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Cavityless self-organization 
of ultracold atoms due to the 
feedback-induced phase transition
Denis A. Ivanov 1 ✉, Tatiana Yu. Ivanova1, Santiago F. Caballero-Benitez 2 & 

Igor B. Mekhov 1,3

Feedback is a general idea of modifying system behavior depending on the measurement outcomes. 

It spreads from natural sciences, engineering, and artificial intelligence to contemporary classical 
and rock music. Recently, feedback has been suggested as a tool to induce phase transitions beyond 

the dissipative ones and tune their universality class. Here, we propose and theoretically investigate 

a system possessing such a feedback-induced phase transition. The system contains a Bose-Einstein 

condensate placed in an optical potential with the depth that is feedback-controlled according to the 

intensity of the Bragg-reflected probe light. We show that there is a critical value of the feedback gain 
where the uniform gas distribution loses its stability and the ordered periodic density distribution 

emerges. Due to the external feedback, the presence of a cavity is not necessary for this type of atomic 

self-organization. We analyze the dynamics after a sudden change of the feedback control parameter. 
The feedback time constant is shown to determine the relaxation above the critical point. We show as 
well that the control algorithm with the derivative of the measured signal dramatically decreases the 

transient time.

Feedback control is known to be a useful tool to modify dynamics of classical1 as well as quantum systems2. �ere 
were many theoretical proposals3–13 and several experimental realizations14–18 of quantum feedback control in 
optics and atomic physics.

�e feedback control of quantum systems is fundamentally di�erent from that of classical systems mainly due 
to the inevitable measurement back-action19. In most cases this quantum e�ect does not pose sever limitations 
on the feasibility of feedback control, but it has to be taken into account designing quantum control algorithms20.

Recently the feedback loop has been suggested as a tool to control phase transitions in quantum systems21 
and, in particular, in many-body settings13,22. �e feedback control of atomic self-organization has been recently 
demonstrated experimentally in23. �us the new class of feedback phase transitions (FPT) has been introduced, 
which can have properties beyond dissipative phase transitions in open systems. �e key advantage of FPT is its 
extremely high degree of �exibility and controllability, which allows for the manipulation of the critical point and 
critical exponents and, therefore, enables the tuning and control of the universality class of phase transitions21.

In this report we apply the concept of FPT to a system based on Bragg light scattering from a Bose-Einstein 
condensate (BEC). Instead of the self-formed standing-wave potential24,25, we propose to use an actively con-
trolled optical lattice with the control based on the Bragg-re�ected signal of a probe light. �e system with active 
feedback provides much higher degree of control on the distribution of atoms and its evolution around the critical 
point in comparison to systems without feedback. Such improved controllability can assist in quantum simula-
tions, based on ultracold quantum gases26–30.

Worth noting that similar mechanism of self-organization has been investigated for atoms coupled to an opti-
cal cavity31–44 [see for reviews45,46]. �ere were also proposals to enhance the cavity self-organization by applying 
incoherent47,48 and coherent49,50 feedback. However the key advantage of the feedback – the free choice of the 
transfer function and its in�uence on the phase transition - was not discussed in these references. Various transfer 
functions can lead to the appearance of novel types21 of time crystals51–53 and Floquet engineering, as well as cre-
ation of quantum bath simulators21 in many-body systems13,22. It will be intriguing to study, how more advanced 
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methods than the feedback control can in�uence quantum systems, for example, applying the digital methods of 
machine learning and arti�cial intelligence in real time.

Results and Discussions
Model. �e considered FPT scheme can be applied to break the translational symmetry in a sample of any 
kind of polarizable particles including molecules54. To avoid the in�uence of thermal �uctuations we consider 
trapped atoms cooled below the Bose-Einstein condensation temperature. �e ensemble is assumed to be su�-
ciently dilute so that the atom-atom interactions will be neglected. �e atoms are placed into a one-dimensional 
(1D) optical lattice with the controlled potential depth, see Fig. 1.

We restrict our consideration to 1D in order to focus on the most essential features of the feedback-induced 
dynamics. However, from the experimental point of view the realization of such a con�guration requires addi-
tional potential that provides the con�nement of the atoms along the axis of the lattice. �e experimental real-
ization of the proposed scheme might be more practical in 2D con�guration55. Moreover, one should take into 
account possible stray feedback loops that can result in additional instabilities and pattern formations56,57. Here 
we would like to consider an idealistic situation and leave the mentioned important aspects for the future analysis.

�e feedback loop is organized as follows. �e atoms are illuminated by weak but classical probe light directed 
at some angle Θ with respect to the axis of the optical lattice. �e light re�ected by the atoms is photodetected and 
the obtained signal is used to control the lattice potential.

�e feedback algorithm is designed to increase the scattered light and provide tighter localization of the atoms 
near the minima of the lattice potential. �is is achieved if the atomic density distribution ful�lls the Bragg con-
dition for the probe beam

λΘ = .d2 cos( ) (1)

here d is the distance between the neighbouring peaks of the atomic density and λ is the wavelength of the probe 
light. Taking into account that the distance between the potential minima in the lattice is λ /20 , one can ful�ll the 
Bragg condition for di�erent atomic arrangements. Let us suppose that the wavelength of the probe beam is 
slightly smaller than that of the lattice potential. �an for small angle Θ ≈cos 1 the Bragg condition will be satis-
�ed for the atoms localized in each lattice well, which we will assume in this work.

It is important to mention one technical advantage of the feedback scheme shown in Fig. 1 in comparison to 
systems without feedback. Since the operation is based on the re�ection of additional probe light it is not nec-
essary to use red-detunig with the atomic localization in strong-�eld regions. �e atoms can be localized in the 
anti-nodes of the blue-detuned lattice, while the information on their distribution can still be obtained by the 
re�ection of the probe light.

An interesting generalizations of the measurement scheme might be possible. In particular, one can measure 
light scattered at an angle that does not satisfy the condition (1), which would contain di�erent information about 
the distribution of the atoms58–61. �e feedback-induced maximization of this signal might result in more exotic 
states of the atomic ensembles, both bosons and fermions28,29,62–70. We leave this interesting possibility for future 
research.

Critical point. We will describe the dynamics of BEC in a 3-mode approximation assuming that the lattice 
potential as well as the probe light excite only the lowest possible momentum eigenstates. �e momentum kick 
due to the scattering of lattice photons is k2 0. �us the atom �eld operator approximates as

ψ ψ ψ ψ= + + −x
L L

ik x
L

ik x( )
1 1

exp(2 )
1

exp( 2 ),
(2)

0 L 0 R 0

where L is the length of the BEC sample. �e bosonic annihilation operators ψ0, ψL, and ψR describe uniform 
distribution of the atoms, the �rst le�- and right- running modes, respectively.

To solve for the dynamics of the system we obtain and numerically simulate the semi-classical equations of 
motion for the average atomic �elds α ψ=0 0 , α ψ=L L , α ψ=R R . In Methods it is shown that the equations 
of motion for these �elds read

Figure 1. �e principle scheme of the setup. �e BEC of atoms is trapped in a 1D optical lattice. �e intensity of 
the lattice laser is controlled by the feedback loop. �e measurement signal for the feedback loop is the light that 
is Bragg-re�ected by the atomic sample.
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Here we use η for the probe �eld amplitude, U0 for the atom �eld coupling, I t( ) for the intensity of the lattice �eld 
and α for the amplitude of the Bragg-scattered light. To simplify the notation and the presentation of the numer-
ical results we scale time by the atomic recoil period π π= Ω =T m k2 / 4 /R R 0

2 with respect to the lattice photons. 
The adiabatic scattered field amplitude is obtained averaging the quantum result Eq. (10) in Methods: 

α η α α α α κ= − +⁎ ⁎iU2 ( )/0 L 0 0 R . In order to simplify the analysis we assume that the scattered light is collected in 
a single mode of an auxiliary ring cavity that is not shown in Fig. 1. �e photon decay rate κ of this cavity is 
assumed to be so large that the system with such cavity becomes essentially equivalent to the system without a 
cavity at all.

We set the lattice intensity to be determined by the control algorithm

∫κ α= = | ′ ′
τ

τ
− − ′

I t Ks K e t dt( ) ( ) ,
(4)

t t t

0

2

where κ plays the role of the photon detection rate. �e parameter τ characterizes the response time of the feedback 
loop. Finally, K  is the feedback gain parameter. Equation (4) is the result of averaging of the quantum Eq. (15) 
obtained in Methods.

�e exponential kernel in Eq. (4) is not the only possibility. It is used here to demonstrate some of the features 
of the active feedback control and can be substituted with another transfer function to result in important and 
non-trivial e�ects21.

It turns out that the critical point is determined by the combination of the feedback parameters τ=F K . �e 
critical value Fc reads

κ

η

η

κ
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Below this value only uniform (symmetric) distribution is possible with no light re�ection from BEC. For 

>F Fc non-zero re�ection will take place together with the broken translation symmetry of the atomic distribu-
tion. Interestingly, the critical feedback parameter Fc scales as N1/  for large number of atoms N . �us even very 
weak feedback can result in FPT if BEC is su�ciently large.

It is remarkable that the stable solutions of the nonlinear system (3) above the critical point can be analytically 
found. In particular one can �nd the steady-state values of the occupation numbers in di�erent modes on the 
combined feedback parameter F. Below the critical point Fc (Eq. 5) only uniform atomic distribution with zero 
average scattered �eld is possible. Above the critical point there are four di�erent non-trivial stationary solutions. 
�e results for one of the modes, nL, are shown in Fig. 2 with solid lines. �e uppermost and the lowermost 
branches (shown in red) are numerically found to be unstable. �ey will collapse to the uniform density distribu-
tion. Which of two stable branch will be realized in a particular experiment depends on the initial values and the 
noise in the feedback loop.

Varying the feedback parameter F one can redistribute the atoms between di�erent modes. In other terms this 
makes possible to control the depth of the atomic density modulation.

Figure 2. �e dependence of the number of atoms in the le�-running mode on the combined feedback 
parameter F above the critical point. Dashed curves are the square-root approximations (6) in the vicinity of the 
critical point. For each >F Fc there are four stationary solutions. �e uppermost and the lowermost branches 
(colored in red) correspond to unstable solutions and will not realize in an experiment. �e parameters are: 
κ = 2500, = .U 0 010 , η = 1 and =N 104.
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�e FPT above the critical point can be characterized by the functional dependence of atom numbers on the 
deviation from the critical point δ = −F Fc. �e analytical result for small δ approximates as
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where n0c and nLc are the critical values of the number of atoms in the zero-momentum and the le�-running 
modes, respectively. �e corresponding square-root dependencies are shown in Fig. 2 with dashed curves. �e 
stable solutions that are represented with two middle branches are very well approximated by the square-root 
dependencies of Eq. (6).

Transient dynamics. To demonstrate the dynamics of the transition to the periodic atomic distribution 
from the uniform BEC we solve numerically Eq. (3) assuming the following values of the parameters: κ = 2500, 

= .U 0 010 , η = 1 and =N 104. �ese parameters are used in all of the considered examples. If we assume 87Rb 
atoms with πΩ = ×2 3,7R  kHz, then the used parameters correspond to collective coupling π= ×U N 2 0,370  
MHz and decay κ π= ×2 9,25 MHz. �ese values are quite moderate since in recent experiments much stronger 
coupling and smaller decay can be obtained37,38. �e feedback strength is =K 6000 and the feedback response 
time is τ = .0 02 providing the parameter =F 120 to be higher then the critical one =F 70c . �e initial condition 
for the feedback signal is set to a small non-zero value representing some noise that pushes the system from the 
unstable uniform distribution. �e time evolution of the density distribution of the atoms inside three neighbor-
ing lattice sites is shown in Fig. 3.

�e initially uniform distribution quickly transforms into the periodic pattern with the atoms grouped in the 
minima of the controlled optical potential. �us above the critical point the atomic distribution looses its transla-
tion symmetry and the ordered phase emerges.

�e analytical solution of the system of the nonlinear stationary equations demonstrate that the combined 
feedback parameter F determines the relative distribution of the atoms between the modes. However, it turns out 
that the values of τ  and K  at �xed value of F in�uence the system transient behavior. �e numerical solution of 
Eq. (3) shows that the rate at which the steady state is reached strongly depends on τ.

�e time dependence of the number of atoms in the zero momentum (upper curves) and the le�-running 
(lower curves) modes is shown in Fig. 4. �e subplot a( ) corresponds to the feedback parameters above the critical 
value: =K 9000 and feedback response time τ = .0 013. �e results corresponding to the same feedback param-
eter F, but larger response times (τ = .0 02) are shown in the subplot b( ). �e results for yet larger response time 
(τ = .0 1) are shown in the subplot c( ). In these plots the upper curves represent the number of atoms in the 
zero-momentum mode, while the lower curves correspond to the le�-running modes. In all tested cases there 
were 104 atoms in the zero-momentum mode and no atoms in the excited modes. When the feedback starts at 
=t 0 the number of atoms in the zero momentum mode rapidly decreases with the simultaneous increase of the 

number of atom in the other modes. �en the oscillating transient behavior takes place until the numbers of 
atoms in di�erent modes stabilize at their steady state values given in Eq. (6).

�e time required for the system to reach the stationary regime depends on the value of the feedback response 
time τ even if the combined feedback parameter F is �xed to provide the same steady state values. Comparing the 
subplots from a( ) to c( ) in Fig. 4 one sees that the transient time decreases when the feedback time constant τ goes 
up. This indicates that the efficient strategy to transfer the atomic sample to the periodic pattern is to 

Figure 3. �e time evolution of the atom distribution a�er a sudden switch on of the feedback control. �e 
feedback strength =K 6000, time constant τ = .0 02. �e uniform distribution rapidly transforms into a 
lattice with the period λ /20 . �e position is measured in the units of the lattice laser wavelength λ0.
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monotonically increase the potential. �is emphasizes the important advantage of the electronic feedback over 
the cavity-based approach, since it is usually hard to make the cavity lifetime arbitrary long.

�e electronic feedback allows for another improvement of the system performance in comparison to a system 
without feedback. �e control I t( ) can contain not only the term proportional to the measured signal, but also, for 
example, its derivative:

= + .τ
τI t Ks t K

ds t

dt
( ) ( )

( )

(7)d

In classical discussions of PID (proportional-integral-derivative) control1 it is shown that the derivative term 
can help to speed up the approach of the steady state, without change of the steady-state values. �is feature is 
used for the feedback cooling of individual atoms7 and atomic ensembles at non-zero temperatures71,72. It turns 
out that the same e�ect takes place also for the considered here condensed atoms. �e presence of the derivative 
in the control I t( ) is to certain extent equivalent to the presence of damping force that additionally reduces the 
oscillations and drives the system to the steady state.

�e e�ect of the derivative is demonstrated by numerical simulations. �e example of the evolution of the 
system with the derivative in the control is shown in Fig. 5. �e derivative feedback strength is = −K 1000d . All 
other parameters are the same as in the subplot a( ) of Fig. 4. �e comparison of Figs. 4 and 5 clearly shows that the 
transient time is greatly reduced if the control action contains the derivative of the measured signal, as expected 
from the classical PID-control reasoning. �us the appropriate feedback can be used to control not only the pres-
ence of the transition from the uniform to periodic density distribution, but also the rate of this transition which 
is impossible in a system without feedback.

Conclusions
We presented the FPT in the system with atomic BEC, where the probe light was Bragg-scattered from BEC and 
used to control the additional optical lattice potential for the atoms. At the critical point the atomic density dis-
tribution looses its translation symmetry and the periodic density pattern emerges. �is pattern works as a Bragg 
grating resulting in strong re�ected light above the critical point. For the exponentially decaying feedback transfer 
function the phase transition is determined by the product of the feedback gain and the feedback loop response 

Figure 4. Numerical solutions of semi-classical equations for di�erent values of the feedback response time τ 
and feedback strength K , but the same value of the parameter τ=F K . While the joint parameter τ=F K  is 
the same, the system behaviours are indeed di�erent. �e upper curve in each plot is the number of atoms in 
zero-momentum mode n t( )0 , the lower curve is n t( )L . Feedback parameter above the threshold, =K 9000, 
response time τ = .0 013 (subplot a), feedback parameter =K 6000, response time τ = .0 02 (subplot b), 
feedback parameter =K 1200, response time τ = .0 1 (subplot c).

Figure 5. �e evolution of the atom numbers in di�erent modes for the feedback containing the derivative of 
the measured signal. �e stabilization of the number of atoms is obtained much faster than for the similar case 
without derivative, compare with Fig. 4. �e feedback parameters are =K 9000, τ = .0 013, =−K 1000d .
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time. �e critical value of this product has been analytically found as well as the stationary solutions for atom 
numbers above the transition point.

Above the threshold four di�erent stationary ordered solutions have been found with only two of them being 
stable and corresponding to observable phases. �e time required to reach the stationary values depends on the 
value of the feedback response time τ. We have shown that for larger value of τ the stationary regime is obtained 
faster. Yet faster transition to the ordered phase can be obtained for the feedback signal containing the derivative 
of the measured photo-current as in the classical PID-controlled systems. �ese results demonstrate the advan-
tages one can have with the feedback phase transition in atom-optical systems, which can lead to new types21 of 
time crystals51–53 and Floquet engineering, as well as creation of novel quantum bath simulators21, in particular, 
in many-body systems13,22,73–75, as well as tuning the universality class of phase transitions21. It will be intriguing 
to study, how more advanced methods than the feedback control can in�uence quantum systems, for example, 
applying the digital methods of machine learning and arti�cial intelligence in real time.

Methods
Quantum feedback. A�er standard steps (adiabatic elimination of the excited atomic state etc.) the follow-
ing Hamiltonian for the atoms and the scattered light can be written76

H a a dx x
m

U a a a e ae x

( )[
2

( )] ( ), (8)

x

ik x ik x

0

2
2

0
2 2 20 0

† †

† † ⁎

∫ ψ

η η η ψ

= ∆ + − ∂

+ + + + −

 



where a is the annihilation operator of the light scattered from BEC, ψ x( ) is the atomic �eld operator obeying 
ψ ψ δ′ = − ′x x x x[ ( ), ( )] ( )† , ∆ is the atom-�eld detuning, U0 is the atom-�eld interaction constant, m is the mass 
of an atom. �e probe �eld amplitude η is assumed to be constant and real. �is Hamiltonian contains interac-
tions of the atoms with the probe and the scattered �eld only. �e e�ect of the feedback controlled lattice potential 
and the measurement will be introduced later.

Having the approximation (2) one obtains from Eq. (8) the following Hamiltonian

ψ ψ ψ ψ

η ψ ψ ψ ψ ψ ψ ψ ψ

= Ω +

+ + + +

H

U a a

4 ( )

[ ( ) ( )] (9)

0 R R R L L

0 0 R L 0 0 L R 0

† †

† † † † †

Here we also de�ned the recoil frequency Ω = k m/2R 0
2 . For simplicity it is assumed that ∆ = 0.

For simplicity we represent the re�ected �eld as a running mode of an auxiliary cavity with large photon decay 
rate κ. In this case the �eld a adiabatically follows the dynamics of the matter. �us neglecting its time derivative 
in the Heisenberg equation for a derived from the Hamiltonian Eq. (9) one �nds the �eld as

η

κ
ψ ψ ψ ψ≈ − + .† †a

iU2
( )

(10)
0

0 R L 0

�e measured quantity is the �ux of the Bragg-re�ected photons. Assuming ideal quantum e�ciency of the 
detector and its wide bandwidth the conditioned evolution of the quantum state reads2

 †d t dN t c dt i H H c c( ) ( ) [ ] ( )
1

2 (11)m 0 fbρ =





−






+ +









.G

�e jump operator κ=c a contains the �eld annihilation a that is expressed via atomic operators as given by 
Eq. (10). A�er the adiabatic elimination of the scattered �eld a the jump operator contains only the atomic oper-
ators. �e increment of the Poisson stochastic process dN t( ) equals ether 0 or 1 such that

ρ= .E dN c c dt[ ] Tr{ } (12)
†

�e superoperators G and  read

G A
A A

A A
[ ]

Tr{ }
,

(13)
ρ

ρ

ρ
ρ= −

†

†

ρ ρ ρ ρ ρ= + − + .† † A A A A A[ ] Tr{ }

�e feedback action on the atoms is realized via the controlled standing wave potential with the coordinate 
dependence ∼cos k x(2 )0 . In the used 3-modes approximation the feedback Hamiltonian is given by

H
U I t( )

2
( ( ) ( ) )

(14)fb
0

0 R L R L 0ψ ψ ψ ψ ψ ψ= + + + .† † †

Contrary to an instantaneous (Markovian) feedback, where the control depends on the measured outcome at 
the same time instant, τs t( ), we consider a more general case where the �nite response time of the feedback loop 
is taken into account
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I t s t e dN t( ) K ( ) K ( )
(15)

t t t

0
∫= = ′ .τ

τ− − ′

For the aims of this report it is enough to take the exponential kernel with the feedback response time τ con-
sidered as one of the feedback parameters. Te other parameter is the feedback gain K . �e e�ects emerging from 
the use of more general kernels are discussed in21. Here we address more technical aspects of the feedback opera-
tion and analyze the dynamics of the gas during the feedback control. Using semi-classical approach we test two 
feedback algorithms: proportional feedback and proportional with derivative.

Semi-classical steady-state solution. To go to the semi-classical representation (3) we calculate the evo-
lution equations for the averaged amplitudes using Eq. (11) and neglect there quantum correlations between 
di�erent bosonic modes of the system.

For the semi-classical representation of the measured photon number the stochastic increments are substi-
tuted with their expectation values † ρ=dN c c dtTr{ } .

In order to �nd the steady state solutions of Eq. (3) we represent the �eld amplitudes as =a t a( ) exp(iwt)0,L,R 0,L,R  
�e eigenfrequency ω has to be found during the solution. A�er the substitution of this ansatz in Eq. (3) one 
obtains the set of nonlinear algebraic equations that can be analytically solved. �e stationary solutions for the 
atom numbers read

α
ω

ω
= | | =

+
+

n
N

2

4

2
,0 0

2

n n
N

4 2 (16)L L
2

R R
2α α

ω

ω
= | | = = | | =

+
.

�e eigenfrequencies can be found as real roots of the following 4-th order algebraic equation

ω ω
ω
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U N K U N
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2(2 )
1

(2 )

4
0

(17)

2

0
2 2 2 2

2 2

0
4 4 2

�e results in Eq. (16) are obtained assuming that the stationary value of the feedback signal I t( ) is not equal 
to zero. Obviously, other solutions of Eq. (3) are possible, where the feedback signal and the scattered light equal 
zeros. One trivial solution in this case is when all of the atoms are in the zero momentum mode, so that α = N0  
and α α= = 0R L . �is solution is unstable and will evolve a�er a small perturbation for the feedback below the 
critical point. Other solutions are with α = 00  and arbitrary distribution of all of N  atoms between le�- and 
right-running modes. �ese solutions are stable. �e characteristic Eq. (17) is quadratic with respect to ω +( 2)2 
and can be analytically solved. Analyzing this solution one can easily formulate the condition for ω to have zero 
imaginary parts, i.e. Eq. (5). �e possible critical values of the eigenfrequencies are given by

U N
U N F2 ( 2)

(18)c
0
2 2

0
2 2

c
2ω

η

κ
= − ± − .

Inserting these results in Eq. (16) one obtains the critical values of the occupation numbers for di�erent 
modes: n0c, nLc and nRc.
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