Cavity QED with a Bose-Einstein condensate

Michael Köhl

www.quantumoptics.eu

Collaborators

@ ETH Zürich (Tilman Esslinger's group) @ Cambridge (since 2007)

PhD: A. Öttl, S. Ritter, T. Donner, F. Brennecke Postdoc: Thomas Bourdel

<u>PhD:</u> M. Feld, B. Fröhlich, S. Palzer, C. Zipkes <u>Postdoc:</u> C. Sias

Correlations at the Bose-Einstein phase transition

2nd Order Phase Transitions

uniaxial magnet

critical opalescence

superconductor

superfluid He

Bose-Einstein condensation

What is a Bose-Einstein condensate?

What drives a phase transition?

T=T_c

Correlation length ξ: typical range in which fluctuations are correlated

in BEC:

Ising model simulation from http://www.ibiblio.org/e-notes/

Correlation length ξ is temperature dependent:

Critical exponents and universality

Divergences at the phase transition

$$\left|\frac{T-T_c}{T_c}\right|^{-x}$$

x = α β γ ν specific heatmagnetizationsusceptibilitycorrelation length

- Scaling relations e.g. $vd=2-\alpha$ (d: dimension)
- Systems in the same universality class have the same exponents.

How to measure this?

Young's double slit experiment

Double slit experiment

I. Bloch, T. Hänsch, T. Esslinger, Nature 403, 166 (2000). T. Bourdel, T. Donner, S. Ritter, A. Öttl, M.K., T. Esslinger, Phys. Rev. A 73, 043602 (2006).

Single atom detection in cavity-QED

First demonstration: H. Mabuchi et al., Opt. Lett. 21, 1393 (1996)

An interference pattern from single atoms

T. Bourdel, T. Donner, S. Ritter, A. Öttl, M.K., T. Esslinger, Phys. Rev. A 73, 043602 (2006).

Correlations near Tc

Divergence of ξ

T. Donner, S. Ritter, T. Bourdel, A. Öttl, M.K., T. Esslinger, Science 315, 1556 (2007).

The critical exponent v

System	ν
Ideal Bose gas in a box:	1
Ideal Bose gas in a harmonic trap:	0.5
Landau's theory of phase transitions: (homogeneous & interacting)	0.5
RG theory of the XY universality class: (homogeneous & interacting) Campostrini et al., PRB 63, 214503 (2001).	0.67155(3)
Determined in liquid Helium: Lipa et al., PRB 68, 174518 (2003).	0.6705(6) ten orders of magnitude
Now measured in a harmonic trap: with a dilute Bose gas	0.67(13) different in density !

Universality works ©

A new collective state of light and matter

Single atom cavity QED

Dissipation and strong coupling

Strong coupling regime of cavity QED: $g >> \kappa, \Gamma$

 $g = 2\pi \ 10.4 \text{ MHz}$ $\Gamma = 2\pi \ 3.0 \text{ MHz}$ $\kappa = 2\pi \ 1.4 \text{ MHz}$

related work: M. Chapman, S. Haroche, E. Hinds, H.J. Kimble, D. Meschede, J. Reichel, G. Rempe, D. Stamper-Kurn, H. Walther ...

From one to many

Cavity induced interaction & entanglement

One excitation coherently shared by 10⁵ indistinguishable atoms.

Proposals by Cirac & Zoller, Moelmer, ...

Cavity QED with many identical atoms

Atomic ensembles in optical cavities

 Cavity as a light-matter interface in QIP: Conversion of a single photon ("flying qubit") into a collective atomic excitation ("memory qubit") and back

SNR ~ $g^2/\kappa\Gamma \rightarrow$ enhancement of factor N !

(exp. realized for a low-Q cavity: Vuletic et al., PRL (2007))

• Nonlinear optics: huge Kerr non-linearities (with ultracold atoms: Stamper-Kurn, Chapman, ...)

 Spin squeezing, measurement induced quantum manipulations, ...
(e.g. Mabuchi et al., Science (2004), Zoller et al. PRL (2001), ...)

What can quantum degenerate gases offer?

- No motional decoherence
- Highest densities
- Indistinguishable atoms, all atoms couple exactly equal to the cavity mode
- Correlated quantum phases in optical lattices: new probing techniques, new interactions (Theory: H. Ritsch, P. Meystre, M. Lewenstein, I. Carussotto ...)

Delivery of the Bose-Einstein condensate

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. K., T. Esslinger, Nature 450, 268 (2007)

Sample measurement

Probe laser scan rate 25 MHz/ms

Cavity spectrum

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. K., T. Esslinger, Nature 450, 268 (2007). See also: Y. Colombe et al. Nature 450, 271 (2007).

Collective mode splitting

- Measurement of the critical exponent of a trapped weakly interacting Bose gas
- Eigenenergy spectrum of a Bose-Einstein condensate in an ultra-high finesse cavity

