cavity, which destroys the

photon’s coherence with the other path. However, if the photon

exits after a full mirror oscillation period, it will be fully coherent

again, unless mechanical decoherence has occurred in the mean-

time. From Marshall et al., 2003.
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this context has to be performed by taking into account the

dissipative nature of the systems involved and typically relies

on solving the linearized quantum equations of motion

(including, if needed, input-output theory for treating the

reflected or transmitted light beam). In the regime where

linearized equations of motion are valid, Gaussian states of the

mechanics and the light field will be produced, and their

entanglement (of the continuous-variable type) can be char-

acterized completely once the correlations between the various

mechanical and optical quadratures are known. A typical

measure of entanglement that is commonly applied here is the

logarithmic negativity, which can be calculated easily for

Gaussian states (Vidal and Werner, 2002), both pure

and mixed.

The entanglement between mechanical vibrations and the

optical cavity field (already described in a picture appropriate

for strong coupling) has been analyzed in more detail for the

continuous-variable case by Paternostro et al. (2007) and

Vitali et al. (2007). It was pointed out that a suitable time-

dependent modulation of the drive can improve the

efficiency of photon-phonon entanglement (Mari and

Eisert, 2012).

Recently, optomechanical entanglement between mechanical

motion and the microwave radiation field was demonstrated

experimentally (Palomaki, Teufel et al., 2013), implementing a

pulsed scheme (Hofer et al., 2011) (see also Sec. X.E).

It is also possible to create entanglement of two spatially

separate mirrors. When a strong pump beam runs through a

nonlinear optical χð2Þ medium acting as a nondegenerate

optical parametric amplifier, two-mode squeezing produces

entanglement between the quadratures of pairs of emanating

light beams. This entanglement could then be transferred via

the radiation-pressure force onto two spatially separated

mirrors that are part of optomechanical cavities on which

these light beams impinge (Zhang, Peng, and Braunstein,

2003). In this way, optomechanics would help to create

mechanical EPR-type entanglement at a distance. The veri-

fication of EPR entanglement between macroscopic test

masses by sensitive measurements has been studied in more

detail for the context of gravitational wave interferometer

setups (Müller-Ebhardt et al., 2009; Miao et al., 2010). In the

context of optomechanics, we usually consider the system to

be driven by a coherent laser beam. However, it is natural to

ask whether special opportunities arise when the light that is

injected displays quantum features. For example, the injection

of squeezed light can be beneficial for entangling nano-

mechanical resonators via the optomechanical interaction

(Huang and Agarwal, 2009b).

In another approach, one can achieve the same goal without

the optical entanglement created by a nonlinear medium, and

instead perform an optical measurement after the interaction

has taken place, in an entanglement swapping scheme. If two

independent light beams interact with separate optomechan-

ical cavities, then the beams can afterward be brought to

interfere at a beam splitter, and a suitable Bell-state meas-

urement can then be used to generate entanglement between

the distant mechanical resonators (Pirandola et al., 2006) [see

Borkje, Nunnenkamp, and Girvin (2011) for a similar

proposal].

Alternatively, the driven optical field inside the cavity

automatically induces an effective interaction between several

mechanical modes, thus providing yet another way to generate

mechanical entanglement, without the need for any optical

nonlinearities or entanglement swapping schemes. In the case

of two mechanical resonators (or two normal modes of one

resonator) coupling to the same driven cavity mode, this can

be understood as a consequence of the optical spring effect

(Sec. V.B.1). For the case of a single mechanical mode b̂,
eliminating the driven cavity mode by second-order pertur-

bation theory creates an effective interaction term

ℏðg2
0
n̄cav=ΔÞðb̂þ b̂†Þ2. Proceeding through the same argu-

ment for the case of two mechanical modes gives rise to an

effective mechanical interaction. It is of the form

Ĥint
eff ¼ ℏ

g2
0
n̄cav
Δ

½ðb̂1 þ b̂†
1
Þ þ ðb̂2 þ b̂†

2
Þ�2; ð112Þ

if we assume for simplicity that both mechanical oscillators

couple equally strongly to the optical mode.

In order to successfully entangle different mechanical

modes, one has to laser cool those modes, since the mechani-

cal vibrations are far from their ground state for typical bulk

temperatures. The optically induced steady-state entangle-

ment between two movable mirrors under simultaneous laser

cooling was carefully studied by Pinard et al. (2005), and later

for somewhat different setups by Hartmann and Plenio (2008)

and Müller-Ebhardt et al. (2008). There is an interesting

caveat for such studies: It is insufficient to apply the Markov

approximation to describe the dissipative dynamics of the

mechanical vibrations in this context, even though for many

other purposes in optomechanics that is a very reliable

approach. In fact, it can be shown that in a proper treatment

(Ludwig, Hammerer, and Marquardt, 2010) there is an

optimum intermediate laser cooling strength for which entan-

glement is maximized (an effect entirely missed by the

common Markovian treatments).

The light-induced interaction given in Eq. (112) can form

the basis of a general scheme for quantum-state processing

with many nanomechanical modes. In order to selectively

address pairs of such modes for entanglement and state

transfer, one simply has to modulate the coupling strength

(i.e., the laser intensity) at sum and difference frequencies of

those modes. Such a parametric scheme requires only one

appropriately modulated laser input to address whole arrays of

modes, if the proper layout is chosen (Schmidt, Ludwig, and

Marquardt, 2012). If the individual nanomechanical resona-

tors are very nonlinear (i.e., with nonlinearities important on

the single-phonon level), they can be viewed as qubits, and a

common optical mode can then be used to perform operations

on them (Rips and Hartmann, 2013).

Another possibility consists of exploiting optomechanics to

entangle two light beams. In these cases, the optomechanical

interaction essentially serves the purpose of a χð2Þ nonlinear
medium. This was proposed, e.g., for an optomechanical setup

where two degenerate, orthogonally polarized cavity modes

are driven strongly and their interaction with the movable

mirror creates EPR correlations (Giovannetti, Mancini, and

Tombesi, 2001) between the quadrature variables of the beams

emanating from these modes. Another option is to entangle
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the two sidebands reflected from a vibrating mirror, which

works even in the absence of a cavity, for a strong short

incoming laser pulse (Pirandola et al., 2003). For this

situation, a more detailed analysis of the entanglement

between mirror vibrations and the full light field (infinitely

many degrees of freedom) was performed by Miao,

Danilishin, and Chen (2010). Optically trapped mirrors in a

cavity-optomechanics setup can also be exploited to entangle

light beams (Wipf et al., 2008).

D. Quantum hybrid systems

Optomechanical systems already represent a quantum

hybrid system, i.e., a coupling between two quantum systems

of a different physical nature: light and mechanical vibrations.

In general, hybrid approaches may be useful for purposes such

as quantum information processing, in order to combine the

advantages of different physical systems in one architecture.

Some systems may be strongly interacting (good for compu-

tation), some are very coherent (good for long-term storage),

and yet others are easily transported over long distances (good

for communication).

In principle, other components may be easily added to

optomechanical setups. This is because both the light field and

the mechanical vibrations are quite versatile in coupling to a

variety of systems, such as cold atoms, spins, superconducting

and other electronic qubits, etc. Consequently, there are

already several proposals along these lines.

In a cloud of atoms, the total spin can sometimes be treated

as a harmonic oscillator, identifying its small fluctuations

around a preferred direction as position and momentum

quadratures. This picture is useful when discussing experi-

ments where the state of the light field is transferred to the

atomic spin state and back again (Hammerer, Sørensen, and

Polzik, 2010). More recently, it was suggested that light might

also be used to couple the collective spin of an atom cloud to a

nanomechanical oscillator (Hammerer, Aspelmeyer et al.,

2009). In such a setup, a light beam passing first through

an optomechanical cavity and then through an atom cloud

carries information in its quadratures about the sum and the

difference of position and momentum variables of the

mechanics and the spin state. A subsequent QND measure-

ment then is able to prepare the two systems in an EPR state,

conditioned on the measurement result. As another example,

coupling to the internal transitions of atoms can enhance

cooling (Genes, Ritsch, and Vitali, 2009). One can also

consider more involved internal level schemes for the atoms.

For example, a vibrating mirror could be strongly coupled to

the collective spin of a cloud of three-level atoms displaying

electromagnetically induced transparency phenomena (Genes

et al., 2011). In addition, it was suggested that coupling the

collective spin of an atom cloud parametrically to a resonator

can lead to the phenomena known from optomechanics

(Brahms and Stamper-Kurn, 2010) (amplification and cooling

of the spin, frequency shifts, and squeezing of light), with the

collective spin replacing the mirror motion.

After the pioneering experiments on optomechanics using

cold atoms (Sec. IV.G), a number of different possibilities

have been explored theoretically to couple the motion of

atoms to other systems. For example, the light field inside the

cavity may be used to couple the motion of a single atom to

the vibrations of an end mirror or a membrane (Hammerer,

Wallquist et al., 2009; Wallquist et al., 2010), where the

strong-coupling regime seems to be within reach. This could

be the basis for exploiting all the well-known tools for

manipulating and reading out the motion of a single trapped

atom to gain access to the membrane motion. It would also be

an interesting system to observe the entanglement between a

microscopic and a macroscopic degree of freedom. Another

model system that has been studied (Hammerer et al., 2010)

and is now being implemented (Camerer et al., 2011) is a

cloud of atoms in a standing light wave reflected from a

vibrating mirror (without a cavity). This could allow long-

distance coupling between atoms and mechanical objects

spaced apart by macroscopic distances.

Avariety of other ideas exist for merging cold atom systems

with optomechanics [see the review by Hunger et al. (2011)].

For example, the magnetic moments of atoms in a Bose-

Einstein condensate might couple to a cantilever carrying a

nanomagnet (Treutlein et al., 2007). In addition, the opto-

mechanics of both Bose-Einstein condensates (Chen et al.,

2010; Jing et al., 2011; Steinke et al., 2011) and degenerate

cold atom Fermi gases (Kanamoto and Meystre, 2010) have

been explored theoretically in some depth. Even the Mott

insulator to superfluid transition of atoms in an optical lattice

coupled to a vibrating mirror has been analyzed, as an

example of a strongly interacting quantum system subject

to the optomechanical interaction (Larson et al., 2008; Chen

et al., 2009).

The idea of doing optomechanics on trapped atoms found

an interesting counterpart in proposals for doing optome-

chanics on levitated dielectric objects (Sec. IV.E). The pro-

mise of this approach lies in a greatly enhanced mechanical

quality factor. Some proposals considered trapping and cool-

ing a mirror (Bhattacharya and Meystre, 2007a, 2007b;

Bhattacharya, Uys, and Meystre, 2008; Singh et al., 2010),

which has the advantage (over other objects) that scattering

of the light into unwanted directions is greatly reduced.

Alternatively, one can have dielectric spheres or other particles

trapped in an optical lattice or by other means (Barker, 2010;

Barker and Shneider, 2010; Chang et al., 2010; Romero-Isart

et al., 2010). A more detailed analysis of fundamental

applications and protocols can be found in Romero-Isart

(2011), Romero-Isart et al. (2011b, 2011c), and Pender et al.

(2012). If the promise of very long mechanical coherence

times is fulfilled, then these platforms could offer the best

means to test novel decoherence mechanisms (see Sec. X.C).

Some early experiments and studies on cavity optomechanics

with subwavelength nano-objects (Favero and Karrai, 2008;

Favero et al., 2009) (Sec. IV.E) have already explored the

optical coupling and some of the scattering mechanisms that

may become relevant in this domain, even though they did not

yet benefit from a suppression of mechanical dissipation.

Connecting the world of superconducting or other solid-

state qubits to optomechanical systems represents an in-

triguing possibility in the context of quantum information

processing. This has become particularly relevant since the

pioneering experiment at the University of California at Santa

Barbara (O’Connell et al., 2010) that demonstrated strong

coupling between a superconducting phase qubit and the
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GHz oscillations of a piezoelectric nanoresonator, swapping a

single excitation from the qubit into the resonator. The first

experiments demonstrated how to manipulate a mechanical

nanoresonator via both the optomechanical interaction and

electrically (Lee et al., 2010; Winger et al., 2011), which is an

important ingredient for a future hybrid platform of solid-state

qubits with electrical interactions coupled to mechanical nano-

resonators coupled to the light field. Theoretical proposals

already pointed out how to use systems of this type to map

solid-state quantum information into photons and back again

(Stannigel et al., 2010, 2011; Regal and Lehnert, 2011; Safavi-

Naeini and Painter, 2011; Tian, 2012; Wang and Clerk, 2012).

More elementarily, the nanomechanical structure can serve as

an intermediary to generate entanglement between microwave

and optical fields (Barzanjeh et al., 2011). The presence of

qubits also readily allows the creation of nonclassical states,

e.g., in microwave cavities coupled to mechanical systems

(Gangat, McCulloch, and Milburn, 2012).

An equally promising avenue is to merge the fields of solid-

state quantum optics and cavity optomechanics. The first

experiments deliberately introducing semiconductor materials

in cavity-optomechanical setups now exist. These include

2-μm-diameter GaAs vibrating disk structures with very high

optomechanical coupling strength (Ding et al., 2010, 2011)

and coupling of the light field to a semiconductor nano-

membrane (Usami et al., 2012). The excitonic transitions of

quantum dots embedded in such materials could couple to

the mechanical vibrations either directly via deformation

potentials or indirectly via the light field (Rundquist and

Majumdar, 2011).

E. Quantum protocols

The previous sections introduced some basic quantum-

physical features in optomechanical systems, such as produc-

ing and reading out nonclassical states of light and mechanics.

As soon as this can be achieved reliably, one may envisage

building a toolbox for quantum manipulation in these systems

and exploit it for purposes of quantum communication and

quantum information processing. This would follow the

pioneering ideas and efforts in the ion-trap community, where

it was suggested early on that one can exploit the motional

degrees of freedom to facilitate quantum gates between the

internal states of ions (Cirac and Zoller, 1995; Leibfried et al.,

2003). Micromechanics and nanomechanics offer the added

value that they can be functionalized and hence couple to

many different physical degrees of freedom. Optomechanical

devices therefore offer a fruitful addition to the vast array of

physical systems that are being explored for quantum infor-

mation processing (Zoller et al., 2005).

One of the most prominent protocols is quantum-state

transfer. In the context of optomechanics, this allows one to

reliably convert an optical pulse into a mechanical excitation

(and vice versa). In principle, this is straightforward, since the

linearized optomechanical interaction describes a coupling

between two oscillators (mechanical and driven cavity mode),

which can be tuned via the laser intensity (see Sec. III.B and

Fig. 43 for a summary). For the red-detuned case Δ ¼ −Ωm in

the resolved-sideband limit, we found a beam-splitter type of

interaction:

Ĥ ¼ −ℏΔδâ†δâþ ℏΩmb̂
†b̂ − ℏgðδâ†b̂þ δâb̂†Þ þ � � � :

ð113Þ

Thus, the excitations δâ on top of the strong coherent laser drive
can be swapped onto the mechanical resonator. Such an

operation would be performed in a pulsed scheme. The

coupling gðtÞ becomes time dependent via the laser intensity,

and it would be switched on for just the right amount of time to

perform a complete state swap between the two oscillators

(δâ and b̂). Two laser pulses are needed for this scheme. A red-

detuned control pulse at ωcontrol
L ¼ ωcav − Ωm determines the

time-dependent coupling gðtÞ. A second, “signal” pulse serves

to excite the δâ oscillator into some target state that then will be

written onto the mechanics. Since δâ oscillates at the frequency

−Δ ¼ Ωm in the frame rotating at ωcontrol
L , the signal pulse has

to be injected at a frequency ω
signal
L ¼ ωcontrol

L þ Ωm ¼ ωcav,

i.e., right at the cavity resonance. Ideally, the whole swapping

pulse sequence is shorter than the cavity decay time, which

however requires a two-mode setup with different decay rates

for the modes (since the control pulse cannot be shorter than

1=κ for a single mode). A detailed analysis of swapping

protocols has been given by Wang and Clerk (2012).

There is also a simple classical picture for what happens

during such a pulse sequence: The superposition of signal and

control beam leads to a beat note in the intensity at Ωm. This

translates into a radiation-pressure force that resonantly

excites the mechanical oscillator.

The optomechanical interaction can also be exploited

for conversion between different optical wavelengths. That

FIG. 43 (color online). The linearized Hamiltonian of cavity

quantum optomechanics describes three different kinds of inter-

action between the mechanical resonator and the driven cavity

mode, depending on which laser detuning is chosen. This is the

basis for elementary quantum protocols, such as storing optical

information into the mechanical degree of freedom.

input signal output signal

control beam 1 control beam 2

mode 1 mode 2

FIG. 44 (color online). Optical wavelength conversion in an

optomechanical setup: Two modes at different frequencies are

illuminated by strongly red-detuned control beams. When a

signal is injected at the resonance of mode 1, it is converted

into a signal emanating from mode 2.
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scheme is illustrated schematically in Fig. 44. It involves two

optical resonances, each of which is driven by a strong

control beam, red detuned by Ωm. When an input signal

(e.g., a pulse) is injected at the resonance of mode 1, it will be

converted to an output signal emanating from the resonance of

mode 2. This was demonstrated recently by Dong et al. (2012)

and Hill et al. (2012).

First experimental proof-of-principle demonstrations have

shown these concepts in the classical regime (Fiore et al.,

2011; Verhagen et al., 2012). In this context it was pointed out

(Romero-Isart et al., 2011c; Verhagen et al., 2012) that the

requirement for coherent state transfer of this type is

g > κ;Γmn̄th. The next challenge will be to drastically improve

the fidelity and demonstrate true quantum-state transfer

(Parkins and Kimble, 1999; Ritter et al., 2012), e.g., by

reconstructing the mechanical quantum state (Sec. VI.B.1).

Recently, state transfer between a mechanical mode and an

itinerant microwave coherent state was reported (Palomaki,

Harlow et al., 2013). In this experiment, a suitably shaped

microwave pulse was written onto the motional state of a

micromechanical membrane and later retrieved via quickly

switched control beams, hence realizing a coherent mechani-

cal memory for microwave pulses in the weak-coupling

regime. Another protocol that does not require the strong-

coupling regime is based on quantum-state teleportation

(Hofer et al., 2011; Romero-Isart et al., 2011c).

If a single photon is sent into the setup and transferred to the

mechanical resonator, this will prepare the resonator in a Fock

state or some nonclassical state in general (Akram et al., 2010;

Kahili et al., 2010). That may be the most efficient route

toward generating nonclassical mechanical states in optome-

chanical systems as long as the single-photon strong-coupling

regime (Sec. X.F) has not been reached. Alternatively, single-

photon detection and postselection can be used to prepare

non-Gaussian states even if the single-photon optomechanical

coupling is not very strong, as shown by Vanner, Aspelmeyer,

and Kim (2013).

Up to now, we described only how single localized phonons

(stored inside the mechanical resonator) can be converted to

photons and back again. An equally interesting, or perhaps

even more useful, scheme takes traveling phonons and

converts them to photons. Such a device was proposed

recently and was termed an optomechanical “traveling wave

phonon-photon translator” (Safavi-Naeini and Painter, 2011).

Although the frequency is shifted by many orders of magni-

tude, the wave function of the outgoing single photon is

designed to be a faithful replica of the incoming phonon’s

wave function.

The basic idea is the following: Phonons are traveling down

a phononic waveguide and enter a localized phononic mode,

where they experience the usual optomechanical interaction.

Frequency up-conversion is achieved by having a high-

intensity stream of incoming photons. In a Raman-type

scattering process, the phonon combines with one of those

photons to form a single photon at a slightly different

frequency, so energy conservation is obeyed. The strong

pump beam and the weak stream of outgoing converted

photons can be efficiently separated by being coupled to

two different optical modes. Indeed, a suitably engineered

optomechanical structure (Safavi-Naeini and Painter, 2011)

has two optical modes coupling to the phonon displacement

field in the following way (which is conceptually identical to

the membrane-in-the-middle setup discussed in Sec. VI.B.2):

Ĥ ¼ −ℏg0ðb̂þ b̂†Þðâ†
1
â2 þ â†

2
â1Þ þ � � � : ð114Þ

If mode â1 is pumped strongly, we can replace the field

operator by the classical amplitude â1ðtÞ ↦ ᾱe−iωLt (assume ᾱ

is real valued). If ω2 ≈ ω1 þ Ωm, then the resonant terms to be

retained are

Ĥ ¼ −ℏg0ᾱðb̂â†2e−iωLt þ b̂†â2e
þiωLtÞ þ � � � . ð115Þ

This displays the elementary process of converting a single

phonon to a single photon (and back). It also shows that the

conversion rate can be tuned via the pump strength ᾱ. The

remaining challenge lies in ensuring that 100% of the phonons

arriving at the device are indeed converted into photons. This

is essentially an impedance-matching problem, since the

coupling of the phonon mode to the phonon waveguide

(ideally set by Γm if other losses can be neglected) is usually

much weaker than the coupling of the optical mode to the

photon waveguide (set by κ2). Without extra fine-tuning, most

of the phonons would be reflected. This can be overcome by a

judicious choice of the coupling. Indeed, from the point of

view of the phonon mode, the coupling (115) to the lifetime-

broadened photon mode â2 gives rise to a Fermi golden rule

transition rate 4g2
0
ᾱ2=κ2. This is the rate at which a given

localized phonon would be converted and decay into the

photonic waveguide, and it is identical to the optomechanical

cooling rate in the sideband-resolved regime. By matching

this to the coupling to the phononic waveguide, i.e., demand-

ing 4g2
0
ᾱ2=κ2 ¼ Γm, one creates a situation that is equivalent

to a two-sided cavity with equal mirrors, where 100% trans-

mission can be achieved on resonance. Consequently, in the

present setup ideally 100% of the phonons can be converted

if 2g0ᾱ ¼ ffiffiffiffiffiffiffiffiffiffi

κ2Γm

p
. A detailed analysis (Safavi-Naeini and

Painter, 2011) considered the full scattering matrix that

describes scattering of incoming phonons into the photon

waveguide (or reflection back into the phonon waveguide),

and it includes the unwanted effects of extra intrinsic losses

and noise.
21

On a classical level, the device described takes the slow

amplitude and phase modulations of the phonon field, i.e., of a

sound wave traveling down the waveguide, and transposes

them into the optical domain by shifting the carrier frequency

from mechanical frequencies (e.g., GHz) up to optical

frequencies. The fact that the bandwidth is set by the smallest

damping rate in the problem, which is Γm, can be an advantage

if one uses the device as a narrow-bandwidth frequency filter.

For example, two photon-phonon translators in series (the first

one operated in reverse, i.e., going from photons to phonons)

implement a potentially very narrow filter in the optical

domain.

21
Safavi-Naeini and Painter (2011) refer to κ and γ half the

photonic and phononic intensity decay rates κ and Γm employed in

our notation.
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Phonon-photon conversion has been analyzed for trans-

ferring solid-state quantum information to the optical domain

(Stannigel et al., 2010, 2011; Wang and Clerk, 2012) and for

transferring optical pulses between different wavelengths and

pulse shaping (Tian and Wang, 2010; Safavi-Naeini and

Painter, 2011; Tian, 2012).

Microwave-to-optical conversion was demonstrated

recently in two experiments: One of them employed a

piezoelectric AlN photonic crystal nanobeam (Bochmann

et al., 2013), and the other used a partially metallized SiN

membrane (Andrews et al., 2014) coupled to both a micro-

wave circuit and an optical cavity. One example for the more

advanced possibilities of optomechanical quantum protocols

is to perform continuous-variable quantum teleportation.

Besides employing this for generating entanglement between

distant mechanical oscillators (as mentioned), one may also

teleport an arbitrary input state of the light field onto the

mechanics. The generic idea is to start with the entanglement

between the mechanical motion and a light beam, and then to

let the beam interfere at a beam splitter with another light

beam, carrying an arbitrary input state. A subsequent meas-

urement in both output ports of the beam splitter (Bell

measurement) then yields a classical measurement result on

the basis of which one manipulates the mechanical state,

leaving it in a final quantum state that equals the arbitrary

input state. Such a scheme was analyzed for a strong short

laser pulse impinging on a vibrating mirror in a free-beam

setup (without a cavity) (Mancini, Vitali, and Tombesi, 2003;

Pirandola et al., 2003), where the reflected optical Stokes and

anti-Stokes modes at ωL � Ωm get entangled with the vibra-

tions, and for a time-dependent drive of an optomechanical

cavity (Hofer et al., 2011; Romero-Isart et al., 2011c).

F. Nonlinear quantum optomechanics

In this section, we describe what happens when the non-

linearity of the optomechanical interaction plays a role on the

quantum level. Other approaches to introduce quantum non-

linearity into optomechanical systems involve having a non-

linear optical medium or a nonlinear mechanical oscillator, as

mentioned previously.

The optomechanical interaction −ℏg0â
†âðb̂þ b̂†Þ is cubic

in field operators, i.e., the corresponding Heisenberg equa-

tions of motion are nonlinear. However, in experiments this

nonlinearity so far has played a role only in the classical

regime of large-amplitude oscillations (both mechanical and

with regard to the light field); see Sec. VIII.A. In the quantum

regime, we have thus far resorted to the linearized description,

with a quadratic interaction Hamiltonian of the type

−ℏg0
ffiffiffiffiffiffiffiffi

n̄cav
p ðδâ† þ δâÞðb̂þ b̂†Þ; see Eq. (29). This linearized

approach is sufficient to understand many facets of cavity

optomechanics: displacement detection down to the SQL

(Sec. VI.A), the theory of optomechanical ground-state cool-

ing (Sec. VII.A), light or mechanics hybridization in the

strong-coupling regime g0
ffiffiffiffiffiffiffiffi

n̄cav
p

> κ (Sec. VII.C.1), optome-

chanically induced transparency (Sec. VII.C.2), optomechan-

ical squeezing of light (Sec. X.B), and almost all of the various

entanglement and state transfer schemes presented. The

experimental advantage of the linearized interaction is that

its strength g ¼ g0
ffiffiffiffiffiffiffiffi

n̄cav
p

can be tuned at will by the incoming

laser power. In this way, a small value of g0 (fixed by the

setup) may be compensated for by a stronger laser drive, until

technical constraints become important.

The disadvantage of relying on the linearized interaction is

that, by itself, it will always turn Gaussian states (of the light

field and the mechanics) into Gaussian states. These may be

squeezed or entangled, but they will never have a negative

Wigner density, which may be required for certain quantum

applications. Note that there are some ways around this

restriction, by introducing a nonlinearity at some other stage

of the experiment: For example, one may send in single-

photon pulses and then transfer these Fock states onto the

mechanics using the linearized interaction. Another, some-

times equivalent, option is to perform single-photon detection

at the end, thereby creating nonclassical states via a post-

selection of events. These strategies are therefore related to the

general schemes that have been exploited already for linear

optics quantum computation by adding single-photon sources

and photodetectors (Knill, Laflamme, and Milburn, 2001).

Thus far, we encountered only two ideas on true nonlinear

quantum optomechanics: The optical QND detection of the

phonon number (Sec. VI.B.2) is such an example, and it

indeed would prepare (probabilistically) Fock states of the

mechanical oscillator. Another example, discussed early in the

literature, is the optomechanical Schrödinger cat type of

entanglement, where a single photon should ideally be able

to displace the mechanical oscillator by about a mechanical

zero-point width (Sec. X.C).

These examples require a large value of g0, which is a

challenge. We remind the reader that in a typical (Fabry-

Pérot–type) setup the value of g0 can be estimated as

g0 ¼ ωcav

xZPF
L

¼ ωcav

1

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ

2meffΩm

s

: ð116Þ

Here L is the effective size of the cavity, and meff is the

effective mass. Both can be made small by miniaturizing the

setup, and consequently record values of g0 are achieved in

micrometer-sized devices, such as photonic crystal nano-

beams or very small disks and toroids. This is even in spite

of the fact that miniaturization also drives up the mechanical

frequency Ωm. In such setups, g0 currently takes values on the

order of up to some MHz (see Sec. IV.A).

Next we discuss in which sense g0 can be “large.” The

steady-state displacement produced by a single photon on

average (n̄cav ¼ 1) is

δx

xZPF
¼ 2

g0
Ωm

: ð117Þ

Thus, to displace by more than the zero-point width (mechani-

cal ground-state width), one needs g0 > Ωm. However, if the

photon decay rate κ is large, then one can see only the average

displacement produced by the photon number fluctuating

around n̄cav ¼ 1, and one would not resolve the granularity of

the photon stream. Such a situation should still be well

described within the linearized approximation. To obtain truly

nonlinear effects, one would want to make sure the following

picture applies. Take any single photon entering the cavity. If

its lifetime is large enough (Ωm ≫ κ, the resolved-sideband
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regime), it will displace the oscillator by the amount given in

Eq. (117). This then implies g0 ≫ κ as a necessary (but not

sufficient) condition.

These considerations directly lead us to consider the ratio

g0
κ
: ð118Þ

If that ratio is larger than 1, then the presence of a single phonon

will shift the optical frequency by more than a cavity linewidth.

More precisely, the mechanical displacement produced by a

superposition of 0 and 1 phonons will be measured so

efficiently that the passage of a single photon through the

cavity already destroys the superposition. We can also look at

the light field’s backaction: In the bad cavity limit (κ ≫ Ωm), a

single passing photon with a lifetime κ−1 gives an average

momentum kick δp ¼ 2pZPFg0=κ to the mechanical oscillator,

which is larger than its zero-point momentum uncertainty

pZPF ¼ meffΩmxZPF if g0 > κ. One can make a connection

to the Lamb-Dicke parameter used in ion-trap physics, by

defining the ratio of momentum kick to momentum zero-point

fluctuations: ηLamb-Dicke≡δpxZPF=ℏ¼ δp=ð2pZPFÞ¼g0=κ.
The ratio g0=κ has been called the “granularity parameter”

(Murch et al., 2008), as g0=κ > 1 allows one to reveal the

granularity of the photon stream (the discreteness of individual

photons). It has reached values on the order of and larger

than 1 in experiments with clouds of ultracold atoms (see

Sec. IV.G).

There are other ways of interpreting g0=κ > 1 as well: The

(sideband-resolved) cooling rate g2
0
n̄cav=κ will be so large that

one enters the strong-coupling regime (Sec. VII.C) already for

n̄cav ¼ 1. Alternatively, g0=κ can be written as the ratio

between the mechanical zero-point fluctuations and the width

of the optical cavity resonance, expressed in terms of a

displacement (where the optomechanical coupling enters):

g0
κ
¼ xZPF

δxcav
;

where δxcav ¼ κ=G ¼ κxZPF=g0.
There is an additional interesting aspect about g0=κ. It can

serve as a “quantumness” parameter (Ludwig, Kubala, and

Marquardt, 2008), with larger values denoting a gradual

classical-to-quantum crossover. All the parameters of any

given standard optomechanical setup can be boiled down to

the following five dimensionless combinations:

κ

Ωm

; Qm ¼ Ωm

Γm

;
Δ

Ωm

;
g

κ
;

g0
κ
. ð119Þ

Here the first four do not depend on the value of Planck’s

constant. This is obvious for the first three (the sideband-

resolution ratio, the mechanical quality factor, and the laser

detuning in units of mechanical frequency). It is less obvious

for g=κ. However, this can be written as

g

κ
¼ g0

κ

ffiffiffiffiffiffiffiffi

n̄cav
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ecav

2meffL
2

ωcav

Ωm

s

: ð120Þ

Here Ecav ¼ ℏωcavn̄cav is the light energy stored inside the

cavity, which is connected to the laser driving power. In this

sense, g=κ serves as a dimensionless classical measure of laser

power. Only the ratio g0=κ depends on ℏ, as can be seen from

Eq. (116): g0 ∝
ffiffiffi

ℏ
p

.

Thus, one can imagine keeping all four classical ratios fixed

and increasing only g0=κ by changing parameters in the setup.

This is then completely equivalent to increasing Planck’s

constant, allowing one to resolve more and more quantum

features as g0=κ grows. It should be noted that of course even

for g0=κ ≪ 1 one can observe quantum effects, but only in the

linearized regime. Proving the quantumness of these effects

produced by linearized interactions usually requires a quanti-

tative comparison (e.g., with the light field’s or the oscillator’s

zero-point fluctuations). In contrast, some features observed

for larger values of g0=κ may even be qualitatively distinct

from classical predictions. An example noted earlier is the

quantum jumps of phonon number that could be observed for

g0 > κ0 (Sec. VI.B.2).

The third important ratio involving the coupling is

g2
0

Ωmκ
:

This is the ratio between the strength g2
0
=Ωm of the effective

photon-photon interaction induced by the mechanics and the

optical linewidth. When this starts to be larger than 1 (and

κ ≪ Ωm), then the presence of one photon shifts the

resonance sufficiently that a second photon cannot enter

the cavity. That leads to the photon-blockade phenomenon

(see later).

Ludwig, Kubala, and Marquardt (2008) considered the

regime of g0 ∼ κ ∼ Ωm using both full numerical master

equation simulations and a quantum Langevin approach.

They found that for increasing values of g0=κ quantum

fluctuations start to have a pronounced effect on the mechani-

cal lasing instability that is observed at blue-detuned laser

driving. The strongly enhanced susceptibility of the system

just below the threshold amplifies the effects of these

fluctuations, and the threshold is smeared and shifted. In this

quantum regime, the coexistence of several attractors (known

from the classical case, see Sec. VIII.A) results in non-

Gaussian mechanical Wigner densities and mechanical states

with non-Poissonian phonon distributions and large Fano

factors (Ludwig, Kubala, and Marquardt, 2008). It was found

that in this regime for appropriate parameters one can even

generate true nonclassical mechanical states, with partially

negative Wigner densities (Qian et al., 2012). These states are

present in the steady state (under constant drive), so the

Wigner densities could then be readout according to the

schemes presented in Sec. VI. Another possibility for gen-

erating nonclassical states would be to design nanomechanical

resonators that have very strong anharmonicities even at the

single-phonon level (Rips et al., 2012).

Nunnenkamp, Borkje, and Girvin (2011) further extended

master equation simulations to discuss the full range of

detunings and the excitation spectrum of the cavity. Multiple

optical sidebands are found, and the mechanical state of the

oscillator is seen to develop non-Gaussian states particularly

at detunings which drive multiphoton transitions.

The nonlinear quantum optomechanical regime leads to

interesting photon correlations (see Fig. 45). In particular,
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under appropriate conditions one may observe optomechani-

cally induced photon blockade (Rabl, 2011). This shows up in

the photon-photon correlations as strong antibunching

gð2Þðt ¼ 0Þ < 1, which has been calculated and discussed

by Rabl (2011) for the case of weak laser driving. The regime

of an optomechanical photon blockade requires sideband

resolution (κ < Ωm) as well as strong single-photon coupling

with g0 > κ and g2
0
> Ωmκ. In more recent work, the analysis

of photon correlations in this regime was extended to cover the

full temporal evolution of gð2ÞðtÞ and the Fano factor, as well

as higher moments of the photon counting statistics

(Kronwald, Ludwig, and Marquardt, 2013). Moreover, it

was pointed out that first signatures of nonlinear quantum

effects may be detected even for smaller values of g0=κ by

detailed investigation of certain OMIT features that would be

absent if the Hamiltonian were correctly described by its

linearized version (Borkje et al., 2013; Kronwald and

Marquardt, 2013; Lemonde, Didier, and Clerk, 2013).

Liao, Cheung, and Law (2012) and Hong et al. (2013)

presented exact solutions for the regime where only a single

photon is transmitted through such a strongly coupled

optomechanical setup, which is important for the generation

of entanglement (Sec. X.C).

The understanding of the strongly nonlinear quantum

regime is aided by the following picture, already partially

discussed in Sec. X.C, and first employed by Bose, Jacobs,

and Knight (1997) and Mancini, Man’ko, and Tombesi

(1997): For any given photon number n̄cav, the mechanical

equilibrium position is shifted by an amount 2xZPFn̄cavg0=Ωm.

One should thus consider the mechanical Fock states in this

new displaced parabolic potential.

If an additional photon enters the cavity, the potential

suddenly shifts, but the mechanical wave function at first

remains the same. Thus, the overlaps of the given initial wave

function and the displaced new Fock states will determine the

strength of possible transitions. These overlap integrals are

known as Franck-Condon factors from the theory of molecules,

where vibrations may be excited during electronic transitions.

We conclude by briefly describing the formal treatment via

the well-known polaron transformation, as applied to an

optomechanical system (Mancini, Man’ko, and Tombesi,

1997; Gröblacher, Hammerer et al., 2009; Nunnenkamp,

Borkje, and Girvin, 2011; Rabl, 2011). We consider the

standard optomechanical Hamiltonian (in the frame rotating

with the laser frequency)

Ĥ ¼ −ℏΔâ†âþ ℏΩmb̂
†b̂ − ℏg0â

†âðb̂þ b̂†Þ þ ℏαLðâþ â†Þ
þ Ĥbath;

where αL is proportional to the laser amplitude. We complete

the square to obtain

ℏΩm

�

b̂ −
g0
Ωm

â†â

�

†
�

b̂ −
g0
Ωm

â†â

�

− ℏðg2
0
=ΩmÞðâ†âÞ2

ð121Þ

for the second and third terms in Ĥ. This shows two things:

First, an effective photon-photon interaction is generated, viz.,

the ðâ†âÞ2 term, which is crucial for nonlinear effects and

quantum gates. Second, n photons shift b̂ by ðg0=ΩmÞn, i.e.,
they shift the equilibrium oscillator position by 2xZPFðg0=ΩÞn
to the right. This can be accomplished by a unitary Û ¼
exp½ðb̂† − b̂Þðg0=ΩÞâ†â� acting on the wave functions. After

applying that transformation to the Hamiltonian, via Ĥnew ¼
Û†Ĥ Û, we obtain a Hamiltonian that is diagonal in the

absence of driving and decay:

Ĥ ¼ −ℏ

�

Δþ g2
0

Ω
â†â

�

â†âþ ℏΩb̂†b̂

þ αLðâ†eðb̂−b̂
†Þðg0=ΩÞ þ H:c:Þ þ Û†ĤbathÛ: ð122Þ
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FIG. 46 (color online). The energy level spectrum of an opto-

mechanical system at zero detuning Δ ¼ 0: Eðnphonon;ncavÞ=ℏ¼
−ðg2

0
=ΩmÞn2cavþΩmnphonon. Some possible processes are indi-

cated: Blue-detuned laser drive at the first sideband (Δ ≈ þΩm)

leading to the creation of a phonon and subsequent escape of the

photon out of the cavity, a similar cycle at red-detuned drive

(Δ ≈ −Ωm) leading to cooling by annihilation of a phonon,

photon-blockade-prohibiting transitions 0 → 1 → 2 toward two

photons, and a resonant two-photon transition 0 → 2 via a virtual

intermediate state (dashed). Note that the last two, nonlinear,

effects require Ωm; g
2
0
=Ωm > κ.
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FIG. 45 (color online). Single-photon strong-coupling regime.

(a) Displacement depending on photon number (leading

to Franck-Condon physics). (b) Transmission sidebands. (c)

Photon-photon correlator as a function of detuning (for weak

drive). [(a), (b) Courtesy of A. Nunnenkamp, (c) courtesy

of P. Rabl; g in this figure refers to our g0].
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Note that in these new coordinates the addition of one photon

shifts the wave function to the left, whereas the center of the

mechanical oscillator potential is now forced to remain fixed

(in contrast to the actual physical situation, where the potential

shifts and the wave function is fixed). The exponential

(polaron operator) in the laser driving term generates the

Franck-Condon overlap factors.

The energy level scheme for the nonlinear quantum

optomechanical regime (Fig. 46) displays equally spaced

phonon ladders whose offset shifts depending on the

photon number Eðnphonon;ncavÞ=ℏ¼−ðΔþg2
0
=ΩmncavÞncavþ

Ωmnphonon. In this scheme, the driving laser induces only

energy-conserving transitions, horizontal in the diagram.

Different transitions are activated upon changing the detuning.

Multiphoton transitions become possible via virtual nonreso-

nant intermediate states (e.g., adding two photons at once).

XI. FUTURE PERSPECTIVES

The fast experimental and theoretical advances in cavity

optomechanics during recent years are constantly opening up

new avenues with respect to applications and tests on the

foundations of physics. Here we remark briefly on the broader

outlook.

A. Foundational aspects

The ability to achieve coherent quantum control over the

center-of-mass motion of massive mechanical objects pro-

vides a fresh approach to fundamental tests of quantum theory

in a hitherto unachieved parameter regime. Specifically,

quantum optomechanics offers a universal scheme for experi-

ments in the quantum regime of massive mechanical objects

from clouds of 105 atoms or nanometer-sized solid-state

devices of 107 atoms and a mass of 10−20 kg, to micro-

mechanical structures of 1014 atoms and 10−11 kg, to macro-

scopic centimeter-sized objects for gravitational wave

detectors comprising more than 1020 atoms and weighing

up to several kg. In principle, this offers a range of almost

20 orders of magnitude in mass and 6 orders of magnitude in

size for macroscopic quantum experiments.

A specific example where quantum optomechanics pro-

vides a new direction for future experiments is the quantum

measurement problem, which addresses the question of why

quantum superpositions do not seem to occur at the level of

macroscopic objects (Leggett, 2002). Various new theories

and phenomena beyond quantum theory have been suggested

in order to achieve an irreversible decay of superposition

states, i.e., decoherence, into well-defined classical states

(Karolyhazy, 1966; Diósi, 1984; Penrose, 1996; Bassi and

Ghirardi, 2003; Adler and Bassi, 2009). Each of these

approaches predicts a particular scaling of the decoherence

rates with particle number or mass, and with the actual

distinctness of the states involved in the superposition. For

sufficiently macroscopic systems and sufficiently distinct

superposition states, these predictions deviate significantly

from the decoherence rates expected from standard quantum

theory (Zurek, 1991, 2003; Schlosshauer, 2008). Current

matter-wave experiments with molecules may soon start to

enter such a regime (Gerlich et al., 2011; Nimmrichter et al.,

2011). Systematic tests of the validity of quantum theory

necessarily also involve tests of such scaling laws and the

large mass range offered by quantum optomechanical systems

provides a unique opportunity. One way of producing quan-

tum states involving superpositions of mechanical states is via

optomechanical entanglement (see Sec. X.C). Probing the

decoherence of such optomechanical superposition states, for

example, via the interference visibility in a single-photon

interferometer (Bouwmeester et al., 1998; Bose, Jacobs, and

Knight, 1999; Marshall et al., 2003; Pepper, Ghobadi et al.,

2012; Pepper, Jeffrey et al., 2012), may allow decisive tests of

specific “collapse” models (Bassi, Ippoliti, and Adler, 2005;

Kleckner et al., 2008). A particularly exciting perspective is to

extend these experiments to the large masses that are available

in gravitational wave interferometers [see Chen (2013) for a

recent review] and that were recently cooled to 200 thermal

quanta above the quantum ground state (Abbott et al., 2009).

Another route that has been suggested is to analyze the

contrast of matter-wave interference of levitated nano-objects,

where superpositions of macroscopically distinct position

states are generated via optomechanics (Romero-Isart et al.,

2011a). It was shown that such experiments would in principle

allow one to enter a regime in which all nonstandard

decoherence theories can be systematically tested (Romero-

Isart, 2011). The demanding experimental boundary condi-

tions with respect to temperature and background pressure

(to minimize the effects of standard decoherence) might

require the added benefit of a space environment. First studies

along this line are currently being performed (Kaltenbaek

et al., 2012).

The generation of macroscopic superposition states also

allows for more general tests of quantum theory. One example

is the validity of the assumption of macrorealism by probing

Leggett-Garg inequalities (Leggett and Garg, 1985). Proposals

were recently put forward to realize this using optomechanical

(Lambert, Johansson, and Nori, 2011) or electromechanical

(Asadian, Brukner, and Rabl, 2013) devices.

Another fascinating long-term perspective is the possibility

to make use of the accessible large masses in quantum

optomechanics experiments to explore the scarcely studied

interface between quantum physics and gravity. Some of its

aspects are already covered by the decoherence tests dis-

cussed, as the models of Karolyhazy (1966), Diósi (1984,

2007), and Penrose (1996, 2000) identify gravity as the

dominant player of their state-vector collapse. A completely

different approach was taken by a recent proposal (Pikovski

et al., 2012) that suggests that quantum optomechanics

experiments could directly test predictions from quantum

gravity, using pulsed quantum optomechanics (Vanner et al.,

2011). Specifically, the availability of large masses in combi-

nation with quantum optical state preparation and readout is

shown to be sensitive to possible deviations from the quantum

commutation relation even at the Planck scale. This opens the

route to table-top quantum optics tests of quantum gravity

predictions.

The possibility of interconnecting optomechanical devices

in large-scale arrays was already discussed in the context of

investigating synchronization effects (Heinrich et al., 2011).

The dynamics in such arrays may also enable the study of

many-body quantum effects, which could complement the
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current efforts in quantum simulations, yet in a solid-state

architecture (Tomadin et al., 2012; Ludwig and Marquardt,

2013). Another scarcely explored direction is to exploit the

role of nonlinear mechanical responses. For example, the

double-well potential of bistable mechanical resonators

(Bagheri et al., 2011) could be the starting point for macro-

scopic tunneling experiments.

Finally, it is interesting to note that in a broader context

also, the topic of controlled photon-phonon interaction is

receiving increasing attention. For example, a recent experi-

ment demonstrated quantum entanglement between optical

phonon modes of two separate macroscopic solids, specifi-

cally of millimeter-scale bulk diamond at room temperature

(Lee et al., 2011), which was generated from photon-phonon

entanglement. Besides providing an interesting alternative to

obtaining quantum effects involving macroscopic objects

this is also of direct relevance for applications, such as solid-

state quantum memories. Other examples include new

schemes to achieve coherent conversion of bosonic modes,

and even suggestions to exploit the measurement of opto-

mechanical recoil energies for mesoscopic mass standards

(Lan et al., 2013).

B. Applications

Although the field of cavity optomechanics is only in its

infancy, several domains of applications have already

become obvious. In laser sciences, these include tunable

optical filters, based on the fact that optomechanical cou-

pling can lead to extreme tuning of the mechanical frequency

up to several octaves, as well as optomechanical implemen-

tations of laser stabilization (Alegre, Perahia, and Painter,

2010). In addition, the compatibility of some optomechan-

ical devices with silicon photonics (see Sec. IV) enables on-

chip optical architectures with added versatility. For exam-

ple, exploiting strong optical nonlinearities provided by

optomechanical cavities (see Sec. V) adds an important

and long-sought feature to optical information processing.

Along the same lines, embedded optomechanical cavities

have been shown to serve as an all-optical memory element

(Bagheri et al., 2011; Cole and Aspelmeyer, 2011), or have

been proposed as a new technology for single-photon

detection (Ludwig et al., 2012). In the first case, the binary

states of a bistable nanomechanical resonator are controlled

and monitored by an optomechanical cavity; in the latter

case, a single photon induces a measureable frequency shift

to an optomechanical cavity, thereby resulting in a detection

that is in principle destruction-free and photon number

resolving. In the long run, these features may provide a

new momentum to all-optical information processing

(Caulfield and Dolev, 2010).

For sensing applications, cavity optomechanics provides

several new aspects: for example, while damping of mechani-

cal motion has been used to increase the bandwidth of

scanning microscopes for decades (Bruland et al., 1996;

Garbini et al., 1996), cavity-optomechanical devices allow

both readout and damping of much higher mechanical

frequencies, hence providing faster sampling and scanning

rates. At the same time, the high sensitivity of the optical

readout allows new integrated optomechanical platforms for

acceleration sensing. A recent demonstration using optome-

chanical crystals achieved an on-chip acceleration resolution

of 10 μg=
ffiffiffiffiffiffi

Hz
p

with a test mass of only a few ng (Krause et al.,

2012). Cavity-optomechanics-based magnetometry may offer

sensitivities as low as fT=
ffiffiffiffiffiffi

Hz
p

at a large dynamic range

(Forstner et al., 2012). Optomechanical cooling in combina-

tion with on-chip mechanical sensors has recently also been

suggested to provide a reduction in thermal noise for the

optical readout (Winger et al., 2011). In turn, the ability to

coherently amplify mechanical motion provides a route to

radiation-pressure-driven coherent oscillators with compact

form factor and low power consumption. Finally, the combi-

nation with optomechanical preparation of squeezed mechani-

cal states (see Sec. X.A) could lead to a new mechanical

sensing technology with unprecedented levels of sensitivity

due to the reduced position variance of the readout device.

Suitable optomechanical setups may also lead to optical

detection of small rf signals in an LC circuit (Taylor et al.,

2011). This scheme was implemented experimentally recently

(Bagci et al., 2014), using a high-quality room-temperature

nanomembrane.

From a quantum information processing perspective cavity

optomechanics offers a new architecture for coherent light-

matter interfaces in a solid-state implementation. Mechanical

motion can serve as a universal transducer to mediate long-

range interactions between stationary quantum systems (see

Sec. X.E). The specific trait of optomechanical systems is the

interconversion between stationary qubits and flying (pho-

tonic) qubits, which constitutes one of the main elements of

long-distance quantum communication and a future quantum

internet (Kimble, 2008). At the same time, strong optome-

chanical coupling in the single-photon regime opens up the

field of non-Gaussian quantum optomechanics with a wealth

of quantum operations and protocols (see Sec. X.F). The

phenomenon of optomechanically induced transparency ena-

bles slowing of light pulses or even their storage, hence

providing an interesting solid-state implementation of a

quantum memory (see Sec. VII.C.2).

Eventually, combining cavity optomechanics with other

transduction mechanisms will allow one to exploit the full

functionality of micromechanical and nanomechanical devi-

ces. Such quantum hybrid systems utilize the mechanical

motion to achieve coupling between otherwise incompatible

or uncoupled quantum systems (see Sec. X.D). A particularly

exciting perspective of optoelectromechanical hybrid devices

is their ability for coherent conversion between optical and

microwave frequencies. First steps in this direction have been

taken recently in two experiments (Bochmann et al., 2013;

Andrews et al., 2014). Cavity cooling in these hybrid

structures could also be applied to certain modes of a heat

bath in integrated electronic circuits, for example, to suppress

unwanted thermalization effects in spintronic devices (Usami

et al., 2012). Another interesting direction is to couple

individual qubits, for example, single atoms or single spins,

to optomechanical devices. In combination with large

mechanical frequencies such structures could allow mechan-

ically mediated qubit interactions without additional laser

cooling of the mechanical modes, thereby significantly

relaxing the experimental requirements for information

processing in qubit registers.
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APPENDIX: EXPERIMENTAL CHALLENGES

1. Influence of classical excess laser phase noise on laser cooling

We briefly consider the role of laser noise in optomechan-

ical cooling. Of particular interest is phase noise, described

by the phase noise spectral density S̄ϕϕðΩÞ [or alternatively

described by its equivalent frequency noise S̄ωωðΩÞ ¼
S̄ϕϕðΩÞΩ2]. Excess phase (and amplitude) noise can be found

in many laser systems due to relaxation oscillations, which can

even in the case of diode lasers extend well into the GHz

regime (Wieman and Hollberg, 1991; Safavi-Naeini, Chan

et al., 2013; Kippenberg, Schliesser, and Gorodetksy, 2013).

Such excess phase noise was experimentally observed to heat

the mechanical oscillator (Schliesser et al., 2008) and was

analyzed theoretically (Diosi, 2008; Schliesser et al., 2008;

Rabl et al., 2009; Jayich et al., 2012; Safavi-Naeini, Chan

et al., 2013; Kippenberg, Schliesser, and Gorodetksy, 2013).

The spectral density of force fluctuations caused by this

noise when pumping on the lower sideband in the resolved

sideband regime is given by (Schliesser et al., 2008) (with

η ¼ κex=κ)

S̄fnFFðΩmÞ ≈
4η2G2P2

ω2
LΩ

4
m

S̄ωωðΩmÞ. ðA1Þ

By comparing this force noise to an effective thermal

Langevin force of the laser [S̄fnFFðΩmÞ ¼ 2meffΓmn̄LℏΩm]

near the mechanical resonance an equivalent laser noise

occupation n̄L can be derived. The final occupancy of the

mechanical oscillator in the presence of optomechanical

sideband cooling is subsequently

n̄f ¼ Γm

Γm þ Γopt

ðn̄th þ n̄LÞ;

where n̄th denotes the average occupancy of the thermal bath.

The excess contribution of the frequency noise is therefore

n̄excessmin ¼ n̄cav
κ

SωωðΩmÞ. ðA2Þ

The lowest occupancy that can be attained in the presence of

excess phase noise is given by (Rabl et al., 2009)

n̄min ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n̄thΓm

g2
0

S̄ωωðΩmÞ
s

. ðA3Þ

Equation (A3) can also be recast into a condition for the

amount of phase noise that would lead to unit occupancy, i.e.,

P0 ¼ 0.5. Given the cavity photon number required to cool

near to the ground state (n̄f ¼ 1), we find that nexcessmin > 1 if

the frequency noise exceeds the level (Rabl et al., 2009)

S̄ωωðΩmÞ >
g2
0

kBT=ℏQm

. ðA4Þ

If this level of noise is present, phase noise will preclude

ground-state cooling. Equation (A4) also reveals that to

mitigate the effect of phase noise it is generally desirable to

have a large vacuum optomechanical coupling rate and a low

mechanical damping rate, to increase the level of tolerable

phase noise.

2. Influence of cavity frequency noise on laser cooling

The cavity frequency fluctuations are driven by thermody-

namical temperature fluctuations. Considering the situation

where light propagates inside a dielectric cavity (microtoroid,

microspheres, photonic crystals) or penetrates a mirror sur-

face, the temperature fluctuations of the sampled volume V are

determined by both the absolute temperature and the heat

capacity of that volume:

hδT2i ¼ kBT
2

ρCV
.

Here C is the specific heat capacity (per mass). In general,

these temperature fluctuations exhibit a spectral density that

depends on the resonator geometry and boundary conditions

for the thermal transport. For some cases, such as silica

microspheres, the spectral densities STT ½ω� are known ana-

lytically (Gorodetsky and Grudinin, 2004) and the corre-

sponding frequency noise Sωω½ω� ¼ K2

thSTT ½ω� can be

evaluated [where Kth ¼ ðdn=dTÞω0 in the case of thermor-

efractive noise and Kth ¼ ðdα=dTÞω0 in the case of thermo-

elastic noise]. While it has been noted that one can in principle

compensate also thermorefractive noise (Kimble, Lev, and Ye,

2008), the noise is of particular relevance to optomechanical

cooling as it provides a limit to the minimal occupancy. This

can be understood with the model referred to in Appendix A.1,

i.e., the fact that cavity frequency noise will translate into
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radiation-pressure force fluctuations in the presence of a

strong cooling laser.

a. Finite thermal cavity occupancy

A further source of cavity noise can arise from the fact that

the cooling field has thermal occupation. This is, in particular,

the case for microwave fields due to their low frequency. If the

cavity occupation is given by n̄thcav, then the final occupation is
modified to (in the resolved-sideband limit)

n̄f ¼ n̄th
Γm

Γeff

þ n̄thcav þ
κ2

16Ω2
m

. ðA5Þ

This implies that the final phonon number can never be below

the effective thermal occupation of the drive field (Dobrindt,

Wilson-Rae, and Kippenberg, 2008). Note that when the

radiation field and the mechanical oscillator initially have the

same bath temperature (as is the case in equilibrium, without

extra absorption), the equilibration of these two oscillators of

frequency ωcav and Ωm will lead to an effective cooling of the

lower-frequency mechanical oscillator, as

n̄th ≈
kBTbath

ℏΩm

≫ n̄cav ≈
kBTbath

ℏωcav

.

3. Influence of classical excess laser noise on sideband

thermometry

Excess noise of the readout laser (characterized by an

occupancy n̄L) compromises the self-calibration of the side-

band thermometry method (Sec. VII.A), as it can lead equally

to an asymmetry, since in the presence of laser noise

_NcavðΔ ¼ ΩmÞ ¼
κex

κ
Aþðn̄f þ 1þ n̄LÞ

and

_NcavðΔ ¼ −ΩmÞlower ¼
κex

κ
A−ðn̄f − n̄LÞ.

This asymmetry can in this case be understood as arising from

noise squashing and antisquashing of the classical and

quantum noises alike. This noise-induced asymmetry on

the upper and lower sidebands can also be viewed as

originating from the effects of OMIT and EIA.
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