
Cayuga: A High-Performance Event Processing Engine∗

[Demonstration Paper]

Lars Brenna
†

, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel Ossher,
Biswanath Panda, Mirek Riedewald, Mohit Thatte, Walker White

Cornell University
Ithaca, New York

{larsb,ademers,johannes,mshong,jpo5,bpanda,mirek,mmt38,wmwhite}@cs.cornell.edu

ABSTRACT
We propose a demonstration of Cayuga, a complex event
monitoring system for high speed data streams. Our demon-
stration will show Cayuga applied to monitoring Web feeds;
the demo will illustrate the expressiveness of the Cayuga
query language, the scalability of its query processing engine
to high stream rates, and a visualization of the internals of
the query processing engine.

Categories and Subject Descriptors
H.2 [DATABASE MANAGEMENT]: Query processing

General Terms
Experimentation, Design, Performance

Keywords
Publish/Subscribe, Complex Event Processing, Continuous
Query Processing

1. INTRODUCTION
An ever increasing amount of data arrives as high speed

event streams. Stock ticker data, network tra�c data, data
gathered in sensor networks, RFID streams are just a few
examples of such streams. In addition, as the amount of
dynamic content on the Web (blogs, news, auctions) grows

∗This material is based upon work supported by the Na-
tional Science Foundation under Grant 0621438 and by the
Air Force under Grant AFOSR FA9550-06-1-0111. Any
opinions, �ndings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily re�ect the views of the sponsors.
†The author is also a�liated with the University of Tromsø,
Norway, but this work was done while visiting Cornell Uni-
versity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’07, June 11–14, 2007, Beijing, China
Copyright 2007 ACM 978-1-59593-686-8/07/0006 ...$5.00.

rapidly, the web is becoming a source of many interesting
and complex event streams.
An emerging class of enterprise applications such as health-

care, environmental monitoring, supply chain management,
and compliance checking, as well as consumer applications
such as personalized news feeds and information aggrega-
tion, all require �ltering, correlation, and aggregation of
individual events. The resulting complex event queries go
beyond publish/subscribe in that the queries involve corre-
lations among multiple events instead of simple predicates
on individual events.
At Cornell, we have built the Cayuga System, a high-

performance system for complex event processing [1, 2]. Ca-
yuga combines a simple query language for composing state-
ful queries with a scalable query processing engine based on
nondeterministic �nite state automata with bu�ers. An im-
portant feature of Cayuga is its ability to scale not only with
the arrival rate of events in the stream, but also with the
number of queries; the latter dimension of scalability is es-
pecially important for consumer applications where millions
of users could have queries registered with the system.
In this demo, we show an application of Cayuga to mon-

itor event streams from a web feed aggregator for person-
alized news aggregation and noti�cation. We �rst give a
high-level overview of the Cayuga System, introducing some
of the Cayuga queries that we will show in the demo (Sec-
tion 2). We then describe the actual demonstration in detail
(Section 3).

2. CAYUGA
In Cayuga, each event stream has a �xed relational schema,

and events in the stream are treated as relational tuples.
Each event has two timestamps, a start time and a detec-
tion time, modeling the fact that events can have a non-zero
but �nite duration. Events are serialized in the order of
their detection times; events with the same detection time
are considered to happen simultaneously, and there is no
guarantee about their serialization order. Several interest-
ing theoretical issues have led to this design [3].
The Cayuga query language is derived from an event alge-

bra [1]; it is a simple mapping of the algebra operators into
a SQL like syntax, similar in spirit to the complex event
language in SASE [4]. Each query has the following form:

SELECT 〈attributes〉
FROM 〈algebra_expression〉
PUBLISH 〈output_stream〉

item_url http://news.zdnet.com/2509-1_22-0-. . .
feed_url http://news.zdnet.com/2100-1040_22. . .
title Louisiana joins battle over violent video g. . .
summary Similar laws in other states found unconst. . .
timestamp Mon, 19 Jun 2006 13:45:00 PDT
streamid webfeeds
starttime 0
endtime 0

Table 1: Event Schema

The SELECT clause speci�es the attributes in the output
stream schema, the FROM clause speci�es a Cayuga event
pattern, and the PUBLISH clause gives the output stream
a name. The event pattern can be built with three di�er-
ent operators. The FILTER{θ} operator selects those events
from the input stream that satisfy the predicate θ.
Demo Query 1: In the demo, we will illustrate the FIL-

TER operator with the following query that �nds all news
items published by Google news in the overall stream �webfeeds�
with a schema that is shown in Table 1.

SELECT * FROM
FILTER {feed_url='http://news.google.com/'}(webfeeds)

PUBLISH google_news_items

A powerful construct that allows us to correlate events
over time is the sequencing operator NEXT{θ}. When ap-
plied to two input streams S1 and S2 as S1 NEXT{θ} S2

the operator combines each event from S1 with the next
event in S2 that satis�es the predicate θ and occurs after
the detection time of the event in S1.
Demo Query 2. This query �nds all news items that

are published by some site, followed by an article on Google
news that refers to it. Note that this query takes the output
of Query 1 as one of its input streams. The user-de�ned
function contains performs substring matching; $1 and $2
refer to the two input streams of the NEXT operator.

SELECT $2.summary, $1.item_url FROM
(webfeeds) NEXT {contains($2.item_url,$1.item_url)=1}
(google_news_items)

PUBLISH re�ed_by_google_news

While NEXT allows us to correlate two events, there are
many situations where we need to iterate over an a-priori
unknown number of events until a stopping condition is sat-
is�ed. This capability is supplied by the FOLD operator.
Intuitively, FOLD is a generalization of the NEXT operator
because it looks for patterns comprising two or more events.
We will describe FOLD using the next example.
Demo Query 3. This query sends out a noti�cation

whenever an iPod is popular in the news (i.e., there are at
least ten articles talking about the iPod in a certain time
duration). The FOLD operator contains three expressions:
(1)condition for the iteration (2)stopping condition for iter-
ation (3)mapping between iteration steps.

SELECT * FROM
(SELECT *, cnt AS 1 FROM
FILTER {contains(summary,"iPod")=1}(webfeeds))
FOLD {TRUE, cnt>10 AND dur<1 day, cnt AS cnt+1}

(SELECT * FROM
FILTER {contains(summary,"iPod")=1}(webfeeds))

PUBLISH ipod_popularity

Cayuga processes events in epochs; during an epoch all
events with the same detection time are processed. The

queries are implemented as nondeterministic �nite state au-
tomata with bu�ers and self-loops that work as follows.
Each state in an automaton is assigned a �xed relational
schema. Each edge, say between states P and Q, is labeled
by a triple 〈S, θ, f〉, where S identi�es an input stream;
θ is a predicate over schema(P) × schema(S); and f , the
schema map, is a function taking schema(P) × schema(S)
into schema(Q). The NFAs operate as follows. Suppose an
NFA instance is in state P with stored data x (note x con-
forms to schema(P)). Let an event e arrive on stream S such
that θ(x, e) is satis�ed. Then the machine nondeterminis-
tically transitions to state Q, and the stored data becomes
f(x, e). Cayuga supports resubscription, a concept similar
to a query plan in a relational database system: the output
event stream from one query can be used as the input stream
to one or more other queries. Resubscription enables very
complex event pattern queries, and it signi�cantly extends
the expressiveness of the query language. More details of
the system can be found in our recent publications [1, 2].

3. DEMONSTRATION OUTLINE
In this section we provide an overview of how we demo the

queries shown above, taking Demo Query 2 as the running
example. Our demo has the following three components: (i)
A Web based front end for users to enter queries; (ii) a trace
visualizer which displays the internal state of the Cayuga
engine and the automata based query representation; and
(iii) an output visualizer which displays the results of query
evaluation. During the demonstration, we will run queries
on a stream of events from a Web feed aggregator. Let
us now present each of the above components by walking
through the execution of Query 2. This query was processed
against a stream of events containing 225365 feed items from
418 channels recorded between June and October 2006.

3.1 Submitting a Cayuga Query
The Web-based frontend is running on a custom Python

Web server, with AJAX-based controls for asynchronous
communication and user-friendly interfaces in the browser.
Cayuga has a web-based frontend where users can enter per-
sistent queries and register them with a running Cayuga en-
gine. For convenience, users are given a choice of prede�ned
templates for the described query language from a drop-
down menu. Then, they can modify these to their need, or
write one from scratch. Since Cayuga queries can easily span
multiple lines, we supply a multi-line input box bigger than
typically seen in web-based query interfaces. The query se-
lected for editing in Figure 1 is a screenshot of our query
frontend which displays Query 2. Note that this version of
the query is inlined and without resubscription.
Upon submitting a query, the query will be compiled and

bu�ered outside Cayuga. Users will get a message back with
a query id or an error message that the query did not compile
and must be re-submitted after changes. Users can choose to
batch up a number of queries before they press EXECUTE to
register their queries with Cayuga. A batch can be cleared
by pressing Clear.

3.2 Trace Visualizer
Cayuga can output a continuous trace of how its internal

state changes between events. This trace is written to a �le,
which contains a description of the query automata, followed
by events and state instances. Our visualizer reads the trace

http://news.zdnet.com/2509-1_22-0-
http://news.zdnet.com/2100-1040_22

Figure 1: Web Frontend initialized

with Query 2.

Figure 2: An empty automaton, an-

notated with predicates.

Figure 3: Automaton with popu-

lated nodes.

�le and uses a Java Swing-based GUI to display how events
are matched to predicates in the query automata.
To see precisely how the loaded queries work against the

events in the input stream, users can choose to play forward,
pause at any given point, or go through the trace step by
step. This allows users to investigate in detail how any single
event a�ects the internal states of the query automata. The
controls seen on the toolbar of the Visualizer in Figures 2
and 3 are (in order from left to right) to zoom the automaton
in and out, adjust the vertical distance from the toolbar, and
for playback. The input- and output streams are named and
given di�erent colors in the animation. At any time, if the
user clicks at one of the states in the automaton, a text box
will pop up to show the instances in this state. Clicking on
an edge will show the predicate on that edge.
Figure 2 shows the automaton for Query 2 with the tran-

sition edges annotated with their predicates. In Figure 3,
the automaton has processed some events. The stream has
so far produced 7 instances of state 1, and 4 instances of
state 2. The text box on the right shows the content of
state 2, scrolled down to see the last instance to reach this
state. From the text we can see that a story published by
http://news.zdnet.com on Wed, 12 Jul 06:00 was linked to
by http://news.google.com at 13:00 the same day.

3.3 Witness Output
When witness events (i.e., query results) are produced,

Cayuga currently dumps them in a �le that the Web fron-
tend is tailing. These are then put in a bu�er where a fre-
quently polling AJAX function can get them and display in
the HTML page on the web browsers of end users, sorted
by queries. Figure 4 is a screenshot showing the �rst two
witnesses that appeared for Query 2.

4. CONCLUSIONS
Cayuga is a mature event processing system with an in-

teresting processing model. We believe a demo of its capa-
bilities will be of interest to the database community.

5. REFERENCES
[1] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and

W. White. Towards expressive publish/subscribe
systems. In Proc. EDBT, 2006.

Figure 4: Web Frontend with witness events.

[2] A. Demers, J. Gehrke, B. Panda, M. Riedewald,
V. Sharma, and W. White. Cayuga: A general purpose
event monitoring system. In Proc. CIDR, pages
412�422. www.cidrdb.org, 2007.

[3] W. White, M. Riedewald, J. Gehrke, and A. Demers.
What is �next� in event processing? In Proc. PODS,
2007.

[4] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In Proc.

SIGMOD, 2006.

http://news.zdnet.com
http://news.google.com

	Introduction
	Cayuga
	Demonstration Outline
	Submitting a Cayuga Query
	Trace Visualizer
	Witness Output

	Conclusions
	References

