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Abstract—One method for communicating with multiple the receiver. A variety of design techniques for space—time
antennas is to encode the transmitted data differentially using transmission schemes when the receiver knows the channel

unitary matrices at the transmitter, and to decode differentially have been developed (see, e.g., [3]-[6] and the references
without knowing the channel coefficients at the receiver. Since therein) o

channel knowledge is not required at the receiver, differential . ) ) .
schemes are ideal for use on wireless links where channel tracking [N practice, knowledge of the channel is often obtained via
is undesirable or infeasible, either because of rapid changes in the training: known signals are periodically transmitted for the
channel characteristics or because of limited system resources. Al-receiver to learn the channel, and the channel parameters are
though this basic principle is well understood, it is not known how tracked (using decision-feedback or automatic gain control

to generate good-performing constellations of unitary matrices, . o L .
for any number of transmit and receive antennas and for any rate. (AGC)) in between the transmission of the training signals.

This is especially true at high rates where the constellations must However, it is not always feasible or advantageous to use
be rapidly encoded and decoded. training-based schemes, especially when many antennas are
We propose a class o€ayley codethat works with any number  ysed or either end of the link is moving so fast that the channel
of antennas, and has efficient encoding and decoding at any rate. is changing very rapidly. As the number of transmit antennas

The codes are named for their use of the Cayley transform, which the training int for | ina the ch | t
maps the highly nonlinear Stiefel manifold of unitary matrices to  9"OWS, the training inteérval for learning the channel must grow

the linear space of skew-Hermitian matrices. This transformation Proportionately [7], [8], and the number of pilot signals used to
leads to a simple linear constellation structure in the Cayley track the channel must also grow. Given a restriction on total
transform domain and to an information-theoretic design criterion  pilot or training power, we must allocate less power per antenna
based on emulating a Cauchy random matrix. Moreover, the iy every added antenna. Moreover, schemes such as decision
resulting Cayley codes allow polynomial-time near-maximume-like- . .

lihood (ML) decoding based on either successive nulling/canceling feedback and AGC can become mcrea.smgly. complex anq
or sphere decoding. Simulations show that the Cayley codes allow Prone to error when the number of transmit/receive antennas is
efficient and effective high-rate data transmission in multiantenna large since there are many more channel parameters to adjust.

communication systems without knowing the channel. Finally, instability in local oscillators and phase-lock devices
Index Terms—Bell Labs layered space—time (BLAST), Cauchy and inaccurate knowledge of Doppler shifts, which may be

random matrices, Cayley transforms, differential modulation, different for each antenna, may also limit channel tracking
fading channels, receive diversity, transmit diversity, unitary ability at the receiver.

space-time codes, wireless communications. Hence, there is much interest in space—time transmission
schemes that do not require either the transmitter or receiver
|. INTRODUCTION AND MODEL to know the channel. Some information-theoretic calculations

. . . . ith a channel that changes in a block-fading manner appear
A L.THOUGH reliable moblle_ wireless transmission _Ol%N [9]-[12] that suggest that high capacities with multiple
video, data, and speech at high rates to many users will

. o ftennas are achievable with no channel information if the
an important part of future telecommunications systems, thecrﬁannel does not change too rapidly. How rapidly the channel
is considerable uncertainty as to what technologies will achiemaay change is not completely clear. For the purposes of this

this goal. One way to get high rates on a scattering-rich Wireleﬁéper it suffices to assume that the channel has a coherence

channel is to use multiple transmit and/or receive antennge val (defined to be the number of samples at the sampling

[1], [2]. Many of the practical schemes that achieve these highy, g, ring which the channel is approximately constant) that

rates, such as Bell Labs layered space—time (BLAST) [1], "% at least twice the number of transmit antennas.

quire the propagation environment or channel to be known toCoding and design criteria for the unknown multiantenna
channel were originally developed in [10], and many design
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[18]. In DPSK, the transmitted signals are unit-moduluformance of the constellation is determined only in part by the
(typically chosen from amn-PSK constellation), information “minimum distance” [14]

is encoded differentially on the phase of the transmitted signal,
and as long as the phase of the channel remains approximately

constant over two consecutive channel uses, the receiver can . . o
decode the data without having to know the channel coefficieRerhaps more important is the general statistical structure of the

Differential techniques for multiantenna communications ha@nstellation. Athigh rates, the structure should statistically em-
been proposed in [14]-[16], where, as long as the chanfit€ the capacity-achieving input distribution. ,
is approximately constant in consecutive uses, the receivefart of the difficulty of designing large constellations of uni-
can decode the data without having to know the channel. TI&Y matrices is the lack of simple parameterizations of these
general differential techniques proposed in [14] and [15] a_Fgatrlces. To keep the transmitter and receiver complexity low

shown to have good performance when the constellation iggnultiple-antenna systems, linear processing is often preferred

matrices used for transmission forms a group under matks3): Whereas unitary matrices are often highly nonlinear in their

multiplication [19], which also leads to simple decoding ruleBarameters. Part of the success of vertical-BLAST (V-BLAST)
[20]. However, the number of groups available is rather limitef0" the known channel [24], [25] is its ability to encode and
and the groups do not lend themselves to very high rates (s@@¢0de rates of tens of bits/s/Hz by breaking the original data
as tens of bits per second per hertz (bits/s/Hz)) with maﬁyeam into subst.reams that are transmitted on themdmdual an-
antennas. The technique of [16] is based on orthogonal desidfi§nas- The receiver decodes the substreams using a sequence of
and therefore has simple encoding/decoding and works waylling and canceling steps. However, the V-BLAST approach

when there are two transmit and one receive antenna, but suffif€S not guarantee unitary matrices and is unsuitable for the dif-

otherwise from performance penalties [6] at very high rates. ferential method. ,
We seek a signaling scheme that fits within the framework | "€ Cayley codes we propose also break the data stream into

of [14] but can handle any combination of transmit and recei\§(1,j|bstreams, butinstead of transmitting these substreams directly
antennas and any rate. The general design problem for diff@f.n V-BLAST, these substreams are used to parameterize the
ential transmission, for rat& (in bits per channel use) with/ unitary matrices that are transmitted. The codes work with any

transmit antennas, is to find a constellation of unitary matricé‘é’mber of transmit and receive antennas .ar?d at any rate. The
V=1{Vo, ..., Vi_i},with L = 2B suchthatdet(V;— Vy )| Cayley codes have the following characteristics.

is as large as possible for @il # /. In its full generality, thisis 1) They are very simple to encode.

an intractable problem since the objective criterion and searchz) They can be used for any number of transmit and receive
spaces are both highly nonconvex and the size of the problem antennas

is exponentially large in the rate and number of antennas. In i i , ) i
[14] and [15] it is shown that there are various simplifications 3) They can be.deco'ded n avarle?y OfwaYS including simple
polynomial-time linear-algebraic techniques such as

and practical advantages if the 3&torms a group: 1) matrices

S (1)

never have to be explicitly multiplied before transmission; 2) a) successive nulling and canceling (V-BLAST [24],
the transmitted matrix is always a member of the constellation. square-root V-BLAST [26]);

Groups that satisfy the design criterion, i.e., that have nonzero b) sphere decoding [27], [28].

|det(V, — Vi )| for all ¢ # ¢, are referred to as fixed-point-free  4) They are designed with the numbers of both the transmit
(fpf) groups. and receive antennas in mind.

In[19], all finite fpf groups are classified (see also [21]for  5) They satisfy a probabilistic criterion: they maximize an
an integer power of two) and many of these are shown to have = expected distance between matrix pairs.

excellent performance. Nevertheless, the number of finite fpf
groups is limited, and good performance is hard to achieve forA Very Brief Summary of Cayley Codegve briefly summa-
very high rates and for large numbers of transmit antennas. THe the general structure of the Cayley codes. To generate a uni-
infinite fpf Lie groups are classified in [22], where it is showrfary matrixV" parameterized by the transmitted data, we break
that there are only two possibilitie&i(1) andSU(2)—the unit-  the data stream int@ substreams (we specify later) and use
modulus scalars of single-antenna differential modulation, attese substreams to choasg . . ., aq each from a setl with

the two-transmit-antenna orthogonal designs of Alamouti [4}.real values (we also have more to say about this set later). We
Therefore, Shokrollahét al. [19] also consider the design ofcall a rateR = (Q/M)log, r Cayley code one for whicl’
matrices for differential transmission thd notform a group; obeys
however, the nongroup techniques in [19] do not necessarily

lend themselves to simple decoding, and constellation design V= (I+id)7H(I - id) @)
at very high rates is difficult. where
The two mentioned advantages of groups over nongroups are
not essential for successful differential transmission and recep- A= EQ: A
tion. In fact, these advantages are outweighed by our desire for - p e

a technique that works for any number of antennas and at any
rate; we are, therefore, forced to consider nongroups. At highd A;, ..., Ap arepreselected/ x M complex Hermitian
rates, where the size of the constellation is very large, the peratrices. The matrix/, as given by (2), is referred to as
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the Cayley transform ofA and, as shown in Section Il, is M channel uses, the input and output row vectors are related
unitary by construction. The code is completely specified lrough a common channel so that we may write

A1, ..., Ag. Each individual codeword is determined by the :
scalarsay, ..., ag. X =pS-H+ W, 4)

The performance of a Cayley code depends on the ChOiWﬁereWT andH areM x N matrices of independe@tv'(0, 1)

of the number of substreami_g, the Hermitian basis matricesrandom variables anif,. is the M x N received complex signal
{44}, and the setd from which eachy, is chosen. Roughly matrix.

speaking, we choos@ so as to maximize the number of in- , gitferential unitary space—time modulation [14], [15], the
dependent degrees of freedom observed at the output of ihg\smitted matrix at block satisfies the following so-called

channel. To choose thg4,} we optimize a coding criterion f,ndamental transmission equation:
specified in Section II-E, (see (37)) that resemblegdlae(V;, —

Vi)| criterion given in [14], [15], but is more suitable for the S, =V. 51 5)
high rates we consider and is amenable to analysis. The opti- . )
mization is done only once, during code design, and simulatioff§eréz- € {0, ..., L — 1} is the data to be transmitted (we

fsumes, = I). Since the channel is uséd times, the corre-
sponding transmission rate#s= (1/M) log, L. If we further
assume that the propagation environment is approximately con-
Eant for2M consecutive channel uses, then we may write

show that it is amenable to gradient-based methods. Finally,
reasons that are specified later, the.4e$ chosen as a discrete
approximation of a scalar Cauchy random variable.

The Cayley transform (2) is powerful because it generata
the unitary matrixV” from the Hermitian matrix4, and A is X, = /pS.H+W, =/pV. S,_1H+W,
linear in the dataxy, ..., ag. In Section 1I-D, we show how v (X W)W
this leads to simple decoding. Section Ill has several examples — rarar-l Tt T

of Cayley differential codes and some performance comparisqich leads us to the fundamental differential receiver equation
with existing schemes, and Section IV concludes the paper. Sev-

eral mathematical tools and related results used in the paper are X, =V. Xo 1 +W, -V, W, 4. (6)
. . ~————
developed in the appendixes. W

We now present a brief summary of the multiple-antenna

model and the differential unitary space—time signaling scheni¥ote that the channel matri does not appear in the above
equation. This implies that, as long as the channel is approxi-

mately constant fo2A4 channel uses, differential transmission
permits decoding without knowing the fading matfix

In a narrow-band, flat-fading, multiantenna communication grom (5), itis apparent that the matridgsshould be unitary,
system with}/ transmitandV receive antennas, the transmitte@therwise, the product, = V._V._ , --- V., can go to zero,
and received signals are related by infinity, or both (in different spatial and temporal directions).
Moreover, wherV,_ is unitary, the additive noise term

A. Differential Unitary Space—Time Modulation

x=+/psH +v 3) W W VW
T = T Yz VW1
IxN i H . Lo . i . .
wherez € C denotes the vector of complex received Si95 statistically independent &f._. Since the additive noise term

i i 1xM
nals during any given channel use, € CM Ndenotes the W has independent complex Gaussian entries, the maximum-
vector of complex transmitted signal§, € C*'*™ denotes the |, alihood (ML) decoder ofz, is

channel matrix, and the additive noisec C**¥ is assumed

to have independet\V (0, 1) (zero-mean, unit-variance, com- Z; =arg max || X, — Ve X ()
plex-Gaussian) entries that are temporally white. The channel =0, L1
matrix H is also assumed to have independ@nf(0, 1) en- In [14], [15] it is shown that the pairwise block probability
tries, implying that of error (of transmittingl; and erroneously decodirig-) has
upper bound
Etr HH* = MN. M -N
Assuming further thak ss* = 1, and since the random quan- T2 s 41+2p) ™

tities H, s, andv are independeng is the signal-to-noise ratio
(SNR) at each receive antenna, independently/of

The channel is used in blocks af channel uses. We can
then aggregate the transmit row vectesver thesel/ channel 1 78\ MY 1
uses into ad x M matrix S-, wherer =0, 1, ... represents P = B <—> e (Ve = V)Y
the block channel use. In this setting, theh column of S, P e v
denotes what is transmitted on antemmas a function of time, Therefore, most design schemes [14], [15], [19], [22] have fo-
and themth row denotes what is transmitted on theantennas cused on finding a constellation = {V;, ..., Vy_1} of L =

at timem. If we assume that the channel is constant over t1é’ unitary M/ x M matrices that maximizesdefined in (1).

whereo,,,(-) denotes thenth singular value. At high SNR, this
inequality becomes

©)
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In general, the number of unitaf x A/ matrices iny can the Givens rotations, for example), it is highly nonlinear and,
be quite large. For example, if rake= 8 is desired witll/ =4 most importantly, because we do not know how to decode them
transmit antennas (even larger rates are quite possible as shiowany systematic way.
later), then the number of matrices is Parameterization With Householder Reflection&:unitary

matrix can be written as the product of Householder matrices
L =28M — 932 5 4 % 10°
h(m)h(m)*

V =DHHy---Hy, H,=I-2-" "~
1412 M ||h("l)||2

and the pairwise error between any two signals can be very

small. This huge number of signals calls into question the feasi-

bility of computing¢ and lessens its usefulness as a performang@ere D is a diagonal unitary matrix, and eaéh™ has the

criterion. We therefore consider a different, though related, cfrrm

terion. T

The large number of signals also rules out the possibility of h(m) = [0, 0,...,0, 1, hiﬂla e hg\}n)} :

decoding via an exhaustive search. For high rates, it is possible

to construct a random constellation with some structure [30}is not hard to show that this parameterization hé%degrees

But, again, we have no efficient decoding method. of freedom. However, we also abandon this parameterization
To design constellations that are huge, effective, and yet stilhce we do not know how to encode or decode the data onto

simple, so that they can be decoded in real time, we brieflige Householder matrices in an efficient manner.

examine some parameterizations of unitary matrices and thefParameterization With Matrix ExponentialThe matrix ex-

show how the Cayley transform can be used. ponential is

tA
Il. CAYLEY DIFFERENTIAL CODES V=c

We first review some properties of the space of all unitafyhere 4 is a Hermitian matrix. This method appears propitious
matrices. because it generates unitary matrices from Hermitian matrices,
) ) and it is the matrix generalization of= ¢* (used in standard
A. The Stiefel Manifold DPSK), wheré is real. The matrix exponential has connections
The space of\f x M complex unitary matrices is referredwith Lie group theory (ift” forms a Lie group, thep! forms a
to as theStiefelmanifold. This manifold is highly nonlinear andreal Lie algebra—see, for example, [32]). Ah x M Hermi-
nonconvex, and can be parameterizedy real free parame- tian matrix can be parameterized by? free real variables, so
ters. To see why, note that an arbitrary compléxx A matrix the matrix exponential contains the right number of degrees of
has2M? real parameters. Unitarity introduc@s? real-valued freedom.
constraints:M constraints to force each column to have unit However, the exponential map has the difficulty that it is not
norm, and2 /=1 — A2 — M constraints to ensure that thepne-to-one. This is seen in the scalar case, where additmé
(real and imaginary parts of the) pairwise inner products of agyoduces the same While the scalar difficulty is easily over-
two columns are zero. We now examine some possible pararsgme by considering only & [0, 27), the equivalent matrix

terizations of the Stiefel manifold. constraint is
Parameterization With Givens Rotation# unitary matrix
V' is often given as the produét = O, DO,, whereO; and 0< A< 2r]

O, are real orthogonal matrices aidl is a diagonal unitary
matrix (see, e.g., [31]). A diagonal unitary matrix has diagonateaning that bothd and 271 — A are nonnegative definite.
entries with unit modulus: therefore, it is describedMyreal Although this constraint is convex, it is nonlinear and we do not
entries, one for the phase of each diagonal entry. An arbitrdayow how to sample the space.4’s to obtain a constellation of
real orthogonal matrix, on the other hand, can be expressed/as. Moreover, unlike the scalar case, the exponential map does
the product of* %=L Gijvens (or planar) rotations, one fornot appear to be easily inverted at the receiver wihen 1. We
each of theM(AQLl) two-dimensional hyperplanes. This impliegherefore do not pursue this approach.
that we may write

B. Parameterization With Cayley Transform

V=GiGa - Guy—1)2DGrv-1y/241 - Guu-1) The Cayley transform of a compled x M matrixY is de-

) ) o ) ~ fined to be
where eacld7,,, is a Givens matrix. Since each Givens rotation is

determined by a single real parameter (the angle of rotation), the (Ing + Y)*l(IM -Y) (10)

total number of free variables g2, which matches the degrees

of freedom in the Stiefel manifold. where I; is the M x M identity matrix andY” is assumed
It is conceivable that one can use this parameterizationttm have no eigenvalues atl so that the inverse exists. (We

encode data onto the angles of rotation and onto the diagodedp the M/ subscript on/ from now on.) Note thatl — Y,

phases ofD. However, we do not pursue this approach be-+ Y, (I — Y)~!, and(/ + Y)~! all commute so there are

cause the parameterization is not one-to-one (one can reoralder equivalent ways to write this transform.
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Let A be anM x M complex Hermitian matrix and consider The following two results are needed later.

the Cayley transform of the skew-Hermitian mafyix= i A Lemma 2 (Eigenvalues/Vectorsi matrix ¥ and its Cayley

V=U+Y)YI-Y)=UI+iA) ‘(I —i4). (11) transforml’ commute. Hence they have the same eigenvectors.

Their eigenvalues, denoted By, } and{);}, obe
Note that the inverse of + ¢ A exists becauséd has strictly g s} A} y

imaginary eigenvalues. The matrixis unitary because A= 1 J_r fi (13)
N Hi
VV* = +4iA)7 (I —iA) [(I +i4)~ (I - iA)] Proof: Omitted. O
_ -7 ; Ayl —
=+ i)+ =)™ =1 Lemma 3 (Full Diversity):A set of unitary matrices
where we use the fact that is Hermitian. {Vo, ..., Vi} is fully diverse, i.e. |det(V; — Vis)| is nonzero
Thus, similarly to the matrix exponential, the Cayley trandor all £ # £/, if and only if the set of its skew-Hermitian Cayley
form expresses a unitary matrix as a function of a skew-Hdfansforms{Yo, ..., Y.} is fully diverse. Moreover, we have
mitian matrix. (Recall that (skew-)Hermitian matrices are de- v, — Vv, = 20+ Y)Yy = Yo (I +Yp)™h (14)

scribed byl ? real parameters, so that the degrees of freedom
match those of the Stiefel manifold.) This parameterization ap-
pears promising because it is one-to-one: the Cayley transformVe — Vo = (I + Y;) (I = Y;) — (I = Yy )(I + Yp) ™+

Proof: We need only prove (14). We have

can be easily inverted to yield =T+ Y) HI-Y)I +Yp)
A= +V)THI-V) (12) — I+ Y)Y +Ye)™
=2(I+Y) Yo - Y] + Yo) ™ O

provided that /+V')~! exists (or, equivalentlyy” has no eigen-

value at—1). Thus, the Cayley transform and its inverse coin- ;5 to design a fully diverse set of unitary matrices we can
cide. The Cayley transform of a unitary matrix (with no eigeryegign a fully diverse set of skew-Hermitian matrices and then

valu?s at—1) is skew-Hermitian. Indeed, letting = (I + employ the Cayley transform. This design technique is used in
V)1 = V), with V" unitary, we obtain an example in Section Il

Yi=I-VI+V) =V -HVv*V(V+I)! o Diff Al Cod

e (I4V)M = V) = - C. Cayley Differential Codes
) Because the Cayley transform maps the nonlinear Stiefel

We have shown the following result. manifold to the linear space of skew-Hermitian matrices (and

Lemma 1 (Cayley Transform and Unitary Matricesma- ViCe Versaitis convenient to encode data onto a skew-Hermi-

trix with no eigenvalues at 1 is unitary if and only if its Cayley tian matrix and then apply the Cayley transform to get a unitary
transform is skew-Hermitian. matrix. It is most straightforward to encode the data linearly.

We call aCayley differential (CD) codene for which each

Compared with the other parameterizations of unitary Maknitary matrix is computed by the Cayley transform
rices, the parameterization with the Cayley transform is not “too V= (I +id)"Y(I — iA)

nonlinear” (we show why in Section II-D) and it is one-to-one
and easily invertible. The Cayley transform also maps the comhere the Hermitian matrix is given by

plicated Stiefel manifold of unitary matrices to the space of Q

skew-Hermitian matrices. Skew-Hermitian matrices are easy to A= Z g A (15)
characterize since they form a linear vector space over the reals q=1

(the real linear combination of any number of skew-Hermitiawhere«, ..., ag are real scalars (chosen from a getith
matrices is skew-Hermitian). Section 1I-D uses this handy fea-possible values) and wher¢, arefixed M x M complex
ture for easy encoding and decoding. Hermitian matrices.

1) Some PropertiesThe Cayley transform (11) is the ma- The code is completely determined by the set of matrices
trix generalization of the scalar transform A1, ..., Ag, which can be thought of as Hermitian basis ma-
trices. Each individual codeword, on the other hand, is deter-
U= ia mined by our choice of the scalasg, ..., ag. Since eacl,

. o . : ay each take on possible values, and the code occuplés
that maps the real line to the unit circle. This map is also Ca"eci;nﬁannel uses, the transmission rat&is= (Q/M)log, r. Fi-
L 4 - 2 .

bilinear map and is often u'sed |n'com'plex analys!s. The Caylﬁ?ﬁlly, since an arbitraryy/ x M Hermitian matrix is parameter-

transform (10) maps matrices with eigenvalues inside the UiLg by M? real variables, we have the constraint

circle to matrices with eigenvalues in the right half-plane. It is Q A2 (16)
< M2

therefore often used in systems and control theory to map con-
tinuous-time systems to discrete-time systems (since stabilityisSection 1I-D, as a consequence of our decoding algorithm,
preserved), to map bounded real functions to positive real furvge shall impose a more stringent constraint@n

tions, and contractive systems to passive systems. In the rece/e defer discussion of how to choogeand design thel,’s
references [34], [35], the Cayley transform is used in the numemd the seid until Section II-E. We concentrate now instead on
ical solution of differential equations over Lie groups. how to decodeyy, ..., ag at the receiver.

_1—ua
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D. Decoding the CD Codes 1) An Equivalent-Channel ModelDefineC = X, — X,
An important property of the CD codes is the ease with whi@'d B = —i(X- + X-_1), and rewrite (17) as

the receiver may form a system of linear equations in the vari- Q

ables{«,}. To see this, it is useful to write the fundamental C=AB+W,4 = Z g A,B+ Wy (20)

receiver equation (6) using the Cayley transform g=1

X =V, Xo 1+ W — V. W, whereW, = (I +iA)W, — (I —iA)W,_ is additive Gaussian
T o noise where each column is independent and has mean zero and
=+ — )X+ Wy covariance2( + A?). Equation (20) may be written in a more
— (I +iA) I —iAW, convenient form by decomposing the matrices into their real and
imaginary parts to obtain

Q
U +id)X, = (I —iA) X, 1+ (T +iA)W,—(I — iAW,y Cr+iCr = ag(Apg+idr,)(Br+iBr)+Wra+iWra

implying that

gq=1
or
) where
Xe— X1 =A- (X, + X))+ + AW,
(2

— (I —iHW,_y (17)

5
[l
e

(AR,qBR — AL(IB[)OC(I + WR,A

wy
Il
-

which is linear in4. Since the datc, } is also linear in4, (17)

is linear in{«y, }. Cr
We look first at ML estimation of thé«, }. Using (17) and

noting that the additive noisd +:A)W, — (I —iA)W,_, has Denoting the columns of'r, Cr, Br, Br, Wr_ 4, andW; 4

I
Mo

(AL(IBR + AR7(1B[)C¥(I + WI,A~
1

L)
Il

independent columns with covariance bY ¢r 1, €11y bR, 0y b1 0y WR n, 4, @aNdwy 5 4, Wheren =
J i AV —iA) — o] 4 A2 1, ..., N, we gather the two above equations to form the single
21 +aA)] —iA) = 2(1 + A7) real system of equations
shows that the ML decoder is CR,1 WR. 1, A
. Cr, 1 (071 wr 1, A
&ml = arg min (I + LA)_ : =B . =+ . (21)
) : : :
1 CR, N aQ WR, N, A
: <X‘r - X‘r—l - : A(X‘r + X‘r—l)) Cr,N o Wr, N, A

C ur

or, more explicitl
PACTY where th& M N x @Q real matrix53 is shown in (22) at the top of

-1

Q the following page. We have a linear relation between the input
by = arg inil]} T+iY  agA, and output vectors: andc
Qg 1
! , ¢=Ba+w (23)
Q
x -x,._ - 1 Z A (X, + Xr1) . (18) Wherex appears to pass through an equ?valent chafiribht is
[ knownto the receiver becaudgis a function ofA4y, ..., Ag,

X, andX,_;. (The receiver simply uses (22) to find the equiv-
This decoder is not quadratic {ay, } and so may be difficult alent channel.)
to solve. However, if we ignore the covariance of the additive |f we ignore the dependence of the noise covariance on the
noise in (17) and assume that the noise is simply spatially whitggnal A, which is equivalent to considering the linearized ML
then we obtain the linearized ML decoder criterion (19), we have a simple linear system of equations that
0 2 may be decoded using known techniques such as successive
<XT _ Xf_l—lzanq(XT—i-XT_l)) nu!lmg and canceling [24], _|ts efficient squgrg—roqt implemen-
U tgtlon [26], or sphere decodmg [27], [28]. Efficientimplementa-
(19) t|ons of nulling and car_10el|ng generally requig()®) compu-
tations. Sphere decoding can be regarded as a generalization of
We call the decoder “linearized” because the system of equasling and canceling where at each step, rather than making a
tions obtained in solving (19) for unconstraingd, } is linear. hard decision on the correspondimg, one considers al, that
Because (19) is quadratic{i, }, a simple approximate solu- lie within a sphere of a certain radius. Sphere decoding has the
tion for {«, } chosen from a fixed constellation can use nullingnportant advantage over nulling and canceling that it computes
and canceling (as in BLAST—see [24]-[26]). An exact soluhe exactsolution to (19). It can be computationally more in-
tion without an exhaustive search can use sphere decoding [2&hse—its worst case behavior is exponentiglin-but itsav-
[28]. To facilitate the presentation of these decoding methoa@sagebehavior is comparable to nulling/canceling. This is espe-
we introduce some matrix notation. cially true at high SNR [28], [36]; our simulations in Section I

Qip =Aarg min
{aq}
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|:AR71 —A[71:| |:bR,1:| |:AR,Q —ALQ:| |:bR71:|

Ar1 Ar1 || b1 Arq Arq || b1

B= : : (22)
|:AR,1 _AI,1:| |:bR,N:| {AR,Q _AI,Q} [bR,N}
Ar1 Ar1 || b N A, Arq || by

that use sphere decoding show that the SNR generally need drtherefore, theV x N matrix C* B is Hermitian. This enforces
be moderate. Our simulations also give some comparisons Wi linear constraints on the entries@f{(/V constraints to make
nulling/canceling. We have found that, on average, sphere dee diagonals of”* B real and2w constraints to make
coding solves (19) in time that is polynomialdh (or A1). the upper and lower triangular entries conjugates of one an-

When the number of transmit antennas is small (Ba< 4) other). Therefore, theAl N entries ofC are not all free: at most
ML decoding is possible if the data rates are not too high. Ho@A{ N — N? of them are. On the other hand, sinedas( en-
ever, exact ML decoding, as given by (18), generally requiréges (equivalentlyA has(@ degrees of freedom), the rank Bf
a search over all, ..., ag € A, which may be impractical. is therefore no greater than
Fortunately, as shown in Section lll, the performance penalty .
for linearizing the likelihood is small, especially when weighed min (2MN — N Q)
against the complexity of exact ML. Finally, we mention thabur argument so far has not relied on a specific set of basis
the solution of the linearized ML criterion can be used as an inatricesAy, ..., Ag. However, for a generic choice of basis
tial condition for Newton—Raphson-type methods applied to theatrices the rank df is given bymin(2M N — N2, @), which
true ML criterion. is the desired result.

2) The Number of Independent Equatiorisulling and can-  Assume now thafif < N. We know that theV x N matrix
celing explicitly requires that the number of equations be atleast B is Hermitian, but it no longer has full rank—it has rank
as large as the number of unknowns. Sphere decoding doesmok N. In particular, the entries of the lower rightv — M) x
have this hard constraint, but it benefits from more equations’— A7) Hermitian submatrix o€* B are uniquely determined
because the computational complexity grows exponentially fifom its other entries. Therefore, the equati6hB = B*C
the difference between the number of unknowns and equationgelds N2 — (N — M)? = 2M N — M? constraints (we remove
From (23), the matri3 has sizeM N x @ and we therefore the Hermitian constraints arising from the lower right— M)
have2M N equations and) unknowns. Hence, we may imposex (N — M) submatrix of C* B because they are redundant).

the constraint Thus, there are at mogf/ N—(2M N—M?) = M? degrees of
freedom inC'. Therefore, the rank of is
Q<L 2MN. (24)
) . min (MQ, Q)
This argument assumes that the matfikas full columnrank. _
There is, at first glance, no reason to assume otherwise buf/ftich is the desired result. O
turns out to be false. Theorem 1 shows that even though there2aBV equations
Theorem 1 (Rank df): The matrix53 given in (22) generi- N (23), notall of them are independent. To have at least as many
cally has rank equations as unknowns wheé# > N, we therefore impose the
constraint
. min (ZMN - N?, Q) , M>N (25) )
ran = < — > .
min (M?, Q) , M < N. @<2MN-N (M2 N) 27)

WhenM < N, only M? of the equations in (23) are indepen-

Proof: First,assumethd/ > N.Therank of53 is the di-
dent so

mension of the range space ®in the equatiort = Ba asa
varies. Equivalently, the rank & is the dimension of the range Q< M? (M < N). (28)
space ofC in the equatiorlC = AB asA varies. Sinc&” is an
M x N matrix it would appear that the range spaceCohas Inequalities (27) and (28) can be combined into the single in-
2M N real dimensions. This would be truedfwere an arbitrary equality
matrix, butA is constrained to vary only over the space of Her- .
mitian matrices. We study the consequences of this constraint. @< K@M - K), wherek' = min(M, N).  (29)
First note that
E. Design of the CD Codes

Although we have introduced the CD structure

B*C = B*AB.
On the other hand;* = B*A* = B*A, or o
C*B = B*AB = B*C. (26) A=Y agd,
1if this difference is not very large, sphere decoding is still feasible. In Sec- =

tion I, we consider an example where the number of unknowns is 16 and M@ have not ygt_spemﬂe_@, nor-have we explained how to de-
number of equations is 12. sign the Hermitian basis matrices;, ..., Ag or choose the
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discrete set4 from which thec, are drawn. We now address Theorem 2 (Optimal Distribution of¥’): The mutual in-
these issues. formation between the unitary input matrix and the output
1) Choice of?: Tomake the constellation as rich as possibleX.- 1, X, ) in the differential scheme
we should make the number of degrees of freedpms large
as possible. Therefore, as a general practice, we find it useful to X1 Sr_1 W._1
. oo = H 31
take @ at its upper limit in (29) X Ve VS + W, (31)

Q=K(2M -K), K = min(M, N). (30) whereS,_ =V, V. ,...,andwhereHd, W._;, andW,
areM x N matrices with independe6tV (0, 1) entries, is max-
If sphere decoding is used we sometimes exceed this lirmtized whenV is isotropically distributed.
(yielding more unknowns than equations; see examples in Proof: See Appendix A.
Section 1lI), but we always obef < M?2.

R k: Ani ically distri i.d.) uni i
We are left with how to designis, ..., Ao and how to emark: An isotropically distributedi.d.) unitary matrixy’

is one whose probability density function is invariant to pre- and

L _ ost-multiplication by an arbitrary unitary matrix. That is,
reasonably small (for exampl&, < 4) then the criterion given ep P y y y

in [14] of maximizing|det(V; — V)| for all # # £ is tractable.
Recall that any constellatiofr;, ..., Vz, for which this de-
terminant is nonzero for af # ¢ is said to be fully diverse.

Lemma 3 shows that a constellation of unitary matrices is fuI%I)r all unitary © (see, e.g., [3], [12]). The probability density

. ) . . nction of an isotropically distributed unitary matrix is often
diverse if and only if the corresponding Cayley-transforme .

. I . . . . referred to as thélaar measurer the uniform measure on the

constellation of skew-Hermitian matrices is fully diverse. SmCLelnitary group

p(V) =p(®V) = p(VO)

, Q , Hence, good constellations of unitary matrices have the ap-
A-A= Z Ag(ag — ) pearance of being taken independently from an isotropic distri-
=1 bution.

3) Cauchy Random MatricesSince our data modulates the
A matrix, we would like to know the optimal distribution oh
quivalently, we need to find the distribution ehthat yields a
= (I +1iA)~Y(I — iA) that is isotropically distributed.

by consideringy andc’ that differ in only one coordinate we
see that it is necessary (but not sufficient)for, ..., Ag to be
nonsingular. We show some examples of full diversity for sm
rates and a small number of antennas in Section lII.

At high rates, however, we do not pursue the full-diversity Theorem 3 (Optimal Distribution oA): The unitary matrix
criterion. The reasons are twofold: first, the criterion becomé&s = (1 +iA)~!(I —iA) is isotropically distributed if and only
intractable because of the number of matrices involved; secoifdhe Hermitian matrixA has the distribution
the performance of the constellation may not be governed so )
much by its worst case pairwigéet(V; — V)|, but rather how (4) = MMM -1t 1 (32)
well the matrices are distributed throughout the space of unitary aMM+1)/2 det(I + AZ)M”~
matrices. One reason why group constellations do not perform
very well at high rates is because they lack the required statis- Proof: See Appendix B.

tical structure of a good high rate constellation [19]. The probability density function (32) is the matrix general-
2) The Mutual-Information-Maximizing Distributiontn  ;,ation of the familiar scalar Cauchy distribution

[6], code design for the known channel requires the design

of so-calleddispersion matriceswhich play a role similar 1

to Ay, ..., Ag in our problem. To ensure that the resulting pla) = 1+ a?) (33)

constellation has the correct statistical structure, the dispersion

matrices are chosen to maximize the mutual information bﬂ-sca]ar isotropiw can be written ag = 6i97 where#é is uni-

tween the input and output signals. It is shown that maximizigrm over[0, 27). In this caseq = —&;—23 = —tan(h/2) is

mutual information also has a beneficial effect on the averagguchy. The scalar Cauchy random variable is often expressed

probability of error [6] at high rates. We seek a similar qualitys the ratio of two independent Gaussian random variables. It is

criterion here. (in)ffamous because it has infinite variance, and the mean of
Unfortunately, we cannot adopt this strategy directly to déndependent Cauchy random variables has the same Cauchy dis-

sign Ay, ..., Ag because, unlike in the known channel cas@ibution—the law of large numbers does not apply. We refer to

we do not know how to compute the mutual information beany random Hermitian matrix whose probability density func-

tweentheinputy, ..., ag andoutputpaifX,_;, X;)forthe tion is (32) as a&Cauchy random matrix

differential scheme. We can, however, approximate this strategyt) Choice of4: Theorem 3 implies that, at high rates, our

by choosingdy, ..., Ag suchthatthe distribution o¥i is close CD code constellationt = Ele Aga, should resemble sam-

to the distribution that maximizes the mutual information beples from a Cauchy random matrix distribution. We look first at

tween it and the paifX,_;, X, ). We give the maximizing dis- the implications when there is one transmit antefiha= 1. In

tribution for V' in the following theorem. this case, the optimal strategy is standard DPSK.
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WhenM = 1, Theorem 3 gives us the scalar Cauchy densityhere V' = (I + iA")7Y(] — iA"), A’ = Zqul Agor, and

(33). By (29) we are limited t@? = 1, and there is no loss of the expectation is ovety, ..., ag andaf, ..., o/Q chosen
generality in settingd; = 1 to get uniformly from A,. such thatr # «'. Although&(V) is often
negative, it is a measure of the expected “distance” between
v — 11—ty — 1- v (34) the random matrice¥” and V’ and clearly is similar to the
1+da;’ 14w |det(V — V)| criterion in (1). If we interchange the expectation

) and thelog(-), the criterion directly measures the expected
To get rate}i?. = (Q@/M)log,r with M = @ = 1 we needAto  pajyise probability of error (9). Thus, maximizing(V) is
haver = 2% points. Standard DPSK puts these points uniformlyonnected with lowering average pairwise error probability.

around the unit circle at angular intervalsaf/r with the first 1o choose thed,’s, we therefore propose the optimization
pointatangler /7. (The location of the first point does not affecty gpjem

the constellation performance in any way, but it helps us avoid

a formal singularity in the inversion formula (34) at= —1.) arg max V). 37)
For a point at anglé on the unit circle Ae=Ag a=h - Q
i Our choices of4, and.A4,. affect the distance criterion through
o = —i 1__‘310 = —tan(6/2). (35) the distributionpy(-) that they impose on th&” matrices. To
I+e connect the optimization of this criterion with the information-

theoretic considerations of Section lI-E2, we prove the next the-
orem, which shows that this criterion is maximized whéand
V' are independently chosen isotropic matrices.

For example, for = 2 (D-BPSK), we have

V= {e™/? 772},
Theorem 4 (Isotropic Distribution Maximizes Criterion):

Plugging these values into (35) yields= {—1, 1}. Forr =4 Let V andV’ be M x M random unitary matrices chosen
(differential quaternary phase-shift keying (D-QPSK)), we havedependently according to some common distribugier-).

Then the distance criterion (36) obeys
A={-1-V21-v2, -1+V2,1+V2}

1

— E logdet(V - VYV -VH)* <0 38
= {—2.4142, —0.4142, 0.4142, 2.4142} 77 B losdet( A s (38)
with equality wherpy () is the isotropic distribution.

(we always arrange the points in increasing order)./Fer8 Proof: See Appendix D.

We interpret (36) as a measure of the average distance be-

={-5.0273, —1.4966, —0.6682, —0.1989 . . . .

A={-5 ’ ’ ’ ’ _ tween matrices in the constellation. Theorem 4 says that if the
0.1989, 0.6682, 1.4966, 5.0273}. set4, and Ay, ..., Ag are chosen such thaf is approxi-

) ] ] mately isotropically distributed whed,. is sampled uniformly,
We see that the points rapidly spread themselves outias  then the average distance should be large.

creases, thus reflecting the long tail of the Cauchy distribution\ye yse (14), and the fact that matrices commute inside the

(33). _ _ ~determinant function, to write the optimization as a function of
We denoted,. to be the image of the function (35) applied to4 and A’

these¥ € {n/r, 3n/r, 5n/r, ..., (2r—1)x/r}.Inthelimitas 1

r — oo, the fraction of points in4,. less than some is given arg ~ max log4 — i E logdet(I + A?%)

by the cumulative Cauchy distribution evaluatedcafThe set Aq=Ag, ¢=1 @

A, can thus be rega_rded asapoint discretization of a scalar  _ 1 Elogdet(] + A/Q) + 1 E logdet(A — A)?| (39)

Cauchy random variable. M M

While this argument tells us how to choose the dets a
function of » when@ = M = 1, it does not directly show us
how to choose4 whenM > 1. Nevertheless, whefd! > 1
we also setd = A,. Thus, the{w, } are chosen as discretize
scalar Cauchy random variables for agyand /. To complete
the code construction, itis crucial thigd,, ..., Ag} bechosen

whered = 3% | Aja,, A’ = Y2 | A, . For aconstellation
with ai, ..., ag anday, ..., ag chosen from4,., we inter-
Opret the expectation as uniform ovdy. such thatv # «'.

Itis occasionally useful, especially whets large, to replace
the discrete set from which, and«;, are choser{A,) with
independent scalar Cauchy distributions. In this case, since the

appropriately, and we present a criterion in the next section. sum of two independent Cauchy random variables is scaled-
5) Choice of{4,}: We shift our attention away from the Cauchy, our criterion simplifies to

final distribution on4 and express our design criterion in terms
of_V._ For a givenA,, R Ag andA,,, we def!ne a distance arg: max 2 logd — — E logdet(I + A?)
criterion for the resulting constellation of matricedo be Ag=45,9=1,..,Q

1
1 + — E logdet A% (40
§0V) = - B logdet(V = V/)(V = V')’ MR (40)

2 ) whereA= ZqulAqaq and the expectation is oves, .. ., «q
= 7 £ logldet(V = V") (36)  chosen independently from a Cauchy distribution.
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Design Method SummaryVe now summarize the design The optimal~y, therefore, sets the gradient of this last

method for a CD code with/ transmit andV receive antennas, equation to zero
and target rate.

1 2
i) ChooseQ < K(2M — K), K = min(M, N). This in- 0=" — gp Bl 4745747
equality is a hard limit for decoding by nulling/canceling,
and@ is typically chosen to make it an equality. But the _ 12 Etr [(I + A2 1 (I +~A2 - I)}
inequality is a soft limit for sphere decoding and we may vy M Y
choosel) as large ag4? even if N < M. 1 5 -
i) Since R = & log, 7, setr = 2M7/Q, et A, be the Ty <1 - MEtr[I — ([ 4747 ]>
r-point discretization of the scalar Cauchy distribution
obtained as the image of the function (35) applied to the — 1 <_1 + 2 Etr(I + ’YAQ)_]L) )
setf € {=, 3= . LTy g M
iii) Choose a se{A,} that solves the optimization problem The equation-1 + 2 E tr(Z 4+ vA?) ! = 0 can readily
(39). be solved numerically.
We now make the following remarks. 5) The ultimate rate of the code depends on the number of
1) The solution to (39) is highly nonunique: simply reorder- S|g_nals sen@, and the size of the constellatlot}, f“?m
ing the{ A, } gives another solution, as does changingthe ~ Which a1, ..., aq are chosen. The code rate in bits per
signs of the{ 4, }, since the setsl,. are symmetric about channel is
the origin. Q
_ R=—log,r. (42)
2) It does not appear that (39) has a simple closed-form so- M

3)

4)

lution fprgeneraQ, M, andN, butin Secthn [l we give We generally chooseto be a power of two.
a special case where a closed-form solution appears.
6) The design criterion (39depends explicitly on the

We solve (39) numerically usin radient-ascent . .
(39) y g 9 number of receive antenna$é through the choice of).

methods. The computation of the gradient of the criterion H h imal codes. f A diff
in (39) is presented in Appendix C. Since the criterion ¢ er&c_f?, the optimal codes, for a givéd, are different
function is nonlinear and nonconcave in the design vari- or different V.

ables{A,}, there is no guarantee of obtaining a global 7) The variable) is essentially also a design variable. In our
maximum. However, since the code design is performed  experience, the CD code performance is generally best
off-line and only once, one can use more sophisticated when @ is chosen as large as possible. For example, a
optimization techniques that vary the initial condition, code with a given andr is likely to perform better
use second-order methods, use simulated annealing, etC. han another code of the same rate that is obtained by
Section Il shows that the codes obtained with a gradient halving Q and squaring.. Nevertheless, it is sometimes
search tend to have very good performance. advantageous to choose a sn@lto design a code of a
The entries of A, } in (39) are unconstrained other than specific rate.

that the final matrix must be Hermitian. Appealing to
symmetry arguments, however, we have found it benefi-
cial to constrain the Frobenius norm of all the matrices in
{A4} to be the same. In fact, in our experience, it is very 9) The dispersion matricd4, } are Hermitian and, in gen-
important both for the criterion function (39) and for the eral, complex.

ultimate constellation performance that the correct Frobe-

nius norm of the basis matrices be chosen. With the cor- ||| ExaMPLES oF CD CoDES AND PERFORMANCE

rect Frobenius norm, choosing an initial condition for the

{A,} in the gradient search becomes easier. The gradien{n this section, we simulate the performance of CD codes for
for the Frobenius norm has a simple closed form Whic\@rious numbers of antennas and rates. The channel is modeled

we now give. It can be used to solve for the optimal norn®S guasi-static, where the fading matrix between the transmitter
Let ,/7 be a multiplicative factor that we use to@nd receiver is constant (but unknown) between two successive
multiply every A,; we solve for the optimal, > 0 by channel uses. Two error events of interest include block errors,

maximizing the criterion function (40) (the same analysi¢hich correspond to errors in decoding the x A matrices

8) If »is chosen a power of two, a standard gray-code assign-
ment of bits to the symbols of the sdt. may be used.

holds for (39)) Vi, ..., Vi, and bit errors, which correspond to errors in de-
9 codingay, ..., ag. The bits are mapped tg, with a gray code
arg max [2 log4 — i E log det(7 + yA?) (see Section II-E) and, therefore, a block error may correspond
K to only a few bit errors. In some examples, we compare the per-
+ 1 E log det 7A2:| formance of_ Iinearized_ likelihood (sphere decoding) with true
M ML and nulling/canceling.

Simple ExampledM = 2, R = 1. For M = 2 transmit

2 2
— argnax {103’7 — P logdet(I+~A )} : antennas and rat = 1 the constellation has = 4 elements.
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In this case, it turns out that no constellation can hadefined CD Code Using Orthogonal Designs (ODg) = 2: Recall

in (1) larger thart = \/273 ~ 0.8165; see [37, Proposition 3] from Lemma 3 that a constellation of unitary matrices is fully
for a proof of this result. The optimal constellation correspondbverse if and only if its Cayley transform constellation of skew-
to a tetrahedron whose corners lie on the surface of a thrétermitian matrices is fully diverse. Fdd = 2, a famous fully
dimensional unit sphere, and one representation of it is givdiverse constellation is the orthogonal design of Alamouti [4]
by the four unitary matrices

r oy
) OD = [ . *} . (45)
i = Orthogonal designs are readily seen to be fully diverse since
L 0 \/g - 1\/% ry—x —
] ) det(OD; — OD,) = det [ SR S }
_ % % —(n — )" (21— x2)"
V2= 2 1 =|z1 — wal* + |y — ol
) ° ) We require that OD be skew-Hermitian, implying that
i 1 27 ) ) ;
V3 VY3 (107 o + 1o o —tg + &
v, = 3 3 OD:[ 1. 2. 3}21,[‘ 1 2 3}
2 /1 —Qg + g —tQ 1 + Qg —Q
L 3 3 ~ ~
- \/g e 0 (46)
Vi= (42) , )
0 1y /2 where theo,s are real. Thus, we may define a CD code with
- EREATE basis matrices

There are many equivalent representations, but it turns out th/gt1 _
this particular choice can be constructed as a CD code@With

r = 2, and the basis matrices are

1 0 0 —i 0 1
that generates a fully diverse constellation. (In passing, we men-
tion thatA;, A, and A; form a basis for the real Lie algebra

— 1 _i -
NG (\/3 n 1) NG (\/3 — 1) su(2) of traceless Hermitian matrices.) Using (14) yields
A = ; 1 det(V — V') = ddet(I +4A) L det(A’ — A)det(I + A')~!
LV2(V3-1) v2(V3+1) which upon simplification yields
and ,
_ 1 7 - det(V — V )
V2(V3+1) v2(V3-1) _ Ao — ol P Jas — oh? + lag — abf?)
Az = —i 1 (43) (1 laa P+ ozl + [asP) (1 + i 2 + o2 + [a5[?)
[V2(V5-1) V2(V3+1) (48)

The matrices (42) are generated as the Cayley transform (11}2%3 — 15

A= Aia1 + Axan, with ay, o € A> = {—1, 1}
For comparison, we may consider the constellation based gl ¢ (which we omit) hag = 1/v/3.

orthogonal designs fal/ = 2 andR = 1 used in [16] given by

For example, by choosing, € A, we get a code with
. The appropriate scaling (see Remark 4 in Sec-
tion II-E6) is+ = 1/3. The resulting constellation of eight ma-

We note that the code (47) also appears to be a closed-form
solution to (39) forM = 2 and@ = 3 because it is a local

1 11 1 j-1 1 . N
Vi= ﬁ [_1 1} , Vo= E [_1 _1} maximum to the criterion. _
CD Code Versus ODM = N = 2: For a higher rate ex-
v, = 1 [1 —1} Vi = 1 [—1 —1} (44) ample, we examine another code fuf = 2, but we choose
V2 |1 1]’ V2| 1 -1 N =2andR = 6. Fig. 1 shows the performance of a CD code

which has( = 1/+/2 & 0.7071, or the constellation given in

with @ = 4. The code is

4 i 0.1785 0.0510 + 0.1340:
1 [ex=i/+ o 71t "7 10.0510 — 0.1340i 0.0321
Vi=— 4 , t=1,...,4
‘T V2 { 0 627”/4} A [ —0.1902 0.1230 + 0.04954
2= |0 =4

which also hag = 0.7071. Since we are more interested in 10.1230 — 0.0495 —0.0512
high-rate examples, we do not plot the performance of the CD A r —0.2350 0.0515 — 0.0139¢ 7
code (42)_; however_, simulations show t_hat the perfo_rmance gain 3 | 0.0515 + 0.0139 0.1142
over (44) is approximately 0.75 dB at high SNR. This small ex- ) N
ample shows that there are good codes withinthe CD structureat 0.0208 0.1143 — 0.1532¢
low rates. (In this case, the best= 1 code has a CD structure.) 4 10.1143 4+ 0.1532¢ 0.0220 '
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o M=2, N=2, R=6
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Fig. 1. Performance of a CD code fdf = 2 transmit andV = 2 receive antennas with rafé = 6. The solid line is the block error rate for the CD code with
sphere decoding, and the dashed line is the differential two-antenna orthogonal design with ML decoding.

(TogetR = 6,chooseyy, ..., ay € Ag;thedistance criterion  Linearized Versus ExactMI}/ = 4, N =2, R = 4: Byin-
(36) for this code i = —1.46.) Also included in the figure is creasing the number of receive antennas in the previous example
the two-antennadifferential orthogonal design [16] withthe sanb@ N = 2, we may linearize the likelihood and compare the per-
rate. The CD code obeys the constraint (29) and therefore carfdmenance with the true ML. Fig. 3 shows the results. (We use the
decoded very quickly using the sphere decoder. An ML decodsame code as in Fig. 2.) Observe that- 2MN — N? = 12
would have to search oveft™ = 212 = 4096 matrices. and therefore the inequality (29) is still not obeyed; but because
Comparison With Another Nongroup Codd: = 4, N =1, itis almost obeyed, the sphere decoder of the linearized likeli-
R = 4: There are not many performance curves easily availood searches over only — 12 = 4 dimensions. With- = 2,
able for existing codes fod = R = 4 over an unknown this search is ove2* = 16 quantities, which is a negligible
channel, but [19] has a nongroup code f¥r = 1 that ap- burden. Compare this burden with the true maximum likelihood
pears in [19, Table 4 and Fig. 9]. Fig. 2 compares it to a C(®5 536 matrices). The figure shows that the performance loss
code with the same parameters. The CD code(as 16, for linearizing the likelihood is approximately 1.3 dB at high
and achievesd? = 4 by choosingr = 2. The4 x 4 matrices SNR. While the performance of linearized ML is slightly worse
Ay, ..., Aig are not given here, but they are available from thinan true ML, the next figure shows that the performance of
authors on demand(V) = —1.45. The nongroup code, which nulling/canceling is much worse than either.
has its origin in a group code, performs better but the differ- Sphere Decoding Versus Nulling/Cancelidg: = N = 4,
ence is very small. Observe th@t= M? > 2MN — N2 =7 R =8: Fig. 4 shows the performance of a CD codefdr= 4
and, therefore, the inequality (29) is not satisfied, but it do#iansmit andV = 4 receive antennas for rafeé = 8 with lin-
not matter in this case because the decoding for both codegasized-likelihood decoding. As in the previous examgjles
true ML (rather than sphere decoding or nulling/canceling). Thi$, but to achieved? = 8 we choose: = 4. (We again omit the
example is not very practical because ML decoding involveseaplicit description of4,, ..., Ai6; £(V) = —1.36.) Plotted
search ove2™ = 216 — 65 536 matrices. However, this samealso is a comparison of the same CD code with nulling/canceling
CD code is used in the next example where by increasing tthecoding. We see that sphere decoding is dramatically better.
number of receive antennas = 2 we are able to solve the True ML decoding is not realistic in this example because there
linearized likelihood with sphere decoding. are2®™ = 232 ~ 4 x 10° matrices in the codebook.
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10 12 14 16 18 20 22 24 26 28 30

Fig. 2. Block error performance of a CD code fof = 4 transmit andV = 1 receive antennas with raf@ = 4 compared with nongroup code presented in
[19, Fig. 9 and Table 4]. The decoding in both cases is true ML through exhaustive search.

High-Rate ExampleM = 8, N = 12, R = 16: Some of showed thaty, ..., «g appear linearly at the receiver and
the original V-BLAST experiments [24], [25] use eight transmitan be decoded by nulling/canceling or sphere-decoding by
and twelve receive antennas to transmit more than 20 bits/s/ifgnoring the data dependence of the additive noise. Additional
Fig. 5 shows that high rates with reasonable decoding conftannel coding across, ..., «g or from block to block can
plexity are also within reach of the CD codes. Plotted are tioe combined with a CD code to lower the error probability
block and bit error rates foR = 16; here( = 64 andr = 4 even further.
and the CD matrices are again omitted (they are available fromWe have given some specific examples of the CD codes to
the authors, and haw§)) = —1.48). We note that becauseindicate their performance, and presented a recipe for gener-
M = 8, the effective constellation size of unitary matrices iating more codes for any combination of transmit and receive
L = 287M — 2128 o5 3 4 % 103®, yet we may still easily sphere antennas. Our simulations indicate that codes generated with
decode the linearized likelihood. this recipe compare favorably with existing space—time schemes
in their good performance and low decoding complexity.

In our simulations, we decoded the CD codes by ML,
sphere decoding of the linearized likelihood, or by nulling

The Cayley differential codes that we have introduced dmd canceling. Sphere decoding of the linearized likelihood
not require channel knowledge at the receiver, are simpleferformed slightly worse than true ML, but much better than
encode and decode, apply to any combination of transmitlling and canceling and generally has comparab(€)?)
and receive antennas, and have excellent performance at v@mplexity. Exact ML is generally not practical except with a
high rates. They are designed with a probabilistic criteriosmall number of antennas or low rates. It may be possible to use
they maximize the expected log determinant of the differentiee sphere decoder output as the initial estimate for nonlinear
between matrix pairs. The codes make use of the Caylsgcond-order methods applied to the true ML criterion.
transform that maps the nonlinear Stiefel manifold of unitary Our criterion function (37) was chosen for its ease of manipu-
matrices to the linear space of skew-Hermitian matrices. Thaion, and its connections to both minimizing error probability
transmitted data is broken into substreams ..., o and and achieving a constellation that is isotropically distributed.
then linearly encoded in the Cayley transform domain. Weevertheless, although we generally found that high values of

IV. CONCLUSION
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M=4, N=2, R=4

.......... \ \.
: : : solid: lin. ML : N \ :

bler/ber

SNR (dB)

Fig. 3. Performance of a CD code f&f = 4 transmit andV = 2 receive antennas with rafé¢ = 4. The solid lines are the block per bit error rates for the
CD code with sphere decoding, and the dashed lines are the block per bit error rates with ML decoding. The performance loss of linearizing ttheslikelihoo
approximately 1.3 dB at high SNR.

(37) led to good constellation performance, the criterion is not APPENDIX A
perfect—there were occasions where a larger value for (37) did OPTIMAL INPUT DISTRIBUTION

not mean better performance. We may therefore ask if there are
better criteria. Let © and ®* be arbitrary fixed unitary matrices and write

It would be interesting to see if the CD codes that satisfy = ©V'®" for someV”’. We rewrite (31) and substitute fof

the optimization (37) possess any general algebraic structure
(Section Il shows some cases where there is structure). This [Xf—l} =\/7 [ Sr-1 } H+ |:W‘r—1:|
would lead to better theoretical understanding of the codes, as X OV/e*S. 4 W
well as to possibly even faster and better decoding. There are *

. . . P S‘r—l Ww. —1
potentially many ways to optimize (39), and the gradient method = p|: . } [ WT/ }
we chose is only one of them. More sophisticated optimization OVIerS: 1 T

techniques may also be useful ltD qultiplying the first block equation b$* and the second
Our model assumed that the fading between the transmltb?( ck equation by, and noting thass’._, = *S,_; is uni-

and receiver d_|d not char_lge betwe_en successive chann_el usetsa?y and that?’_, = ®*W,_, and W’ = ©*I. have the
a more realistic model with a mobile transmitter or receiver, the C T T .
. same distribution a&’._; andW.., we may write
channelwould vary continuously from one use to the next. More
analyses or simulations are needed to see how the performance N , ,

: [ o X"'—l S‘r—l W‘r—l
would be affected by a varying channel—preliminary results =p +
suggest that the primary effect would be an “error floor” at very
high SNR [38].

Finally, we chose theys from a setA, that is designed to
help make the final matrix behave, on average, like a Cauch
random matrix. We have not tried to optimize this set for code )
performance and think that this is another possible area for fu- ~ P(Xr—1, X |V) =p(®"X;_1, ©" X [V7)
ture work. =p(®" X, 1, 0" X, |© VD). (A1)

V//

0" X, -1 wl
The joint distribution ofH, W!_,, and W/ has not changed,
9nd thus,
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M=4, N=4, R=8

ber/bler

SNR (dB)

Fig. 4. Performance of a CD code fdf = 4 transmit andV = 4 receive antennas with rafé = 8. The solid lines are the block and bit error rates for sphere
decoding and the dashed lines are for nulling/canceling. The performance advantage of sphere decoding is dramatic.

Assume that the mutual informatidX._,, X,;V)ismax- where the integral is over the space of unitary matriéesnd
imized by some input distributigpi* (V). For any fixed and uni- © (i.e., over Haar measure, whef¢ is the appropriate nor-

tary © and®, we have malizing constant), also maximizes the mutual information. But
p** (V) is clearly invariant to pre- and postmultiplication by
I(X;q, Xi3 V) fixed unitary matrices. Thereforg;*(V') is the isotropic dis-
=[(®*X,_1, 0°X; V) tribution on the unitary matri¥’.
=H(®*X,_1,0"X,)- H(®*X,_1, X, |V)
APPENDIX B
H(X, 1, X;) - /dXT—1 dX,dVp*(V) THE CAUCHY RANDOM MATRIX
p(QF X1, O XL |V) logp(®7 X1, O X, |V) We note from Lemma 2 that the Hermitian matrixand the
. unitary matrixV. = (I + ¢4)~*(I — i¢A) commute, and are,
= H(Xooy, X7) = /dXT—l dX; dVp*(V) therefore, simultaneously diagonalized by a common set of or-
p(Xro1, X |OVO*) logp(X,.—1, X, |OVE*) thonormal eigenvectors. Therefore, we first derive the distribu-
) ) tion of the eigenvalues od.
=H(X; 1, X)) — /dX‘r—l dX; dV'p"(0"V'®) Let the eigenvalues of th&/ x M isotropically distributed
~ . vt unitary matrixV be denotedh = (A, ..., Ap), and let the
(X1, X V') log p(Xorm1, X |V7) eigenvalues ofA be denoted: = (p1, ..., par). Then
where in the fourth step we use (Al), and in the last step the M
change of variable§” = @V@l (vvhich has Jacobian determi- p(A) = '1 - H §(|Am|? — 1) H e — Aml?  (BL)
nant one). Hence, the input distributiph(©* V' ®) also maxi- Mmoo am

mizes the mutual information. The mutual information is con- .
cave as a function of the input distributipp (-). We conclude (See, for example, [30].) To getx) we use the relations be-
that the distribution tween the eigenvalues from Lemma 2

P (V) = K/d@dq)p (@ V(I)) )\rn, =Tm 1+'l://07n’ d)\rn, =Tm (
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M=8, N=12, R=16

ber/bler

Fig. 5. Performance of a CD code f8f = 8 transmit andV = 12 receive antennas with raf¢ = 16. The solid lines are the block and bit error rates for
sphere decoding.

wherer,, = |\»|. In generaly: is real and\ is complex, and that is invariant to unitary similarity transformations, then the

we will integrate out- = (ry, ..., ras). The Jacobian of the joint density of the eigenvalues is
transformation\,,, — (7., ftm) 1S 27, /(1 + p2)). The §(-) AM(M-1)/2
function in (B1) becomes = 1(diag — lm)?.
(B1) Pn) = Sicar — i1 PA(dias() ZH (16 = fim)
6(|)‘m|2_1) = 6(7}271_1) =((rm+1)(rm—1) = %6(7’771_1) o . . . >n.l I
The distribution orA is invariant to unitary similarity transfor-
and we get mations because
T U*AU = —iU*(I+ V)t - VU

p(p, 7) 6(rm — 1)

M,WM H 112, = iU I+ V) UU (I - VU

=i 1 —dpg | =—i(I4+U*VU)" (I - U*VU)

Sl

£>m
Integrating out- gives the distribution on the eigenvalues

B —Tm B
L+ipue L+ tpim and the distribution of7*V U is the same as the distribution of

V. It follows that

. . ) oM =M(pf 1)1 1
—tpe 1 —ipy, pal\s) = M(M+1)/2 det(I + A2)M
+ A
p(p) = Ml7rM H 1442, H ‘ 1+dpe 14+ium " ( )
(B2) APPENDIX C

M GRADIENT OF CRITERION (39)

_ 1 11 1 11 (e = pom) ©3)
Mzt 21+ i, 1+ p2)(1+ p2) In all the simulations presented in this paper, the maximiza-

¢ tion of the design criterion function in (39), needed to design
gM?—M M the CD codes, is performed using a simple constrained—gra-
= MM (1+um )M H Nm . (B4) dient—asce_nt method.lnth_issection,we cqmputethe gra_dier_ltof
m=1 >m (39) that this method requires. More sophisticated optimization

We now can obtain the distribution of, by using results in techniques that we do not consider, such as Newton—Raphson,
[39], [40] that if a Hermitian matrix4 has a distributioms(A)  scoring, and interior-point methods, can also use this gradient.
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From (39), the criterion function is
1
I E logdet(V — V') (V = V')*
1 1
=log4 — I E logdet(I + A?) — i E logdet(I + A'?)
1
+47 B logdet(A’ — A)? (C1)

whereA = Equl Agja, and A’ = Equl Agor,. We are inter-

ested in the gradient of this function with respect to the matrices

A1, ..., Ag. To compute the gradient of a real functiggA, )
with respect to the entries of the Hermitian matrix, we use
the formulas

GR| = S et ) )
i#k  (C2)
Bﬁﬁi} = B 57 (40 4 (g —ene])) =54
itk (C3)
{% = tim $[f(4, +bec]) (4] (CA)

wheree; is the M -dimensional unit column vector with a on
in the jth entry and zeros elsewhere.
To apply (C2) to the second term in (C1), we compute
log det (I + (A + (ejez + eke?) aq6)2>
=logdet (I + A%+ [A(ejef + ekef) + (ejef + ekef)A]
Cagd + 0(62))
= log det [(1 + 4%) (I +(T+4%)7"
. [A(cjcf + ckc?) + (ejef + ckef)A]
g6+ 0(62))}
=log det(I + A2) + tr log(1 + (1 + 4%) '
[Alejer +enel) + (ejer +enel ) Alagd + 0(62))
= logdet(I + A%) +tr [ (1 + 4) "
[Alejer +ere]) + (ejer +ene) ) A] aqé} + 0(6%)
= logdet (I + A%) + H(I +42)7" AL ’
55 J

+ [(I+ A7 A] + [A (I+A2)_l}

gk k,j

+[A(1+47) ‘1L J g6 + O(6?)

= logdet (L + A%) +4Re|(I+4%) " 4] a,8+0(5?).
ik
The last equality follows becaugé + A%)~ and A commute
and 4 is Hermitian. We may now apply (C2) to obtain

OE logdet(I + A?)
dRe A,

J.k

=4FRe[(I+4%)7 4] a,,  j#k

J.k

1501

The gradient with respect to the imaginary componeni$,of
is handled in a similar way to obtain

log det (I + (A+ (eje — GkG?)aqié)Q)

=logdet(I + A7) + tr[([ + A2)71 [A(ejey, H

- erj

)

+ (esek — exey) 4] %ié} +0(82)

= logdet

2

(I+4%) + H(IJFAQ)]‘AL j
~lar )Tl e auranT]
— A +Ay) ] ) J gié + O(8%)

= logdet (I + A%) + 4Im[(I+A2)_1 A} b +0(8%)

2

which yields
JE logdet(f + AQ)
dlmA, )
7k
— 2)~L i
_4EIm[(I+A ) ALykoz,I, J#k.

eThe gradient with respect to the diagonal elements is

JE logdet(I 4+ A?)
a4,

(%

Lo gr
327

= 2B(1+4%) 7" 4]

The third term in (C1) has the same derivative as the second
term.
For the fourth term, note that’ — A = ZqQ:l AqBy, where
By = o — a4. Therefore,
logdet (A + (¢jep + ekef) 6/3q)2
— logdet(A(I + A7 (ejef + erel) 68,))°
= logdet(A(I + AT (cjef + ckcf) 6634
- A(I +A7t (ejef + ekef) 6[3q))
=logdet A% 4+ 21tr log(I + A7t (ejef + ekef) 6/3,1)
+ 0(8)
= logdet A> + 2tr[A ™ (ejef + ene] ) 68, + O(57)
=logdet A2 +2([4Y], +[471],,) 65,
= logdet A* +4Re[A7"] 65,

Hence,

OE log det(A’— A)?
ORe A,
For brevity, the computation of the derivatives with respect to
the imaginary and diagonal components4yfis omitted. The
results are

[aE log det( A’ — A)?

B

} 'k:4ERe[A_1]J . Ba j# k.
ik

} k=4EIm[A_1]j7k/3,1, J#k
J

0lm A, N
and
OE logdet(A'—A)?] 1
[ o | =2ml, gy
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APPENDIX D whered = ¢% is an arbitrary eigenvalue df”” and the expec-
|SOTROPICDISTRIBUTION ACHIEVES EQUALITY IN (38) tation in (D4) is over the distribution ofl. With an isotropic
P " . S
The stationary points of the left-hand side of (38) can be Oﬁlesrt]rél;utlon onV”, ¢ has a uniform distribution of9, 2x), and

tained by considering the Lagrangian

0 1 [ 0
1 Elog | 4sin?= )} =2 |logd + — dflogsin® —
L= / AV dV'py (Vipy (V') log det(V — V') (V — V)" °3< o 2) [08 +27r/0 o8 2}

2
+)\<1—/de‘,(1/)> +/dvu(V)pyf(V) (D1) —210g4+;/0 df log sin”

4 [T .
where is the Lagrange multiplier that enforces the constraint =2logd + - /0 df log sin 0

J dVpy(V) = 1, andp(:) is the Lagrange multiplier that en- ) 4 )
forces the constrainiy(-) > 0. In other wordsu(V) = 0 =2logd — —mlog2
whenevepy (V) > 0 andu(V) # 0 otherwise. We require that =0. (D5)

pv(-) be nonzero for all unitary’, and thereforg. (V) = 0 and

the Lagrangian becomes Equations (D3)—(D5) imply that = 0 for every stationary

point of the left-hand side of (38). Moreover, it is straightfor-
1 , , ) , . ward to use (D3) to show that the value of (38) itself is also equal
L= / AV dVpy (Vipy (V') log det(V =V)(V =17 to A and is therefore also zero at every stationary point. Because
(38) is trivially bounded above Hyg 4 and has no lower bound,
+A <1 - / deV(V)) ©any stationary point must be a maximum. We therefore conclude

that
Writing the first-order condition for maximization yields

5 % E logdet(V — V/)(V — V/)* < 0.
A=— /dV’pV(V’) logdet(V — V) (V — V/)* o ) ) _ S
M Equality is achieved whepy (+) is the isotropic distribution.

2

=— [ dV'py (V") logdet(I — V'V*Y(I - VV"™). (D2
M / py (V") log dei( i )- (02) ACKNOWLEDGMENT
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