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We have developed a new ring-down technique that does not require a shutter to turn a probe laser on and off.
With a rapid cavity scan we can measure a simple exponential cavity decay from which a cavity finesse can be
found. When the cavity is scanned slowly, the cavity decay exhibits an amplitude modulation, and an analytic
expression is derived for this modulation. With this new technique we measured the ultraslow relative velocity
of the mirrors (of the order of micrometers per second) as well as the linewidth (~100 kHz) of the probe laser.

The recent development of an ultra-high-@ optical
resonator has made possible many new exciting ex-
periments, such as the experimental realization of
the one-atom laser' and normal mode splitting for
a weakly excited absorbing atom in a cavity.? In
designing such experiments it is important to know
the resonator finesse exactly. One way to measure
the finesse is to probe the linewidth of the resonator
transmission. Such a measurement is easily done
if the resonator linewidth is much broader than the
linewidth of the probe laser; if not, a direct measure-
ment of the cavity decay is preferred.

The cavity decay can be measured by use of the de-
cay or ring-down of the field inside the resonator. In
the standard ring-down scheme an electromagnetic-
field pulse is stored in the empty cavity, and the
subsequent decay of the field is monitored in time.
The duration of this excitation pulse should be much
shorter than the cavity decay time, so that the ex-
citation can be considered to be a delta function.
One prepares the excitation field from a cw laser
field by turning a shutter, which is often an acousto-
optic modulator, on and off. Initially the shutter is
opened, and the cavity is permitted to drift slowly
toward resonance. At resonance a field builds up
quickly in the cavity. When the cavity transmission
signal reaches a certain threshold, the acousto-optic
modulator is switched off, and the subsequent field
decay is measured as a function of time. This tech-
nique was used in Ref. 3 to measure a finesse as high
as 2 X 10® at 850 nm.

In this Letter we report a much simpler but more
powerful ring-down technique that requires neither a
shutter nor a trigger circuit to turn the probe laser on
and off at the right moment. Instead, we point out
that, if the cavity is quickly scanned, it is resonant
with the probe for only a brief moment. This short
resonance time effectively simulates a delta-function
excitation. By controlling the scan speed we can ad-
just how much field can build up in the cavity before
it tunes out of resonance with the laser field. The
cavity is scanned repeatedly while the field decay is
measured by a photodiode and displayed on an oscil-
loscope in real time.
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The hallmark of this method is that the cavity
decay curve shows an amplitude modulation that
depends on the scan speed. Note that the cavity con-
figuration in this study (two mirrors and a piezoelec-
tric transducer between them) has been widely used
in spectrum analyzers for more than a decade. It
may be that the amplitude modulation in the cav-
ity transmission may have been accidentally observed
previously but misinterpreted as rf noise or some in-
terference effect, as it was initially so even in our
laboratory. Until now the cause for the amplitude
modulation has not been well understood. Here we
algebraically derive the period of the modulation to
be roughly given by
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The origin of this modulation is the interference
between the probe laser and the intracavity field.
Since one of the mirrors is moving, the intracavity
field, which built up when the cavity was resonant
with the probe field, continuously shifts in frequency
owing to the Doppler effect while its amplitude de-
cays. Although the probe laser is no longer resonant
with the cavity in a steady-state sense, it can still in-
teract with the cavity field because of the finite trans-
mittance of the mirror that it is incident upon. Since
the probe and intracavity field have slightly different
frequencies, a beating ensues.

To derive an algebraic expression for the decay
curve, we consider a plane-wave laser field that is
incident upon a Fabry—Perot resonator. For sim-
plicity, consider the laser to be monochromatic and
assume that the distance between mirrors changes
linearly with time:

L(t) = Ly + vr. (2)

The velocity v is assumed to be so small that, for the
time interval that we consider, v7/L << 1 or L(7) =
Ly. Both mirrors are assumed to have reflection and
transmission coefficients r and ¢, respectively. We
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then obtain the electric field inside the resonator at
any instant by summing all the wave components
that have undergone multiple reflections:

E; (1)
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where 7, =7 — (2m — 1)Ly/c.
exponent can be simplified:

The summation in the

ZL(m) = Z(Lo + U7y

m=1
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The field inside is thus

Ei(7) = Ey expli(kz — w7)]
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We assume that the cavity becomes resonant with the
incident field at 7 = 0, so that

kL, = N, N an integer. (6)

We also assume that the round-trip time 2L/v is
much smaller than the cavity decay time, so that an
arbitrary time 7 can be expressed as 7 = (2Ly/c)l,
where [ is an integer. The phase factor in Eq. (4)
then becomes
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Then the intensity is
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The phase factor in the exponent can be written as a
quadratic function of n, which is stationary when n =
[. If the cavity scan speed is fast enough to make the
phase factor much larger than unity at n = [, only the
terms with n near [ can contribute constructively to
the summation. In this case, because the r?" factor is
a slowly varying function of n, the factor can be taken
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out of the summation. The intensity then decays
exponentially for large I:

Zexp[ zkv( f >n(21 - n)}
« R* = exp(ln R?) = exp{2/In[1 — (1 - R)]}
exp[—2(1 — R)I] = exp[—2(1 — R)c7/2L]
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where T.,, is the cavity decay time, defined as
Tow ' =c(l — R)/L, with (1 — R) << 1. In gen-
eral, however, the intensity exhibits a modulation on
top of the exponential decay. To see the origin of
this modulation, we rewrite Eq. (4) as
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where the second term is just a constant correspond-
ing to the field amplitude at 7 = 0 (I = 0) and the first
term corresponds to the field amplitude components
that have been introduced into the cavity since 7 = 0.
It is these field amplitudes that cause the total field
to exhibit modulation, which occurs because of the
sinusoidal nature of the exponential function in the
first term. The summation oscillates as a function
of I. When [ corresponds to ~27m of the phase fac-
tor of the exponential function, the mth minimum of
the decay curve occurs (a numerical simulation shows
that the first minimum occurs at 1.87):

o 21,2 = 20,
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Therefore the time interval between the first and
second minima is

rusnn= (- (2)(2)]"

(12)

or
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Fig. 1. Typical cavity decay curve obtained with the
ring-down technique. The solid curve is an exponential
fit to the data.
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Fig. 2. Cavity decay curve with a slow scan speed ex-

hibiting an amplitude modulation. The period T}z, de-

fined in relation (12), is 0.38 ws, resulting in a mirror
velocity of 6.4 um/s.

Note that the oscillating term in the total electric field
will be absent if the probe laser is shut off as soon as
the cavity resonance is passed. This was the case
treated in Ref. 3.

If the probe field has a finite linewidth, the oscilla-
tion becomes less pronounced. The effect of laser
linewidth can be included in Eq. (3) as an addi-
tional random phase factor exp[i¢(7)], which can be
modeled with a correlation function of Gaussian
white noise*:

{d)(T)d)(TI)}ens = 2FL5(T - 7-/) ) (13)

where {}.,s denotes an ensemble average and I'y is
the FWHM laser linewidth.

We measured the cavity decay for various scan
speeds and analyzed the results, using the above
model. Throughout the experiment the wavelength
of the probe laser was 791 nm. A 300-MHz digital

oscilloscope (Lecroy 9310M) was used to capture a
decay curve in a single scan. The mirror spacing,
which was ~1 mm, could be varied by a piezoelec-
tric transducer, which was driven by a voltage ramp
from a Tedtronix 555 oscilloscope. A 185-Q) termi-
nator was used at the input of the digital oscillo-
scope so that the input RC time of the scope was
~30 ns, which was much smaller than a typical cav-
ity decay time of 1 us. When the cavity was scanned
rapidly, a decay curve like the one shown in Fig. 1
was obtained. The solid curve is an exponential fit
by a least-squares fit algorithm, resulting in a decay
time of 1.14 us, or a cavity finesse of 1.03 X 10%. For
these particular data the scan speed was 12 GHz/ms,
which corresponds to a mirror velocity of 32 um/s.
According to relation (12), the modulation period T},
is ~170 ns, which is consistent with the data. If the
cavity is scanned more slowly, the modulation be-
comes more pronounced. The decay curve in Fig. 2
was obtained with a scan speed of 2.4 GHz/ms, corre-
sponding to a velocity of 6.4 um/s and a T, of 380 ns,
which again is consistent with the data within experi-
mental error. The solid curve is a fit based on the
model, with the laser linewidth in the model varied
to obtain the best fit. We independently measured
the laser linewidth, using a narrow atomic transi-
tion (barium 'S, « ®P; transition at 791 nm with a
50-kHz FWHM),? to obtain a linewidth of 110 kHz
FWHM, which again is consistent with the linewidth
of 100 kHz used in the best fit. In this way an un-
known laser linewidth can also be estimated.

In conclusion, we have developed a new ring-down
technique that is much simpler but more powerful
than the conventional ring-down scheme. The new
technique is especially useful in measuring an ultra-
slow velocity (of the order of micrometers per second)
of the moving mirror and also provides information
on the probe laser linewidth.
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